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Abstract. This paper describes an algorithm for accelerating the computations 

of Davies-Meyer based hash functions. It is based on parallelizing the 

computation of several message schedules for several message blocks of a 

given message. This parallelization, together with the proper use of vector 

processor instructions (SIMD) improves the overall algorithm’s performance. 

Using this method, we obtain a new software implementation of SHA-256 that 

performs at 12.11 Cycles/Byte on the 2nd and 10.84 Cycles/Byte on the 3rd 

Generation Intel® Core™ processors. We also show how to extend the method 

to the soon-to-come AVX2 architecture, which has wider registers. Since 

processors with AVX2 will be available only in 2013, exact performance 

reporting is not yet possible. Instead, we show that our resulting SHA-256 and 

SHA-512 implementations have a reduced number of instructions. Based on our 

findings, we make some observations on the SHA3 competition. We argue that 

if the prospective SHA3 standard is expected to be competitive against the 

performance of SHA-256 or SHA-512, on the high end platforms, then its 

performance should be well below 10 Cycles/Byte on the current, and certainly 

on the near future processors. Not all the SHA3 finalists have this performance. 

Furthermore, even the fastest finalists will probably offer only a small 

performance advantage over the current SHA-256 and SHA-512 

implementations. 

Keywords: SHA-256, SHA-512, SHA3 competition, SIMD architecture, 

Advanced Vector Extensions architectures, AVX, AVX2.  

1 Introduction 

The performance of hash functions is a significant workload of high end SSL/TLS 

and datacenters servers that perform data authentication (and encryption) at a large 

scale. In addition, SHA-256 [1] performance is the baseline for the SHA3 competition 

[11]. Furthermore, a truncation of SHA-512 (proposed in [3]) which has been recently 

standardized [12], implicitly extends the comparison baseline to SHA-512 as well. 

For this reason, we focus here on the performance of SHA-256 and SHA-512 on the 

ubiquitous x86_64 architectures, used in most server platforms.  

SHA-256 and SHA-512 use the classical Davies-Meyer construction where the 

compression function is based on a block cipher, and message blocks are used as the 
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cipher’s key. In this construction, the key expansion step of the compression function 

(“message scheduling” hereafter) depends only on the message, and is independent of 

the intermediate values of the computed digest (i.e., the ciphertext). This property 

allows for computing multiple message schedules in parallel.  

In this paper, we propose a method called n-wise Simultaneous Message 

Scheduling (n-SMS for short), which parallelizes message scheduling of n message 

blocks, and uses Single-Instruction Multiple-Data (SIMD) instructions [5] to speed 

them up. The value of n depends on the hash algorithm and on the SIMD architecture 

that the algorithm runs on. For example, consider the new AVX architecture [5] 

where registers hold 128 bits of integer data, and the instructions can operate on both 

32-bit (“dword”) and 64-bit (“qword”) elements. For SHA-256 whose message 

schedule operates on 32-bit dwords, this architecture allows for parallelizing four 

message schedules, that is, using a 4-SMS method. For SHA-512, whose message 

schedule operates on 64-bit qwords, it allows for parallelizing two message schedules, 

using a 2-SMS method.  

Extended parallelism is facilitated by the new AVX2 architecture that Intel has 

recently announced, and will be first introduced in the next architecture (Codename 

“Haswell”) in 2013 [8]. AVX2 (stands for Advanced Vector Extensions) architecture 

includes instructions that operate on integer elements stored in 256-bit registers. It 

supports the use of 8-SMS for SHA-256 (as well as for SHA-1) and 4-SMS for SHA-

512. 

In this paper, we explain the n-SMS method and demonstrate how 2-SMS, 4-SMS 

and 8-SMS can be used for SHA-256 and SHA-512 (as appropriate). We provide 

performance results on the 2
nd

 and 3
rd

 Generation Intel® Core™ processor, achieving 

12.22 and 10.84 Cycles/Byte respectively for SHA-256, using 4-SMS and the AVX 

instructions. For the future AVX2 architecture, no exact measurements can be made 

public. We therefore indicate the prospective performance benefit of 8-SMS (for 

SHA-256) and 4-SMS (for SHA-512) by counting the number of instructions in the 

compression function and comparing it to other implementations. 

2 Preliminaries and notations 

Figures 1 and 2 briefly describe SHA-256 and SHA-512 (the detailed definition can 

be found in FIPS180-2 publication [1]).  

The SHA-256 and SHA-512 flows can be viewed as “Init” (setting the initial 

values), a sequence of “Update” steps (invocation of the compression function), and a 

“Finalize” step, which takes care of the padding of the message. Depending on the 

message’s length, either one or two Update function calls may be required. Thus, the 

performance of SHA-256 / SHA-512 can be closely approximated by the number of 

Update function calls (N in Figures 1 and 2), which is given as a function of the 

message length (“length”) in bytes as follows:  
 

SHA-256: 

   
 
      

  
                       

 
      

  
                                           

  

SHA-512: 
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3 Parallelizing message schedules 

3.1 The main observation: n-Simultaneous Message Scheduling 

One of the classical approaches to construct a hash function (h) defines a compression 

function (c), operating on fixed length strings, and applying the Merkle-Damgård 

cascade. In many constructions, the compression function is based on a block cipher 

(EK). We focus on the Davies-Meyer construction that has c (H, M) = EM (H)  H, 

where the message scheduling step is the key expansion of the underlying block 

cipher. In other words, Davies-Meyer construction requires frequent key expansions, 

each one being used for a single encryption. Consequently, this step can consume a 

significant portion of the compression function computations. 

 
SHA-256 SHA-512 

SHA-256 uses sixty four 32-bit words,   
      

         
    SHA-512 uses eighty 64-bit words,   

      
         

    
+ denotes addition mod 232 

            

                          

                       

                             

  
                                    

  
                                    

  
                                  

  
                                    

+ denotes addition mod 264 

            

                          

                       

                             

  
                                     

  
                                     

  
                                 

  
                                   

Preprocessing: 

 Append the bit '1' to the message. 

 Append k bits '0', where k≥0  is the smallest integer 

satisfying Len+k = 448 (mod 512), and Len is 

message’s bit-length.  

 Append the vale Len, represented as a 64-bit integer in 

Big-Endian notation.  

 Set the initial hash value to  

  
              

              

  
               

              

  
               

              

  
               

             

 Parse the padded message as N 512-bit message blocks 

          . 

Preprocessing: 

 Append the bit '1' to the message. 

 Append k bits '0', where k≥0  is the smallest integer 

satisfying Len+k = 896 (mod 1024), and Len is 

message’s bit-length.  

 Append the vale Len, represented as a 128-bit integer 

in Big-Endian notation.  

 Set the initial hash value to  

  
                       

                      

  
                       

                      

  
                       

                      

  
                       

                      

 Parse the padded message as N 1024-bit message 

blocks           . 

Fig. 1. SHA-256 and SHA-512 constants, functions and preprocessing/padding. 
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i (=1, 2, …, N) is the serial number of the processed block.  

nr = 63 for SHA-256 and 79 for SHA-512 

 

Message scheduling (computing {Wt}): 

    
             

                                             

                             

      
      
        

 

 

Set the eight working variables, a, b, c, d, e, f, g, h, to: 

    
        

        
        

     

    
        

        
        

    

 

Compress: 

For t = 0 to nr: 

                           

                    
                                       

End for 

Compute the ith-step intermediate hash value Hi: 

  
      

      
      

      
      

      
      

     

  
      

      
      

      
      

      
      

    

 

Fig. 2. SHA-256 and SHA-512 compression functions (“Update”).  

For example, we measured the OpenSSL (version 1.0.0e) implementation on the 

latest 2
nd

 Generation Intel
®
 Core™ processor. We found that the message scheduling 

step consumes ~26% of the computation time for SHA-1, ~27% for SHA-256, and 

~29% for SHA-512. Obviously, optimizing the message scheduling in these hash 

algorithms can have a significant effect on the overall performance. We propose to 

optimize it via parallelization.  

The idea behind our proposed n-Simultaneous Message Scheduling (n-SMS) 

method is to utilize the registers’ width of a given SIMD architecture in order to 

compute, in parallel (and independently of the compression step), as many message 

schedules as possible. In general, we choose the parameter n by  

 

  
                              

                       
 

 

For SHA-256, the compression function operates on k=32-bit elements. When 

running on the SSE architecture that supports r=128-bit registers, we use n=r/k=4. On 

the AVX2 architecture that supports r=256-bit registers (and integer SIMD 

operations), we use n=r/k=8. Similarly, for SHA-512 we used n=2 on the SSE 

architecture, and n=4 on the AVX2 architecture.  

Finally, we mention that additional other steps of the algorithms can also be 

parallelized. One example is the step        of both SHA-256 and SHA-512 (see 

Fig. 2). 

3.2 Applying 4-SMS to SHA-256: a detailed example 

We show here the application of the 4-SMS to SHA-256, allowing the computation of 

four message schedules, used for four 64-byte blocks of the same message. When 
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hashing a buffer, 4-SMS can be applied as long as the remaining portion of the buffer 

contains at least 256 bytes to be processed (when the remaining portion is shorter, we 

revert to the standard serial computations).  

The constants, used for 4-SMS SHA-256: 

The 4-SMS SHA-256 uses sixty-four 128-bit constants,    
       

          
     

   
      

      
      

      
           

(i.e., the SHA-256 constants concatenated four times).  

The promoted SHA-256 functions: 
The functions σ0, σ1, ROTR and SHR are “promoted” to a 128-bit vectorized 

version as follows: Let X` = x3||x2||x1||x0, and Y` = y3||y2||y1||y0, be 128-bit values, 

consisting of four 32-bit dwords (x0, x1, x2, x3), (y0, y1, y2, y3.). We define: 

 

                                               
                         

          
          

      
   

                                          
   

                                           
                                 

 

With these notations, we modify the SHA-256 computations, as follows.  

The 4-SMS Update function: 

 

Prepare the “quadruped” message schedule, {W`t}: 

     
  

         
    

         
    

         
    

         

   
                    

                        
       
        

 

 

Add the constants: 

             
           

 

Compress: 

For j = 0 to 3: 

Set the eight working variables, a, b, c, d, e, f, g, h, to:  

    
         

     
         

  

    
         

     
         

  

    
         

     
         

  

    
         

     
         

 

For t = 0 to 63: 

       
                    

 
 

     
                  

                    
                     

  End for 
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Compute the [(i-1)×4+j+1]
th

 intermediate hash value H
i
: 

  
             

     
         

  

  
             

     
         

  

  
             

     
         

  

  
             

     
         

  

  
             

     
         

  

  
             

     
         

  

  
             

     
         

  

  
             

     
         

 

    End for 

 

This arrangement can readily use SIMD vector instructions. If N is the number of 

message blocks in the padded message, and N = 4 × floor(N/4) + r, with r = 0, 1, 2, 

3, we perform the 4-SMS “Update” on the first floor(N/4) quadrupled blocks, and (if 

r≠0) process the remaining r blocks in the standard (serial) way, using the regular 

“Update” function. Alternatively it is possible to use 3-SMS or 2-SMS functions. 

After all the blocks are processed, the resulting 256-bit message digest is       
                 . 

4 Software implementations 

This section describes the software implementation of our proposed method.  

To apply the 4-SMS method to SHA-256, we used the following SSE4 

instructions (see [5]) instructions:  

- PSRLD (in order to compute the SHR function)  

- PSLLD, PSRLD and PXOR (in order to compute ROTR)  

- PADDD (to compute “+”) and PXOR (to compute “ ”)  

- PINSRD (to prepare the first 16 values of the message schedule)  

 

When using the AVX architecture [5], it is also possible to use the non-destructive 

destination variants of these instructions, namely VPSRLD, VPRLLD, VPXOR, 

VPADDD, VPINSRD (which saves many “move” operations).  

Fig. 8  of the Appendix provides a code snippet example for writing 4-SMS SHA-

256 message scheduling using SSE/AVX C intrinsic (to compile, note that the Intel 

Compiler (icc) uses AVX instructions (instead of regular SSE), if the compilation flag 

‘-xAVX’ is used). 

For performance code, we also point out that the discussed code implementations 

were contributed to the open source community (as an OpenSSL 1.0.1 patch), and are 

fully available to the readers from [4]. This patch includes assembly language AVX 

and AVX2 versions of both SHA-256 and SHA-512 (written in the OpenSSL style as 

a perl-asm script).  
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4.1 SHA-256 and SHA-512 using AVX2 instructions  

AVX2 architecture [8] extends the above instructions, straightforwardly, to operate on 

twice as many elements (stored in 256-bit registers) in a single instruction. For 

example, AVX architecture has the instruction: 
 vpaddd xmm1, xmm2, xmm3 

for adding four 32-bit elements in xmm2 and xmm3, storing the results in (the four 

elements of) xmm1. The AVX2 architecture straightforwardly promotes the 

instruction to operate on eight elements, as follows:  
 vpaddd ymm1, ymm2, ymm3 

Fig. 9 of the Appendix shows and example of 4-SMS SHA-512 message 

scheduling implementation using AVX2 C intrinsics.  

5 Dealing with short messages 

The optimization that underlies our n-SMS method requires that the length of the 

hashed message is at least two blocks: 128 bytes for SHA-256 and 256 bytes for 

SHA-512 (i.e., 32 “words” of 32 bits for SHA-256 and 32 “words” of 64 bits for 

SHA-512).  

Obviously, the n-SMS method achieves the maximal gain the number of blocks in 

the message is a multiple of the number of words that fit in a SIMD register (of the 

particular architecture we want to optimize on). For example, a message of 256 bytes 

has 4 SHA-256 blocks (or 2 SHA-512 blocks) that can fit into xmm. For the 

“remainder blocks“, it may be preferable to hash using the standard ALU based 

computations. For example, a message of 320 bytes has 5 blocks and may be hashed 

by a call to 4-SMS followed by a call to serial Update. 

For long messages the cost of finishing a single block is relatively small. 

However, this is not the case for short messages. For example, a message of 64 bytes 

has a single block but requires two Updates – one for the message block, and another 

one for the padding block. Therefore, we suggest an optimization for specific short 

sizes, which saves the expansion of the last padding block altogether. Our 

optimization works for the following cases: 

Case 1: the length of the hashed message is an integer multiple of the block size. In 

this case, the padding block is the bit 1, followed by 447 zero bits, concatenated 

with the 64-bit number that represents the length of the message in bits (in Big 

Endian notation).  

 

Case 2: the last block message is longer than 55 bytes for SHA-256, or longer than 

111 bytes for SHA-512. In this case, the padding spans across two blocks, and the 

last of them can be pre-expanded. 

 

We give one example of SHA-256 padding block for a 64-byte message: 
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Example 1: A pre-expanded padding block for SHA-256 when the message length 

is 64-byte is the following sequence of bits: 1||0447+54||1000000000 (where 

0447+54 indicates a string of 447+54=501 zero bits, and || denotes 

concatenation).  

This optimization is useful for applications that hash many short buffers, because 

the padding blocks for the relevant sizes can be pre-expanded.  

6 Results 

To asses our proposed algorithm, we took the OpenSSL 1.0.1 [13] optimized 

(assembly) implementation as a reference point, where, at the first step, we further 

optimized it by replacing all the ror instructions with shrd instructions (this optimizes 

the code for the 2
nd

 Generation Intel
®
 Core™ Processors architectures; see [2] for 

more details). We applied the 4-SMS method (for SHA-256) and the 2-SMS method 

(for SHA-512) to this code (leaving the remaining pieces of the code untouched, 

except for the replacement mentioned above). This helps isolating the contribution of 

the n-SMS method from the impact of other possible optimizations (of the 

“encryption” portion of the Update function). The code was written in x64 assembly 

language (using OpenSSL perl-asm style) and is available as an OpenSSL 1.0.1 patch 

[4].  

The experiments were carried out on three processors: Core™ 2 Duo T9400, 

Core™ i7-2600k (codename “Sandy Bridge”), Core™ i7-3770K (codename “Ivy 

Bridge”). The performance was measured in two ways: 

1. Each measured function was isolated, run 25,000 times (warm-up), followed by 

100,000 iterations that were clocked (using the RDTSC instruction) and averaged. 

To minimize the effect of background tasks running on the system, each 

experiment was repeated five times, and the minimum result was recorded. We 

used an 8KB buffer for these measurements. The reported performance numbers in 

Figures 3, 6 and 7 were obtained with the same measurement methodology.  

2. We used OpenSSL’s built-in utility “openssl speed sha256”. This utility computes 

SHA-256 on buffers of various sizes, for 3 seconds, and reports the performance in 

1000s bytes per second hashed. Such measurements appear in Fig. 4. 

All the runs were carried out on a system where the Intel
®

 Turbo Boost 

Technology, the Intel
®

 Hyper-Threading Technology, and the Enhanced Intel 

Speedstep
®
 Technology, were disabled.  

6.1  SSE/AVX results on Core 2 Duo, 2
nd

 and 3
rd

 Generation Intel
®
 Core™ 

Processors 

Fig. 3 shows SHA-256 performance using the 4-SMS method, for multiple buffer 

lengths, compared to the OpenSSL 1.0.1 implementation [13]. The results are 

reported in CPU Cycles/Byte. 

The performance advantage of the 4-SMS method is apparent: it achieves 

significant improvement across all three architectures. The most significant 
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improvement is achieved on 2
nd

 Generation Core: up to 31% improvement compared 

to the original OpenSSL 1.0.1 (note that some of this improvement is due to the usage 

of the shrd instruction for rotation). On Core 2, we gain up to 8% and on the new 3
rd

 

Generation Core the improvement is up to 17%.  

 

 

Core 2 

Duo – 

T9400 

 

Core 

i7-

2600k 

 

Core 

i7-3770 

Fig. 3. Performance of SHA-256 on different processors and various message lengths. 

Fig. 4 shows the performance of SHA-256 as reported by the ‘openssl speed 

sha256’ utility. As can be seen from the graphs the 4-SMS method provides 

significant speedup, consistent with the results of Fig. 3. Note that rotation via the 

shrd instruction, which is significant in the 2
nd

 Generation Core™ Processors, is not 

necessary (though does not slow down) on the 3
rd

 Generation Core™ Processors, due 

to the micro-architectural improvements of the latter processor.  
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Core 2 Duo 

– T9400 

 

Core i7- 

2600k 

 

Core i7- 

3770 

Fig. 4. Performance of SHA-256 as reported by the “openssl speed sha256” utility. Three 

variations where measured: 1) the original OpenSSL 1.0.1 implementation; 2) OpenSSL 1.0.1 

with 4-SMS optimization [4]; 3) an optimized OpenSSL 1.0.1 implementation, obtained from 

using ‘shrd’ for rotation (instead of ‘ror’; see [2] for details)–relevant only for the 2nd 

Generation Core™. The performance is reported in 1000s bytes hashed per second (higher is 

better) 

6.2 AVX2 results  

For AVX2, code can already be written, compiled (see [15] and tested for 

correctness (see [6] and [7]). However, since a processor that runs the AVX2 

instructions is not yet available, we use a different method for demonstrating the 

performance benefit of our method. We compare the number of instructions required 

by the current and by the proposed implementations of an Update on 512 bytes (8 

calls for OpenSSL; 2 for 4-SMS and 1 for 8-SMS).  The number of instructions was 

counted using the histogram option of the SDE tool [6], generated with the “–mix” 

flag. 
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Fig. 5 shows the results, indicating AVX2 would potentially provide even greater 

speedup, by reducing the instruction count by a considerable amount. For SHA-512, 

the 4-SMS saves ~21% of the total number of instructions. For SHA-256, the 8-SMS 

saves ~27% of the total number of instructions. Of course, this cannot be linearly 

correlated to cycles count (e.g., because modern processors are “out-of-order” 

machines), and are only an indication for the expected speedup.  

 

  

Fig. 5. Instruction count per compression of a 512 byte message block for different 

implementations 

6.3 Results for small buffers using pre-expanded message schedule 

Fig. 6 demonstrates the benefit of pre-expanding a message schedule for the final 

block, for short messages. In fact, even for messages a relatively large 2KB message, 

this optimization gain ~2% improvement. Note that for a short message of 64 bytes, 

there are only 2 calls to the Update function (i.e., only two blocks are processed), and 

the ~30% saving obtained from pre-expanding is significant.  

 

 

Fig. 6. Performance of OpenSSL 1.0.1  on a Core i7-3770 for short buffers, with and without 

the pre-expanded message schedule optimization, for the final block.  

 

Such optimization is very useful for applications that hash many short messages of 

fixed lengths. 
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7 Conclusion 

We applied the n-SMS method (with appropriate value of n) to SHA-1, SHA-256 

and SHA-512 functions. For SHA-1, we could not gain performance by using the 4-

SMS method (apparently, the SHA-1 message scheduling is too simple). The 2-SMS 

method improved the results by only 3.2% on a Core
 
i5-3770 for SHA-512, and 

causes degradation on Core 2 T9400. The reason is that the associated overhead 

outweighs the gain from parallelizing only two schedules. This means that the n-SMS 

method does not achieve significant gain for SHA-1 and for SHA-512 on the current 

AVX/SSE architectures.  

For SHA-256, we showed that our 4-SMS improves up to 31% compared to the 

best existing public implementation (OpenSSL 1.0.1), and indicated why it is 

expected to improve even more, by taking advantage of the future AVX2 architecture, 

and applying the 8-SMS method.  

In addition we showed that in some instances the message scheduling for the last 

block of the padded message can be calculated in advance, therefore eliminating the 

need to perform any scheduling at all for that block. We applied this technique to 

OpenSSL’s 1.0.1 implementation of SHA-256, and got significant speedup. We 

decided against including this optimization in [4] due to the complex branching 

involved to support many message lengths. However a system that needs to support 

only few fixed message lengths is surly to benefit greatly from such implementation. 

It is interesting to see that the results of our proposed optimization are quite close 

to the theoretically achievable ones. Our initial measurements showed that the 

message scheduling in SHA-256 consumes ~25% of the computations. Therefore, 

roughly speaking, the potential performance benefit of parallelizing four message 

schedules is at most 18.75% of the total computations. Note that the fastest SHA-256 

reference code on the Core i7-3770 performs at 12.74 Cycles/Byte, so we can expect 

our 4-SMS method to reduce it to 10.35 Cycles/Byte at best. Indeed, the performance 

we report above is rather close, namely 10.57 Cycles/Byte. We estimate that the 

remaining gap is mainly due to two factors a) Rotation with the AVX instructions has 

to be implemented by two shifts and a xor instructions (compared to a single “rotate” 

ALU instruction); b) There is some overhead associated with “gathering” separate 

blocks of the message into the AVX registers (using the instruction VPINSRD).  

Obviously, additional optimizations to the “encryption” part of the Update (for the 

discussed algorithms and for any other Davies-Meyer hash), can be incorporated 

together with the n-SMS method, and add further performance improvements.  

7.1 Reflections on the SHA3 competition 

To conclude, we comment on some implication of our results, to the SHA3 

competition, which, at the time that the paper was written, is in its final stage. 

Fig. 7 shows the performance of SHA-256 and SHA-512 – the OpenSSL 1.0.1 

implementation implementations, as well as our n-SMS method. On the same graph, 

we plot the performance of the five SHA3 finalists. The implementations of the SHA3 

finalists where obtained from [14], and re-measured under the same conditions and 

with the same methodology that was explained above, for complete consistency (see 

the Appendix for further details). These are the best known implementations to date 
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(that we aware of). All the numbers in Fig. 7 are measured for 8KB buffers, and 

reported in Cycles/Byte. 

Originally, the comparison baseline for the SHA competition was set (by NIST) to 

~18 Cycles/Byte, compatible with the performance of SHA-256 on Core 2 , which 

was the high end processor at the announcement time. The rationale was that a 

significant performance gain is required from a successful SHA3, so that this 

advantage would encourage adaptation of the new standard. Indeed, all of the five 

SHA3 finalists satisfy this requirement.  

However, the situation changes with our improved SHA-256 performance results, 

moving the comparison baseline to 13.84 Cycles/Byte on Core 2 Duo processors, and 

to an even lower baseline of 10.77 Cycles/Byte on the latest generation processors.  

Moreover, we showed here that additional significant performance improvement is 

expected with the coming processor generation (performance numbers on real silicon 

will be available in 2013), and this will aggravate the situation. 

In addition, with the standardized SHA-512 truncation [12] (and suggested in [3]), 

the performance of SHA-512 is also a viable comparison baseline – using exactly the 

same rationale. The performance of SHA-512 is already standing at 8.04 Cycles/Byte 

on today’s processors (see Fig. 7), and the results we presented here, indicate that 

with the emergence of the new processors generation (in 2013), this performance will 

be further significantly improved.  

This information implies that three of the five candidates, namely Grøstl, JH, and 

Keccak are already below the minimum requirements bar! 

Based on our findings, we conclude that if the prospective SHA3 is expected to be 

competitive against the performance of SHA-256 and/or SHA-512, on the high end 

platforms, as the competition’s definition mandates, its performance should be well 

below 8 Cycles/Byte on the current, and most certainly on the near future processors. 

Only two SHA3 candidates - Blake and Skein512 - meet these requirements, and it 

now remains to review their performance. With the old comparison baseline (~18 

Cycles/Byte), these algorithms could offer a speedup factor of ~2.5x (and even more). 

However, with the baseline being changed by the n-SMS method, they offer a 

marginal performance boost (on the high end platforms). We point out that the 

coming AVX2 architecture (2013) will reduce this already small margin even further. 

This is quite an unfortunate situation for NIST’s SHA3 competition (especially 

because several fast proposed algorithms were eliminated in the first rounds of the 

competition). It suggests that no matter what algorithm is eventually selected to be the 

SHA3, its adoption should be motivated by considerations that are not based on 

performance on high end platforms. It also suggests that the SHA3 candidates could 

highly benefit from improvements in their software implementations. 



14 Shay Gueron, Vlad Krasnov 

 

 

  

Core i7- 

2600k 

 

Core i7-

3770 

Fig. 7. Performance of SHA-256, SHA-512 and the five SHA3 finalists on the 2nd and the 3rd 

Generation Intel® Core™ Processors. See details in the text. The horizontal lines show the new 

“performance bar” of SHA-256 and SHA-512 with the n-SMS method.  
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9 Appendix 

9.1 Code snippets 

This appendix contains two C code examples. The first one implements 4-SMS for 

SHA-256, using SSE intrinsics, and the second one implements SHA-512 using 

AVX2 intrinsics. This code only illustrates the discussed method. The performance 

code is written in assembly.  

 
// this function takes a word from each chunk, and puts it in a single register 

inline __m128i gather(unsigned int *address) 

{ 

   __m128i temp;    

   temp = _mm_cvtsi32_si128(address[0]); 

   temp = _mm_insert_epi32(temp, address[16], 1); 

   temp = _mm_insert_epi32(temp, address[32], 2); 

   temp = _mm_insert_epi32(temp, address[48], 3); 

   return temp; 

} 

// this function calculates the small sigma 0 transformation 

inline __m128i sigma_0(__m128i W) 

{ 

   return  

      _mm_xor_si128( 

         _mm_xor_si128( 

            _mm_xor_si128( 

               _mm_srli_epi32(W, 7),  

               _mm_srli_epi32(W, 18) 

               ),  

            _mm_xor_si128( 

               _mm_srli_epi32(W, 3), 

               _mm_slli_epi32(W, 25) 

               ) 

            ), 

         _mm_slli_epi32(W, 14) 

         ); 

} 

// this function calculates the small sigma 1 transformation 

inline __m128i sigma_1(__m128i W) 

{ 

http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://portal.acm.org/citation.cfm?id=1851182.1851200
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://bench.cr.yp.to/supercop.html
http://yasm.tortall.net/
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   return  

      _mm_xor_si128( 

         _mm_xor_si128( 

            _mm_xor_si128( 

               _mm_srli_epi32(W, 17),  

               _mm_srli_epi32(W, 10) 

               ),  

            _mm_xor_si128( 

               _mm_srli_epi32(W, 19),  

               _mm_slli_epi32(W, 15) 

               ) 

            ),  

         _mm_slli_epi32(W, 13) 

         ); 

} 

// the message scheduling round 

#define SCHEDULE_ROUND(w1, w2, w3, w4) \ 

            s0 = sigma_0(w1); \ 

            s1 = sigma_1(w2); \ 

            schedule[i] = _mm_add_epi32(w3, Ki[i]); \ 

            w3 = _mm_add_epi32( \ 

                    _mm_add_epi32(w3, w4), \ 

                    _mm_add_epi32(s0, s1) \ 

                    ); \ 

            i++; 

void SHA256_QMS(__m128i schedule[64], uint32_t message[64]) 

{ 

   __m128i bswap_mask =  

            _mm_set_epi8(12,13,14,15,8,9,10,11,4,5,6,7,0,1,2,3); 

   __m128i W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; 

   __m128i s0, s1, Wi, *Ki = (__m128i*)k; 

   int i; 

   W0 = gather(message); 

   W1 = gather(&message[1]); 

   W2 = gather(&message[2]); 

   W3 = gather(&message[3]); 

   W4 = gather(&message[4]); 

   W5 = gather(&message[5]); 

   W6 = gather(&message[6]); 

   W7 = gather(&message[7]); 

   W8 = gather(&message[8]); 

   W9 = gather(&message[9]); 

   W10 = gather(&message[10]); 

   W11 = gather(&message[11]); 

   W12 = gather(&message[12]); 

   W13 = gather(&message[13]); 

   W14 = gather(&message[14]); 

   W15 = gather(&message[15]); 

   W0 = _mm_shuffle_epi8(W0, bswap_mask); 

   W1 = _mm_shuffle_epi8(W1, bswap_mask); 

   W2 = _mm_shuffle_epi8(W2, bswap_mask); 

   W3 = _mm_shuffle_epi8(W3, bswap_mask); 

   W4 = _mm_shuffle_epi8(W4, bswap_mask); 

   W5 = _mm_shuffle_epi8(W5, bswap_mask); 

   W6 = _mm_shuffle_epi8(W6, bswap_mask); 

   W7 = _mm_shuffle_epi8(W7, bswap_mask); 

   W8 = _mm_shuffle_epi8(W8, bswap_mask); 

   W9 = _mm_shuffle_epi8(W9, bswap_mask); 

   W10 = _mm_shuffle_epi8(W10, bswap_mask); 

   W11 = _mm_shuffle_epi8(W11, bswap_mask); 

   W12 = _mm_shuffle_epi8(W12, bswap_mask); 

   W13 = _mm_shuffle_epi8(W13, bswap_mask); 

   W14 = _mm_shuffle_epi8(W14, bswap_mask); 

   W15 = _mm_shuffle_epi8(W15, bswap_mask); 

   for(i=0; i<32; ) { 

      SCHEDULE_ROUND(W1 , W14, W0 , W9 ); 

      SCHEDULE_ROUND(W2 , W15, W1 , W10); 

      SCHEDULE_ROUND(W3 , W0 , W2 , W11); 
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      SCHEDULE_ROUND(W4 , W1 , W3 , W12); 

      SCHEDULE_ROUND(W5 , W2 , W4 , W13); 

      SCHEDULE_ROUND(W6 , W3 , W5 , W14); 

      SCHEDULE_ROUND(W7 , W4 , W6 , W15); 

      SCHEDULE_ROUND(W8 , W5 , W7 , W0 ); 

      SCHEDULE_ROUND(W9 , W6 , W8 , W1 ); 

      SCHEDULE_ROUND(W10, W7 , W9 , W2 ); 

      SCHEDULE_ROUND(W11, W8 , W10, W3 ); 

      SCHEDULE_ROUND(W12, W9 , W11, W4 ); 

      SCHEDULE_ROUND(W13, W10, W12, W5 ); 

      SCHEDULE_ROUND(W14, W11, W13, W6 ); 

      SCHEDULE_ROUND(W15, W12, W14, W7 ); 

      SCHEDULE_ROUND(W0 , W13, W15, W8 ); 

   } 

   SCHEDULE_ROUND(W1 , W14, W0 , W9 ); 

   schedule[48] = _mm_add_epi32(W0, Ki[48]); 

   SCHEDULE_ROUND(W2 , W15, W1 , W10); 

   schedule[49] = _mm_add_epi32(W1, Ki[49]); 

   SCHEDULE_ROUND(W3 , W0 , W2 , W11); 

   schedule[50] = _mm_add_epi32(W2, Ki[50]); 

   SCHEDULE_ROUND(W4 , W1 , W3 , W12); 

   schedule[51] = _mm_add_epi32(W3, Ki[51]); 

   SCHEDULE_ROUND(W5 , W2 , W4 , W13); 

   schedule[52] = _mm_add_epi32(W4, Ki[52]); 

   SCHEDULE_ROUND(W6 , W3 , W5 , W14); 

   schedule[53] = _mm_add_epi32(W5, Ki[53]); 

   SCHEDULE_ROUND(W7 , W4 , W6 , W15); 

   schedule[54] = _mm_add_epi32(W6, Ki[54]); 

   SCHEDULE_ROUND(W8 , W5 , W7 , W0 ); 

   schedule[55] = _mm_add_epi32(W7, Ki[55]); 

   SCHEDULE_ROUND(W9 , W6 , W8 , W1 ); 

   schedule[56] = _mm_add_epi32(W8, Ki[56]); 

   SCHEDULE_ROUND(W10, W7 , W9 , W2 ); 

   schedule[57] = _mm_add_epi32(W9, Ki[57]); 

   SCHEDULE_ROUND(W11, W8 , W10, W3 ); 

   schedule[58] = _mm_add_epi32(W10, Ki[58]); 

   SCHEDULE_ROUND(W12, W9 , W11, W4 ); 

   schedule[59] = _mm_add_epi32(W11, Ki[59]); 

   SCHEDULE_ROUND(W13, W10, W12, W5 ); 

   schedule[60] = _mm_add_epi32(W12, Ki[60]); 

   SCHEDULE_ROUND(W14, W11, W13, W6 ); 

   schedule[61] = _mm_add_epi32(W13, Ki[61]); 

   SCHEDULE_ROUND(W15, W12, W14, W7 ); 

   schedule[62] = _mm_add_epi32(W14, Ki[62]); 

   SCHEDULE_ROUND(W0 , W13, W15, W8 ); 

   schedule[63] = _mm_add_epi32(W15, Ki[63]); 

} 

Fig. 8. 4-SMS message scheduling for SHA-256 using C intrinsics for the SSE3 instruction set. 

 
#define vpbroadcastq(vec, k) vec = _mm256_broadcastq_epi64(*(__m128i*)k) 

// this function calculates the small sigma 0 transformation 

inline __m256i sigma_0(__m256i W) 

{ 

   return  

      _mm256_xor_si256( 

         _mm256_xor_si256( 

            _mm256_xor_si256( 

               _mm256_srli_epi64(W, 7),  

               _mm256_srli_epi64(W, 8) 

               ),  

            _mm256_xor_si256( 

               _mm256_srli_epi64(W, 1), 

               _mm256_slli_epi64(W, 56) 

               ) 

            ), 
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         _mm256_slli_epi64(W, 63) 

         ); 

} 

// this function calculates the small sigma 1 transformation 

inline __m256i sigma_1(__m256i W) 

{ 

   return  

      _mm256_xor_si256( 

         _mm256_xor_si256( 

            _mm256_xor_si256( 

               _mm256_srli_epi64(W, 6),  

               _mm256_srli_epi64(W, 61) 

               ),  

            _mm256_xor_si256( 

               _mm256_srli_epi64(W, 19), 

               _mm256_slli_epi64(W, 3) 

               ) 

            ), 

         _mm256_slli_epi64(W, 45) 

         ); 

} 

// the message scheduling round 

#define SCHEDULE_ROUND(w1, w2, w3, w4) \ 

            vpbroadcastq(Ki, &k[i]);\ 

            s0 = sigma_0(w1); \ 

            s1 = sigma_1(w2); \ 

            schedule[i] = _mm256_add_epi64(w3, Ki); \ 

            w3 = _mm256_add_epi64( \ 

                    _mm256_add_epi64(w3, w4), \ 

                    _mm256_add_epi64(s0, s1) \ 

                    ); \ 

            i++; 

 

void SHA512_QMS(__m256i schedule[80], uint64_t message[64]) 

{ 

   __m256i gather_mask = _mm256_setr_epi64x(0, 16, 32, 48); 

   __m256i bswap_mask = 

_mm256_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,

3,4,5,6,7); 

   __m256i W0, W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13, W14, W15; 

   __m256i s0, s1, Ki, Wi; 

   int i; 

 

   W0 = _mm256_i64gather_epi64((const long*)message, gather_mask, 8); 

   W0 = _mm256_shuffle_epi8(W0, bswap_mask); 

   W1 = _mm256_i64gather_epi64((const long*)&message[1], gather_mask, 8); 

   W1 = _mm256_shuffle_epi8(W1, bswap_mask); 

   W2 = _mm256_i64gather_epi64((const long*)&message[2], gather_mask, 8); 

   W2 = _mm256_shuffle_epi8(W2, bswap_mask); 

   W3 = _mm256_i64gather_epi64((const long*)&message[3], gather_mask, 8); 

   W3 = _mm256_shuffle_epi8(W3, bswap_mask); 

   W4 = _mm256_i64gather_epi64((const long*)&message[4], gather_mask, 8); 

   W4 = _mm256_shuffle_epi8(W4, bswap_mask); 

   W5 = _mm256_i64gather_epi64((const long*)&message[5], gather_mask, 8); 

   W5 = _mm256_shuffle_epi8(W5, bswap_mask); 

   W6 = _mm256_i64gather_epi64((const long*)&message[6], gather_mask, 8); 

   W6 = _mm256_shuffle_epi8(W6, bswap_mask); 

   W7 = _mm256_i64gather_epi64((const long*)&message[7], gather_mask, 8); 

   W7 = _mm256_shuffle_epi8(W7, bswap_mask); 

   W8 = _mm256_i64gather_epi64((const long*)&message[8], gather_mask, 8); 

   W8 = _mm256_shuffle_epi8(W8, bswap_mask); 

   W9 = _mm256_i64gather_epi64((const long*)&message[9], gather_mask, 8); 

   W9 = _mm256_shuffle_epi8(W9, bswap_mask); 

   W10 = _mm256_i64gather_epi64((const long*)&message[10], gather_mask, 8); 

   W10 = _mm256_shuffle_epi8(W10, bswap_mask); 

   W11 = _mm256_i64gather_epi64((const long*)&message[11], gather_mask, 8); 

   W11 = _mm256_shuffle_epi8(W11, bswap_mask); 

   W12 = _mm256_i64gather_epi64((const long*)&message[12], gather_mask, 8); 
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   W12 = _mm256_shuffle_epi8(W12, bswap_mask); 

   W13 = _mm256_i64gather_epi64((const long*)&message[13], gather_mask, 8); 

   W13 = _mm256_shuffle_epi8(W13, bswap_mask); 

   W14 = _mm256_i64gather_epi64((const long*)&message[14], gather_mask, 8); 

   W14 = _mm256_shuffle_epi8(W14, bswap_mask); 

   W15 = _mm256_i64gather_epi64((const long*)&message[15], gather_mask, 8); 

   W15 = _mm256_shuffle_epi8(W15, bswap_mask); 

 

for(i=0; i<64; ) 

{ 

   SCHEDULE_ROUND(W1, W14, W0, W9); 

   SCHEDULE_ROUND(W2, W15, W1, W10); 

   SCHEDULE_ROUND(W3, W0, W2, W11); 

   SCHEDULE_ROUND(W4, W1, W3, W12); 

   SCHEDULE_ROUND(W5, W2, W4, W13); 

   SCHEDULE_ROUND(W6, W3, W5, W14); 

   SCHEDULE_ROUND(W7, W4, W6, W15); 

   SCHEDULE_ROUND(W8, W5, W7, W0); 

   SCHEDULE_ROUND(W9, W6, W8, W1); 

   SCHEDULE_ROUND(W10, W7, W9, W2); 

   SCHEDULE_ROUND(W11, W8, W10, W3); 

   SCHEDULE_ROUND(W12, W9, W11, W4); 

   SCHEDULE_ROUND(W13, W10, W12, W5); 

   SCHEDULE_ROUND(W14, W11, W13, W6); 

   SCHEDULE_ROUND(W15, W12, W14, W7); 

   SCHEDULE_ROUND(W0, W13, W15, W8);    

} 

schedule[64] = _mm256_add_epi64(W0, _mm256_broadcastq_epi64(*(__m128i*)&k[64])); 

schedule[65] = _mm256_add_epi64(W1, _mm256_broadcastq_epi64(*(__m128i*)&k[65])); 

schedule[66] = _mm256_add_epi64(W2, _mm256_broadcastq_epi64(*(__m128i*)&k[66])); 

schedule[67] = _mm256_add_epi64(W3, _mm256_broadcastq_epi64(*(__m128i*)&k[67])); 

schedule[68] = _mm256_add_epi64(W4, _mm256_broadcastq_epi64(*(__m128i*)&k[68])); 

schedule[69] = _mm256_add_epi64(W5, _mm256_broadcastq_epi64(*(__m128i*)&k[69])); 

schedule[70] = _mm256_add_epi64(W6, _mm256_broadcastq_epi64(*(__m128i*)&k[70])); 

schedule[71] = _mm256_add_epi64(W7, _mm256_broadcastq_epi64(*(__m128i*)&k[71])); 

schedule[72] = _mm256_add_epi64(W8, _mm256_broadcastq_epi64(*(__m128i*)&k[72])); 

schedule[73] = _mm256_add_epi64(W9, _mm256_broadcastq_epi64(*(__m128i*)&k[73])); 

schedule[74] = _mm256_add_epi64(W10, _mm256_broadcastq_epi64(*(__m128i*)&k[74])); 

schedule[75] = _mm256_add_epi64(W11, _mm256_broadcastq_epi64(*(__m128i*)&k[75])); 

schedule[76] = _mm256_add_epi64(W12, _mm256_broadcastq_epi64(*(__m128i*)&k[76])); 

schedule[77] = _mm256_add_epi64(W13, _mm256_broadcastq_epi64(*(__m128i*)&k[77])); 

schedule[78] = _mm256_add_epi64(W14, _mm256_broadcastq_epi64(*(__m128i*)&k[78])); 

schedule[79] = _mm256_add_epi64(W15, _mm256_broadcastq_epi64(*(__m128i*)&k[79])); 

} 

Fig. 9. 4-SMS message scheduling for SHA-512 using C intrinsics for the AVX2 instruction 

set. 

9.2 Fig. 7 - Sources 

Fig. 7 presents performance numbers for several hash algorithms. To facilitate 

reproducing the results, we provide the following details.  

The source codes for Blake, Grøstl, JH, Keccak, and Skein were retrieved from 

“supercop” [14], and re-measured using the methodology described in Section 6.  

The supercop version we used was 20120329 (SUPERCOP hereafter). It can be 

downloaded from http://hyperelliptic.org/ebats/supercop-20120329.tar.bz2. More 

details on the sources, including the compilation flags (when relevant) are:  

 

SHA-256 openssl: OpenSSL 1.0.1 

SHA-512 openssl: OpenSSL 1.0.1 

SHA-256 4-SMS: the code posted in [4], applied to OpenSSL 1.0.1 

http://hyperelliptic.org/ebats/supercop-20120329.tar.bz2
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SHA-512 2-SMS: the code posted in [4], applied to OpenSSL 1.0.1 

Skein: SUPERCOP, "sandy", compiled using: gcc -m64 -march=core2 -msse4.1 -Os -

fomit-frame-pointer 

Blake256 - SUPERCOP, "avxicc", assembler 

Blake512 - SUPERCOP, "avxicc", assembler 

Grøstl256 - SUPERCOP, "avx", compiled using: gcc -funroll-loops -march=nocona -

O3 -fomit-frame-pointer -DTASM 

Grøstl512 – SUPERCOP, "aesni", compiled using: gcc -funroll-loops -march=nocona 

-O3 -fomit-frame-pointer -DTASM 

JH256 - SUPERCOP, "bitslice_sse2_opt64", compiled using: icc -O3 -xAVX 

Keccak – SUPERCOP, “x86_64_shld”, compiled using: gcc -funroll-loops -O3 -

fomit-frame-pointer 

 

Compilers: we used gcc version 4.5.1, and icc version 12. 
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