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Abstract. The well-known forking lemma by Pointcheval and Stern has
been used to prove the security of the so-called generic signature schemes.
These signature schemes are obtained via the Fiat-Shamir transform
from three-pass identification schemes. A number of five-pass identifi-
cation protocols have been proposed in the last few years. Extending
the forking lemma and the Fiat-Shamir transform would allow to ob-
tain new signature schemes since, unfortunately, these newly proposed
schemes fall outside the original framework. In this paper, we provide an
extension of the forking lemma in order to assess the security of what we
call n-generic signature schemes. These include signature schemes that
are derived from certain (2n + 1)-pass identification schemes. We thus
obtain a generic methodology for proving the security of a number of
signature schemes derived from recently published five-pass identifica-
tion protocols, and eventually for (2n+ 1)-pass identification schemes to
come. Finally, we propose a similar extension of the forking lemma for
ring signatures originally proposed by Herranz and Sáez.

Keywords: (ring) signature scheme, forking lemma, security proof, canon-
ical identification scheme.

1 Introduction

The focus of this work is on methodologies to prove the security of digital sig-
nature schemes. Thus, instead of providing security reductions from scratch, the
goal is to provide security arguments for a class of signature schemes, as pre-
viously done in [15,16,12,1,22]. In particular, we aim at extending a pioneering
work by Pointcheval and Stern [15] where a reduction technique was introduced



to obtain security arguments for the so-called generic signature schemes. These
security arguments allow for simple proofs and for efficient signature schemes.
Moreover, this type of signature schemes can be derived from identification
schemes if the latter satisfy certain requirements.

Generic Signature Schemes. Pointcheval and Stern call generic signature schemes
those whose signatures are of the form σ = (σ0, h1, σ1), where σ0 is uniformly
distributed over a large set, h1 = H(m,σ0) with H being a hash function mod-
eled as a random oracle, m is the message to be signed and σ1 depends just on
σ0 and h1.

The works [15,16] provide security arguments for generic signature schemes
thanks to the use of the forking lemma. This lemma states that a successful forger
can be restarted with a different random oracle in order to get two distinct but
related forgeries. If the generic signature schemes additionally enjoy the existence
of a polynomial-time algorithm, called extractor, that recovers the signing key
from two signatures σ = (σ0, h1, σ1) and σ′ = (σ0, h

′
1, σ
′
1) with h1 6= h′1, then

unforgeability is guaranteed under a supposedly intractable problem.
Unfortunately, the forking lemma is restricted to 3-tupled signatures. One

would like to obtain an unbounded version of this lemma for signatures of
the form (σ0, h1, σ1, . . . , hn, σn) where hi = Hi(m,σ0, h1, σ1, . . . , hi−1, σi−1) for
n ∈ N. This would allow to address a greater class of signatures. In this work,
we provide such an extension and apply it to assess the security of n-generic
signature schemes. Roughly speaking, n-generic signature schemes are built as
generic signature schemes but are not restricted in the number of tuple entries
as mentioned above.

From Identification Schemes to Signature Schemes. One of the ways to build a
signature scheme is to depart from an existing identification protocol and convert
it into a signature scheme using the well-known Fiat-Shamir (FS) paradigm [7].
In an identification protocol a series of messages are exchanged between two
parties, called prover and verifier, in order to enable a prover to convince a
verifier that it knows a given secret. Zero-knowledge identification protocols [9]
convince a verifier without revealing any other information whatsoever about
the secret itself. Informally, the FS paradigm builds a signature scheme as the
transcript of one execution of the identification scheme, where the challenges
sent by the verifier are replaced by the output of a secure hash function having
as input the message and the current transcript.

In [15] the signatures obtained by applying the FS transform to canoni-
cal identification schemes were generalized to the concept of generic signatures
schemes. Schematically, in a canonical identification scheme a prover sends first
a commitment Com, then receives a challenge Ch drawn from an uniform distri-
bution, and finishes the interaction with a message, called response Rsp. Finally,
the verifier applies a verifying algorithm to the prover’s public key, determining
acceptance or rejection. In addition, the identification protocol needs to satisfy
special-soundness. Roughly, special-soundness means there exists a polynomial-
time algorithm which is able to extract the witness of the prover, given two



correlated transcripts (Com,Ch,Rsp), (Com′,Ch′,Rsp′) with Com = Com′ and
Ch 6= Ch′.

Many zero-knowledge identification schemes have been proposed whose con-
version to signature schemes lead to generic signature schemes like [7,8,20]. How-
ever, several signature schemes which are derived from 5-pass identification pro-
tocols are not covered by the abstraction above. Thus, we are obliged to prove
their security from scratch. Examples of schemes falling outside the Pointcheval-
Stern framework can be found in [5,19,20,6,13,14,18,11,21]. The authors must
provide direct proofs for the signature schemes in these works deriving from
5-pass identification. These proofs often appear quite complex. Moreover, the
authors of [17] recently left open to find a security reduction for signatures de-
rived from a 5-pass identification protocol. We show that all aforementioned 5-
pass identification schemes give raise to 2-generic signature schemes. We isolate
a property, called n-soundness, that implies unforgeability of all the schemes
satisfying it. Informally, n-soundness means that the signing key can be ex-
tracted from two correlated valid signatures σ = (σ0, h1, . . . , σn−1, hn, σn) and
σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with hn 6= h′n. In particular, we prove in Section

4 the security of the resulting signature scheme from [17], which was missing in
the original paper.

Ring Signatures. Even if signatures obtained from an n-generic signature scheme
will certainly be longer than classical signatures like RSA, it is important to ob-
tain security proofs for those schemes. Indeed, let us consider t-out-of-N thresh-
old ring signature schemes which enable any t participating users belonging to
a set of N users to produce a signature in such a way that the verifier cannot
determine the identity of the t actual signers [4]. Classical t-out-of-N threshold
ring signature schemes based on number theory have complexity O(tN). Using
Stern’s three-pass identification scheme, Aguilar et al. [2] defined the first t-
out-of-N threshold ring signature scheme whose complexity is O(N). A security
proof of the generic signature scheme derived from Stern’s scheme can be ob-
tained using the forking lemma and can be extended to a ring signature scheme
using the work of Herranz and Sáez [10]. Now, the 5-pass identification schemes
in [5,19,6,18,11,21] can be used in order to define new t-out-of-N ring signature
schemes whose complexity is also O(N). In order to obtain a security proof for
these new schemes, we extend the ring forking lemma from [10].

Related Work. Pointcheval and Stern [15,16] provided security arguments for
generic signature schemes. However, these generic signature schemes are restric-
tive in the sense that (a) they allow transformations only based on canonical
identification schemes, and (b) there exists an extractor for these schemes. The
work of Abdalla et al. [1] introduced a new transformation from identification
schemes (IS) to signature schemes (SS) without insisting on the existence of such
an extractor. Nonetheless, they require again canonical IS. Ohta and Okamoto
[12] assume that the IS is honest-verifier (perfect) zero-knowledge and that it
is computationally infeasible for a cheating prover to convince the verifier to
accept. Again, this result is valid only for three-pass IS.



Very recently, Yao and Zhao [22] presented what they call challenge-divided
Fiat-Shamir paradigm. Here, security results are set for three-pass IS with di-
vided random challenges. Even though they consider more challenges, still iden-
tification schemes with more than three interactions are not captured by their
paradigm. In this work, we consider an unlimited number of challenges as long as
they are randomly chosen from large enough sets. To the best of our knowledge
this is the first transformation which gives generic security statements for SS
derived from (2n+ 1)-pass IS.

Organization. We introduce in Section 2 the necessary background to understand
the paper. In Section 3 we present the notion of n-generic signature schemes and
provide an extended forking lemma that applies to this new signature type.
We exemplify in Section 4 our paradigm and derive a provably secure 2-generic
signature scheme based on multivariate polynomials. Section 5 summarizes the
results for n-generic ring signature schemes.

2 Preliminaries

We begin by introducing some notations and briefly reviewing some definitions.
A function µ(·) is negligible in n, or just negligible, if for every positive polynomial
p(·) and all sufficiently large n it holds that µ(n) < 1/p(n). Otherwise, we call
µ(·) non-negligible. Note that the sum of two negligible functions (resp. non-
negligible) is again negligible (resp. non-negligible) whereas the sum of one non-
negligible function π(·) and one negligible function µ(·) is non-negligible, i.e.
there exists a positive polynomial p(·) such that for all sufficiently large n’s it
holds that π(n) + µ(n) > 1/p(n).

Two distributions ensembles {Xn}n∈N and {Yn}n∈N are said to be (computa-
tionally) indistinguishable, if for every non-uniform polynomial-time algorithm
D, there exists a negligible function µ(·) such that

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1] | ≤ µ(n).

We write s
$←− AO(x) to denote the output s by an probabilistic algorithm A

with input x having black-box access to an oracle O. In particularly, this means,
that A may query oracle O in order to derive s from its answers.

Digital Signatures. In the following we give the definition of a signature scheme
together with the corresponding standard security level.

Definition 1 (Signature scheme). A signature scheme is a collection of the
following algorithms S = (KGen,Sign,Vf) defined as follows.

KGen(1κ) is a probabilistic algorithm which, on input a security parameter 1κ,
outputs a secret and a public key (sk, pk).

Sign(sk,m) is a probabilistic algorithm which, on input a secret key sk and a
message m, outputs a signature σ.



Vf(pk,m, σ) is a deterministic algorithm which, on input a public key pk, a
message m and a signature σ, outputs either 1 (= valid) or 0 (= invalid).

We require correctness of the verification, i.e., the verifier will always accept
genuine signatures. More formally, for all (sk, pk) ← KGen(1κ), any message m,
any σ ← Sign(sk,m), we always have Vf(pk,m, σ) = 1.

From signature schemes we require that no outsider should be able to forge
a signer’s signature. The following definition captures this property formally.

Definition 2 (Unforgeability of a Signature Scheme). A signature scheme
S = (KGen,Sign,Vf) is existentially unforgeable under (adaptively) chosen-message
attacks if for any efficient algorithm A making at most qs oracle queries, the
probability that the following experiment returns 1 is negligible:

Experiment UnforgeabilitySA(κ)

(sk, pk)
$←− KGen(1κ)

(σ∗,m∗)
$←− ASign′(·)(pk)

Sign′(·) on input m outputs σ
$←− Sign(sk,m)

Return 1 iff
Vf(pk,m∗, σ∗) = 1 and m∗ was not queried to Sign′(·) by A

The probability is taken over all coin tosses of KGen, Sign, and A.

Note that qs is bounded by a polynomial in the security parameter κ. Def-
inition 2 captures unforgeability against adaptively chosen-message attacks for
signature schemes. Unforgeability against no-message attacks is defined analo-
gously but qs must be 0.

Splitting Lemma. The following lemma is extensively used in the forking lemma
proofs. It states that one can split a given set X into two subsets, (a) a non-
negligible subset Ω consisting of ”good” x’s which provides a non-negligible
probability of success over y, and (b) its complement, consisting of ”bad” x’s.

Lemma 1 (Splitting Lemma). Let A be a subset of X × Y such that
Pr[A(x, y)] ≥ ε, then there exist Ω ⊂ X such that

1. Pr [x ∈ Ω] ≥ ε/2
2. If a ∈ Ω, then Pr[A(a, y)] ≥ ε/2.

See [16] for the proof.

3 Extended Security Arguments for Digital Signatures

In this section we give the formal definition of an n-generic signature scheme and
extend the forking lemma accordingly. This allows us to prove that any n-generic
signature scheme satisfying what we call n-soundness is existentially unforgeable
in the random oracle model.



3.1 n-Generic Signature Schemes

Let Hi denote a hash function with output of cardinality 2κi (derived from the
security parameter κ).

Definition 3 (n-Generic Signature Scheme). An n-generic signature scheme
is a digital signature scheme S = (KGen,Sign,Vf) with the following properties:

Structure A signature σ for a message m is of the form (σ0, h1, . . . , σn−1, hn, σn)
where h1 = H1(m,σ0) and hi = Hi(m,σ0, . . . , hi−1, σi−1) for i = 2, . . . , n
with Hi being modeled as a random oracle.

Honest-Verifier Zero-Knowledge (HVZK) There exists a PPT algorithm
Z, the zero-knowledge simulator, such that for any pair of PPT algorithms
D = (D0, D1) the following distributions are computationally indistinguish-
able:
– Let (pk, sk,m, state) ← D0(1κ). If pk belongs to sk, then set
σ = (σ0, h1, . . . , σn−1, hn, σn) ← Sign(sk,m), else σ ← ⊥. Output
D1(σ, state).

– Let (pk, sk,m, state) ← D0(1κ). If pk belongs to sk, then set
σ = (σ0, h1, . . . , σn−1, hn, σn) ← Z(pk,m, 1), else σ ← Z(pk,m, 0).
Output D1(σ, state).

Notice that the structure of a generic signature as originally proposed in [15]
matches that of a 1-generic signature. For the sake of simplicity we occasionally
write σ = (σ0, . . . , σn, h1 . . . , hn) instead of (σ0, h1, . . . , σn−1, hn, σn).

3.2 An Extended Forking Lemma

Pointcheval and Stern introduced in [15] the forking lemma as a technique to
prove the security of some families of signature schemes, namely generic signature
schemes with special-soundness. This well-known lemma is applied to get two
forgeries for the same message using a replay attack, after that, one can use the
two obtained forgeries to recover the secret key. They also show that a successful
forger in the adaptive chosen-message attack model implies a successful forger
in the no-message attack model, as long as the honest-verifier zero-knowledge
property holds. In the following we propose an extension of the original forking
lemmas that apply to n-generic signature schemes. We first provide the Extended
Forking Lemma in the no-message attack model.

No-Message Attack Model

Lemma 2. Let S be an n-generic signature scheme with security parameter κ.
Let A be a PPT Turing machine given only the public data as input. If A can find
a valid signature (σ0, . . . , σn, h1, . . . , hn) for a message m with a non-negligible
probability, after asking the n random oracles O1, . . . ,On polynomially often (in
κ), then, a replay of this machine with the same random tape, the same first
oracles O1, . . . ,On−1 and a different last oracle On, outputs two valid signatures
(σ0, . . . , σn, h1, . . . , hn) and (σ0, . . . , σ

′
n, h1, . . . , h

′
n) for the same message m with

a non-negligible probability such that hn 6= h′n.



Proof. We are given a no-message adversary A, which is a PPT Turing machine
with a random tape ω taken from a set Rω. During the attack, A may ask
q1, . . . , qn (polynomially bounded in κ) queries to random oracles O1, . . . ,On
with q

(i)
j denoting the j-query to oracle Oi. We denote by q

(i)
1 , . . . , q

(i)
qi the qi

distinct queries to the random oracles Oi and let r(i) = (r
(i)
1 , . . . , r

(i)
qi ) be the

answers of Oi, for 1 ≤ i ≤ n. Let Si denote the set of all possible answers from

Oi, i.e., {r(i)1 , . . . , r
(i)
qi } ∈ S

qi
i . Furthermore, we denote by

E the event that A can produce a valid signature (σ0, . . . , σn, h1, . . . , hn) for

message m by using random tape ω and the answers r
(i)
1 , . . . , r

(i)
qi for i ≤ n.

Note that a valid signature implies hi = Oi(m,σ0, h1, . . . , hi−1, σi−1).
F the event that A has queried the oracle On with input

(m,σ0, h1, . . . , hn−1, σn−1), i.e.,

∃j ≤ qn : q
(n)
j = (m,σ0, h1, . . . , hn−1, σn−1).

Accordingly, its complement ¬F denotes

∀j ≤ qn : q
(n)
j 6= (m,σ0, h1, . . . , hn−1, σn−1).

By hypothesis of the lemma, the probability that event E occurs (Pr[E ]), is non-
negligible, i.e., there exists a polynomial function T (·) such that Pr[E ] ≥ 1

T (κ) .

We know that

Pr[E ] = Pr[E ∧ F ] + Pr[E ∧ ¬F ] . (1)

Furthermore, we get

Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) ∧ ¬F ]

= Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) | ¬F ] · Pr[¬F ]

≤ Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) | ¬F ]

≤ 1

2kn
,

because the output of On is unpredictable. The event E implies that
hn = On(m,σ0, h1, . . . , hn−1, σn−1), and thus we get

Pr[E ∧ ¬F ] ≤ Pr [hn = On(m,σ0, h1, . . . , hn−1, σn−1) ∧ ¬F ] ≤ 1

2kn
(2)

Relations (1) and (2) lead to

Pr[E ∧ F ] ≥ 1

T (κ)
− 1

2kn
≥ 1

T ′(κ)
(3)

Note that a polynomial T ′(·) must exist since the difference between a non-
negligible and negligible term is non-negligible. Therefore, ∃l ≤ qn so that

Pr
[
E ∧ q(n)l = (m,σ0, h1, . . . , hn−1, σn−1)

]
≥ 1

qnT ′(κ)
.



Indeed, if we suppose that, ∀l ∈ {1, . . . , qn},

Pr
[
E ∧ q(n)l = (m,σ0, h1, . . . , hn−1, σn−1)

]
<

1

qnT ′(κ)

then,

Pr[E ∧ F ] = Pr
[
E ∧ (∃j ≤ qn, q(n)j = (m,σ0, h1, . . . , hn−1, σn−1))

]
≤

qn∑
j=1

Pr
[
E ∧ q(n)j = (m,σ0, h1, . . . , hn−1, σn−1)

]
<

qn
qnT ′(κ)

=
1

T ′(κ)

This leads to a contradiction with (3). Further, we define

B = {(ω, r(1), . . . , r(n)) s.t. E ∧ q(n)l = (m,σ0, h1, . . . , hn−1, σn−1)}.

Since, B ⊂ Rω × Sq11 × . . . × Sqnn and Pr[B] ≥ 1
qnT ′(κ) , by using the splitting

lemma we have:

– ∃Ω ⊂ Rω such that Pr[ω ∈ Ω] ≥ 1
2qnT ′(κ) .

– ∀ω ∈ Ω, Pr
[
(ω, r(1), . . . , r(n)) ∈ B

]
≥ 1

2qnT ′(κ) , where the probability is

taken over Sq11 × . . .× Sqnn .

We define

B′ = {(ω, r(1), . . . , r(n)) s.t. (ω, r(1), . . . , r(n)) ∈ B ∧ ω ∈ Ω}.

Recall that r(i) = (r
(i)
1 , . . . , r

(i)
qi ) where r

(i)
j ∈ Si for 1 ≤ j ≤ qi. Since,

B′ ⊂ (Rω × Sq11 × . . .× Sl−1n )× Sqn−l+1
n ,

by using the splitting lemma again we get

– ∃Ω′ ⊂ Rω × Sq11 × . . .× Sl−1n such that

Pr
[

(ω, r(1), . . . , r(n−1), (r
(n)
1 , . . . , r

(n)
l−1)) ∈ Ω′

]
≥ 1

4qnT ′(κ) .

– ∀(ω, r(1), . . . , r(n−1), (r(n)1 , . . . , r
(n)
l−1)) ∈ Ω′,

Pr
[

(ω, r(1), . . . , r(n−1), (r
(n)
1 , . . . , r

(n)
l−1, r

(n)
l , . . . , r

(n)
qn )) ∈ B′

]
≥ 1

4qnT ′(κ) ,

where the probability is taken over Sqn−l+1
n .

As a result, if we choose l, ω, (r(1), . . . , r(n−1), (r
(n)
1 , . . . , r

(n)
l−1)), (r

(n)
l , . . . , r

(n)
qn ),

and (r′
(n)
l , . . . , r′

(n)
qn ) randomly, then we obtain two valid signatures

(σ0, . . . , σn, h1, . . . , hn) and (σ0, . . . , σ
′
n, h1, . . . , h

′
n) for message m with a non-

negligible probability such that hn 6= h′n.
ut



Chosen-Message Attack Model

We now provide the Extended Forking Lemma in the adaptively chosen-message
attack model. In this model, an adversary may adaptively invoke a signing oracle
and is successful if it manages to compute a signature on a new message. If the
signing oracle outputs signatures which are indistinguishable from a genuine
signer without knowing the signing key, then using the simulator one can obtain
two distinct signatures with a suitable relation from a single signature, similarly
to the no-message scenario.

Theorem 1 (The Chosen-Message Extended Forking Lemma). Let S
be an n-generic signature scheme with security parameter κ. Let A be a PPT
algorithm given only the public data as input. We assume that A can find a valid
signature (σ0, . . . , σn, h1, . . . , hn) for message m with a non-negligible probability,
after asking the n random oracles O1, . . . ,On, and the signer polynomially often
(in κ). Then, there exists another PPT algorithm B which has control over A by
replacing interactions with the real signer by a simulation, and which provides
with a non-negligible probability two valid signatures (σ0, . . . , σn, h1, . . . , hn) and
(σ0, . . . , σ

′
n, h1, . . . , h

′
n) for the same message m such that hn 6= h′n.

Proof. We consider a PPT algorithm B that executes A in such a way that B
simulates the environment of A. Therefore, B must simulate the interactions of
A with random oracles O1, . . . ,On and with the real signer. Then, we could see B
as an algorithm performing a no-message attack against the signature scheme S.

Let Sim denote the zero-knowledge simulator of S that can simulate the an-
swers of the real signer without knowledge of the secret key and has access to
the random oracles Oi (1 ≤ i ≤ n). Let A be an adaptively chosen-message ad-
versary, which is a probabilistic polynomial time Turing machine with a random
tape ω taken from a set Rω. During the attack, A may ask q1, . . . , qn queries to
random oracles O1, . . . ,On, and qs queries (possibly repeated) to Sim. The val-

ues q1, . . . , qn and qs are polynomially bounded in κ. We denote by q
(i)
1 , . . . , q

(i)
qi

the qi distinct queries to the random oracles Oi, and by m(1), . . . ,m(qs) the qs
queries to the simulator Sim.

The simulator Sim answers a tuple (σ
(j)
0 , . . . , σ

(j)
n , h

(j)
1 , . . . , h

(j)
n ) as a signature

for a message m(j), for each integer j with 1 ≤ j ≤ qs. Then, the adversary A
assumes that h

(j)
i = Oi(m(j), σ

(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) holds for all 1 ≤ i ≤ n

and 1 ≤ j ≤ qs, and stores all these relations.
Now we need to consider potential “collisions” of queries in the random ora-

cles. There are two kind of collisions that can appear. That is, (a) the simulator
Sim queries the random oracle with the same input the adversary has asked
before (let us denote this event by E1), and (b) Sim asks the same question
repeatedly (let us denote this event by E2).

We show that the probabilities of such events are negligible.

Pr[E1] = Pr[∃i ∈ {1, . . . , n};∃j ∈ {1, . . . , qs};∃t ∈ {1, . . . , qn}|

(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = q

(i)
t ]



≤
n∑
i=1

qs∑
j=1

qn∑
t=1

Pr[(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = q

(i)
t ] ≤ nqsqn

2κ
,

which is negligible, assuming that the σi’s are random values drawn from a large
set with cardinality greater than 2κ.
Moreover, we have

Pr[E2] = Pr[∃i ∈ {1, . . . , n};∃j, j′ ∈ {1, . . . , qs} : j 6= j′|

(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) = (m(j′), σ

(j′)
0 , h

(j′)
1 , . . . , h

(j′)
i−1, σ

(j′)
i−1)]

≤
n∑
i=1

qs∑
j=1

j∑
j′=1

Pr[(m(j), σ
(j)
0 , h

(j)
1 , . . . , h

(j)
i−1, σ

(j)
i−1) =

(m(j′), σ
(j′)
0 , h

(j′)
1 , . . . , h

(j′)
i−1, σ

(j′)
i−1)] ≤ nq2s

2κ
,

which is also negligible.
Algorithm B succeeds whenever the machine A produces a valid signature

without any collisions. Hence, we have

Pr[B succeeds ] = Pr[A succeeds ]− Pr[E1]− Pr[E2] ≥ 1

T (κ)
− nqsqn

2κ
− nq2s

2κ
,

which is non-negligible.
Summing up, we have an algorithm B that performs a no-message attack

against the signature scheme S in polynomial time with non-negligible proba-
bility of success. So we can use Lemma 2 applied to algorithm B, and we will
obtain two valid signatures for the same message, such that hn 6= h′n again in
polynomial time.

ut

3.3 Security of n-generic Signature Schemes

Similar to generic signature schemes defined by Pointcheval and Stern [15], for se-
curity under chosen-message attacks we require from n-generic signature schemes
a property which we call n-soundness. Informally, n-soundness means that the se-
cret key can be extracted from two correlated valid signatures
σ = (σ0, h1, . . . , σn−1, hn, σn) and σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with hn 6= h′n

in polynomial-time and with a non-negligible probability. The notion of special-
soundness5 and n-soundness coincide if n = 1.

Definition 4 (n-Soundness). Let S = (KGen,Sign,Vf) be an n-generic sig-
nature scheme. We call S n-sound if there exists a PPT algorithm K, the

5 Actually, special-soundness is a notion belonging to identification schemes. However,
since this property is quite similar to the required property of generic signature
schemes, this concept is used for both cases in the literature.



knowledge extractor, such that for any κ and m, any (sk, pk) ← KGen(1κ), any
σ = (σ0, h1, . . . , σn−1, hn, σn) and σ′ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with

Vf(pk,m, σ) = Vf(pk,m, σ′) = 1 and h′n 6= hn, we have sk ← K(pk, σ, σ′) with
non-negligible probability.

The following theorem states that all n-generic signature schemes satisfy-
ing n-soundness are existentially unforgeable under adaptively chosen-message
attacks in the random oracle model.

Theorem 2 (Security of n-Generic Signature Schemes). Let S be an n-
generic signature scheme satisfying n-soundness with underlying hard problem
P. Let κ be the security parameter. Then, S is existentially unforgeable under
adaptively chosen-message attacks.

Proof. We assume that the underlying hardness P of the n-generic signature
scheme is hard, i.e., for all PPT algorithms A the probability to solve a hard
instance of P is negligible. The key generation algorithm KGen of S outputs a se-
cret and public key pair (sk, pk) derived by a hard instance and its corresponding
solution of the problem P.

Now, assume by contradiction, that S is not existentially unforgeable under
chosen-message attacks. That is, there exists a PPT algorithm B1 such that B1
is able to output a signature σ∗ = (σ0, h1, . . . , σn−1, hn, σn) for a fresh message
m∗ with non-negligible probability. Then, due to the Extended Forking Lemma,
one can construct a PPT algorithm B2 which outputs two correlated signatures
σ∗ = (σ0, h1, . . . , σn−1, hn, σn) and σ∗∗ = (σ0, h1, . . . , σn−1, h

′
n, σ

′
n) with non-

negligible probability such that hn 6= h′n .
Due to the n-soundness of S, we know that there exists an “extractor” which

extracts the secret key given the two signatures above. This contradicts with the
assumption that the underlying problem P is hard, and by implication, we learn
that there cannot exist such a successful forger B1.

4 Applications

In this section we first discuss a transformation from (2n + 1)-pass identifica-
tion protocols with a special structure to signature schemes that in many cases
yields n-generic signature schemes. This is essentially an extended Fiat-Shamir
transform. Then we go on with a specific instance of the aforementioned trans-
formation. We obtain a new signature scheme based on multivariate polynomials
by applying our method to a five-pass identification scheme recently introduced
in [17].

4.1 n-Generic Signature Schemes derived from Identification
Schemes

Our goal is to enlarge the class of identification protocols to which the Fiat-
Shamir transformation can be applied. We identify a potential set of candidates



that we name as n-canonical identification schemes. By n-canonical identification
we mean schemes secure with respect to impersonation against passive attacks,
where the challenges are drawn from an uniform distribution and have 2n + 1
moves.

Definition 5 (n-canonical Identification Protocol). An n-canonical iden-
tification scheme IS = (K,P,V) is a (2n + 1)-pass interactive protocol. K and
P = (P1, . . . ,Pn+1) are PPT algorithms whereas V = (ChSet,Vf) with ChSet be-
ing a PPT algorithm and Vf a deterministic boolean algorithm. These algorithms
are defined as follows:

K(1κ) upon input a security parameter 1κ, outputs a secret and public key (sk, pk)
and challenge spaces G1, . . . , Gn with |Gi| ≥ 2ki .

P1(sk) upon input a secret key sk outputs the commitment R1.
Pi(sk, R1, C1, . . . , Ri−1, Ci−1) for i = 2, . . . , n, upon input a secret key sk and the

current transcript R1, C1, . . . , Ri−1, Ci−1, outputs the i-th commitment Ri.
Pn+1(sk, R1, C1, . . . , Rn, Cn) upon input a secret key sk and the current tran-

script R1, C1, . . . , Rn, Cn, outputs a response Rsp.
ChSet(pk, i) upon input a public key pk and round number i, outputs a challenge

Ci ∈ Gi.
Vf(pk, R1, C1, . . . , Rn, Cn, Rsp) upon input a public key pk, and the current tran-

script R1, C1, . . . , Rn, Cn, Rsp, outputs either 1 (= valid) or 0 (= invalid).

An n-canonical identification scheme IS has the following properties.

Public-Coin For any index i ∈ {1, . . . , n} and any (sk, pk, G1, . . . , Gn) ←
K(1κ) the challenge Ci ← ChSet(pk, i) is uniform in Gi.

Honest-Verifier Zero-Knowledge There exists a PPT algorithm Z, the zero-
knowledge simulator, such that for any pair of PPT algorithms D = (D0, D1)
the following distributions are computationally indistinguishable:
– Let (pk, sk, state) ← D0(1κ), and trans = (R1, C1, . . . , Rn, Cn, Rsp) ←
〈P(sk, pk),V(pk)〉 if pk belongs to sk, and otherwise trans← ⊥. Output
D1(trans, state).

– Let (pk, sk, state) ← D0(1κ), and trans = (R1, C1, . . . , Rn, Cn, Rsp) ←
Z(pk, 1) if pk belongs to sk, and otherwise trans ← Z(pk, 0). Output
D1(trans, state).

Note that the definition of 1-canonical identification schemes is identical to
canonical identification schemes [1]. An extended Fiat-Shamir transform is ap-
plied to an n-canonical identification scheme and yields an n-generic signature
scheme, just as the original Fiat-Shamir transform yields a generic signature
scheme in [15]. The idea of this transformation consists in replacing the uni-
formly random challenges of the verifier as set by ChSet in the identification
scheme by the outputs of some secure hash functions Hi : {0, 1}∗ → Gi mod-
eled as random oracles. More precisely, let IS = (K,P,V) be an n-canonical
identification scheme. The joint execution of P(sk, pk) and V(pk) then defines
an interactive protocol between the prover P and the verifier V. At the end of
the protocol V outputs a decision bit b ∈ {0, 1}. An n-generic signature scheme
S = (KGen,Sign,Vf) is derived as follows:



KGen(1κ) takes as input security parameter 1κ and returns K(1κ).
Sign(sk,m) takes as input a secret key sk and a message m and returns the

transcript 〈P(sk, pk),V(pk)〉 as the signature σ, i.e.,

σ = (σ0, h1, . . . , hn, σn) = (R1, C1, . . . , Rn, Cn, Rsp)

or simply σ = (σ0, . . . , σn, h1 . . . , hn) = (R1, . . . , Rn, Rsp, C1, . . . , Cn). Here,
Ci is defined by the equation Ci := Hi(m,R1, . . . , Ri, C1, . . . , Ci−1).

Vf(pk,m, σ) takes as input a public key pk, a message m and a signature σ and
returns V.Vf(pk,m, σ) as the decision bit.

The resulting scheme S is an n-generic signature scheme. Indeed, the obtained
scheme S has the right structure and the honest-verifier zero-knowledge property
is guaranteed by (the similar property of) the identification scheme.

However, it is still not guaranteed that S is existentially unforgeable. It lacks
then to check/prove that the resulting scheme S is n-sound. If this is the case
then one can apply Theorem 2 and S is guaranteed to have security against
adaptive chosen-message attacks.

Let us point out that the plain version of most identification protocols does
not directly satisfy the required security level by their choice of challenges spaces
G1, . . . , Gn. In particular, it might be the case that 1/|Gi| is not negligible in the
security parameter 1k. For that reason, one should typically repeat the ID pro-
tocol several (say δ) times until the desired security level is reached. In that case
the concatenation of δ transcripts 〈P(sk, pk),V(pk)〉 builds the signature (instead
of a single execution of the ID scheme). Moreover, for our security analysis, we
consider that the distribution of the commitments Ri is uniformly distributed
over the corresponding sets. This condition can be achieved by choosing their
domain as large as necessary.

4.2 Examples

Many zero-knowledge identification schemes have been proposed, whose conver-
sion to signature schemes does not lead to generic signature schemes according
to the definition of Pointcheval and Stern [15]. Examples of such schemes are
those based on the Permuted Kernel Problem [18,11], the Permuted Perceptron
Problem [13,14], the Constrained Linear Equations [21], the five-pass variant
of SD problem [20,3], the q-SD problem [6], the SIS problem [5,19] and the
MQ-problem [17]. Fortunately, their conversion to signature schemes belong to
the class of n-generic signature schemes. Unlike [13,14], they even satisfy n-
soundness. Consequently, our result for security of n-generic signature schemes
satisfying n-soundness carries over to the resulting signature schemes derived
from all these aforementioned identification schemes in the random oracle model.

We provide next the security argument for the resulting signature scheme
derived from the MQ-based identification scheme [17]. The conversion of all
aforementioned identification schemes to n-generic signature schemes and its
security can be formulated in a very similar fashion. For this reason, we omit
these proofs here.



The (five-pass) MQ identification scheme [17] and its Signature. Re-
cently at Crypto 2011, Sakumoto et al. presented a five-pass public-key identifi-
cation scheme based on multivariate quadratic polynomials [17]. Assuming the
existence of a non-interactive commitment scheme Com which should be statisti-
cally hiding and computationally binding, the authors of [17] showed that their
scheme is an honest-verifier zero-knowledge identification scheme whereas the
n-soundness property is also verified as we will later see in the security analysis.

We first briefly describe the identification scheme [17], following the proce-
dure to convert it into a signature scheme using Section 4.1. Finally, we analyze
the security of the obtained signature scheme using the Extended Forking Lemma
discussed in Section 3.2.

Let n,m and q be positive integers. We denote byMQ(n,m,Fq) a family of
functions

{F (x) = (f1(x), · · · , fm(x)) |
fl(x) =

∑
i,j

al,i,jxixj +
∑
i

bl,ixi, al,i,j , bl,i ∈ Fq for l = 1, · · · ,m},

where x = (x1, · · · , xn). An element F ofMQ(n,m,Fq) is called an MQ function
and a function G(x, y) = F (x+ y)− F (x)− F (y) is called the polar form of F .

Let κ be a security parameter. Let n = n(κ),m = m(κ) and q = q(κ) be
polynomially bounded functions. The key-generation algorithm K of this iden-
tification scheme can be described as follows. It takes 1κ as input and creates a
system parameter F ∈ MQ(n,m,Fq) which consists of an m-tuple of random
multivariate quadratic polynomials. Then, it randomly chooses a vector s ∈ Fnq
(secret key), and computes the corresponding public key v := F (s). Finally, it
returns the key pair (pk, sk) = (v, s). Figure 1 illustrates the interaction protocol
between the prover and the verifier.

The resulting Signature Scheme and its Security. According to Section 4.1, the
MQ-based identification scheme described above can be turned to an n-generic
signature scheme S = (KGen,Sign,Vf) as follows. Let δ be the number of rounds
needed to achieve the required impersonation resistance.

KGen(1κ) takes as input a security parameter 1κ and outputs K(1κ). The ran-
dom oracles O1 and O2 output elements of Fq and {0, 1}, respectively.

Sign(sk,m) takes as input sk and a message m, and computes for all 1 ≤ i ≤ δ,
– r1,i = s− r0,i where r0,i

$←− Fnq ,
– c0,i = Com (r0,i, t0,i, e0,i) , c1,i = Com (r1,i, G(t0,i, r1,i) + e0,i), and sets

σ0,i = (c0,i, c1,i), where t0,i
$←− Fnq and e0,i

$←− Fmq ,
– h1,i ∈ Fq such that h1,i = O1(m,σ0,i),
– (t1,i, e1,i) = (h1,ir0,i − t0,i, h1,iF (r0,i)− e0,i) and sets σ1,i = (t1,i, e1,i),
– h2,i such that h2,i = O2(m,σ0,i, h1,i, σ1,i),
– (σ0,i, h1,i, σ1,i, h2,i, σ2,i), where σ2,i := r0,i if h2,i = 0 and, otherwise,
σ2,i := r1,i,



Prover P(s, v) Verifier V(v)

r0, t0
$←− Fn

q , e0
$←− Fm

q

r1 ← s− r0
c0 ← Com (r0, t0, e0)

c1 ← Com (r1, G(t0, r1) + e0)
c0, c1−−−−−−−−−−−→
α←−−−−−−−−−−− α

$←− Fq

t1 ← αr0 − t0

e1 ← αF (r0)− e0
(t1, e1)

−−−−−−−−−−−→
b←−−−−−−−−−−− b

$←− {0, 1}

If b = 0:
r0−−−−−−−−−−−→ Check c0

?
= Com(r0, αr0 − t1,

αF (r0)− e1)

Else:
r1−−−−−−−−−−−→ Check c1

?
= Com(r1, α(v − F (r1))

−G(t1, r1)− e1)

Fig. 1. The five-pass MQ identification scheme

– and finally, returns the signature σ for the messagem as (σ0, h1, σ1, h2, σ2),
where σj = (σj,1, . . . , σj,δ) and hk = (hk,1, . . . , hk,δ) with 0 ≤ j ≤ 2 and
1 ≤ k ≤ 2.

Vf(pk,m, σ) takes as input a public key pk, a message m and a signature σ,
outputs 1 iff (σ0,1, . . . , σ0,δ) is well calculated as in the identification protocol,
i.e., the following respective equation is valid for all 1 ≤ i ≤ δ:

If h2,i = 0 : c0,i = Com (r0,i, h1,ir0,i − t1,i, h1,iF (r0,i)− e1,i)
If h2,i = 1 : c1,i = Com (r1,i, h1,i(v − F (r1,i))−G(t1,i, r1,i)− e1,i)

Security Argument. Using the Extended Forking Lemma, we prove in the fol-
lowing that the signature scheme derived from the MQ-based zero-knowledge
identification scheme is secure against adaptively chosen message attacks. We
assume that an adversary produces a valid signature (σ0, h1, σ1, h2, σ2) for a mes-
sage m. By applying Theorem 1 we can find a second forgery (σ0, h1, σ1, h

′
2, σ
′
2)

with a non-negligible probability, such that h2 6= h′2. That leads to the existence
of an index i with 1 ≤ i ≤ δ, such that h2,i 6= h′2,i. W.l.o.g. assume h2,i = 0
and h′2,i = 1. Now, the adversary gets the answers for two distinct challenges,
namely r0,i and r1,i. Finally, by adding the last two values, the secret key can
be disclosed. This contradicts the intractability of the MQ problem.

5 Extended Security Arguments for Ring Signatures

In 2003, Herranz and Sáez [10] provided a generalization of the forking lemma for
a class of ring signatures which they call generic. This class is defined as follows.



Consider a security parameter κ and a ring of r members (P1, . . . Pr). Given
a message m, its signature is formed by a tuple (m,R1, . . . , Rr, h1, . . . , hr, σ),
where R1, . . . , Rr are randomly chosen values from a large set G, hi is the output
of a hash function H on input (m,Ri) for 1 ≤ i ≤ r, and the value σ is fully
determined by the values R1, . . . , Rr, h1, . . . , hr and the message m.

Informally, the authors of [10] show given an adversary A which produces
a signature (m,R1, . . . , Rr, h1, . . . , hr, σ) within time T and success probabil-
ity ε, then there exists an adversary B which outputs two valid signatures
(m,R1, . . . , Rr, h1, . . . , hr, σ) and (m,R1, . . . , Rr, h

′
1, . . . , h

′
r, σ
′) with hi 6= h′i for

some 1 ≤ i ≤ r with non-negligible probability ε′ in time T ′ ∈ O(Tε′−1) by
replaying A internally. Their result captures both no-message and adaptively
chosen-message attacks.

Here, we extend their forking lemma even more for a class of ring signatures
schemes, which we call n-generic. Let κ denote a security parameter (from which
G1, . . . , Gn are derived from) and n be an integer. Further, let Hi : {0, 1}∗ → Gi
denote hash functions for 1 ≤ i ≤ n. We consider a ring P1, . . . , Pr of r mem-
bers. Upon input message m, an n-generic ring signature scheme produces a
tuple (σ1, . . . ,σn+1,h1, . . . ,hn) for m, where σj = (σj,1, . . . , σj,r) are randomly
chosen from a set G, h1 = (hj,1, . . . , hj,r) with hi,j denoting the output of
hash function Hi on input (m,σ1,j , . . . , σi,j , h1,j , . . . , hi−1,j) for 1 ≤ i ≤ n and
1 ≤ j ≤ r6. The value σn is well defined by all previous values in the tuple.

Note that the definition of 1-generic ring signature scheme is identical to
generic ring signature scheme according to [10]. Unfortunately, due to space
limitations we omit the formal definitions of n-generic ring signature schemes
and its unforgeability definition here, and refer to the full version of this paper.

No-Message Attack Model. The following lemma proves validity of the Ex-
tended Ring Forking Lemma in no-message attack model for n-generic ring sig-
nature schemes, where the adversary has to forge a valid signature knowing only
the verification key.

Lemma 3. Let RS be an n-generic ring signature scheme with security pa-
rameter κ, and let r be the number of ring members. Let A be a PPT Tur-
ing machine given only the public data as input. If A can find a valid sig-
nature (σ1, . . . ,σn+1,h1, . . . ,hn) for a message m with a non-negligible prob-
ability, after asking the n random oracles O1, . . . ,On polynomially often (in
κ), then, a replay of this machine with the same random tape, the same first
oracles O1, . . . ,On−1 and a different last oracle On, outputs two valid signa-
tures (σ1, . . . ,σn+1,h1, . . . ,hn) and (σ1, . . . ,σn,σ

′
n+1,h1, . . . ,hn−1,h

′
n) for the

same message m with a non-negligible probability such that hn 6= h′n.

Due to space limitation we refer the reader to the full version of this paper
for the proof of Lemma 3.

6 For example, h1,3 = H1(m,σ1,3) and h3,3 = H3(m,σ1,3, σ2,3, σ3,3, h1,3, h2,3).



Adaptively Chosen-Message Attacks. So far, we considered the security
of n-generic ring signature schemes against no-message attacks. However, ring
signatures require to satisfy security against adaptively chosen-message attacks
to achieve the standard security level.

The formal definition of unforgeability against adaptively chosen-message
attacks appears in the full version of this paper. Informally, chosen-message
attacks work as follows. After an adversary receives the public key of the ring
signature scheme, he may ask queries to the signing oracle which expects a
message m and a party identifier pid as input and outputs a signature σ. At
some point the adversary outputs a message m∗ and a signature σ∗. If m∗ was
not queried before and the signature σ∗ is valid, we declare the adversary as
successful.

In case we prove an n-generic ring signature scheme to be unforgeable (against
adaptively chosen-message attacks) in the random oracle model, the adversary
may query, in addition to the signing oracle, also the random oracle (polynomi-
ally often in the security parameter).

The following theorem shows the Extended Ring Forking Lemma in present
of adaptively chosen-message attacks.

Theorem 3 (The Chosen-Message Extended Ring Forking Lemma).
Let RS be an n-generic ring signature scheme with security parameter κ, and let
r be the number of ring members. Let A be a PPT Turing machine given only the
public data as input. If A can find a valid signature (σ1, . . . ,σn+1,h1, . . . ,hn)
for a message m with a non-negligible probability, after asking the n random
oracles O1, . . . ,On and some real signer of the ring polynomially often (in κ),
then, a replay of this machine with the same random tape, the same first or-
acles O1, . . . ,On−1 and a different last oracle On, outputs two valid signa-
tures (σ1, . . . ,σn+1,h1, . . . ,hn) and (σ1, . . . ,σn,σ

′
n+1,h1, . . . ,hn−1,h

′
n) for the

same message m with a non-negligible probability such that hn 6= h′n.

Due to space limitation we refer the reader to the full version of this paper
for the proof of Theorem 3.
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