
Fast Reductions from RAMs to
Delegatable Succinct Constraint Satisfaction Problems∗

Eli Ben-Sasson†
eli@cs.technion.ac.il

Technion

Alessandro Chiesa†
alexch@csail.mit.edu

MIT

Daniel Genkin†
danielg3@cs.technion.ac.il

Technion

Eran Tromer‡
tromer@cs.tau.ac.il

Tel Aviv University

August 18, 2012

Abstract

Succinct arguments for NP are proof systems that allow a weak verifier to retroactively check
computation done by a powerful prover. Constructions of such protocols prove membership in
languages consisting of very large yet succinctly-represented constraint satisfaction problems that,
alas, are unnatural in the sense that the problems that arise in practice are not in such form.

For general computation tasks, the most natural representation is typically as random-access
machine (RAM) algorithms, because such a representation can be obtained very efficiently by
applying a compiler to code written in a high-level programming language. Thus, understanding
the efficiency of reductions from RAM computations to other NP-complete problem representa-
tions for which succinct arguments (or proofs) are known is a prerequisite to a more complete
understanding of the applicability of these arguments.

Existing succinct argument constructions rely either on circuit satisfiability or (in PCP-based
constructions) on algebraic constraint satisfaction problems. In this paper, we present new and
more efficient reductions from RAM (and parallel RAM) computations to both problems that
(a) preserve succinctness (i.e., do not “unroll” the computation of a machine), (b) preserve zero-
knowledge and proof-of-knowledge properties, and (c) enjoy fast and highly-parallelizable algo-
rithms for transforming a witness to the RAM computation into a witness for the corresponding
problem. These additional properties are typically not considered in “classical” complexity theory
but are often required or very desirable in the application of succinct arguments.

Fulfilling all these efficiency requirements poses significant technical challenges, and we develop
a set of tools (both unconditional and leveraging computational assumptions) for generically and
efficiently structuring and arithmetizing RAM computations for use in succinct arguments. More
generally, our results can be applied to proof systems for NP relying on the aforementioned
problem representations; these include various zero-knowledge proof constructions.

Keywords: delegation of computation; succinct arguments; random-access machines; proba-
bilistically checkable proofs; zero-knowledge proofs

∗We thank Ohad Barta and Arnon Yogev for reviewing prior versions of this technical report. We also thank Nir
Bitansky, Oded Golredich, Omer Paneth, Ryan Williams, and Zeyuan Allen Zhu for useful comments.
†The research leading to these results has received funding from the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement number 240258.
‡This work was supported by the Check Point Institute for Information Security, by the Israeli Ministry of Science

and Technology, and by the Israeli Centers of Research Excellence I-CORE program (center 4/11).

1

mailto:eli@cs.technion.ac.il
mailto:alexch@csail.mit.edu
mailto:danielg3@cs.technion.ac.il
mailto:tromer@cs.tau.ac.il

Contents

1 Introduction 3
1.1 Random-Access Machine Computations . 3
1.2 Our Focus: Succinct Arguments for NP . 4

2 Overview of Results 5
2.1 Programming circuits: from BHRAM to circuit satisfaction . 5
2.2 Programming polynomials: from BHRAM to algebraic constraint satisfaction 7
2.3 Extensions . 9

3 Open Problems 11

4 Proof Strategy 13
4.1 Step 1: From BHRAM To sGCP By Localizing & Structuring Constraints 14
4.2 Step 2: From sGCP To sACSP By Arithmetizing Constraints . 15

5 Roadmap of Technical Sections 18

6 Definitions 19
6.1 Levin Reductions . 19
6.2 Routing Networks . 20
6.3 Finite Fields . 22
6.4 Random-Access Machines . 22
6.5 sGCP: A Generic Succinct Graph Coloring Problem . 26
6.6 sACSP: A Generic Succinct Algebraic Constraint Satisfaction Problem 30

7 From BHRAM To sGCP 34
7.1 Step 1: From RAMs to computation graphs . 35
7.2 Step 2: From computation graphs to (double) De Bruijn graphs . 39
7.3 Step 3: From (double) De Bruijn graphs to succinct GCPs . 43
7.4 Step 4: The Levin reduction . 47

8 From sGCP To sACSP 49
8.1 An embedding and some lemmas for double extended De Bruijn graphs 50
8.2 The conversion of parameters for double extended De Bruijn graphs 54
8.3 The Levin reduction for double extended De Bruijn graphs . 60

A Routing Networks 63
A.1 Butterfly Networks and Isomorphic Graphs of Interest . 63
A.2 Beneš Networks and Their Rearrangeability . 65
A.3 Routing Bit-Reversal Permutations . 68
A.4 Simulating Beneš Networks with Butterfly Networks . 70
A.5 De Bruijn Graphs and Their Rearrangeability . 71

B Circuit Diagrams 73
B.1 Transition Function . 73
B.2 Coloring Constraint Function For sGCP . 75

C Finite Fields and Efficient Computation 78
C.1 Irreducible and Primitive Polynomials . 78
C.2 Linear Maps and Sparse Polynomials . 80
C.3 Polynomial Evaluation . 82
C.4 Polynomial Interpolation . 83
C.5 A Canonical Embedding . 88
C.6 Some Useful Families of Polynomials . 89
C.7 Efficient Algebraic Computation . 92

References 96

2

1 Introduction

Cryptographic protocols offering integrity and confidentiality guarantees for general computation are
much needed, e.g., for attaining secure cloud computing and for reducing trust in execution plat-
forms. Work in cryptography has focused, for instance, on the problems of computing on encrypted
data [Gen09, GH11b, GH11a, BGV12, GSS12b, GSS12a], computing on authenticated data [GW12],
delegation of computation [GKR08, GGP10, CKV10, AIK10, CRR11, KRR12], delegation of mem-
ory and streams [CTY10, CKLR11], non-interactive zero-knowledge proofs [GOS06b, GOS06a, AF07,
Gro09, Gro10b, Gro10a], succinct arguments [Kil92, Mic00, BG08, BCCT11, DFH12, GLR11, BC12,
BCCT12], succinct arguments with preprocessing [Gro10b, Lip12, GGPR12], and proof-carrying data
[CT10, CT12].

Each such cryptographic protocol “supports” a specific problem representation. For example,
constructions of fully-homomorphic encryption schemes and delegation protocols work with evalua-
tion of circuits; constructions of non-interactive zero-knowledge proofs often work with satisfiability
of circuits; PCP-based succinct argument constructions work with constraint-satisfaction problems
having a strong combinatorial or algebraic flavor (e.g., coloring problems over certain hypergraphs
or whether there are low-degree polynomials with a certain set of roots).

However, problem representations such as the above are unnatural for the envisioned applications.
While the circuit model may be convenient for highly-structured computational tasks (e.g., computing
Fourier transforms or statistics on numerical data), it is not convenient in general; this is even
more true for problem representations with strong combinatorial or algebraic structure. In the real
world, the problems that we are interested in arise in the form of algorithms written in high-level
programming languages such as C or Java.

In principle, this gap is not a problem: circuit evaluation is a complete problem for P, circuit
satisfiability is a complete problem for NP, and so on. We can thus rely on generic polynomial-
time reductions for transforming algorithms into the problem representations we need. However,
the envisioned applications often deal with very large computations, and thus the efficiency of such
reductions is paramount — reductions with only “polynomial-time” efficiency are not efficient enough.

The following question is thus of fundamental interest:

Informal Question: How can we generically and efficiently transform algorithms written
in high-level programming languages into the problem representations required by the
underlying cryptographic protocols?

Ultimately, the hope is to develop a toolset for efficiently reducing the correctness of computation
of algorithms to a variety of popular problem representations. Achieving this hope would bestow
great flexibility to protocols that benefit from these reductions, because our ability to easily program
algorithms would translate into the ability to easily and efficiently “program” less natural problem
representations such as circuits or polynomials.

1.1 Random-Access Machine Computations

Existing compilers do a splendid job at reducing algorithms expressed in a high-level programming
language to a sequence of basic instructions for a variety of computer architectures. Correct execution
of such instructions, given the semantic specification of the architecture, is trivially and tightly
reducible to the correct execution of a random-access machine (RAM) [CR72, AV77]. Thus, RAM
computations are a natural starting point to choose for reductions. More precisely, we consider the
following constraint satisfaction problem: the bounded-halting problem on a two-tape random-
access machine M , denoted BHRAM(M), is the language of all triples (x, T , S) such that there is a

3

witness w for whichM(x, w) accepts within T time steps1 and using at most S memory cells. (Without
loss of generality, S ≤ T and |x| ≤ T .) The language BHRAM is the one induced by all quadruples
(M, x, T , S) such that (x, w) is in BHRAM(M). Thus, thanks to compiler technology, focusing on
BHRAM as a starting point for reductions comes at essentially no loss in efficiency.

We model the RAMs we use as realistic reduced-instruction-set computers (RISCs) as opposed
to the traditional simpler, but less realistic, accumulator-based architectures with arbitrary-length
memory cells used in complexity theory. Doing so will give us a more accurate understanding of
the cost of reducing compiled programs into other problem representations. Concretely, a RAM is
specified by a tuple (w, k, δ), potentially depending on the input size |x|, where w is the register width
(which also dictates the width of every memory cell), k is the number of local (i.e., non-memory)
registers, and δ is the transition function (which is a boolean circuit that, when given random-access
to memory, maps the k registers to their new values); note that |δ| ≥ kw since δ takes as input the
kw bits making up the registers.2 See Section 6.4 for formal definitions.

1.2 Our Focus: Succinct Arguments for NP

While there are many cryptographic protocols for which efficient reductions from BHRAM are de-
sirable, we choose to focus on the problem of constructing efficient reductions from BHRAM for
proof systems for NP. Also, we seek reductions that preserve zero-knowledge and proof-of-knowledge
properties, since both properties are often those that make a proof system interesting to begin with.

Furthermore, we seek reductions that work even for proof systems for NP that are succinct [Kil92,
Mic00, BG08], i.e., in which the verifier can check membership in a given language L in a way that is
much faster than by directly verifying the validity of a witness. Such proof systems cannot be statis-
tically sound (under plausible complexity-theoretic assumptions [BHZ87, GH98, GVW02, Wee05])
so that one must settle for argument systems [BCC88] (i.e., proof systems with only computational
soundness). Constructing efficient reductions for succinct argument systems for NP is particularly
important because such proof systems enable many useful protocols for delegating computation and,
moreover, are most likely to deal with extremely large computations — and thus here efficient re-
ductions are particularly needed.
Reductions and efficiency. Suppose that we have a succinct argument system (P, V) for an
NP-complete language L and a reduction from BHRAM to L. For concreteness, suppose that L is
circuit satisfiability (CSAT). Let us elaborate on the impact that the efficiency of the reduction has
on the efficiency of the resulting argument system (P ′, V ′) for BHRAM.

The prover P ′ uses the reduction to transform a membership question of the form “is (x, T , S) in
BHRAM(M)?” to one of the form “is the circuit C satisfiable?” and then invokes P . The verifier V ′

also uses the reduction in order to then invoke V .
To specify the question “is (x, T , S) in BHRAM(M)?” we only need O(|M | + |x| + log(T)) bits,

but the constraint satisfaction problem it describes (i.e., the correct execution of M(x, w), for some
witness w, for at most T steps) is much larger: it has size that is Ω(T). In a succinct argument, the
verifier V ′ is weak, so he is only allowed to run in time that is poly

(
|M |+ |x|+ log(T)

)
(and up to a

polynomial in the security parameter). Thus, the reduction cannot “unroll” the computation of M
and perform operations on it (e.g., by explicitly laying out a circuit of size Ω(T) encoding constraints,
say, for each step of computation), since that would require Ω(T) time and make V ′ too slow, but
must instead implicitly convert the large yet succinctly-represented constraint satisfaction problem

1We do not employ the logarithmic-cost criterion [CR72] but instead count the number of machine state transitions.
2In “natural” RAMs, both |δ| and kw are O(log T). However, they will generally be significantly larger than

1 · log T depending on how “rich” the architecture of the machine is (e.g., how many different instructions are there,
which arithmetic instructions are available, and so on). This is why we want to explicitly keep track of these parameters.

4

described by (M, x, T , S) into a succinct representation of a question of the form “is C in satisfiable?”,
i.e., the reduction should in fact be from BHRAM to succinct CSAT (sCSAT). Thus, succinctness
of the reduction is a property that we must ensure in order for it to work for succinct arguments.

But even if succinct, a reduction could still be very inefficient because it could blow up the size
of the constraint satisfaction problem, e.g., by outputting a (succinct description of a) circuit of size
O(T 2); this would cause P ′ to invoke P on a much larger instance than the original computation.
Thus, we seek reductions where the blowup in the size of the problem is as small as possible.

Additionally, the prover is also responsible for converting a witness w for the question “is (x, T , S)
in BHRAM(M)?” into a corresponding assignment of the circuit. The efficiency of this mapping is
also critical. And because witnesses may themselves be as large as T , we shall seek reductions where
this mapping is not only very fast but also highly parallelizable.

To preserve proof of knowledge, we shall also want that recovering a witness for (M, x, T , S) from
a valid assignment of C can be done in polynomial-time, though we are not particularly interested in
making this “inverse map” very efficient.3 This requirement makes the reduction a Levin reduction.
Comparison with traditional reductions. Naturally, investigating the above question will ben-
efit from insights from complexity theory, where the study of reductions between different computa-
tional problems is a basic tool. Nonetheless, the reductions we seek are different from the traditional
ones in two ways. First, as already explained, we want reductions between uniform and succinct
models of computation. Second, reductions need not have information-theoretic guarantees, but
only computational ones. That is, computational reductions (when appropriately defined) will gen-
erally suffice. This relaxation may allow for simpler or more efficient reductions. (In this paper we
will in fact see such an example.)

2 Overview of Results

In principle we may have to worry about reducing BHRAM to numerous and quite different problems,
in order to cover as many argument system constructions as possible. Fortunately, it turns out that
almost all succinct argument constructions rely either on circuit satisfiability or algebraic constraint
satisfaction problems. Thus, in this paper, we concentrate on the two concrete goals of reducing
BHRAM to both of these problems. We next describe each goal in more detail and our results for it
in the next two subsections (Section 2.1 and Section 2.2 respectively). In both situations, preserving
succinctness and minimizing the blowup in size of the constraint satisfaction problem will present
significant challenges. Some of these will be overcome by leveraging nondeterminism as a resource.

2.1 Programming circuits: from BHRAM to circuit satisfaction

Circuit satisfiability is the language of all satisfiable boolean circuits. Its succinct version replaces
each circuit by a (potentially much smaller) circuit descriptor. Here we consider the uniform formu-
lation of this language. Informally:

Definition 1 (sCSAT). For a family of circuit descriptors Φ = {φT ,S}T ,S∈N, sCSAT(Φ) is the
language of (x, T , S) such that there exists w for which C(x, w) accepts, where C is the circuit described
by φT ,S.4 The language sCSAT is the set of all (Φ, x, T , S) such that (x, T , S) ∈ sCSAT(Φ).

3Concretely, the efficiency of the witness recovery map affects the efficiency of security reductions relying on proof
of knowledge and thus, ultimately, affects the size of the security parameter used to invoke the proof system.

4A circuit descriptor is an algorithm that, given as input a gate number of C, outputs information about the type
of the gate, which gates are its inputs, which gates are its outputs, and so on. See [Pap94] for a precise definition.

5

Reducing from BHRAM to sCSAT benefits many zero-knowledge argument systems, including [GOS06b,
GOS06a, AF07, Gro09, Gro10b, Gro10a, Lip12, GGPR12, BCCT12].5 Our first goal is:

Goal #1: Efficiently program circuits. Namely, reduce BHRAM to sCSAT with
a succinct Levin reduction that is as tight as possible (both in terms of circuit size and
efficiency of the witness map).

Prior work toward Goal #1. Leveraging the fact that (multi-tape) Turing machines can sort
in quasilinear time [Sch78], Gurevich and Shelah [GS89, Theorem 2] showed that nondeterministic
random-access machine computations can be simulated by nondeterministic (multi-tape) Turing ma-
chine computations with only polylogarithmic overhead. Combining this with the result of Pippenger
and Fischer [PF79] that any T -step multi-tape Turing machine computation can be performed by
an oblivious two-tape Turing machine in Θ(T log T) steps, and the fact that the computation of an
oblivious Turing machine (say with two tapes) in T ′ steps can be reduced to a circuit of size Θ(T ′),
we deduce that there is a quasilinear-time reduction from random-access machines to circuits.

This reduction path already tells us that “random-access machines have small boolean circuits”
and, from an asymptotic standpoint, already allows to efficiently program circuits for the purpose
of, e.g., running zero-knowledge proofs [GOS06b, GOS06a, AF07, Gro09, Gro10b, Gro10a]. This
reduction path, however, does not explicitly address the requirement of succinctness (though plausibly
could be made to) or studies the efficiency of converting the witness w into a satisfying assignment;
further, it hides large constants because it goes through (two) Turing machine reductions. A more
efficient reduction was given by Robson [Rob91], whose proof yields (when cast in our notation) a
Θ(T · (logS + wk) · logS) reduction from random-access machines to boolean formulas. However,
Robson also did not address succinctness or study the efficiency of converting the witness.
Our results toward Goal #1. Our first theorem addresses Goal #1:

Theorem 1. There are functions (p,w1,w2) such that, for every random-access machine M (with
register width w, number of registers k, and transition function δ) and instance (x, T , S),

Syntax: Φ = {φT ,S}T ,S∈N = p(M) is a uniform family of circuit descriptors.

Soundness: (x, T , S) ∈ BHRAM(M) if and only if (x, T , S) ∈ sCSAT(Φ).

Witness reductions:

– if w is a witness to (x, T , S) ∈ BHRAM(M) then w1(M, x, T , S, w) is a witness to (x, T , S) ∈ sCSAT(Φ);
– if w′ is a witness to (x, T , S) ∈ sCSAT(Φ) then w2(M, x, T , S, w′) is a witness to (x, T , S) ∈ BHRAM(M).

Efficiency:

– p(M) runs in linear time.
– φT ,S can be generated in O(|δ| + log T) time and describes a circuit of size O(|δ| + (logS + w) ·

logS) · T with O(kw + (logS + w) · logS) · T variables.
– w1(M, x, T , S, w) runs in time O(kw+(logS+w) logS) ·T and space O(kw+(logS+w) logS) ·S,

or in parallel time O((logS)2) when given the transcript of computation of M on (x, w).
– w2(M, x, T , S, w′) runs in linear time.

Note that p is run by both the prover and (succinct) verifier, while the witness map w1 is run
only by the prover. (And the inverse witness map w2 ensures proof of knowledge is preserved, and is
usually only invoked in security reductions.)

5Not all these arguments are succinct, and thus not all benefit from the succinctness of the reduction; but, of
course, all do benefit from the efficiency of the reduction (i.e., the blow up in circuit size and how fast an assignment
for the circuit can be computed).

6

In terms of blowup in the size of the problem, our Theorem 1 provides a modest improvement
over the one of Robson [Rob91]. More importantly, however, unlike Robson’s result, our Theorem 1
provides a succinct reduction with a witness map w1 that is very efficient (in both time and space)
and is highly parallelizable. (Also see Section 2.3 for how computational assumptions can improve
further the space complexity of w1.) Our main technique for proving Theorem 1 is the use of routing
networks together with nondeterminism, and our proof strategy builds on and simplifies Robson’s.

For example, the succinctness property and the efficiency of the witness map w1 from our Theo-
rem 1 have been used in an essential way by Bitansky and Chiesa [BC12]. Concretely, they defined
a complexity-preserving multiprover interactive proof (MIP) [BOGKW88] to be one where, to check
that a random-access machine M non-deterministically accepts an input x within T time steps and
using at most S memory cells, each MIP prover runs in time (|M | + T) · polylog(T) and space
(|M |+ |x|+ S) · polylog(T) and the MIP verifier runs in time (|M |+ |x|) · polylog(T) — these com-
plexities are essentially optimal. Bitansky and Chiesa showed how to use Theorem 1 to construct a
complexity-preserving one-round MIP of knowledge, and used it to construct “complexity-preserving”
succinct arguments from standard assumptions.

2.2 Programming polynomials: from BHRAM to algebraic constraint satisfaction

Probabilistically-checkable proofs (PCPs) [BFLS91] are perhaps the starkest examples of powerful
proof systems that rely on unnatural problem representations: typically, they are constructed for con-
straint satisfaction problems having a strong combinatorial or algebraic flavor. All known PCP-based
succinct argument constructions [Kil92, Mic00, BG08, DCL08, CT10, BCCT11, DFH12, GLR11] in-
herit these problem representations. Unlike studying reductions to (succinct) circuit satisfiability,
though, studying reductions to problems used in PCP constructions is not as well-defined a problem,
because these problems are different from each other. Which one should we pick as a target?

Because not all PCP constructions are equally efficient (e.g., some do not have a succinct verifier,
some have long proofs, and so on), we focus on problems for which there are PCPs where the prover
and verifier running times are sate of the art. Following a line of work on PCPs with short proofs
[BFLS91, PS94, HS00, GS06, BSSVW03, BSGH+04, BSS08, BSGH+05, Mei12], Ben-Sasson et al.
[BSCGT12] constructed PCPs with essentially-optimal prover and verifier running time (and both
highly parallelizable); their PCPs are constructed using algebraic (rather than combinatorial) tech-
niques, and involve testing proximity and checking properties of univariate (rather than multivariate)
polynomials. Concretely, they construct PCPs for a succinct algebraic constraint satisfaction problem
(sACSP) that is informally defined as follows (see Section 6.6 for details):

Definition 2 (sACSP). For a tuple of families par = (F,H,N,P, I) where
• F = {FT ,S}T ,S∈N and each FT ,S is a finite field of characteristic 2,
• H = {HT ,S}T ,S∈N and each HT ,S is a subspace of FT ,S,
• N = { ~NT ,S}T ,S∈N and each ~NT ,S = (NT ,S,1, . . . , NT ,S,| ~NT,S |) is a vector of neighbor polynomials,
• P = {PT ,S}T ,S∈N and each PT ,S is a multivariate constraint polynomial,
• I = {~IT ,S}T ,S∈N and each ~IT ,S = (IT ,S,1, . . . , IT ,S,T) is a vector of subspaces each contained in HT ,S,
• |FT ,S | ≥ 4 · deg

(
PT ,S(x, x|HT,S |·deg(NT,S,1), . . . , x

|HT,S |·deg(N
T,S,| ~NT |

)
)
)
,

the language sACSP(par) is defined as follows:

sACSP(par) =

(x, T , S) :

∃ a univariate polynomial A with deg(A) ≤ |HT ,S | over FT ,S s.t.
(i) for all α ∈ HT ,S, PT ,S(α,A(NT ,S,1(α)), . . . , A(NT ,S,| ~NT |(α))) = 0

(ii) x = A|IT,S,|x|

 .

7

The language sACSP is then defined as the set of all (par, x, T , S) such that (x, T , S) ∈ sACSP(par).6

As mentioned, reducing BHRAM to sACSP benefits all existing PCP-based succinct argument
constructions. Thus, our second goal is;

Goal #2: Efficiently program PCP-friendly polynomials. Namely, reduce
BHRAM to sACSP with a succinct Levin reduction that is as tight as possible (both in
terms of circuit size and efficiency of the witness map).

Prior work toward Goal #2. Reductions from “non-algebraic” satisfaction problems to algebraic
satisfaction problems are common in the PCP literature, where this process is known as arithmetiza-
tion. Typically, the measure of how “large” is an algebraic constraint satisfaction problem is the field
size (i.e., this metric is analogous to circuit size). Most arithmetizations in the PCP literature do
not preserve succinctness and, moreover, are also quite expensive in terms of field size; for example,
[Har04, Chapter 5] shows how to arithmetize circuits, but with a cubic blow up and with a reduction
that does not preserve succinctness.

To the best of the authors’ knowledge, the only arithmetizations that have taken succinctness
into account are those of [BFLS91] and [BSGH+05]. Babai et al. [BFLS91] study a (succinct)
reduction from pointer machines (concretely, those of Schönhage [Sch80], which in turn generalize
Kolmogorov–Uspenskĭı machines [Kol53, KU58]); however, even if pointer machines can simulate
random-access machines with only polylogarithmic overhead [GS89], the reduction of Babai et al.
is not of quasilinear efficiency and, more importantly, generates an algebraic constraint satisfaction
problem for multivariate polynomials for which, unlike sACSP as defined above, PCPs as efficient are
those of Ben-Sasson et al. [BSCGT12] are not known. Ben-Sasson et al. [BSGH+05] study a (succinct)
reduction from Turing machines to a problem that is very similar to (and inspired the definition of)
sACSP. Once again, because Turing machines can simulate random-access machines with only
polylogarithmic overhead [GS89, Theorem 2], the result of [BSGH+05] could yield a reduction from
BHRAM to sACSP with quasilinear field size. However, this reduction path goes through two Turing
machine reductions (the first to simulate the random-access machine and the second in their proof)
and the field size depends exponentially on the (constant but large) number of states of the (second)
Turing machine. A simple application of the techniques in [BSGH+05] to circumvent the use of
Turing machines only yields a reduction with quadratic field size. Additionally, the efficiency of
converting the witness w into a suitable polynomial was not studied in [BSGH+05].

Is there a “direct” reduction from BHRAM to sACSP that, e.g., does not run into the inefficiencies
of Turing machines and allows for a fast transformation of the witness?
Our results toward Goal #2. For a given random-access machineM , we introduce an additional
complexity measure: we say that M has degree d if the (total) degree of its transition function δ,
when viewed as an arithmetic circuit over F2, is at most d. Note that d is incomparable to both the
state size kw and the size |δ| of the transition function as a boolean circuit; typically, d = O(log T).

Our second theorem addresses Goal #2:

Theorem 2. There are functions (p,w1,w2) such that, for every random-access machine M (with
register width w, number of registers k, and transition function δ with degree d) and instance (x, T , S),

Syntax: par = (F,H,N,P, I) = p(M) is a parameter choice for sACSP.

Soundness: (x, T , S) ∈ BHRAM(M) if and only if (x, T , S) ∈ sACSP(par).
6To ensure succinctness, the field is represented via an irreducible polynomial of the appropriate degree over F2,

subspaces via a basis and an offset, and polynomials via arithmetic circuits.

8

Witness reductions:

– if w is a witness to (x, T , S) ∈ BHRAM(M) then w1(M, x, T , S, w) is one to (x, T , S) ∈ sACSP(par);
– if A is a witness for (x, T , S) ∈ sACSP(par)” then w2(M, x, T , S,A) is one to “(x, T , S) ∈ BHRAM(M).

Efficiency:

– p(M) runs in linear time.
– |FT ,S | = O((log T + kw) · log T · d) · T .
– a basis-and-offset representation for HT ,S can be generated in O(log |FT ,S |) field operations.
– ~NT ,S has O(logS+kw) affine functions, and each can be generated in O(log |FT ,S |) field operations.
– PT ,S has size O(|δ|+log |FT ,S |) and can be generated in O(|δ|+(log |FT ,S |)2 log log |FT ,S |) field operations.
– a basis and offset for each affine subspace in ~IT ,S can be generated in O(log |FT ,S |) field operations.
– w1(M, x, T , S, w) runs in time O(|FT ,S |(log |FT ,S |)2), or in parallel time O((log |FT ,S |)2) when

given the transcript of computation of M on (x, w).
– w2(M, x, T , S,A) runs in time O(|FT ,S |(log |FT ,S |)2), or in parallel time O((log |FT ,S |)2).
(As mentioned, all polynomials are represented via arithmetic circuits.)

As before, p is run by both the prover and (succinct) verifier, while w1 is run only by the prover.
(And w2 ensures proof of knowledge is preserved, and is typically invoked only in security reductions.)

Our Theorem 2 thus provides a succinct reduction from BHRAM to sACSP with small overhead
and with a witness map w1 that is very efficient in time (and is highly parallelizable). Unlike in
Theorem 1, however, the witness map in Theorem 2 requires space Ω(|FT ,S |) = Ω(T) regardless of
the space complexity of the machineM . While the space complexity of the witness map in Theorem 1
is dominated by the space needed to solve a routing problem of size O(S), the space complexity of the
witness reduction in Theorem 2 is dominated by the space needed to solve a univariate interpolation
problem on a Ω(|FT ,S |)-size domain that, when solved with an FFT, requires Ω(|FT ,S |) space. This
inefficiency in terms of space complexity appears inherent.

The main techniques for proving Theorem 2 are the use of routing networks together with non-
determinism (as in Theorem 1), the use of novel arithmetization techniques (including further de-
velopment of the computational properties of linearized polynomials [LN97, Section 2.5] used in
[BSGH+05]), and additive FFTs [Mat08].

Our reduction from Theorem 2 has been used by Ben-Sasson et al. [BSCGT12] to construct a PCP
system for random-access machine computations where, to check that a random-access machine M
non-deterministically accepts an input x within T time steps, the PCP prover runs in sequential time
(|M |+T) · polylog(T) (or parallel time O((log T)2) when given a transcript of computation) and the
PCP verifier runs in sequential time (|M |+ |x|) ·polylog(T) (or parallel time O((log T)2)); Ben-Sasson
et al. then used these to construct a variant of universal arguments [BG08] with similar efficiency.
In both cases, both the prover and verifier are highly parallelizable but the space complexity of the
prover remains Ω(T). See [BSCGT12] for more details and open problems in this direction.

2.3 Extensions

Parallel RAMs. Our results can be used in a simple and black-box way to also handle parallel
RAMs (PRAMs) [Fic93] and obtain completely analogous results for these. Essentially, a PRAM can
be reduced to a corresponding (sequential) RAM in the trivial fashion (by round-robin instruction-
by-instruction simulation on a single processor, swapping the registers to memory at each switch).
This simple reduction preserves parallelism in the following sense: the transcript of the sequential
RAM can still be generated in parallel time essentially equal to that of the original PRAM. One can
then invoke our results for sequential RAMs, which themselves have low parallel time complexity.

9

Non-determinism and computational assumptions. Theorem 1 and Theorem 2 provide un-
conditional guarantees. A natural question is whether by using computational assumptions one can
obtain more efficient reductions. In this direction we identify several convenient transformations
that leverage the existence of universal one-way hash functions (UOWHFs) [NY89], which can be
obtained from the existence of one-way functions [Rom90].

Even if Theorem 1 ensures that the witness map can be computed in time and space that are
close to those of the original machine M , it may still be not so efficient to run the witness map, e.g.,
when the space used by M is large only for a short period of time. While one can conceive of more
sophisticated proofs to Theorem 1 that take into account additional information about the memory
usage of M , a simpler approach can be based on UOWHFs. The lemma is the following:

Lemma 1. Let F = {fρ}ρ be a UOWHF family. There exist functions (p,w1,w2, t, s) such that for
every random-access machine M :

Syntax: For every seed ρ ∈ {0, 1}∗, p(ρ,M) is a random-access machine.

Witness Reductions:

– For every seed ρ ∈ {0, 1}∗, instance (x, T , S), and w, if w is a witness to (x, T , S) ∈ BHRAM(M)
then w1(ρ,M, x, T , S, w) is a witness to (x, t(ρ,M, T , S), s(ρ,M, T , S)) ∈ BHRAM(p(ρ,M)).

– With high probability over ρ, if a witness w′ for (x, t(ρ,M, T , S), s(ρ,M, T , S)) ∈ BHRAM(p(ρ,M))
can be efficiently generated, then a witness w for (x, T , S) ∈ BHRAM(M) can be efficiently extracted
from it (so that, in particular, such a witness exists). Formally, for every polynomial-size circuit
family {Cκ}κ∈N and sufficiently large κ ∈ N,

Pr
ρ←{0,1}κ

w2(ρ,M, x, T , S, w′) is not a witness to
(x, T , S) ∈ BHRAM(M) and w′ is witness to

(x, t(ρ,M, T , S), s(ρ,M, T , S)) ∈ BHRAM(p(ρ,M))

∣∣∣∣∣∣
(x, 1T , S, w′)← Cκ(ρ)

 < negl(κ) .

Efficiency:

– p(ρ,M) runs in linear time.
– w1(ρ,M, x, T , S, w) runs in time T ·poly(|ρ|+logS) and space that “mirrors” that used by M(x, w)

(i.e., the number of non-zero memory cells in the i-th block of poly(|ρ|+logS) steps of w1 is equal
to that at step i of M(x, w) times poly(|ρ|+ logS)).

– w2(ρ,M, x, T , S, w′) runs in linear time.
– t(ρ,M, T , S) = T · logS · poly(|ρ|).
– s(ρ,M, T , S) = poly(|ρ|).

The important efficiency features of Lemma 1 are that the space complexity of p(ρ,M) is a fixed
polynomial in |ρ| and the witness map w1 has space complexity that “mirrors” that of the computation
of M on (x, w); in particular, even if M has large space complexity for a short period of time, w1 will
not have space complexity that is large for the entire computation (as was the case in Theorem 1).

Lemma 1 is in fact an immediate consequence of online memory checking [BEG+91] via Merkle
trees [Mer89]: p(ρ,M) keeps memory in “untrusted storage” by dynamically maintaining a Merkle tree
over it; essentially, every load instruction ofM is replaced by a secure load, consisting of a sequence of
instructions verifying an alleged value, and every store instruction ofM is replaced by a corresponding
secure store, which appropriately updates the root of the Merkle tree, stored in a register.

The new machine p(ρ,M) from Lemma 1 can then be plugged back into Theorem 1 to obtain
a reduction to sCSAT where the space complexity of the witness map mirrors that of M .7 As

7In fact, because the space complexity of p(ρ,M) is so low, one can at this point also use the trivial reduction
from RAMs to circuits. In a sense, UOWHFs can thus be interpreted as an alternative to routing techniques as far as
memory consistency is concerned.

10

another application, Lemma 1 was used by Bitansky et al. [BCCT12] as an essential component to
the construction of complexity-preserving non-interactive succinct arguments of knowledge.8

In fact, UOWHFs have additional efficiency benefits. For example, if x is very long and it is
inconvenient for, e.g., the verifier to keep x around, then the verifier can store x somewhere untrusted
(say, give x to the prover) and only keep a short digest σx of of x. Later on, the verifier can reduce any
given machine M to another machine M ′ having σx hardcoded in it that first verifies that the first
part of the witness contains x and then runs M on x and the second part of the witness. A similar
observation holds when M is itself too large (e.g., when it encodes some nonuniform problem).

Note that all of the above applications of UOWHFs crucially leverage nondeterminism as a
resource and require the proof system that is eventually used to have a proof-of-knowledge property.
We find it an interesting open question to further investigate the power of computational reductions
to simplify or obtain results that cannot be achieved with only unconditional reductions.
Reductions from other models. We have already noted that, because many problems arising
in practice are algorithmic in nature and are written in high-level programming languages, it is
convenient to use BHRAM as a starting point for reductions. For those occasions in which one is
interested to use another model of computation as a starting point, one can always, e.g., write in C
an interpreter for that model of computation and then compile it — after all, random-access machines
are a powerful model of computation and can simulate other classical models of computation with
little overhead [HPV77, Pau78, DT83, Rob86, KvLP88, Rob92].

3 Open Problems

Leveraging the expressive power of combinatorial and algebraic properties of graphs and polynomials,
in this paper we have developed tools for efficiently embedding generic computation of programs into
the satisfiability of circuits and into algebraic constraint satisfaction problems. We believe that a
deeper understanding of the efficiency (and inefficiency) of reductions from BHRAM to these problems,
as well as other problems used in other protocols, is an important and exciting research direction.
We list here several intriguing questions that our work leaves unanswered.
Arithmetizing RAMs with less overhead. Our Theorem 1 gives a reduction from BHRAM to
sCSAT with a circuit of size O(|δ|+(logS+w)·logS)·T ; in contrast, our Theorem 2 gives a reduction
from BHRAM to sACSP with a field of size O((log T+kw)·log T ·d)·T . When S = T , the latter result
is more expensive by “two log T factors”: the degree d of the transition function δ, typically Ω(log T),
appears as a multiplicative factor in the field size; and each field element requires log |FT ,S | ≥ log T
bits to represent. Furthermore, when S < T , the logS factors in the former result are replaced by
log T factors. While we conjecture that Theorem 1 is essentially tight, determining whether the ad-
ditional log T factors to reduce from BHRAM to sACSP are inherent remains a challenging problem.
Programming deterministic models. The reductions presented in this paper are inherently non-
deterministic: they leverage non-determinism as a resource in order to gain efficiency by “enlarging”
the witness. Indeed, many techniques used in this paper can be distilled into the paradigm of carefully
choosing what additional information we should “put in the witness” because it is much faster to
verify its goodness rather than to generate such information from scratch. Thus, even when M does
not read any witness, our, e.g., Theorem 1 reduces BHRAM(M) to a circuit satisfaction problem
(that has a witness) and not a circuit evaluation one (that has no witness).

8Indeed, it seems that the recursive composition and bootstrapping techniques of Bitansky et al. [BCCT12] cannot
be performed on the circuit obtained in the proof of Theorem 1. The result of [BCCT12] is an example of an application
that we know how to achieve only via a reduction with only computational guarantees.

11

Our reliance on non-determinism for efficiency appears necessary: nondeterministic models of
computation are quite robust under quasilinear-time reductions [PR79, Sch80, GS89, LL92, Jon93,
NRS94] but reductions with such efficiency are not believed to exist for deterministic ones. In-
jecting non-determinism means that, unfortunately, our reductions cannot be used to benefit pro-
tocols that do not support nondeterminism; such protocols include all existing schemes for del-
egating polynomial-time functions, such as [GKR08, GGP10, CKV10, AIK10, CRR11, KRR12].
Many of these protocols require a circuit or Turing machine representation, and the best (deter-
ministic) reductions from random-access machine computations to (deterministic) circuit or Turing
machine computations have a cost of Ω(T 2); such a cost is large for long computations, which
are precisely the ones that we are likely to delegate. Thus, the applicability of proof systems
that do not support nondeterminism is limited in the sense that they cannot benefit from the
great efficiency benefits that nondeterminism brings to reductions.

While for sufficiently structured problems one can carry out careful circuit design with great
efficiency gains [CMT12], it is an interesting question whether reducing arbitrary random-access
machines to “weaker” models of computation without the use of nondeterminism is bound to be
expensive. Answering this question may be hard as it is related to circuit lower bounds.
Programming circuits for FHE. Existing constructions of fully-homomorphic encryption [Gen09]
require a function to be represented as a circuit in order for it to be homomorphically evaluated on
an encrypted input. The fact that our reductions leverage nondeterminism seems to imply that they
cannot be used to efficiently program circuits for homomorphic evaluation either. Indeed, given only
a random-access machine M and an encryption c of an input x, it is not clear how to obtain an
encryption of an assignment to the corresponding (succinctly-described) circuit generated by our
reduction, without spending time that is at least quadratic in the running time of M on x;9 with
such a slow transformation, one might as well have used the trivial quadratic (but deterministic)
reduction from random-access machines to circuits. Thus, we do not know of any approach that is
able to homomorphically evaluate a random-access machine in sub-quadratic time.10

While the aforementioned problem can be alleviated by exploiting the fact that the algorithms
arising in practice are not “worst-case” [FvDD12], we believe it is an important open problem to
either find a solution that can homomorphically evaluate an arbitrary random-access machine in,
say, quasilinear time, or show that such a solution is unlikely to exist. Until then, the applicability
of fully-homomorphic encryption may be limited to sufficiently structured problems (i.e., those that
are naturally represented as circuits) or algorithms with special properties (e.g., use little memory).
Other starting points and other targets? While we have argued that BHRAM is a natural
starting point due to the ease with which high-level programming languages can be reduced to it,
there may be other powerful models of computation that are perhaps better suited to run certain
kinds of algorithms. We have already mentioned one such example, parallel RAMs, that in fact
we can already support using the results of this paper. What other models of computation (not
easily supported by RAMs or parallel RAMs) provide useful starting points? Conversely, we have
focused on reducing BHRAM to sCSAT and sACSP; which other underlying problem representations
urgently need efficient reductions?

9Indeed, it is not clear how one would obtain, in less than quadratic time, an encryption of the transcript of the
computation of M on x, which is required in order to (homomorphically) solve the routing problem.

10A natural attempt would be to convert the given RAM into an oblivious RAM [GO96] in order to hide the
information leaked by (logical) memory accesses, and then evaluate the transition function of the resulting “processor”
under fully-homomorphic encryption in order to hide the registers and the oblivious RAM’s secrets. However, in order
to efficiently satisfy the processor’s (oblivious) memory accesses, the evaluator needs to know the requested addresses,
and these are produced in encrypted form. Thus, one needs an encryption scheme that lets the evaluator decrypt
(correctly-computed) addresses and nothing else; no technique is known for this implausible-sounding goal.

12

4 Proof Strategy

We prove Theorem 2 in two steps and the first step of our proof will yield a proof to Theorem 1.
Concretely, we identify a convenient “stepping-stone” problem (similar to those used in [VL88, BSS08,
BSGH+05]) that is a class of succinct graph coloring problems (sGCP). Roughly, an instance of
sGCP consists of a coloring problem over a known (yet succinctly-represented) graph topology: each
vertex in the graph has a corresponding coloring constraint (that can easily be deduced from the
identity of the vertex) and this coloring constraint only involves the colors of the vertex itself and
its neighbors. For comparison, sACSP can in fact be viewed as sGCP with the addition of certain
algebraic constraints. Informally (see Section 6.5 for details):

Definition 3 (sGCP). For a tuple of families par = (V,Γ,K,W) where
• V = {VT ,S}T ,S∈N and each VT ,S is a vertex set,
• Γ = {~ΓT ,S}T ,S∈N and each ~ΓT ,S = (ΓT ,S,1, . . . ,ΓT ,S,|~ΓT,S |) is a vector of neighbor functions,
• K = {KT ,S}T ,S∈N and each KT ,S is a color constraint function,
• W = { ~WT ,S}T ,S∈N and each ~WT ,S = (WT ,S,1, . . . ,WT ,S,T) is a vector of vertex sets each contained in VT ,S,

the language sGCP(par) is defined as follows:

sGCP(par) =

(x, T , S) :

∃ a coloring C of the vertices VT ,S s.t.
(i) for all v ∈ VT ,S, KT ,S(v, C(ΓT ,S,1(v)), . . . , C(ΓT ,S,|~ΓT,S |(v))) = 0

(ii) x = C|WT,S,|x|

.

The language sGCP is then defined as the set of all (par, x, T , S) such that (x, T , S) ∈ sGCP(par).11

Our proof of Theorem 2 thus consists of the following two steps:
Step 1: from BHRAM to sGCP by “localizing & structuring” constraints. In this step
we translate the constraints that determine correctness of computation of a given random-access
machine M to a graph coloring problem over a graph with special topology (i.e., to some choice
(V,Γ,K,W) of parameters for sGCP). This is where we tame the global and unstructured nature
of the RAM’s memory access operations, which can reach arbitrarily across memory and need to
be consistent with values stored arbitrarily long ago, by showing how to efficiently capture these by
coloring constraints. The choice of topology and the fact that coloring constraints are local provides
key properties that are used in the next step, during the process of arithmetization.
Step 2: from sGCP to sACSP by arithmetizing constraints. In this step we translate the
choices of parameters for sGCP obtained in Step 1 to corresponding algebraic constraints in a finite
field (i.e., to some choices of parameters (F,H,N,P, I) for sACSP).

As mentioned, any sGCP problem easily induces a corresponding sCSAT problem: consider the
boolean circuit that verifies (in parallel) all of the coloring constraints, and then takes the conjunction
of all of these verification results; the succinctness of sGCP ensures that this boolean circuit can
be represented succinctly. Thus, the reduction from sGCP to sCSAT is trivial and comes with no
overhead. In the next two subsections (Section 4.1 and Section 4.2), we respectively discuss our proof
strategy for Step 1, which will imply a proof to Theorem 1, and then Step 2, which together with
Step 1 will imply Theorem 2.

11To ensure succinctness, vertex sets are represented via circuits that can output their elements and functions are
represented via boolean circuits that compute them.

13

4.1 Step 1: From BHRAM To sGCP By Localizing & Structuring Constraints

The constraints that determine correctness of computation of a given random-access machine M
can be divided into code-consistency constraints (i.e., did the machine correctly execute the correct
instruction at every time step?) and memory-consistency constraints (i.e., did the machine load a
value equal to the last stored value at the same address, every time it read from memory?). Our
goal is to express these via a choice (V,Γ,K,W) of parameters for sGCP (see Definition 3) such
that the underlying graph topology has certain special properties (to be discussed later). Let us fix
a time bound T and let us temporarily fix the space bound S to be equal to T .

Given a time-ordered transcript of computation (i.e., a list of states ofM) it is easy to locally check
the code-consistency constraints: one can do so one at a time, considering pairs of adjacent states, by
using the transition function δ ofM . Furthermore, given a memory-ordered transcript of computation
(i.e., a transcript of computation ordered by address, breaking ties using the timestamps) it is
also easy to locally check the memory-consistency constraints: one can do so again one at a time,
considering pairs of adjacent states, by ensuring that when a load follows a store at the same address
the same value that was stored is loaded. The main difficulty, faced in every simulation result for
machines with powerful memory models [BFLS91, GS89, Rob91], is how to efficiently ensure that
the time-ordered transcript and the memory-ordered transcript are encoding the same computation;
the one technique that has been used to do so in all these results is various forms of nondeterministic
sorting. Essentially, one relies on some mechanism that can verify that one list is either a sorting or
a permutation of the other list [Ofm65, Sch78, SH86].

In our case, we have several additional requirements: the mechanism must preserve succinctness,
allow for a fast witness map, and have the appropriate structure to allow for an efficient arithmetiza-
tion. (Let us temporarily ignore this last requirement of efficient arithmetization — we will address
it in the next step in Section 4.2.) As the mechanism for nondeterministic sorting, we rely on a
routing network with good algorithmic properties: Beneš networks. A Beneš network of size T is a
graph with O(log T) columns, each with T vertices, that can route T elements from the first column
to the last column, according to any given permutation, with no congestion. Here “route” simply
means that intermediate columns receive a packet and either forward it to the “up neighbor” or “down
neighbor” of the next column. Crucially, these routing decisions can be efficiently computed (and
then treated as colors) in time linear in the size of the graph [Ben65, Wak68, OTW71, Lei92] or in
parallel time O((log T)2) [NS82].

We can then define V and Γ to encode a family of Beneš networks of the appropriate size and
define K to be a family of coloring constraints that verifies code-consistency, memory-consistency, or
routing constraints depending on whether the colors to be verified are on the first column, last column,
or middle columns of the appropriate Beneš network. Additional care is required to appropriately
define a family of vertex sets W that takes care of consistency of the transcript with the input x.
(Indeed, not only do we need to ensure via constraints that some valid computation occurred, but
we must also establish that this computation had something to do with the specific input at hand.)

When the space bound S is not equal to T , however, the above simplistic approach is not efficient
enough because the Beneš network has O(T log T) vertices and we can only afford graphs of size
O(T logS). To tackle this problem, Robson [Rob91] devises a system of checkpoints to ensure that
he never has to sort a list much larger than S; his construction of a CNF formula, however, is further
complicated by the fact that he is simulating a machine where the memory cells can store arbitrarily
large values and thus must resort to an amortization scheme on top of his system of checkpoints.

We use a simpler approach. Concretely, we first transform M into a new machine M ′ that runs
M with the twist that, every S steps of computation of M are preceded and followed by reading
all S memory cells in order, twice in a row. (Note that the running time of M ′ is at most three

14

times that of M .) The memory accesses of M ′, due to their special pattern, can be routed with a
permutation that exhibits strong locality : essentially, no state needs to be routed more than 2S far
from its position in the time ordered transcript, since every memory address is accessed at least once
in every 2S steps. This observation raises the hope of leveraging “shallower” routing networks that
can route only sufficiently local permutations. Such routing networks do exist [Kan05]. In fact, in our
case, the permutations that we need to route enjoy additional properties besides their locality and
it suffices to consider the subnetwork consisting of the first O(logS) columns of the Beneš network
— essentially, this subnetwork consists of T/S Beneš networks of size O(S), and thus we still benefit
from the algorithmic results for Beneš networks.

Overall, we reduce BHRAM to a sGCP over a certain family of “shallow” Beneš networks. Formal-
izing the above intuition involves many technical details, including some imposed by the requirement
that all of the above must be able to be expressed succinctly and imposing other coloring constraints
not discussed above. As stated above, doing so yields a proof to Theorem 1. We work out the details
of this step for the case S = T in Section 7.

4.2 Step 2: From sGCP To sACSP By Arithmetizing Constraints

Our second step is to efficiently arithmetize the sGCP problem on the graphs obtained in the first
step. That is, we need to map the choice of parameters (V,Γ,K,W), where (V,Γ) encodes a family
of shallow Beneš networks, to a choice of parameters (F,H,N,P, I) for sACSP (see Definition 2) with
as small a field size as possible while at the same time preserving succinctness. This process is quite
delicate because one runs the risk of obtaining high-degree polynomials that are either not sparse
or do not have small arithmetic circuits, or, worse, have a degree that is too high thereby forcing
us to make the field size too large. Building on the initial work of Ben-Sasson et al. [BSGH+05],
we develop a set of algebraic tools that leverages the additive structure of subspaces of finite fields
to tackle various problems that arise during arithmetization; many of these insights leverage the
computational properties of linearized polynomials [LN97, Section 2.5].

At high level, we have two subtasks:

1. Graph Arithmetization. While the definition of sGCP does not impose any constraints on the
vertex set family V and neighbor function family Γ, the definition of sACSP imposes algebraic
constraints on the vertex set family H and the neighbor function family N. Namely, each vertex set
HT ,S ∈ H must be a subspace of the field FT ,S and each vector of neighbor functions ~NT ,S ∈ N
must be a vector of (univariate) polynomials over FT ,S . Thus, we need a way to efficiently
arithmetize a shallow Beneš network: find HT ,S and ~NT ,S such that the the graph induced by
(HT ,S , ~NT ,S) contains as a subgraph a shallow Beneš network of size T and O(logS) columns,
where HT ,S is as small as possible and ~NT ,S contains as few low-degree polynomials as possible.

For this subtask we recall a routing network whose algebraic properties have been studied be-
fore by Polishchuk and Spielman [PS94], Ben-Sasson and Sudan [BSS08], and Ben-Sasson et al.
[BSGH+04, BSGH+05]: De Bruijn graphs. When cast in our language, Ben-Sasson et al. [BSS08]
showed how to arithmetize a De Bruijn graph of size T (having O(T log T) vertices) with an affine
subspace HT ,S of size O(T log T) and a constant number of degree-1 polynomials in ~NT ,S .

Unfortunately, we do not know if an analogous result holds for the shallow Beneš networks con-
structed in our first step. Nonetheless, these can still be embedded in De Bruijn graphs of size T ,
so that Beneš networks benefit from the aforementioned result of Ben-Sasson and Sudan as well.
Crucially, the algorithmic properties of Beneš networks carry over to De Bruijn graphs.

2. Constraints Arithmetization. Once again, while the definition of sGCP does not impose any
constraints on the color constraint function family K, the definition of sACSP requires that the

15

constraint function family P be a family of (multivariate) polynomials where, essentially, for each
PT ,S ∈ P all variables but the first have low degree. How to map K to P? Doing so is the most
delicate part of our reduction from sGCP to sACSP, so let us briefly discuss it next.

Storing coloring information. A witness to the sACSP problem is an assignment polynomial
A : FT ,S → FT ,S of degree at most |HT ,S |. Such a polynomial A can be interpreted as assigning
a “color” to each field element in FT ,S , and thus A can be thought of as a “low-degree coloring
function”. A first difficulty is about how we should store coloring information A in a way that it can
be efficiently retrieved by the constraint polynomial PT ,S ∈ P. Concretely, suppose that we have
a coloring function C : VT ,S → {0, 1}c, assigning a color of c bits to each vertex in the De Bruijn
graph, that is a witness to the sGCP problem (and, for simplicity, assume that c ≤ log |FT ,S |). A
natural approach would be to ensure that the bit string C(v) is stored in the bit representation of
A(Φ(v)), where Φ is the function that embeds the vertex set VT ,S of the De Bruijn graph into the field
(guaranteed by the graph arithmetization discussed above). Such an economical “packing”, however,
has the problem that retrieving any given bit from A(Φ(v)) requires a projection polynomial that has
degree Ω(T); when the projection polynomial is composed with A, which also has degree Ω(T), we
obtain a variable with degree Ω(T 2) — far too expensive.

To avoid this problem, we in fact use not just one De Bruijn graph but instead create c copies
of the De Bruijn graph in FT ,S . That is, we do not set HT ,S = Φ(VT ,S) but instead consider an
“extended vertex set” V̂T ,S :=

⋃c
j=1(Φ(VT ,S) + θj) where (θj)

c
j=1 is a vector of c (fixed) affine shifts

of Φ(VT ,S) chosen so that, ∀j, k ∈ [c], (Φ(VT ,S) + θj) ∩ (Φ(VT ,S) + θk) = ∅ and V̂T ,S is contained in
a subspace of size O(c · |Φ(VT ,S)|). We can then store the i-th bit that C associates with the vertex
v ∈ VT ,S on the field element Φ(v) +θi, i.e., we ensure that A(Φ(v) +θi) = C(v)i. Now no projection
polynomials are needed to retrieve any given bit of a color because field elements store single bits.
Overall, HT ,S can (roughly) be set to be equal to V̂T ,S and ~NT ,S can (roughly) be set to equal to the
c ·O(1) degree-1 polynomials obtained by considering all the c shifts of the O(1) degree-1 polynomials
induced by the embedding Φ.

Having ensured that color information can be retrieved efficiently let us briefly discuss the con-
struction of the constraint polynomial PT ,S ∈ P, which will constrain the values of a candidate-
witness low-degree polynomials, starting from the boolean circuit KT ,S ∈ K.
Building the constraint polynomial. The boolean circuit KT ,S takes as input the current
vertex v ∈ VT ,S together with the colors assigned to the vertices in its “neighborhood”, namely, to
ΓT ,S,1(v), . . . ,ΓT ,S,|~ΓT,S |(v). The constraint polynomial PT ,S takes as input Φ(v) together with the
colors that A assigns to the field elements in its neighborhood, namely, the colors that A assigns to
NT ,S,1(Φ(v)), . . . , NT ,S,| ~NT |(Φ(v)).

Intuitively, PT ,S has to evaluate KT ,S as part of its computation. Yet, PT ,S only has access to
Φ(v), but not to v, so that PT ,S must compute the bits of v himself in order to pass them on to
KT ,S . We show that, given the bit representation of Φ(v), computing v amounts to only evaluating a
collection of (easy-to-compute) multilinear polynomials. Furtermore, in this case it is not a problem
to use (high-degree) projection polynomials to deduce the bits of Φ(v) starting from Φ(v) because
(i) these are not composed with A, and (ii) despite being high-degree they can be shown to be sparse
(since they are linearized polynomials [LN97, Section 2.5]).

Another issue is that the embedding of the De Bruijn graph mentioned earlier is not perfect:
while a De Bruijn graph has out-degree 2 the embedding Φ requires O(1) edges inside the field. We
do not know a priori which of the neighbors of Φ(v) are “true” (i.e., are images of neighbors of v in
the De Bruijn graph), and thus PT ,S needs to figure out which are the colors in the neighborhood of
Φ(v) that should be forwarded to KT ,S as inputs. We observe that, given the bit representation of

16

Φ(v) (which PT ,S already computes for the reasons explained in the previous paragraph) it is possible
to use constant-degree multiplexer polynomials to select which are the true neighbors of Φ(v).

There are additional issues, requiring careful arithmetization, needed for the final construction
of PT ,S . For example, we need a small arithmetic circuit for an alternator polynomial : namely, a
polynomial that, given two subspaces V,W ⊆ FT ,S with V ⊆ W , is equal to 1 on V but vanishes
everywhere on W − V . Such a polynomial is useful because it allows to “turn on” a given constraint
on the subspace V but to specifically turn off the same constraint everywhere on V −W (where
another constraint can be turned on). An alternator polynomial has degree |W |, which is very large;
nonetheless, we show how to make a small arithmetic circuit for it, even if the polynomial itself is
not sparse.
In summary. Once again, formalizing the above intuition involves many technical details, mostly
having to do with keeping track of how expensive it is to convert, represent, and access the very
large objects involved, as well as enforcing consistency with the input x (by appropriately defining
the family of vector of subspaces I). Overall, we obtain a choice of parameters (F,H,N,P, I) for
sACSP where |HT ,S | = O(cT log T), ~NT ,S contains O(c) degree-1 polynomials, and PT ,S has degree
|HT ,S | and total degree deg(KT ,S) in the other variables. These settings allow us to choose a field
FT ,S of size O(cT log T deg(KT ,S)). In Step 1, c = log T + kw and deg(KT ,S) = d (i.e., the degree of
the transition function of M), as claimed in Theorem 2. The efficiency properties of converting the
witness follow from routing algorithms on De Bruijn graphs (discussed in Step 1) and additive-FFT
techniques [Mat08]. See Section 8 for more details.

17

5 Roadmap of Technical Sections

The rest of this paper is organized as follows. In Section 6 we introduce the basic definitions that
we will use throughout this paper, including the notions of reduction (Section 6.1), routing networks
(Section 6.2), finite fields (Section 6.3), random-access machines (Section 6.4), sGCP (Section 6.5),
and sACSP (Section 4). Next, Section 7 provides details for Step 1 (which we already discussed
informally in Section 4.1) and then Section 8 provides details for Step 2 (which we already discussed
informally in Section 4.2); together, these two sections provide all the details for the proof of The-
orem 2. Recall from the discussion in Section 4 that Theorem 1 follows immediately from Step 1.
The appendices provide additional details that are used throughout the paper: on routing networks
(Section A), circuit diagrams (Section B), and finite fields and efficient computation (Section C).

18

6 Definitions

We cover basic definitions used throughout the paper. Other definitions are given when appropriate.

Definition 6.1. A function c : N → N is a proper (complexity) function if it can be computed
in time O(|x|+ c(|x|)) and space O(c(|x|)) by some Turing machine. (See [Pap94, Definition 7.1].)

Functions computed by circuits. If f is a boolean function (a function over finite binary strings),
we denote by [f]B a boolean circuit (of AND, OR, NOT, and constant gates) for computing f . If f
is a field function (a function over a vector of field elements), we denote by [f]A an arithmetic circuit
for computing f .

6.1 Levin Reductions

A Levin reduction is a Karp reduction together with efficient functions to “convert witnesses from
both directions”. Traditionally, it is defined as follows:

Definition 6.2. Let L and L′ be languages with respective polynomial-time-computable polynomially-
balanced binary relations RL and RL′ . A Levin reduction from L to L′ is a triple of polynomial-
time-computable functions (f,w1,w2) over finite binary strings such that the following conditions hold
for every x ∈ {0, 1}∗:

Soundness: x ∈ L if and only if f(x) ∈ L′.

Witness Reductions:

– for every w ∈ {0, 1}∗, if (x,w) ∈ RL then (f(x),w1(x,w)) ∈ RL′; and
– for every w′ ∈ {0, 1}∗, if (f(x), w′) ∈ RL′ then (x,w2(x,w′)) ∈ RL.

We consider Levin reductions that are in certain respects more general and in other respects more
specific compared to those induced by the traditional Definition 6.2. More precisely:

• We consider languages L whose instances have the form (x, 1t, 1s), where x is a binary string
and t, s ∈ N (with |x| and 2s bot at most 2t). Loosely, the interpretation is that (x, 1t, 1s) is in
L if there is some 2t-size witness w for which

(
(x, 1t, 1s), w

)
∈ RL. We put no restriction on the

magnitude of t relative |x| (other than the aforementioned |x| ≤ 2t), and thus the relations of
the languages that we consider will not necessarily be polynomially-balanced. Intuitively, that
is because we want to capture long computations on small inputs as well.

• We only consider Levin reductions via the “identity mapping”; that is, we will only consider
reductions where the “instance map” of the reduction (i.e., f) is the identity. This restriction
will be mostly out of simplicity, rather than out of necessity (as the reductions will already
contain enough complexity).

Furthermore, we consider Levin reductions between classes of languages: a reduction from a class of
languages L to another class of languages L′ includes an efficient “parameter” function p that takes
as input (a description of) a language in L and generates (the description of) a language in L′. Our
motivation is to highlight the “succinct and uniform” nature of our reductions, across a number of
languages with similar properties.

We concretize the foregoing discussion as a template definition for the notion of Levin reduction
that we use, and we will instantiate it later for the specific cases that we consider. (See Definition 7.1
and Definition 8.1.)

19

Definition 6.3. Let L and L′ be classes of languages with polynomial-time-computable binary rela-
tions. A Levin reduction from L to L′ is a triple of polynomial-time-computable boolean functions
(p,w1,w2) such that the following conditions hold for every L ∈ L and (x, 1t, 1s) ∈ {0, 1}∗:

Syntax: p(L) ∈ L′.

Soundness: (x, 1t, 1s) ∈ L if and only if (x, 1t, 1s) ∈ p(L).

Witness Reductions:

– if w ∈ {0, 1}∗ is a witness to (x, 1t, 1s) ∈ L then w1(L, x, 12t , 1s, w) is a witness to (x, 1t, 1s) ∈ p(L).
– if w′ ∈ {0, 1}∗ is a witness to (x, 1t, 1s) ∈ p(L) then w2(L, x, 12t , 1s, w′) is a witness to (x, 1t, 1s) ∈ L.

As mentioned in Section 1.2, when using a Levin reduction in order to invoke a proof system,
both the prover and verifier need to run p; the prover needs to run w1 to transform the witness, while
w2 ensures that proof of knowledge is preserved. We will be mostly concerned in ensuring that p does
not “blow up” the constraint satisfaction problem induced by L and that w1 is as fast to compute as
possible (and, ideally, also highly parallelizable).

6.2 Routing Networks

We make use of special classes of routing networks. For us, a routing network is a graph with a
distinguished set of sources and a distinguished set of sinks, both of the same size, such that for
every permutation of sources to sinks there exists a set of node-disjoint paths that connects each
source to the corresponding sink — a property known as rearrangeability.12

Rearrangeability of Beneš networks. Beneš networks [Ben65] are a class of routing networks.
Roughly, a κ-dimensional Beneš network is a directed graph with O(κ) columns each containing 2κ

vertices where each vertex is connected to two vertices in the following column. A Beneš network
is rearrangeable; the sources are the vertices in the first column and the sinks are the vertices in
the last column. Given a permutation π over 2κ elements, a set of routing paths can be computed
in sequential time O(κ · 2κ) [Wak68, OTW71, Lei92] and in parallel time O(κ2) [NS82]. When the
given permutation π is promised to be `-local (i.e., |π(i) − i| ≤ ` for all i) then one can modify the
Beneš network in a way that it has only O(log `) columns (instead of O(κ)) and is still be able to
route the permutation [Kan05]. A special case of `-local permutations are permutations that “factor”
into several permutations over ` elements at a time; such permutations can of course be routed via
several (small) Beneš networks.

Beneš networks are closely connected to (extended) De Bruijn graphs, discussed next.
Rearrangeability of extended De Bruijn graphs. We employ (a more general version of) the
definition of extended (also, wrapped) De Bruijn graph given in [BSS08, Definition 5.4]:13

Definition 6.4. Let κ and L be two positive integers. The (κ, L) extended De Brujn graph,
denoted DB(κ, L), is a directed 2-regular graph with L layers numbered 0, . . . , L− 1, each containing
2κ vertices identified by κ-bit strings. A vertex in layer i ∈ {0, . . . , L− 1} with identifier w ∈ {0, 1}κ

12Routing networks are also known as connection networks. These are a special case of generalized connection
networks, which can implement every mapping from sources to sinks (and not just permutations). Even though
generalized connection networks are not much harder to construct than connection networks [Ofm65, Pip73, Pip77,
Tho78], we shall indeed only need connection networks.

13Equivalent definitions have appeared in the same context. For example, the graph defined in [BSGH+05, Definition
4.1] is homomorphic via the mapping (w, i) 7→ (sri(wr), i) to ours; also, the graph defined in [Spi95, Definition 4.3.2]
is homomorphic via the mapping (w, i) 7→ (wr, i) to ours.

20

has two neighbors in layer (i + 1 mod L) with identifier sr(w) and sr(w) ⊕ e1. In other words, the
edge set is induced by the following two neighbor functions:

Γ1

(
(i, w)

)
=
(

(i+ 1 mod L), sr(w)
)
, and

Γ2

(
(i, w)

)
=
(

(i+ 1 mod L), sr(w)⊕ e1

)
,

where sr denotes the cyclic “shift right” bit operation.

As stated in Section 4.1, we are interested in extended De Bruijn graphs due to their convenient
algebraic properties [PS94, BSS08, BSGH+04, BSGH+05]. Essentially, an extended De Bruijn graph
can be efficiently embedded into an affine graph (i.e., a graph whose neighbor functions are degree-1
polynomials) over an affine subspace of a finite field.

Extended De Bruijn graphs are closely related to Beneš networks in that algorithmic results for
the latter can typically be translated into algorithmic results for the former. For example, this holds
for the property of rearrangeability: namely, extended De Bruijn graphs, when “sufficiently wide”,
are rearrangeable, that is, they can route any given permutation of the leftmost vertices.

Claim 6.5. Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a permutation. There exists a set
Sπ of 2κ node-disjoint paths such that each vertex (0, w) in DB(κ, 4κ− 1) is connected to (0, π(w)).
Moreover, Sπ can be found in time and space O(κ · 2κ) or parallel time O(κ2).

Details about the claim can be found in Appendix A; for now we simply explain how the claim
follows from the material there.14

Proof. Because DB(κ, 4κ− 1) “contains three and a half” κ-dimensional De Bruijn graphs connected
in tandem (except that the first and last column are identified, or “wrapped”), we can simply follow
the optimizations discussed after Claim A.11 to obtain the desired set Sπ.

We do not know if a result for `-local permutations analogous to the one of Kannan [Kan05] (or
even to the one for permutations that factor into smaller ones) holds for extended De Bruijn graphs.
Why not oblivious routing techniques? The aforementioned routing results are of the non-
oblivious kind, which means that the set of routing paths is computed upfront with knowledge of the
permutation π. There are (deterministic or randomized) routing approaches that are oblivious, but
these are less efficient (from an algorithmic or algebraic standpoint); thus, because in our setting we
can tolerate non-oblivious solutions (which, additionally, are highly parallelizable), we are content
to rely on the aforementioned non-oblivious routing results.

For example, a sorting network is a routing network where packets are routed via local com-
parisons. While there exist sorting networks whose size is asymptotically as good as that of Beneš
networks, such constructions hide large constants and, more importantly, it is not clear how they
can be arithmetized efficiently. (For instance, Ajtai et al. [AKS83] construct a sorting network of
size O(κ · 2κ) by relying on expander graphs, which we do not know how to arithmetize as efficiently
as De Bruijn graphs.)

14While the routing properties of extended De Bruijn graphs are folklore, we have not been able to find explicit
algorithms in the literature for routing; we deduce an explicit routing algorithm over three and a half De Bruijn graphs
connected in tandem.

21

6.3 Finite Fields

We represent elements of a finite field as polynomials modulo an irreducible polynomial of the ap-
propriate degree. Specifically, to represent elements of Fq, where q = pf and p is the characteristic
of Fq: we consider any irreducible polynomial I over Fp of degree f ; I has a root x in Fq and thus
Fq = Fp(x), so that every element of Fq can be uniquely expressed as a polynomial α(x) in x over Fp
of degree less than f . See [LN97, Section 2.5] for more details. In particular, this representation will
allow us to perform field operations in time that is polylogarithmic in the field size and space that
is logarithmic in the field size. See Appendix C for more details and additional notation.

6.4 Random-Access Machines

Continuing the discussion from Section 1.1, in this section we formally introduce the notion of
random-access machines that we use in this paper. We begin with an informal discussion and and
then proceed to formal definitions.

6.4.1 Informal Discussion

At the highest level, we consider random-access machines modeling a simple reduced-instruction-set
computer with a simple load/store architecture. Informally, a random-access machine M works as
follows:

• Code: M has hardcoded in it a vector of n instructions C = (I0, . . . , In−1), called M ’s code.

• Registers: M maintains a vector r = (r0, . . . , rk−1) of k “local” registers, where each ri is a
string of w bits.

• Memory: M has random-access to memory, a vector M of 2w memory cells of w bits each.

• Tapes: M has two read-only tapes, called tape A and B; we think of tape A as the input tape
and B as the witness tape; without loss of generality, both tapes are unidirectional; M also has
a single write-only unidirectional output tape.

• Program counter: M maintains a pointer to the next instruction to be executed; this pointer is
known as the program counter, denoted by pc and initially set to 0w, and is, like other registers,
a w-bit string. (In particular, the number of instructions n is at most 2w.)

At every time step the instruction Ipc is executed; the instruction may modify registers, the program
counter, or memory as dictated by the transition function of M (which knows M ’s code). If the
program counter is not modified by the instruction, it is set to pc + 1, so that in the next time step
instruction Ipc+1 is executed. An instruction may also choose to read the next w bits from either
tape. For technical reasons, we also assume that every time the machine executes a load instruction
it executes a special “post-load” (pload) instruction in the next step with the same operands. A
special instruction denotes the end of the computation, and the machine outputs either accept or
reject. See Figure 1 for a schematic diagram.

A important matter is what kind of instructions a machine M is allowed to execute. We consider
the following instruction set:

22

pc r1 r2 rk...

pc' r1' r2' rk'...

k registers
with w bits each{program counter

with w bits

...

2w memory cells
with w bits each

memory {time step i

time step i+1

random
access

transition
function

tape
A

tape
B

...
...

Figure 1: A diagram depicting the kind of random-access machines we use.

instruction arg. 1 arg. 2 arg. 3 semantics
nop no operation (does nothing)

readA i read the next w-bit string (or #)
from tape A and put it into ri

readB i read the next w-bit string (or #)
from tape B and put it into ri

load i j rj ←M[ri]

pload i j no operation (does nothing)
store j x M[rj]← x

iseof i j if rj = #, then ri ← 1, else ri ← 0

out s print s and halt
a ∈ A i x y ri ← a(x, y) (see below)

where s ∈ {accept, reject} and each of x and y is a register, the symbol “pc”, or a w-bit constant.
As mentioned above, we assume that reading from a tape is in one direction only: every time the
machine reads the next w-bit string from (say) tape A, the pointer on tape A moves to the next
w-bit string and never moves back; when the end of the input on the tape has been reached, reading
from the tape returns the symbol #; similarly for tape B. Finally, A is any set of (Turing-complete)
binary arithmetic operations. For example, the set A may consist of the following operations:

instruction arg. 1 arg. 2 arg. 3 semantics
add i x y ri ← x+ y

sub i x y ri ← x− y
mul i x y ri ← x ∗ y
and i x y ri ← x & y

or i x y ri ← x | y
not i x ri ← ! x

cmp i x y if x < y then ri ← 1
else if x = y then ri ← 0
else if x > y then ri ← −1

jl i c if ri ≤ 0 then pc← c

jle i c if ri < 0 then pc← c

je i c if ri = 0 then pc← c

jne i c if ri 6= 0 then pc← c

jmp c pc← c

23

where in the above table c ∈ {0, . . . , n− 1} is an instruction number. Of course, the aforementioned
example is a very rich one and much fewer instructions suffice for Turing completeness; for instance,
with A having only the add, mul, and je, we can run any computation.

Finally, we are thinking of the register width w as implicitly being some function of the input size
(and thus so is the size of each memory cell, the number of addressable memory cells, etc.) but we
do not make this dependence explicit for the sake of simplicity of notation.
Measuring complexity. We do not employ the logarithmic-cost criterion but instead measure
time in terms of time steps (i.e., state transitions of the machine). As for space complexity, we count
the maximum number of memory cells used during the computation. Note that restricting memory
only to addresses between 0 and 2w− 1 comes without loss of generality because code that uses very
large addresses can be turned into code that uses smaller addresses. (See, e.g., [Rob91].)
Other architectures. As mentioned above, our notion of a random-access machine can be viewed
as a simple reduced-instruction-set computer with a simple load/store architecture. Of course, there
are other “architectures” that do not exactly fit our notion.

For example, in a one instruction set computer [Jon88, GL03], the single instruction typically has
multiple simultaneous memory accesses, while our definition only envisages a single memory access
per load or store instruction. (Such minimalist architectures are still Turing complete, and programs
are written using self-modifying code.) The techniques that we develop for handling our notion of
random-access machine can be extended to also handle architectures, e.g., having multiple memory
accesses per instruction.

Alternatively, (in a “morally equivalent way”) we can perform a “software reduction” of other
architectures to our notion of random access machine by, e.g., striping multiple memory accesses
across successive instructions. For example, if the single instruction of the computer is “subtract and
branch if less than or equal to zero” (subleq), there are three simultaneous memory accesses, two
loads and a write. More precisely, the instruction subleq a b c means M[b] := M[b] −M[a] and if
M[b] ≤ 0 go to c. We can then map the instruction subleq a b c to the three “microcode” instructions
subleq1 a, subleq2 b, and subleq3 c which all together perform what is needed by subleq a b c.

6.4.2 Formal Definitions

We now turn to formalizing the above discussion. The goal of this section is to define the bounded-
halting problem for random-access machines. We begin with the definition of a random-access ma-
chine itself.

Definition 6.6. A random-access machine (RAM) is a tuple M = 〈w, k,A,C〉, where:
• w ∈ N is the register size;

• k ∈ N is the number of registers;

• A, a set of functions a : {0, 1}w × {0, 1}w → {0, 1}w, is the arithmetic unit; and

• C = (I0, . . . , In−1), where n ∈ {1, . . . , 2w} and each Ii is an instruction, is the code.

The “local” state of a random-access machine is given by a configuration, which contains the
current program counter and the values of all the registers.

Definition 6.7. Let M = 〈w, k,A,C〉 be a random-access machine. A configuration of M is a
tuple

S =
[
pc, r0, . . . , rk−1

]
,

where Ipc is the next instruction to be executed in the code C and r0, . . . , rk−1 are the current w-bit
values of the k registers. (Note that the size of a configuration is |S| = (1 + k)w bits.)

24

Certain configurations are special in that they mark the beginning of a computation, or its ending
(and, if so, whether the computation was accepting or not).

Definition 6.8. Let M = 〈w, k,A,C〉 be a random-access machine and S = [pc, r0, . . . , rk−1] a
configuration of M .

• We say that S is initial for M if pc = 0w, and r0 = · · · = rk−1 = 0w.

(I.e., the program counter points to the first instruction and all the k w-bit registers are zero.)

• We say that S is final for M if Ipc = (out, s) for some s.

(I.e., the program counter points to an out instruction.)

• We say that a final configuration S is accepting for M if Ipc = (out, accept).

(I.e., the program counter points to an out instruction whose argument is accept.)

• We say that a final configuration S is rejecting for M if Ipc = (out, reject).

(I.e., the program counter points to an out instruction whose argument is reject.)

A sequence of configurations starting in an initial configuration and ending in an accepting
configuration is accepting.

Definition 6.9. Let M be a random-access machine, and ~S = (S0, . . . , ST−1) a sequence of config-
urations of M . We say that ~S is accepting for M if S0 is initial for M and ST−1 is accepting for
M .

If a random-access machine has inputs on either tape, we must specify what it means for a
sequence of configurations to be consistent with the two inputs. Intuitively, this simply means that,
when the machine reads from the tape, the actual values of the inputs appear in the configurations.

Definition 6.10. Let M be a random-access machine, ~S = (S0, . . . , ST−1) a sequence of configura-
tions of M , and x and w two input strings. We say that ~S is consistent with (x, w) if:

(i) ρ0 · · · ρ`−1 is a prefix of x, where ρ0 · · · ρ`−1 is the (time-ordered) concatenation of all the w-bit
strings ρi (not equal to #) read from tape A according to ~S, and

(ii) σ0 · · ·σ`−1 is a prefix of w, where σ0 · · ·σ`−1 is the (time-ordered) concatenation of all the w-bit
strings σi (not equal to #) read from tape B according to ~S.

Given a configuration S and a memory vector M, the configuration obtained by executing one
step of computation is “implied” by S.

Definition 6.11. Let M be a random-access machine, and let S and S′ be two configurations of M .

• For any memory vector M for M , we say that S implies S′ via M, denoted S M
 S′, if, by

executing the instruction Ipc, M goes from configuration S and memory M to configuration S′

(and possibly some other memory vector M′), for some settings of the two tapes.

• We say that S implies S′ (without specifying a memory vector M), denoted S S′, if there
exists a memory vector M for M such that S M

 S′.

Having defined implication from a given configuration to another one, we are now ready to define
the transition function of a random-access machine. Intuitively, the transition function verifies “code
consistency”.

25

Definition 6.12. Let M be a random-access machine. The transition function of M , denoted
δM , is the boolean function over pairs of configurations of M such that:

δM (S, S′)
def
=

0 if S S′

0 if S is final for M and S′ is initial for M
1 otherwise

.

(In Appendix B we provide and discuss a circuit for the transition function.)

We now specify under what conditions sequences of configurations are considered valid.

Definition 6.13. Let M be a random-access machine, and ~S = (S0, . . . , ST−1) a sequence of con-
figurations of M . We say that ~S is valid with M if δM (Si, Si+1 mod T) = 0 for i = 0, . . . , T − 1 and,
in addition, there exists a sequence M0, . . . ,MT−2 of memory vectors for M such that

• M0[j] = 0w for all j ∈ {0, 1}w and S0
M0 S1

M1 · · · MT−2
 ST−1, and

• for all 0 ≤ i ≤ T − 1 it holds that Mi = Mi+1 if Si+1 does not contain a store instruction and
Mi = Mi+1 except the value of the memory cell accessed by the store instruction whose value is
required to be the value of the second operand of the store instruction.

We are finally ready to introduce bounded-halting problems for random-access machines. Intu-
itively, for a given machine M , BHRAM(M) is the set of all (x, 1t, 1s) such that, for some w, (x, w)
is accepted by some computation of M within time at most 2t and space at most 2s. In fact, for
convenience, we shall require the length of the computation to be a power of 2; of course, this is
without loss of generality (and incurs in at most a multiplicative factor of 2 in the length of the
computation) as we can always pad the computation with enough nop’s.

Definition 6.14. Let M be a random-access machine. The language BHRAM(M) consists of in-
stances (x, 1t, 1s), where x is a binary string and t, s are positive integers (with |x| ≤ 2t), such that
there exists a binary string w of length at most 2t for which the following condition holds: there exists
an accepting sequence of configurations ~S = (S0, . . . , S2t−1) of M that (i) is valid for M , (ii) is
consistent with (x, w), and (iii) accesses at most 2s distinct addresses. Furthermore, we denote by
BHRAM the language of all quadruples (M, x, 1t, 1s) such that (x, 1t, 1s) ∈ BHRAM(M).

6.5 sGCP: A Generic Succinct Graph Coloring Problem

We now formalize the class of problems sGCP, which we informally introduced in Section 3. At the
highest level, sGCP is a class of graph coloring problems; each vertex in the graph has a induces a
“local constraint” over colors in the neighborhood of the vertex, and membership of an instance in the
language is determined by whether there exists an assignment of colors for every vertex in the graph,
satisfying every local constraint, that “contains” the given instance. It is for this class of problems
that we construct reductions from BHRAM, and it is from this class we reduce to sACSP (described
in Section 6.6). Formally:

Definition 6.15 (Succinct Graph Coloring). Consider the following parameters:

1. two proper functions associated with the family V in Parameter 2:

(a) a cardinality function cV : N× N→ N, and
(b) a time function tV : N× N→ N;

26

2. a family V = {Vt,s}t,s∈N such that:

(a) Vt,s is a vertex set of cardinality 2cV(t,s), and
(b) there exists a tV-time algorithm FindV such that vi = FindV(1t, 1s, i) is the i-th vertex

of Vt,s for every t, s ∈ N and i ∈ {1, . . . , 2cV(t,s)};

3. two proper functions associated with the family Γ in Parameter 4

(a) a regularity function αΓ : N× N→ N, and
(b) a time function tΓ : N× N→ N;

4. a family Γ = {~Γt,s}t,s∈N such that:

(a) ~Γt,s = (Γt,s,i : Vt,s → Vt,s)
αΓ(t,s)
i=1 is a vector of αΓ(t, s) neighbor functions, and

(b) there exists a tΓ-time algorithm FindΓ such that FindΓ(1t, 1s, i, ·) computes Γt,s,i(·) for
every t, s ∈ N and i ∈ {1, . . . , αΓ(t, s)};

5. a proper function associated with the family C in Parameter 6:

(a) a cardinality function cC : N× N→ N;

6. a family C = {Ct,s}t,s∈N such that:

(a) Ct,s = {0, 1}cC(t,s) is a finite color set;

7. two proper functions associated with the family K in Parameter 8:

(a) a size function sK : N× N→ N, and
(b) a time function tK : N× N→ N;

8. a family K = {Kt,s}t,s∈N such that:

(a) Kt,s : Vt,s × CαΓ(t)
t,s → {0, 1} is a coloring constraint, and

(b) there exists a tK-time algorithm FindK such that, for every t, s ∈ N, [Kt]
B = FindK(1t, 1s)

is a sK(t, s)-size circuit computing Kt,s;

9. one proper function associated with the family W in Parameter 10:

(a) a time function tW : N× N→ N;

10. a family W = {Wt,s}t,s∈N such that:

(a) Wt,s is a subset of Vt,s, and
(b) there exists a tW-time algorithm FindW such that vi := FindW(1t, 1s, i) is i-th vertex

in Wt,s (under some canonical ordering of Wt,s) for every t, s ∈ N and i ∈ {1, . . . , |Wt,s|};

11. one proper function associated with the family F in Parameter 12:

(a) a time function tF : N× N→ N;

12. a family F = {Ft,s}t,s∈N such that:

(a) Ft,s : {0, 1}∗ → {0, 1} is a function, and
(b) there exists a tF-time algorithm CompF such that CompF(1t, 1s, ·) computes Ft,s(·) for

every t, s ∈ N.

27

The language sGCP, with respect to a choice

parsGCP =
(

(cV, tV,V), (αΓ, tΓ,Γ), (cC,C), (sK, tK,K), (tW,W), (tF,F)
)

of the above parameters, consists of instances (x, 1t, 1s), where x is a binary input string and t, s are
positive integers (with |x|, 2s ≤ 2t), such that there exists a coloring C : Vt,s → Ct,s for which the
following two conditions hold:

(i) Satisfiability of constraints. For every vertex v ∈ Vt,s,

Kt,s

(
v,
(
C ◦ Γt,s,1

)
(v), . . . ,

(
C ◦ Γt,s,αΓ(t)

)
(v)
)

= 0 . (1)

If so, we say that the coloring C satisfies the coloring constraints induced by Kt,s.

(ii) Consistency with the input. For every i ∈ {1, . . . , |x|}, letting vi be the i-th vertex in Wt,s,

Ft,s

(
x,
(
C(vi)

)|x|
i=1

)
= 0 .

If so, we say that the coloring C is consistent with the input x.

The above definition for succinct graph coloring problems is quite a mouthful; this is because
the language itself encodes requirements ensuring that “large objects” (such as the graph topology)
can be computed using very few resources by using succinct and functional representations of such
objects (for example, efficiently constructible boolean circuits). Ultimately, these requirements will
directly affect similar requirements in the corresponding sACSP.

Remark 6.16. How is a choice of parameters parsGCP for sGCP (concisely) specified? All the
“complexity functions” from Definition 6.15 (i.e., those specifying running times, sizes of arithmetic
circuits, and so on) were chosen to be proper (see Definition 6.1), and thus each has an efficient
algorithm that computes it (which, for simplicity, we denote with the same name as the function);
moreover, every infinite family comes with an algorithm that computes the information about the
family we are interested in. Thus, a choice of parameters parsGCP can be specified as follows:

parsGCP =

(cV, tV,FindV),
(αΓ, tΓ,FindΓ),
cC,
(sK, tK,FindK),
(tW,FindW),
(tF,CompF)

.

Intuitive discussion. At high level, a choice of parameters parsGCP for sGCP identifies a collection
of infinite families of objects (one object for each t, s ∈ N). When a specific instance (x, 1t, 1s) is
considered for membership in sGCP(parsGCP), the (t, s)-th element from each of these families in the
collection is used to determine membership of the instance; candidate witnesses are colorings for the
graph Gt,s induced by the vertex set Vt,s and vector of neighbor functions ~Γt,s. Despite the long defi-
nition, these objects interact in natural ways, so we now go over the parameters from Definition 6.15
in less formal terms, explaining some of the intuition behind the design of the definition.

• Parameter 1 and Parameter 2. The parameter V = {Vt,s}t,s∈N is a family of vertex sets,
the (t, s)-th one with 2cV(t,s) vertices, that are to be colored by a coloring function (allegedly
encoding information about a computation). Each vertex set Vt,s is succinctly represented in
the sense that there is an algorithm FindV that computes the “name” of each vertex in Vt,s.

28

• Parameter 3 and Parameter 4. The parameter Γ = {~Γt,s}t,s∈N is a family of neighbor
functions, where each ~Γt,s contains αΓ(t, s) neighbor functions that provide a topology to the
vertex set Vt,s. There is an algorithm FindΓ that can compute every neighbor function.

• Parameter 5 and Parameter 6. The parameter C = {Ct,s}t,s∈N is a family of finite color
sets, the (t, s)-th one of cardinality 2cC(t,s). We assume without loss of generality that the
colors in Ct are simply binary strings of length cC(t).

• Parameter 7 and Parameter 8. The parameter K = {Kt,s}t,s∈N is a family of constraints,
where the (t, s)-th constraint is a single condition that is required to hold for every vertex in the
graph; the constraint takes as input the vertex the colors of the vertices in the neighborhood of
the vertex. Intuitively, depending on the vertex, the constraint will enforce different properties
among the colors of the neighbors. With a careful use of vertex information, even if we only
consider a single constraint enforced across the whole graph, we can express and enforce different
color constraints on the graph. To make sure that each of the constraints can be found (and
then evaluated) efficiently, the definition prescribes the existence of an algorithm FindK that
for each t, s ∈ N is able to output a small boolean circuit that computes Kt,s.

At high level, the parameters described until now could, say, encode a variety of constraints to
ensure “correct computation” (say, of Turing machine, or a random-access machine), but so far did
not encode anything about whether this correct computation had anything to do with the input x
under consideration. The remaining parameters relate the computation to the input at hand.

• Parameter 9 and Parameter 10. The parameter W = {Wt,s}t,s∈N is a family of subsets,
where the (t, s)-th subset Wt,s is a subset of the vertex set Vt,s. Each subset Wt,s identifies on
which part of Vt,s a (candidate-witness) coloring must contain information related to the input
x, which can be verified by the next parameter. As usual, we need an algorithm FindW to
ensure that accessing elements of Wt,s can be done appropriately efficiently.

• Parameter 11 and Parameter 12. The parameter F = {Ft,s}t,s∈N is a family of “instance-
consistency” functions. Intuitively, given the color of enough elements in Wt,s assigned by a
(candidate-witness) coloring for the graph, the function Ft,s, which can be computed by the
algorithm CompF, verifies that the received colors are consistent with x.

In summary, the “satisfiability of constraints” condition of the definition should be interpreted as
saying that some computation (the particulars of which are captured by the specific choices of
parameters) was performed correctly, while the other condition, “consistency with the input”, should
be interpreted as saying that this computation was performed on the instance at hand.

Remark 6.17. Our Definition 6.15 is inspired by related definitions that have appeared in [BSS08]
and [BSGH+05]. We briefly discuss here how our definition compares to the previous ones.

The definition of Ben-Sasson and Sudan [BSS08, Definition 5.6] also considers coloring problems
over graphs; however, their definition is specialized to De Bruijn graphs and (as is clear for its
compactness!) does not require succinctness because their paper does not attempt to construct
PCP verifiers that are succinct. (Also note that, in the non-succinct case, the “consistency with
the instance” requirement disappears.) The later paper of Ben-Sasson et al. [BSGH+05], which
studies PCPs with succinct verifier, does indeed give a definition (cd. [BSGH+05, Definition 4.3])
for a succinct graph coloring problem (similar to the previous one of Ben-Sasson and Sudan [BSS08,
Definition 5.6]), but again is specific to De Bruijn graphs and the parameters obtained when reducing
from bounded halting problems on Turing machines. Additionally, both of the previous definitions

29

do not account for the additional “space bound” index s. The definition of Ben-Sasson et al. is related
to the generalized coloring problem of Venkatesan and Levin [VL88].

We consider a generalization of [BSGH+05, Definition 4.3] that leaves unspecified degrees of
freedom that are crucial for “supporting” our efficient reductions.

6.6 sACSP: A Generic Succinct Algebraic Constraint Satisfaction Problem

We discuss and define sACSP, already (informally) introduced in Definition 2 in Section 2.2. As
described by Ben-Sasson et al. [BSCGT12], sACSP is a class of succinct algebraic constraint satis-
faction problems, each specified by a list of parameters, for univariate polynomials over finite field
extensions of GF(2); we can in fact interpret sACSP as a class of succinct graph-coloring problems
(cf. sGCP in Section 6.5) that must respect certain algebraic constraints.

Each particular sACSP problem simultaneously allows for the construction of PCPs with prover
and verifier running times that are essentially optimal (as shown in [BSCGT12]) and is flexible
enough to support efficient reductions from random-access machine computations, as we show in this
paper. In fact, to give ourselves more flexibility, we extend the definition presented in [BSCGT12]
so to index members of a family not only via a “time bound” T but also a “space bound” S.

Informally, a choice par of parameters of sACSP consists of the following:

• A field size function f : N×N→ N, inducing a finite field family {FT ,S}T ,S∈N := {GF(2f(T ,S))}T ,S∈N.

• A family {HT ,S}T ,S∈N, where each HT ,S is an affine subspace of FT ,S .

• A family { ~NT ,S}T ,S∈N, where each ~NT ,S is a vector of neighbor polynomials.

• A family {PT ,S}T ,S∈N, where each PT ,S is a constraint polynomial.

• A family {~IT ,S}T ,S∈N, where each ~IT ,S is a vector of affine subspaces each contained in HT ,S .

A certain algebraic relation constrains which parameter choices are valid. A reduction to sACSP
will concretely instantiate a choice of the above parameters.

A triple (x, T , S) is a member of the language sACSP(par) if it fulfills the following: there exists
a low-degree assignment polynomial A : FT ,S → FT ,S that “colors” elements of the field FT ,S such
that (1) for every element α of the subspace HT ,S , the constraint polynomial PT ,S , when given as
input the colors in the “ ~NT ,S-induced neighborhood” of α, is satisfied; and (2) the colors of elements
in the (log |x|)-th affine subspace in ~IT ,S are consistent with x.

Crucially, for each of the families in par, the (T , S)-th object must be able to be “understood”
in time, say, polylog(T) (e.g., generating an element in HT ,S , generating an arithmetic circuit for
each polynomial in ~NT ,S , etc.); this is the requirement of succinctness of the problem. Additional
properties that are essential for us to construct efficient reductions include, for example, the fact
that HT ,S is an affine subspace (so that one may leverage the computational properties of linearized
polynomials [LN97, Section 2.5]).

From the perspective of this paper, what is important is that we have a lot of freedom in choosing
what is (and how to use) the subspace HT ,S , what exactly are the affine functions in ~NT ,S (so that
we may induce a variety of topologies for a corresponding “affine graph” over the field), what are
the properties that the constraint polynomial PT ,S verifies, and so on. Quantitatively, our goal is to
ensure that f grows as slow as possible.

In the formal discussions, it will in fact be more convenient to index the above families by t and
s, where the (t, s)-th elements will correspond to problems of “time” T ≈ 2t and “space” S ≈ 2s.

Definition 6.18 (Succinct Algebraic Constraint Satisfaction). Consider the following parameters:

30

1. a field size function f : N × N → N, inducing a family of finite fields
{
Ft,s
}
t,s∈N where Ft,s =

F2(x) and x is the root of It,s, which is the irreducible polynomial of degree f(t, s) over F2

output by FindIrrPoly(1f(t,s));

2. two proper functions associated with the family H in Parameter 3:

(a) a dimension function mH : N× N→ N, and
(b) a time function tH : N× N→ N.

3. a family H = {Ht,s}t,s∈N such that:

(a) Ht,s is an mH(t, s)-dimensional affine subspace of Ft,s specified by a basis BHt,s and an
offset OHt,s for all t, s ∈ N, and

(b) there exists a tH-time algorithm FindH such that (BHt,s ,OHt,s) = FindH(1t, 1s) for all
t, s ∈ N;

4. three proper functions associated with the family N in Parameter 5:

(a) a neighborhood size function cN : N× N→ N,
(b) a time function tN : N× N→ N, and
(c) a size function sN : N× N→ N;

5. a family N = { ~Nt,s}t,s∈N such that:

(a) ~Nt,s = (Nt,s,i : Ft,s → Ft,s)
cN(t,s)
i=1 is a vector of cN(t, s) neighbor polynomials over Ft,s, and

(b) there exists a tN-time algorithm FindN such that [Nt,s,i]
A = FindN(1t, 1s, i) is an sN-size

Ft,s-arithmetic circuit computing Nt,s,i for all t, s ∈ N and i ∈ {1, . . . , cN(t, s)};

6. two proper functions associated with the family P in Parameter 7:

(a) a time function tP : N× N→ N, and
(b) a size function sP : N× N→ N;

7. a family P = {Pt,s}t,s∈N such that:

(a) Pt,s : F1+cN(t,s)
t,s → Ft,s is a constraint polynomial, and

(b) there exists a tP-time algorithm FindP such that [Pt,s]
A = FindP(1t, 1s) is a sP-size

Ft,s-arithmetic circuit computing Pt,s for all t, s ∈ N;

8. a proper function associated with the family I in Parameter 9:

(a) a time function tI : N× N→ N.

9. a family I = {~It,s}t,s∈N such that:

(a) ~It,s = (It,s,m)tm=1 is a vector of affine subspaces each contained in Ht,s specified by a basis
BIt,s,m of m elements and an offset OIt,s,m for all t, s ∈ N, and

(b) there exists a tI-time algorithm FindI such that (BIt,s,m ,OIt,s,m) = FindI(1t, 1s, 1m) for
all t, s ∈ N and m ∈ {1, . . . , t}.

The following algebraic constraint must hold:

∀ t, s ∈ N , deg
(
Pt,s

(
x, x(2mH(t,s)−1)·deg(Nt,s,1), . . . , x(2mH(t,s)−1)·deg(Nt,s,cN(t,s))

))
≤ 2f(t,s)−2 . (2)

The language sACSP, with respect to a choice parsACSP

parsACSP =
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)

31

of the above parameters, consists of instances (x, 1t, 1s), where x is a binary input string and t, s ∈ N
with |x| ∈ {2, . . . , 2t}, such that there exists an assignment polynomial A : Ft,s → Ft,s of degree less
than 2mH(t,s) for which the following two conditions hold:

(i) Satisfiability of constraints. For every element α(x) ∈ Ht,s,

Pt,s

(
α(x),

(
A ◦Nt,s,1

)
(α(x)), . . . ,

(
A ◦Nt,s,cN(t,s)

)
(α(x))

)
= 0Ft,s .

If so, we say that the assignment polynomial A satisfies the constraint polynomial Pt,s.

(ii) Consistency with the input. Letting αi(x) be the i-th element in It,s,log |x| for every index
i ∈ {1, . . . , |x|},

x = bit
(
A(α1(x))

)
· · · bit

(
A(α|x|(x))

)
,

where bit : Ft,s → {0, 1,⊥} maps 0Ft,s to 0, 1Ft,s to 1, and anything else to ⊥. If so, we say
that the assignment polynomial A is consistent with the input x.

Similarly to the definition of sGCP (cf. Definition 6.15), the above definition for (univariate)
succinct algebraic constraint satisfaction problems is quite a mouthful; again, this is because the
language itself encodes requirements ensuring that “large objects” (in this case large subspaces of
a large finite field, high-degree polynomials, and so on) can be computed using very few resources
by using succinct and functional representations of such objects (for example, efficiently computable
bases and offsets, efficiently constructible small arithmetic circuits, and so on). Ultimately, these
requirements will enable the existence of a PCP system for sACSP with prover and verifier running
times that are essentially optimal. (See [BSCGT12] for details.)

Remark 6.19. How is a choice of parameters parsACSP for sACSP (concisely) specified? All the
“complexity functions” from Definition 6.18 (i.e., those specifying running times, sizes of arithmetic
circuits, and so on) were chosen to be proper (see Definition 6.1), and thus each has an efficient
algorithm that computes it (which, for simplicity, we denote with the same name as the function);
moreover, every infinite family comes with an algorithm that computes the information about the
family we are interested in. Thus, a choice of parameters parsACSP can be specified as follows:

parsACSP =

f,
(mH, tH,FindH),
(cN, tN, sN,FindN),
(tP, sP,FindP),
(tI,FindI)

.

An intuitive “meaning” for each parameter. At high level, a choice of parameters parsACSP

for sACSP identifies a collection of infinite families of objects (one object for each t, s ∈ N). When
an instance (x, 1t, 1s) is considered for membership in sACSP(parsACSP), the (t, s)-th element from
each of these families in the collection is used to determine membership of the instance; candidate
witnesses are low-degree polynomials over the field Ft,s. Despite the long definition, these objects
interact in natural ways, so we now go over the parameters from Definition 6.18 in less formal terms,
explaining some of the intuition behind the design of the definition.

• Parameter 1. The parameter f governs the “growth rate” of the size of the finite fields in the
family {Ft,s}t,s∈N; reductions from different languages to sACSP may yield different choices of
f , and, roughly, the slower-growing the function f is the more efficient is the reduction.

32

• Parameter 2 and Parameter 3. The parameter H = {Ht,s}t,s∈N is a family of affine sub-
spaces, where each Ht,s is contained in the corresponding field Ft,s. A “succinct” representation
of this family is provided by the algorithm FindH, which, on input (1t, 1s), generates a basis
and offset for Ht,s. (Moreover, FindH runs within the specified time complexity.) Intuitively,
the subset Ht,s is where “interesting things will happen”, and the only reason for Ht,s not be-
ing equal to the whole field Ft,s is that we need some “room” for some technical but essential
conditions to go through (cf. Equation 2); for example, such conditions allow unique decoding
of Reed-Solomon codes for certain distance ranges (see [BSCGT12] for more details).

• Parameter 4 and Parameter 5. The parameter N = { ~Nt,s}t,s∈N is a family of vectors
of polynomials, where each vector ~Nt,s induces an “low-degree neighborhood” of size cN(t, s)
for each element in the finite field Ft,s. Later, a certain condition will impose a single “local”
constraint on the values of (candidate-witness) low-degree polynomials at every such affine
neighborhood that can be found in Ht,s. Again, the (description of) affine functions that define
each affine low-degree neighborhoods can be computed via an algorithm FindN (which runs
with the prescribed time complexity). The restriction to affine neighborhoods is again technical
but essential (cf. Equation 2).

• Parameter 6 and Parameter 7. The parameter P = {Pt,s}t,s∈N is a family of constraint
polynomials, where each polynomial determines which values of low-degree polynomials are
valid for a given neighborhood (specifically, those values that make it zero). Each polynomial
Pt,s itself may not have low-degree (and usually it will not), nor may be sparse, though it
will be ensured that it can be computed via a small arithmetic circuit that can be generated
efficiently, via the algorithm FindP.

At high level, the parameters described until now could, say, encode a variety of constraints that
ensure “correct computation” (say, of a Turing machine, or a random-access machine), but so far did
not encode anything about whether this correct computation had anything to do with the input x
under consideration. The remaining parameters relate the computation to the input at hand.

• Parameter 8 and Parameter 9. The parameter I = {~It,s}t,s∈N is a family of vectors of
affine subspaces where each subspace in ~It,s is contained in the corresponding affine subspace
Ht,s. The appropriate subspace in ~It,s identifies on which “part” of Ht,s a (candidate-witness)
low-degree polynomial must contain information related to the input x; specifically, when such
information is concatenated, one should obtain x. As usual, we need an algorithm FindI to
ensure that generating succinct representations of subspaces in ~It,s can be done appropriately
efficiently, and this is the case as the definition requires that a basis and offset for it is easy to
find.

In summary, the “satisfiability of constraints” condition of the definition should be interpreted as
saying that some computation (the particulars of which are captured by the specific choices of
parameters) was performed correctly, while the other condition, “consistency with the input”, should
be interpreted as saying that this computation was performed on the input at hand.

33

7 From BHRAM To sGCP

In Section 4 we discussed a high-level strategy for proving Theorem 2 in two steps (respectively
discussed in Section 4.1 and Section 4.2). The goal of this section is to prove in detail the first step,
in the special case s = t. In this special case, we can directly use De Bruijn graphs instead of relying
on Beneš networks.

Given the “template” Definition 6.3, we give here the following specialized definition:

Definition 7.1. Fix a class of random-access machines PRAM. We say that a pair of polynomial-time-
computable functions (Fp, Fw) is a Levin reduction from BHRAM to sGCP with respect to PRAM

if the following three conditions are satisfied for every choice of random-access machine M ∈ PRAM:

1. parsGCP := Fp(M) is a choice of parameters for sGCP.

2. For every instance (x, 1t) ∈ {0, 1}∗, (x, 1t) ∈ BHRAM(M) if and only if (x, 1t) ∈ sGCP(parsGCP).

3. For every instance (x, 1t) ∈ {0, 1}∗, if (w, ~S) is a witness to “(x, 1t) ∈ BHRAM(M)” then the
coloring C := Fw(M, 12t , (w, ~S)) is a witness to “(x, 1t) ∈ sGCP(parsGCP)”.

The two functions Fp and Fw are respectively called as the “parameter reduction” and the “witness
reduction”.

High-level idea. Our goal is to construct a Levin reduction from bounded-halting problems on
random-access machines to succinct GCPs. Our strategy is to single out the constraints that need to
be met in order for a computation of a random-access machine to be valid, accepting, and consistent
with the given input; these constraints fall into two categories: constraints to ensure code consistency
(i.e., the transition function of the machine correctly went from the current state to the next one)
and constraints to ensure memory consistency (i.e., each memory load returns the last value that
was written there). We express these constraints as edge constraints in a graph, which we then
“structure” by using routing techniques. The resulting coloring problem can be then formalized as a
succinct GCP problem.
Our plan, step by step. We construct the Levin reduction in four steps:

• Step 1 (Section 7.1). For a given random-access machine M , sequence of configurations
~S, and input strings (x, w), we show that the problem of whether ~S is accepting and valid
for M and is consistent with (x, w) (recall Definition 6.9, Definition 6.13, and Definition 6.10)
can be equivalently stated as whether a corresponding “computation graph” G~SM that is valid,
accepting, and consistent with (x, w) exists or not.

Informally, the vertices of a computation graph G~SM are the (time-stamped) configurations in
~S; the validity of G~SM can be determined by verifying, at every edge of the graph, a local
constraint (which can be generated easily from M) that only takes as input the configuration
of each of the two vertices of the edge.

However, different sequences of configurations for the same M determine different sets of edges
allowable in a valid computation graph (if one exists).

• Step 2 (Section 7.2). For a given random-access machine M , sequence of configurations ~S,
and input strings (x, w), we show that the problem of determining whether a computation graph
G
~S
M that is valid, accepting, and consistent with (x, w) exists or not can be equivalently stated

as whether a corresponding “computation routing” R~SM that is valid, accepting, and consistent
with (x, w) exists or not.

34

Informally, the validity of R~SM can be determined by verifying, at every vertex of a fixed routing
network, a local constraint (which can be generated easily from M) that only takes as input
information available at the vertex and its neighbors.

Intuitively, we do so by leveraging the rearrangeability of De Bruijn graphs in order to “route”
vertices of a computation graph G~SM .

• Step 3 (Section 7.3). For a given random-access machine M and input string w, we show
how the problem of whether there exists a second input string w, a sequence of configurations
~S, and a computation routing R

~S
M (for M with respect to ~S) that is valid, accepting, and

consistent with (x, w) exists or not can be formalized as a problem of deciding whether (x, 1t)
is in sGCP(parsGCP), for an appropriate choice of parsGCP depending on M .

Informally, we do so by noting that figuring out which constraint to apply at a given vertex is
a simple operation that can easily be made to depend on a properly abstracted “vertex type”;
we can then “bunch up” all the requisite constraints into a universal constraint that needs to
be enforced at every vertex of the graph.

• Step 4 (Section 7.4). We conclude by writing down explicitly the two functions Fp and Fw

of the Levin reduction and explaining why they are correct.

We now proceed to describe each of the four steps in detail. Throughout, it will be useful to have
the definitions from Section 6.4 in mind.

7.1 Step 1: From RAMs to computation graphs

We begin by defining what it means for a timestamp-configuration pair (τ, S) to “precede in memory”
another timestamp-configuration pair (τ ′, S′). Intuitively, this will be so when both configurations
correspond to memory operations, and the second configuration has a memory dependency on the
first one. (The definition is in fact slightly more complicated, because we shall eventually consider
memory accesses that are somewhat canonical; see Definition 7.7.)

Definition 7.2. LetM be a random-access machine, S = [pc, r0, . . . , rk−1] and S′ = [pc′, r′0, . . . , r
′
k−1]

two configurations of M , and τ and τ ′ non-negative integers. We say that (τ, S) precedes (τ ′, S′)

in memory, denoted (τ, S)
m≺ (τ ′, S′), if pc and pc′ each point to a store or pload instruction and at

least one of the following three conditions is satisfied: letting rj and r′j′ be the two memory addresses
respectively accessed and i and i′ the two registers respectively read/written,

(i) S and S′ correspond to accesses to the same memory address (i.e., τ < τ ′ and rj = r′j′) and
the accesses are consistent (i.e., if both S′ and S′ are pload instructions, then the value loaded
by both S and S′ is the same; if S is a store instruction and S′ is a pload instruction, then the
value loaded in S′ is the same as the value stored in S).

(ii) S and S′ correspond to accesses to different memory addresses (i.e., rj < r′j′); moreover, if pc′

points to a pload instruction then the loaded value is 0 (i.e., ri′ = 0).

(iii) S and S′ correspond to accesses to memory where the second configuration is the first in the
computation and thus it must write to the first memory cell (i.e., τ ′ = 0, r′j′ = 0 and the
instruction pointed by pc′ is a store instruction).

Next, for a random-access machine M and sequence of configurations ~S, we define its “compu-
tation graph” G~SM . Intuitively, it is a graph where the edges consist of all the configurations, and

35

the edges consist of “time edges” (connecting successive configurations in time) and “memory edges”
(allegedly, connecting configurations that are successive “in memory”).

Definition 7.3. Let M be a random-access machine and ~S = (S0, . . . , ST−1) a sequence of configu-
rations for M . A computation graph for M with respect to ~S is a triple G~SM = (V,Et, Em) such
that (V,Et ∪ Em) is a graph satisfying the following two conditions:

(i) the set of vertices V is equal to
{

(τ, Sτ)
}
τ∈{0,...,T−1}; and

(ii) the set of edges Et is equal to {((τ, Sτ), (τ + 1 mod T , Sτ+1 mod T))}τ∈{0,...,T−1}.

Intuitively, a computation graph G~SM is valid if its time edges respect the transition function and
its memory edges are successive “in memory”; it is accepting if ~S is also, and it is consistent with the
input strings if ~S is also.

Definition 7.4. LetM be a random-access machine, ~S = (S0, . . . , ST−1) a sequence of configurations
for M , (x, w) two input strings, and G~SM a computation graph for M with respect to ~S.

• We say that G~SM is accepting if ~S is accepting for M . (Recall Definition 6.9.)

• We say that G~SM is consistent with (x, w) if ~S is consistent with (x, w). (Recall Definition 6.10.)

• We say that G~SM is valid if it satisfies the following conditions:

(i) For every edge ((τ, Sτ), (τ + 1 mod T , Sτ+1 mod T)) ∈ Et, Sτ Sτ+1 mod T . (Recall Defi-
nition 6.11.)

(ii) For every edge ((τ, S), (τ ′, S′)) ∈ Em, (τ ′, S′)
m≺ (τ, S). (Recall Definition 7.2.)

(iii) For every vertex (τ, Sτ) such that the instruction in Sτ is a pload or a store instruction,
the in-degree and out-degree of (τ, Sτ) in Em is equal to 1.

We show that in a valid computation graph G
~S
M every vertex whose configuration points to a

store instruction or a pload instruction can be reached and can reach the “initial” vertex (0, S0).

Lemma 7.5. Let M be a random-access machine, ~S = (S0, . . . , ST−1) a sequence of configurations
for M , and G~SM a computation graph for M with respect to ~S. Suppose that G~SM is valid. Then, for
any (τ, S) ∈ V such that pc in S points to a store instruction or a pload,

(i) there exists a path in Em from (τ, S) to (0, S0) and

(ii) there exists a path in Em from (0, S0) to (τ, S).

Proof. We only prove (i); a similar argument can be made to prove (ii).
Let (τ, S) and (τ ′, S′) be vertices in V such that both S and S′ point to a pload or a store

instruction. Let S = [pc, r0, . . . , rk−1] and S′ = [pc′, r′0, . . . , r
′
k−1], and let rj and r′j′ be the two

memory addresses respectively accessed and i and i′ the two registers respectively read/written by
the two instructions pointed to by pc and pc′.

For the purpose of this proof, we write S′ ≺ S if either “τ ′ < τ and r′j′ ≤ rj” or “r′j′ < rj”. Let
X be the set of those Sτ in ~S pointing to a pload or a store instruction.

Note that the relation ≺ is well-founded with respect to X.15 Assume by way of contradiction
that this is not the case, i.e., that there exists (k, S̃) ∈ V such that S̃ contains a pload or a store

15Recall that a binary relation is well-founded with respect to a set X if every non-empty subset of X has a minimal
element with respect to the relation.

36

instruction and there is no path from (k, S̃) to (0, S0) using only Em edges. Let P be the set of
all vertices (k′, S̃

′
) for which there exists a path from (k, S̃) to (k′, S̃

′
) using only edges in Em. Let

(k′, S̃
′
) be a minimal element of P . Since (0, S0) 6∈ P , we have that (k′, S̃

′
) 6= (0, S0). By Item (iii) of

Definition 7.4 there exists (k′′, S̃
′′
) such that ((k′, S̃

′
), (k′′, S̃

′′
)) ∈ Em. By Item (ii) of Definition 7.4

we obtain that (k′′, S̃
′′
)

m≺ (k′, S̃
′
) and therefore, since (k′, S̃

′
) 6= (0, S0), we have that S̃

′′ ≺ S̃ as
defined above.

To complete the proof, we distinguish two cases:

• Case 1: (k′′, S̃
′′
) ∈ P . Since S̃

′′ ≺ S̃
′
, we have reached a contradiction to the fact that (k′, S̃

′
)

is a minimal element of P .

• Case 2: (k′′, S̃
′′
) 6∈ P . Since ((k′, S̃

′
), (k′′, S̃

′′
)) ∈ Em and since (k′, S̃

′
) ∈ P , we conclude that

there exists a path from (k, S̃) to (k′′, S̃
′′
) , which is a contradiction to (k′′, S̃

′′
) not being in P .

We can now use the previous lemma to show that in a valid computation graph G~SM there is a
single cycle passing through all the vertices whose configurations point to a store instruction or a
pload instruction.

Lemma 7.6. Let M be a random-access machine, ~S = (S0, . . . , ST−1) a sequence of configurations
for M , and G~SM a computation graph for M with respect to ~S. Suppose that G~SM is valid. Then there
exists a cycle K in G

~S
M , using only edges in Em, that goes through (0, S0) and contains all those

(τ, S) for which the program counter in S points to a pload or a store instruction.

Proof. By Lemma 7.5, since G~SM is valid, we know that every (τ, S) for which pc in S points to
a pload or a store instruction appears on some cycle Kτ that goes through (0, S0) and (τ, S). By
definition of a computation graph, (0, S0) has only in degree and out degree equal to 1 in Em. Thus,
only one Em cycle can go through (0, S0) and therefore there must exist a single cycle K such that
K = Kτ for all τ .

We now focus only on those random-access machines that satisfy the very minor requirement of
writing to the first memory cell in the first computation step and have a pload instruction after every
load instruction. (which we can certainly assume without loss of generality).

Definition 7.7. Let M be a random-access machine. We say that M is memory-well-behaved if
M always writes to first memory cell in the first step and after every load instruction M performs
a pload instruction with the same operands. In addition, we require that the two operands of a load
instruction will be always different (i.e. we forbid load ri, ri commands for all possible i).

We finally have the tools to prove that a computation graph G~SM is valid (as well as accepting,
and consistent with input strings x and w) if and only if ~S is valid for M (as well as accepting, and
consistent with input strings x and w), as long as M is memory-well behaved.

Claim 7.8. LetM be a memory-well-behaved random-access machine, ~S = (S0, . . . , ST−1) a sequence
of configurations for M , and (x, w) two input strings. Then ~S is valid and accepting for M and
consistent with (x, w) if and only if there exists a computation graph G~SM for M with respect to ~S that
is valid, accepting and consistent with (x, w).

37

Proof. We prove in (1) one direction and in (2) the other direction.

(1) Assume that ~S is valid and accepting forM and consistent with (x, w). Let G~SM = (V,Et, Em)
be the computation graph where we construct Em as follows. For every node (τ, S) ∈ V such that
the program counter in S points to a store instruction or a pload instruction:

• If S is the first configuration accessing a memory cell a1 such that τ 6= 0, let (τ ′, S′) be the last
configuration accessing a memory cell a2 < a1 such that all the cells between a2 and a1 are not
accessed in ~S, and add the edge ((τ, S), (τ ′, S′)) to Em.

• If τ = 0, let (τ ′, S′) be the last configuration in ~S containing a store or a pload instruction, and
add the edge ((τ, S), (τ ′, S′)) to Em.

• If S is not the first configuration accessing a memory cell a, let (τ ′, S′) with τ ′ < τ be another
configuration accessing a such that all configurations between S′ and S in ~S do not access a,
and add the edge ((τ, S), (τ ′, S′)) to Em.

We now argue that G~SM is valid, accepting and consistent with (x, w). Indeed, since G~SM is a compu-
tation graph for M with respect to ~S by the first two items of Definition 7.4 we obtain that G~SM is
accepting and consistent with (x, w). Regarding the valid requirement, first, notice that since G~SM is a
computation graph, it immediately satisfies the first requirement of the valid section of Definition 7.4.
Next, if ((τ, S), (τ ′, S′)) ∈ Em then (τ ′, S′) precedes (τ, S) in memory. In addition, since the cases
above do not overlap and each configuration S that contains a store or a pload instruction has a case
corresponding to it, we obtain that the degree in Em of each node (τ, S) such that S contains a store
instruction or a pload instruction is 1. This fulfills the last two requirements of the valid section of
Definition 7.4.

(2) Conversely, assume that G~SM is valid, accepting and consistent with (x, w). By the first two
sections of Definition 7.4 we obtain that ~S is accepting and consistent with (x, w). By definition of
Et, we have that, for every 0 ≤ τ ≤ T , Sτ Sτ+1 mod T . Thus, the only thing that is left to prove is
that the memory of the random-access machine behaves as defined in the code of the machine (i.e.,
that every load instruction indeed receives the value that was stored in that memory cell at the last
store to it).

Assume by way of contradiction that there exists a configuration containing a load instruction in
~S such that the value received by this load in not the last value stored in that cell by the previous
store or not 0 (if this is the first load that accesses that cell). Let Sτ be the first such configuration.
By Lemma 7.6 there exists a cycle K through (0, S0) in G~SM such that K contains only edges from
Em and every pload or store instruction in ~S is present of this cycle.

Furthermore, K is the only Em cycle in G~SM . Let (r, Sr) be the vertex following (τ + 1, Sτ+1) in
K, since the out degree of (τ, Sτ) in Em is 1, (r, Sr) is the only vertex that has an Em edge from
(τ, Sτ). Finally, we distinguish between several cases, according to (r, Sr):

• If (r, Sr) contains a store instruction for the same cell that (τ+1, Sτ+1) accesses, since the value
loaded in (τ, Sτ) is not the value stored in (r, Sr), we obtain that the edge ((τ+1, Sτ+1), (r, Sr))
is not memory ordered which is a contradiction to the first part of Definition 7.2.

• If (r− 1, Sr−1) contains a load instruction for the same cell that (τ, Sτ) accesses and the value
loaded in (τ, Sτ) is not the value loaded in (r − 1, Sr−1), then the edge ((τ + 1, Sτ+1), (r, Sr))
is not memory ordered which is a contradiction to the first part of Definition 7.2.

38

• If (r, Sr) contains a store or pload instruction that accesses a different cell than (τ, Sτ) accesses,
since the value loaded in (τ, Sτ) is not 0 we obtain that the the edge ((τ + 1, Sτ+1), (r, Sr))
is not memory ordered. This is a contradiction to the second or third part of Definition 7.2
(based on whether r = T or not).

Witness reduction. Note that not only does Claim 7.8 tell us an equivalence between the two
decision problems, but its proof tells us how deduce a “witness” too. Specifically, given M , ~S, and
(x, w), we can construct the graph G

~S
M by deciding which edges should go in Em by following the

three bullet points in part (1) of the proof. (As for the reverse direction, part (2) of the proof gives
us that, but we are not interested in “going back”.)

7.2 Step 2: From computation graphs to (double) De Bruijn graphs

Recall that extended De Bruijn graphs (see Definition 6.4), when “sufficiently wide”, are rearrange-
able (see Claim 6.5). At high level, we wish to leverage the rearrangeability property De Bruijn
graphs to ensure that the edges of a computation graph do not depend on the particular sequence
of configurations under consideration.

Looking back at Definition 7.4, we note that the two sets of edges Et and Em of a computation
graph are “treated differently” in the sense that exactly which edges are allowed in each of those sets
in a valid computation graph is different. More precisely, the edges in Et (i.e., the “time edges”)
induce a permutation on the vertices consisting of a configuration being mapped to the successive
configuration in time; the edges in Em (i.e., the “memory edges”) induce a permutation on the vertices
consisting of a configuration being mapped to the successive configuration in memory (according to
Definition 7.2).

We shall route each of the two permutations with an extended De Bruijn graph.
We thus begin by defining a “double” extended De Bruijn graph, which is simply a graph with

two extended De Bruijn graphs side by side, connected at the 0-th column.16

Definition 7.9. Let κ and L be two positive integers. The (κ, L) double extended De Bruijn
graph, denoted DDB(κ, L), is a 3-regular directed graph consisting of the Cartesian graph product
of the directed two-cycle and DB(κ, L). In other words, the vertex set V of DDB(κ, L) consists of
vertices v = (b, i, w), where b ∈ {0, 1}, i ∈ {0, . . . , L − 1}, and w ∈ {0, 1}κ, and the edge set E is
induced by the following three neighbor functions:

• Γ1

(
(b, i, w)

)
= (b, i+ 1 mod L, sr(w)), i.e., one kind of De Bruijn edges;

• Γ2

(
(b, i, w)

)
= (b, i+ 1 mod L, sr(w)⊕ e1), i.e., the other kind of De Bruijn edges; and

• Γ3

(
(b, i, w)

)
= (b ⊕ 1, i, w), i.e., edges between corresponding vertices of the two De Bruijn

graphs.
16We note here that one of the two permutations to be routed is always “nice”: namely the permutation induced

by the “time edges” Et is always the “+1 mod T ” permutation that, because of its strong locality, does not need an
entire permutation network to be routed. (In fact, we could even avoid routing it by adding “fixed” +1 mod T edges
in the first column of the “memory edge” De Bruijn graph, without bringing in another De Bruijn graph.) However,
we still route both permutations, each on a De Bruijn graph, because later on, during arithmetization, we will need a
“well-structured” graph.

39

Remark 7.10. A (κ, L) double extended De Bruijn graph is simply two (κ, L) extended De Bruijn
graphs “side by side”, connected with bi-directional edges at corresponding vertices. (Compare with
Definition 6.4, where single De Bruijn graphs are defined.) While the only edges between the two
graphs that we will need are the edges between the two 0-th columns, for convenience we still define
edges between the two graphs at every node, in order to ensure that the graph is 3-regular.

Given t ∈ N, let Gt be the graph DDB(κ, L) where κ = t and L = 4t − 1, i.e., the (t, 4t − 1)
double extended De Bruijn graph. By Claim 6.5 we can route on Gt any two permutations of 2t

elements.
We now define the analogue of a computation graph (Definition 7.3) for double extended De

Bruijn graphs, which we call a “computation routing”; intuitively, it is a coloring R~SM of the graph Gt
such that the 0-th columns of both extended De Bruijn graphs contain the sequence of configurations
~S (whose length we now take without loss of generality to be a power of 2) and other columns may
contain any configuration.

Definition 7.11. Let M be a random-access machine and ~S = (S0, . . . , S2t−1) a sequence of config-
urations for M . We say that a coloring R~SM of Gt is a computation routing for M with respect
to ~S if, for every b ∈ {0, 1}, i ∈ {0, · · · , L− 1}, and w ∈ {0, 1}κ it holds that

(s, τ, S) = R
~S
M

(
(b, i, w)

)
∈ {0, 1} × {0, 1}κ × S

where S is the set of all possible configurations of M .

Intuitively, the bit s denotes whether at the given node the routing of the packet, consisting of a
“timestamp” τ and configuration S, is done by forwarding the packet “straight ahead” or “diagonally”.

Analogously to the notion of a valid computation graph (Definition 7.4), we now define a valid
computation routing; intuitively, we need to ensure that, in the columns other than the 0-th one,
routing constraints are respected, and that between the last and 0-th columns the appropriate code
and memory consistency checks are performed (as well as ensuring that the two 0-th columns are
consistent with each other).

Definition 7.12. Let M be a random-access machine, ~S = (S0, . . . , S2t−1) a sequence of configura-
tions for M , (x, w) two input strings, and R~SM a computation routing for M with respect to ~S.

• We say that R~SM is accepting if ~S is accepting. (Recall Definition 6.9.)

• We say that R~SM is consistent with (x, w) if ~S is consistent with (x, w). (Recall Definition 6.10.)

• We say that R~SM is valid if it satisfies the following conditions:

(i) The routing “packets” are initialized correctly. For every b ∈ {0, 1} and w ∈ {0, 1}κ, it
holds that (s, w, Sw) = R

~S
M ((b, 0, w)) for some s and one of the following conditions holds:

– (R
~S
M ◦ Γ1)((b, 0, w)) = (1, w, Sw) and

(
(R

~S
M ◦ Γ2)((b, 0, w))

)
0

= 1 or,

– (R
~S
M ◦ Γ2)((b, 0, w)) = (0, w, Sw) and

(
(R

~S
M ◦ Γ1)((b, 0, w))

)
0

= 0 .

(ii) The routing constraints are respected. For every b ∈ {0, 1}, i ∈ {1, . . . , L − 2}, and
w ∈ {0, 1}κ, letting (s′, τ ′, S) = R

~S
M ((b, i, w)), one of the following conditions holds:

– (R
~S
M ◦ Γ1)((b, i, w)) = (1, τ ′, S) and

(
(R

~S
M ◦ Γ2)((b, i, w))

)
0

= 1 or,

40

– (R
~S
M ◦ Γ2)((b, i, w)) = (0, τ ′, S) and

(
(R

~S
M ◦ Γ1)((b, i, w))

)
0

= 0 .

(iii) Code consistency is maintained. For every w ∈ {0, 1}κ, letting (s′, τ ′, S) = R
~S
M ((0, L −

1, w)), one of the following holds:

– (R
~S
M ◦ Γ1)((0, L − 1, w)) = (1, τ ′ + 1 mod 2t, S′) and

(
(R

~S
M ◦ Γ2)((0, L − 1, w))

)
0

=

1 and S S′ or,

– (R
~S
M ◦ Γ2)((0, L − 1, w)) = (0, τ ′ + 1 mod 2t, S′) and

(
(R

~S
M ◦ Γ1)((0, L − 1, w))

)
0

=

0 and S S′.

(iv) Memory consistency is maintained. For every w ∈ {0, 1}κ, letting (s′, τ ′, S) = R
~S
M ((1, L−

1, w)), one of the following holds:

– (R
~S
M ◦ Γ1)((1, L − 1, w)) = (1, τ ′′, S′) and

(
(R

~S
M ◦ Γ2)((1, L − 1, w))

)
0

= 1 and if

both S and S′ contain pload or store instructions we require that (τ ′, S)
m≺ (τ ′′, S′) and

otherwise we require that (τ ′′ = τ ′ ∧ S′ = S), or

– (R
~S
M ◦ Γ2)((1, L − 1, w)) = (0, τ ′′, S′) and

(
(R

~S
M ◦ Γ1)((0, L − 1, w))

)
0

= 0 and if

both S and S′ contain pload or store instructions we require that (τ ′, S)
m≺ (τ ′′, S′) and

otherwise we require that (τ ′′ = τ ′ ∧ S′ = S).
(v) Column-0 consistency is maintained. For any w ∈ {0, 1}κ it holds that

(R
~S
M ◦ Γ3)((1, 0, w)) = (s, w, Sw) and (R

~S
M ◦ Γ3)((0, 0, w)) = (s′, w, Sw)

for some s, s′ ∈ {0, 1}.

It is easy to see that any two routing on Gt of the same packets of the form {(w, Sw)}w∈{0,1}κ can
be viewed as a computation routing R~SM satisfying Item (i), Item (ii), and Item (v) of Definition 7.12.

We now formally establish the connection between computation graphs and computation routings.

Claim 7.13. Let M be a random-access machine and let ~S = (S0, . . . , S2t−1) a sequence of configu-
rations for M , and (x, w) two input strings. Then there exists a computation graph G~SM for M with
respect to ~S that is valid, accepting, and consistent with (x, w) if and only if there exists a computation
routing R~SM for M with respect to ~S that is valid, accepting, and consistent with (x, w).

Proof. We prove in (1) one direction and in (2) the other direction.

(1) Assume that G~SM is a computation graph for M with respect to ~S that is valid, accepting
and consistent with (x, w). We construct a valid computation routing R~SM for M with respect to ~S
as follows:

1. First, R~SM colors the zero layers Gt such that R~SM ((1, 0, w)) = R
~S
M ((0, 0, w)) = (0, w, Sw).

2. For any edge ((τ, S), (τ ′, S′)) ∈ Em, the coloring R
~S
M of Gt is updated so it expresses the routing

of the node (1, 0, τ ′) to the node (1, 0, τ).

3. For any node (1, 0, τ) not routed in the previous case, the coloring R~SM of Gt is updated so it
expresses the routing of the node (1, 0, τ) to itself.

4. For any edge ((τ, S), (τ + 1 mod 2t, S′)) ∈ Et, the coloring R~SM of Gt is updated so it expresses
the routing of the node (0, 0, τ) to the node (0, 0, τ + 1 mod 2t).

41

We now argue that R~SM is a valid, accepting and consistent with (x, w) computation routing.
By the first two parts of Definition 7.12 it follows that R~SM is accepting and consistent with (x, w).
Regarding the validity requirement, by Lemma 7.6 the edges in Em form a cycle such that every

configuration S that contains a pload instruction is on the cycle. In addition, we notice that a cycle
induces a permutation on its nodes. Also, we notice that Item 3 above also defines a permutation
but on the nodes “skipped” by part Item 2. Therefore Item 2 and Item 3 define a permutation on the
nodes of the form (1, 0, τ) for some τ ∈ {0, . . . , 2t − 1}. Next we look on the edges used in Item 4 of
the construction above. We notice that this requirement also induces a permutation on the nodes of
the form (0, 0, τ) for some τ ∈ {0, . . . , 2t−1}. Because Gt can route any permutation from layer 0 to
layer 0 by setting the nodes in the other layers of the graph to be a “straight ahead” or a “diagonal”,
the two permutations defined by Item 2, Item 3, and Item 4 above can be routed. This fulfills the
requirement posed in Item (i) and Item (ii) of Definition 7.12.

Next, by Item 4 of the construction above we have that (0, 0, τ) is routed to (0, 0, τ + 1 mod 2t)
and, by definition of Et, we have that, for all τ , Sτ Sτ+1 mod 2t . Thus, the requirement of Item (iii)
of Definition 7.12 is fulfilled.

We turn our attention to Item 2 and Item 3 of the construction above. Since G~SM is a valid
computation graph we have that if (1, 0, τ ′) is routed to (1, 0, τ) then (τ ′, Sτ ′)

m≺ (τ, Sτ) if both

Sτ and Sτ ′ contain pload or store instructions and Sτ = Sτ ′ otherwise. Therefore Item (iv) of
Definition 7.12 is also fulfilled. Regarding the requirement posed in Item (v) of Definition 7.12, we
notice that Item 1 in the construction of R~SM colors all the nodes in layer zero in a way that respects
the requirement posed in Item (v) of Definition 7.12. In addition, since all the other items in the
construction do not update the configuration part of the colors of layer 0 we obtain that R~SM fulfills
the requirement of Item (v) of Definition 7.12.

Thus we get that R~SM is a valid computation routing.

(2) Conversely, assume that R~SM is a valid computation routing. Let G~SM = (V,Et, Em) be the
graph that is defined as follows

• V = {(τ, Sτ) : R
~S
M ((0, 0, τ)) = (0, τ, Sτ) and τ ∈ {0, . . . , 2t − 1}},

• Et = {((τ, Sτ), (τ ′, Sτ ′)) : (0, 0, τ) is routed to (0, 0, τ ′)}, and

• Em = {((τ, Sτ), (τ ′, Sτ ′)) : (1, 0, τ ′) is routed to (1, 0, τ) and Sτ , Sτ ′ both contain pload or store instructions}.

We now argue that G~SM is a computation graph that is valid, accepting and consistent with (x, w).
We begin by proving thatG~SM is a computation graph. The first item of Definition 7.3 immediately

follows from the definition of V . As for the second item, we notice that by the first two items in
Definition 7.12 we obtain that the configuration and timestamp part of the node’s color remains
unchanged throughout the different layers. These constraints, combined with the constraints of
Item (iii) of Definition 7.12, imply that that every (0, 0, τ) is routed to (0, 0, τ + 1 mod 2t) and
therefore every (τ, Sτ) is routed to (τ + 1 mod 2t, Sτ+1 mod 2t). Thus we have obtained that G~SM is
indeed a computation graph.

Next, we show that G~SM is valid, accepting and consistent with (x, w).
Notice that if R~SM is accepting and consistent with (x, w) then so is ~S. Therefore G~SM is accepting

and consistent with (x, w) if R~SM is. This fulfills the acceptance and consistency requirements as
stated in the first two items of Definition 7.4. Next we turn our attention to the validity requirement
of Definition 7.4. Indeed, by the first two items in Definition 7.12 we obtain that each node on layer
i is routed to exactly one node in layer i+ 1 mod L and that the configuration and time stamp part

42

of the node’s color remains unchanged throughout the layers. Moreover, those items also enforce
that the routing respects the edge relation of the underlaying graph. Next, Item (iii) and Item (v) of
Definition 7.12 requires that every (0, 0, τ) is routed to (0, 0, τ+1 mod 2t) and that Sτ Sτ+1 mod 2t .
We thus obtain that Et = {((τ, Sτ), (τ + 1, Sτ+1 mod 2t)) : (τ, Sτ), (τ + 1 mod 2t, Sτ+1 mod 2t) ∈
V and Sτ Sτ+1 mod 2t}. This fulfills the requirements posed by Item (i) of the valid part of
Definition 7.4.

Next, as in the previous case, the first two items in Definition 7.12 enforce that each node on
layer i is routed to exactly one node in layer i + 1 mod L, that the configuration and time stamp
parts of the nodes color remain unchanged throughout the layers and that the routing respects the
edge relation of the underlying graph. In addition, any routing done in Item (iv) of Definition 7.12
induces a permutation on the nodes of the form (1, 0, τ) in G~SM . Furthermore, we require that each
configuration that does not contain a pload or a store instruction will be routed to itself. Thus we
obtain that the routing also induces a permutation on the nodes of the form (1, 0, τ) such that Sτ
contains a pload or a store instruction. This fulfills the requirement of Item (iii) of Definition 7.4.
Item (iv) and Item (v) of Definition 7.12 requires that if (1, 0, τ ′) is routed to (1, 0, τ) and both Sτ
and Sτ ′ contain a pload or a store instructions then (τ ′, Sτ ′)

m≺ (τ, Sτ). Therefore, for every edge

((τ, Sτ), (τ ′, Sτ ′)) ∈ Em we have that (τ ′, Sτ ′)
m≺ (τ, Sτ). This fulfills the requirement of Item (ii) of

Definition 7.4.

In light of Claim 7.8 and Claim 7.13, we deduce the following:

Claim 7.14. Let M be a memory-well-behaved random-access machine, ~S = (S0, . . . , S2t−1) a se-
quence of configurations for M , and (x, w) two input strings. Then ~S is valid and accepting for M
and consistent with (x, w) if and only if there exists a computation routing R~SM for M with respect to
~S that is valid, accepting, and consistent with (x, w).

Witness reduction. Note that not only does Claim 7.13 tell us an equivalence between the two
decision problems, but its proof tells us how deduce a “witness” too. Specifically, given G~SM , we can
construct a computation routing R~SM by deducing the two permutations (for code consistency and
memory consistency) by following part (1) of the proof. (As for the reverse direction, part (2) of
the proof gives us that, but we are not interested in “going back”.)

7.3 Step 3: From (double) De Bruijn graphs to succinct GCPs

We are now ready to discuss sGCP. We note that determining whether a computation routing is
valid or not (see Definition 7.12) involves checking different constraints that depend on the vertex
(this is what distinguishes constraints (i) through (v) of Definition 7.12), the color of the vertex, and
the colors of the neighbors of the vertex. As there are not many different constraints that need to
be enforced, we can “bundle up” these into a universal constraint that needs to be enforced at every
vertex of the graph — and this is the essence of the of the satisfiability requirement of a sGCP
problem.

We now discuss then how to derive the parameters of the sGCP problem corresponding to a
given machine M . Of course, there are more details that need to be addressed than discussed in the
previous paragraph; specifically, we need to be explicit about the “cost” of creating all the necessary
objects, and we need to discuss how consistency with the input string x is achieved.

Thus, using using the template provided in Definition 6.15, we present the following construction:

43

Construction 7.15. Fix a random-access machine

M = 〈w, k,A,C〉 .

Construct a choice of parameters

parsGCP =
(

(cV, tV,V), (αΓ, tΓ,Γ), (cC,C), (sK, tK,K), (tW,W), (tF,F)
)

for sGCP as follows:

1. Constructing Parameter 1. Consider the functions cV and tV associated with the family
V defined below

(a) define the (proper) cardinality function cV : N→ N by

cV(t) = 1 + dlog(4t− 1)e+ t ,

(b) define the (proper) time function tV : N→ N by

tV(t) = O(t).

2. Constructing Parameter 2. Define the family V = {Vt}t and the algorithm FindV as
follows:

(a) Vt is the vertex set of DDB(t, 4t− 1).

(b) The existence of a suitable FindV algorithm easily follows from Definition 7.9.

3. Constructing Parameter 3. Consider the functions αΓ and tΓ associated with the family
Γ defined below

(a) Define the (proper) regularity function αΓ : N→ N by

αΓ(t) := 4 ,

(b) Define the (proper) time function tV : N→ N by

tV(t) = O(t).

4. Constructing Parameter 4. Define the family Γ = {~Γt}t∈N and the algorithm FindΓ as
follows:

(a) ~Γt = (Γ1,Γ2,Γ3,Γ4) where Γ1 is the identify and Γ2,Γ3 and Γ4 are the neighbor functions
of a DDB(t, 4t− 1),

(b) The existence of a suitable FindΓ algorithm easily follows from Definition 7.9.

(Recall Definition 7.9, the definition of a double extended De Bruijn graph.) Note that indeed
each Gt is αΓ(t)-regular. Intuitively, Gt is the graph for a computation routing (Definition 7.11)
of a computation of length at most 2t.

5. Constructing Parameter 5. Define the cardinality function cC : N→ N by

cC(t) := 1 + t+ (1 + k)w .

44

6. Constructing Parameter 6. Define the finite color set family C = {Ct}t∈N by

Ct = {0, 1}cC(t) .

We have set Ct to be the set of colors of a computation routing. Indeed, recall from Defini-
tion 7.11 that a coloring of a computation routing provides for each vertex a bit, a timestamp,
and a configuration; thus cC(t) = 1 + t + (1 + k)w, since a timestamp has length t and a
configuration has length (1 + k)w.

7. Constructing Parameter 7. Consider the functions sK and tK associated with the family
K defined below

(a) Define the (proper) size function sK : N→ N by

sK(t) := O(t) ,

(b) Define the (proper) time function tK : N→ N by

tK(t) = O(t).

8. Constructing Parameter 8. Define the family K = {Kt : Tt × CαΓ(t)
t → {0, 1}}t∈N to be

the function
Kt

(
θ, c1, . . . , cαΓ(t)

)
(3)

that interprets the vertex type θ as a vertex v ∈ V t, and verifies depending on v the appropriate
constraint(s) in the first and third bullet of Definition 7.12.

As for a circuit computing Kt, see Section B.2, where we give explicit circuits.

9. Constructing Parameter 9. Consider the function tW associated with the family W defined
below

a time function tW : N→ N: tW(t) := O(t) .

10. Constructing Parameter 10. Define the vertex subset family W = {Wt}t∈N by

Wt :=
{

(0, 3i+ 2, 0)
}

0≤i≤2t−1−1
.

In other words, we set Wt to be the vertices in the 0-th column of the 0-th extended De Bruijn
graph in Gt = DDB(t, 4t−1) (except the 0-th one) whose numbering is of the form 3i+2. This
is so because ultimately we will be interested in random-access machines that are memory-well-
behaved (see Definition 7.7), so that the first memory cell is accessed in the first time step,
and input-well-behaved, so that each input symbol is read, stored in memory and a counter
is incremented as preperation towards reading the next input symbol. This process is done
on the whole input (see Definition 7.16); in particular, in order to “observe” the input in the
configurations we examine the first sufficiently-many configurations whose numbering is of the
form 3i+ 2 (after the initial one).

Therefore, we can simply set (0, 3i + 2, 0) := FindW(1t, i), and thus tW(t) has the above
claimed value.

45

11. Constructing Parameter 11. Consider the function tF associated with the family F defined
below

a time function tF : N→ N: tF(t) := O(t+ (1 + k)w) .

12. Constructing Parameter 12. Define the extraction function family F = {Ft : {0, 1}∗ →
{0, 1}}t∈N by

Ft(x, c1, . . . , c|x|) := “0 if and only if x = ρ1 · · · ρ|x|” ,
where ci = (si, τi, Si), Si = [pci, r

i
0, . . . , r

i
k−1], and ρi = rij if the instruction pointed to by

pc− 1 mod 2t is a read from the input tape into register j (else, ρi is the empty string). Note
that indeed the size of ρ is w bits. In other words, the extraction function Ft, on input x and
all the reads from tape A in order, checks that the concatenation of the reads is equal to x.

Furthermore, CompF(1t, c) is trivial because Ft is merely a comparison between two strings.

As we need to check input consistency, we shall restrict (without loss of generality) our attention
to random-access machines that read the whole input and store it into memory, without ever accessing
the input tape again. This ensures that the input bits appear at “canonical” times of the computation.

Definition 7.16. Let M be a random-access machine. We say that M is input-well-behaved if
M , starting from the second step, reads all of the input on A and stores it into memory, and then
never reads from the input again.

In sum, a random-access machine is well-behaved if it is both memory-well-behaved and input-
well-behaved.

Definition 7.17. Let M be a random-access machine. We say that M is well-behaved if it is both
memory-well-behaved and input-well-behaved.

We now give the equivalence between finding computation routings and membership in sGCP(parsGCP)
for parameters parsGCP constructed as above.

Claim 7.18. Let M be a well-behaved random-access machine, x an input string, and t ∈ N. There
exists another input string w, a sequence of configurations ~S = (S0, . . . , ST−1) for M with T ≤ 2t,
and a computation routing R

~S
M for M with respect to ~S that is valid, accepting, and consistent

with (x, w) if and only if (x, 1t) ∈ sGCP(parsGCP), where parsGCP are constructed from M following
Construction 7.15.

Proof. We prove in (1) one direction and in (2) the other direction.
(1) Assume there exists another input string w, a sequence of configurations ~S = (S0, . . . , S2t−1)

forM , and a computation routing R~SM forM with respect to ~S that is valid, accepting, and consistent
with (x, w). We need to prove prove that (x, 1t) ∈ sGCP(parsGCP).

We now argue that R~SM itself is in fact a witness for (x, 1t) ∈ sGCP(parsGCP).
Following Definition 6.15, we show that the following two conditions hold:

• Satisfiability of constraints. The routing R~SM satisfies the routing constraints induced by Kt,
i.e., for every v ∈ Vt,

Kt

(
v,
(
R
~S
M ◦ Γt,1

)
(v), . . . ,

(
R
~S
M ◦ Γt,αΓ(t)

)
(v)
)

= 0 , (4)

where, for i = 1, . . . , αΓ(t), Γt,i is the i-th neighbor function of Gt = DDB(t, 4t − 1). And,
indeed, since R~SM is a valid computation routing by Item 8 of Construction 7.15 the above
equation holds. Thus the coloring C := R

~S
M satisfies the coloring constraints induced by Kt

and Mt, as required by Item (i) of Definition 6.15.

46

• Consistency with the instance. The routing R~SM is consistent with the instance (x, 1t), i.e., for
every index i ∈ {1, . . . , |Wt|}, letting vi be the i-th vertex inWt, Ft(x, R

~S
M (v1), . . . , R

~S
M (v|x|)) =

0.

Because M is well-behaved, all the input x will be read into memory at the start of the
computation right after accessing the first memory cell, so instruction 2 through 3|x| + 2 will
consist of a readA followed by a store and an incrementation of the value of some register so
that the input can be stored at the next available memory cell. This process is repeated |x|
times. And, indeed, we have defined the i-th vertex of Wt to be the (3i + 2)-th vertex in the
first column of one De Bruijn graph in Vt, and Ft to verify the appropriate readA information
from its configuration. Thus, once again the same coloring C := R

~S
M is consistent with the

instance (x, 1t), as required by Item (ii) of Definition 6.15.

(2) Suppose that (x, 1t) ∈ sGCP(parsGCP), and let C be a coloring witnessing this. We need to
prove that there exist another input string w, a sequence of configurations ~S = (S0, . . . , S2t−1) for
M , and a computation routing R~SM for M with respect to ~S that is valid, accepting, and consistent
with (x, w).

For i = 0, . . . , 2t − 1, if C(0, i, 0) = (0, i, S′i), define Si := S′i and let Si = [pci, r
i
0, . . . , r

i
k−1]. By

Item 8 of Definition 7.15 and by the construction of ~S, we know that C is a valid and accepting
computation routing for M with respect to ~S.

Regarding the consistency requirement, consider the string w = σ1 · · ·σ2t−1 where for any i ∈
{0, · · · , 2t − 1} it holds that σi = rj if pci − 1 points to a readB j instruction and σ′i = ε otherwise.
Notice that by construction it holds that C is consistent with w. As for consistency with the input x,
since C is a witness to (x, 1t) ∈ sGCP(parsGCP) it must be the case that C is consistent with x also.

Thus we have obtained that C is a computation routing with respect to ~S that is valid, accepting,
and consistent with (x, w).

In light of Claim 7.14 and Claim 7.18, we deduce the following:

Claim 7.19. Let M be a well-behaved random-access machine, x an input string, and t ∈ N. There
exists another input string w, and a sequence of configurations ~S = (S0, . . . , S2t−1) for M that is
valid, accepting, and consistent with (x, w) if and only if (x, 1t) ∈ sGCP(parsGCP), where parsGCP are
constructed from M following Construction 7.15.

7.4 Step 4: The Levin reduction

We show that the parameter conversion discussed in Section 7.4 yields a Levin reduction (according
to Definition 7) from BHRAM to sGCP with respect to any class of random-access machines PRAM

(specifically, any random-access machine as defined in Section 6.4.2).
More precisely, consider the following definitions:

• Define Fp : {0, 1}∗ → {0, 1}∗ to be the function that, on input a choice of random-access
machine M ∈ PRAM, first modifies M to ensure it is well-behaved (see Definition 7.17) and
then performs the parameter conversion described in Construction 7.15. More precisely, Fp

works as follows:

M = 〈w, k,A,C〉 Fp7−→ parsGCP =

(cV, tV,FindV),
(αΓ, tΓ,FindΓ),
cC,
(sK, tK,FindK),
(tW,FindW),
(tF,CompF)

,

47

where the mapping is done by following the definitions of the various new complexity functions
and algorithms (for sGCP) based on the old ones (for M).

• Define Fw : {0, 1}∗ → {0, 1}∗ as follows: for every M ∈ PRAM, t ∈ N, w ∈ {0, 1}∗, and ~S,

Fw(M, 12t , (w, ~S)) ≡
1. Route ~S on the graph Gt := DDB(κ, L), where κ = t and L = 4κ − 1, by com-

puting the routing for the code-consistency permutation and the memory-consistency
permutation, and let C be the resulting coloring.

2. Output C.

We prove the following theorem:

Theorem 7.20. The pair of functions (Fp, Fw) is a Levin reduction from BHRAM to sGCP with
respect to any class of random-access machines PRAM.

We divide the proof of Theorem 7.20 into three claims:
• in Claim 7.21, we explain why both Fp and Fw are polynomial-time computable;
• in Claim 7.22, we show the “completeness” and “soundness” of Fp; and
• in Claim 7.23, we show that Fw produces good witnesses.

Claim 7.21. The functions Fp and Fw are polynomial-time computable.

Proof. The efficiency of Fp easily follows by inspection of how the parameters are converted in
Construction 7.15. (Essentially, all the new functions and algorithms are “easy combinations” of
previous functions and algorithms, and thus not hard to write down.) Also note that ensuring that
M is well-behaved is tantamount to small changes to the code of M . The efficiency of Fw easily
follows from the fact that it can run in time that is polynomial in 12t , which is plenty of time for
computing the routing of ~S on Gt. (Indeed, recall Claim 6.5.)

Claim 7.22. For every choice of machine M ∈ PRAM and for every instance (x, 1t) ∈ {0, 1}∗,
(x, 1t) ∈ BHRAM(M) if and only if (x, 1t) ∈ sGCP(Fp(M)).

Proof. Follows directly from Claim 7.19 and Definition 6.14 (which says that (x, 1t) ∈ BHRAM(M) if
and only if there is another input string w, and a sequence of configurations ~S = (S0, . . . , S2t−1) for
M that is valid, accepting, and consistent with (x, w)).

Claim 7.23. For every choice of machine M ∈ PRAM and for every instance (x, 1t) ∈ {0, 1}∗,
if (w, ~S) is a witness to “(x, 1t) ∈ BHRAM(M)” then Fw(M, 12t , (w, ~S)) is a witness to “(x, 1t) ∈
sGCP(Fp(M))”.

Proof. The claim follows immediately from the fact that in the proof of the “completeness” direction
of the statement from Claim 7.22 (or, more precisely, from the proof of Claim 7.18, which implies
Claim 7.19, and in turn Claim 7.22), we have constructed, starting from a valid pair (w, ~S) and
according to Fp, a valid coloring C for (x, 1t): by routing ~S on Gt.

48

8 From sGCP To sACSP

In Section 4 we discussed a high-level strategy for proving Theorem 2 in two steps (respectively
discussed in Section 4.1 and Section 4.2). The goal of this section is to prove in detail the second
step. In Section 7 we have already obtained a sGCP problem on (double) extended De Bruijn graphs.
Our goal is to arithmetize it.

Given the “template” Definition 6.3, we give for convenience the following specialized definition
for reducing from sGCP to sACSP:

Definition 8.1. Fix a class of parameters PsGCP for sGCP. We say that a pair of polynomial-time-
computable functions (Fp, Fw) is a Levin reduction from sGCP to sACSP with respect to PsGCP if
the following three conditions are satisfied for every choice of parameters parsGCP ∈ PsGCP:

1. Fp(parsGCP) is a choice of parameters for sACSP.

2. For every instance (x, 1t) ∈ {0, 1}∗,

(x, 1t) ∈ sGCP(parsGCP) if and only if (x, 1t) ∈ sACSP
(
Fp(parsGCP)

)
.

3. For every instance (x, 1t) ∈ {0, 1}∗,

if the coloring C is a witness to “(x, 1t) ∈ sGCP(parsGCP)”,
then Fw(parsGCP, 1

2t , C) is a witness to “(x, 1t) ∈ sACSP
(
Fp(parsGCP)

)
”.

The two functions Fp and Fw are respectively called as the “parameter reduction” and the “witness
reduction”.

Remark 8.2. We believe that the Levin reductions discussed in this section, as well as the arithme-
tization results developed in Section C, will provide a valuable “toolkit” for arithmetizing a variety
of structured graphs (including butterfly networks and Beneš networks) for the purposes of engineer-
ing other Levin reductions from succinct constraint satisfaction problems on such graphs. Having
this flexibility could allow for more direct reductions for other succinct models of computation (e.g.,
arithmetic formulas, finite automata), and thus ultimately lead to more efficient PCPs “specialized”
for such models of computation.

We give here the definition of an affine graph used throughout this section:

Definition 8.3. Let F be a field and A a set of affine functions over F. The affine graph AFF(F,A)
is a directed graph with vertex set F where each element α(x) ∈ F has a directed edge to the element
N(α(x)) for each affine function N ∈ A.

For convenience, we provide again the definition of a double extended De Bruijn graph (which
we had introduced in Definition 7.9). Recall that a double extended De Bruijn graph is simply
two extended De Bruijn graphs “side by side”, connected with bi-directional edges at corresponding
vertices.

Definition 8.4. Let κ and L be two positive integers. The (κ, L) double extended De Bruijn
graph, denoted DDB(κ, L), is a 3-regular directed graph consisting of the Cartesian graph product
of the directed two-cycle and DB(κ, L). In other words, the vertex set V of DDB(κ, L) consists of
vertices v = (b, i, w), where b ∈ {0, 1}, i ∈ {0, . . . , L − 1}, and w ∈ {0, 1}κ, and the edge set E is
induced by the following three neighbor functions:

49

• Γ1

(
(b, i, w)

)
= (b, i+ 1 mod L, sr(w)), i.e., one kind of De Bruijn edges;

• Γ2

(
(b, i, w)

)
= (b, i+ 1 mod L, sr(w)⊕ e1), i.e., the other kind of De Bruijn edges; and

• Γ3

(
(b, i, w)

)
= (1 ⊕ b, i, w), i.e., edges between corresponding vertices of the two De Bruijn

graphs.

Remark 8.5. One could consider more general graph products of extended De Bruijn graphs, e.g.,
the Cartesian graph product with directed cycles larger than 2. These more complex structured
graphs may very well be useful in Levin reductions from other models of computation. See Re-
mark 8.13 for a short discussion of how our arithmetization techniques extend to these more general
products.

Remark 8.6. Our arithmetization techniques and conversion of parameters also yield a Levin re-
duction from succinct graph coloring problems on single extended De Bruijn graphs to succinct
algebraic constraint satisfaction problems. (A non-uniform version of this reduction was considered
by [BSS08].) We happen not to use single extended De Bruijn graphs in this work, as a direct re-
duction from random-access machines seems to require the use of two routing networks; nonetheless,
single extended De Bruijn graphs are quite expressive, and may indeed be useful in other Levin
reductions.

Remark 8.7. We note that there are other “arithmetization” paths that could be used, say, starting
from sGCPs on double extended De Bruijn graphs. For example, one could consider multivariate
variants of succinct algebraic constraint satisfaction problems. Alternatively, arithmetizing sepa-
rately different parts of the graph (e.g., each extended De Bruijn graph in the double extended De
Bruijn graph), to obtain a univariate succinct algebraic constraint satisfaction problem with multiple
polynomials as witnesses, and consistency checks between them. These other arithmetization paths
would require a new class of succinct algebraic constraint satisfaction problems, thus requiring a new
definition similar in spirit to Definition 6.18 (and ultimately a new construction of PCPs for it, which
may or may not follow easily from the PCPs of [BSCGT12] for Definition 6.18).

Remark 8.8. The main theorem of this section, Theorem 8.16, can be thought of as a generalization
of [BSGH+05, Theorem 6.2] (and our proof easily implies an explicit proof to [BSGH+05, Theorem
6.2], which was only stated without proof); the arithmetization needed in the proof is inspired by
[BSS08, proof of Theorem 3.7], but requires a lot more care and involves more details.

This section is organized as follows: we first provide some algebraic lemmas establishing ap-
propriate embeddings of double extended De Bruijn graphs into affine graphs, along with other
properties (Section 8.1); then give the conversion of parameters (Section 8.2), and finally prove that
the conversion of parameters yields a Levin reduction (Section 8.3).

8.1 An embedding and some lemmas for double extended De Bruijn graphs

We first prove several lemmas about (single) extended De Bruijn graphs, and then build on these to
obtain analogous results for double extended De Bruijn graphs.
The single De Bruijn case. First, we show how to “arithmetize” (single) extended De Bruijn
graphs by embedding them into appropriate affine graphs. More concretely, given a graph DB(κ, 2`−
1) = (V ,E) (where we take for convenience the number of columns to be a power of 2), we need to
come up with a function Φ̃f,κ,` that maps vertices in V to field elements of F2f (for a sufficiently
large f) and edges in E to edges of an affine graph over the elements of F2f induced by a small set of
affine functions Ãf,κ,`; we will call such a function a graph embedding (and the reason that it is not

50

a graph isomorphism is that generally the affine graph will contain many more vertices and edges
than those induced by the mapping from DB(κ, 2` − 1)).

Recall from Definition 6.4 that a vertex v ∈ V is labeled as (i, w), where i ∈ {0, . . . , 2` − 2} and
w ∈ {0, 1}κ. To encode the label as a field element in F2f : we will encode the string w as the high
order coefficients of (the polynomial representaiton of) a field element; the low-order coefficients of
(the polynomial representaiton of) the field element will be reserved for the encoding of i, which is
achieved by creating an “artificial” cyclic group of size 2` − 1 (all of whose elements are polynomials
of degree less than ` and thus can be stored as low-order coefficients) and letting i be mapped to the
i-th element of this cyclic group. The encoding of the label (i, w) was designed to be “friendly” to
affine functions, in the sense that all the images of vertices that are connected by an edge in E can
be related by a small set of affine functions.

More precisely, we prove the following lemma:

Lemma 8.9 (Arithmetization of Extended De Bruijn Graphs). Fix three positive integers f , κ, and `
with f ≥ `+κ+1. Let I be the irreducible polynomial of degree f over F2 output by FindIrrPoly(1f),
and let F2f := F2(x) where x is a root of I. Let Ξ(x) ∈ F2[x] be the primitive polynomial of degree `
output by FindPrimPoly(1`) and let ξ0(x), . . . , ξ(2`−2)(x) ∈ F2[x] be the 2` − 1 distinct polynomials
of degree less than ` implied by invoking Claim C.5 with Ξ(x).

Define the two functions hf,κ,` : {0, . . . , 2` − 2} → F2f and gf,κ,` : {0, 1}κ → F2f by

hf,κ,`(i) := ξi(x) and gf,κ,`(w) := x`−1 ·

κ∑

j=1

wjx
j

 ,

and define the function Φ̃f,κ,` : {0, . . . , 2` − 2} × {0, 1}κ → F2f by

Φ̃f,κ,`(i, w) := hf,κ,`(i) + gf,κ,`(w) .

Then, Φ̃f,κ,` is an injective isomorphism from the De Bruijn graph DB(κ, 2` − 1) = (V ,E) into the
affine graph AFF(F2f , Ãf,κ,`), where

Ãf,κ,` =
{
Nσ(z) = x · z + σ1Ξ(x) + σ2x` + σ3x`+κ ∈ F2f [z]

}
σ∈{0,1}3

.

Note that |Ãf,κ,`| = 8.

Proof. Observe that deg(hf,κ,`(i)) = deg(ξi(x)) < ` for every i ∈ {0, . . . , 2`−2} and deg(gf,κ,`(w)) =

deg(x`−1 · (∑κ
j=1wjx

j)) ≥ ` for every not-all-zeros κ-bit string w. Hence, the function Φ̃f,κ,` is
injective if both hf,κ,` and gf,κ,` are injective; injectivity of the second map is clear, and injectivity
of the first map follows from Claim C.4 (which tells us that i 6= i′ implies that hf,κ,`(i) = ξi(x) 6=
ξi′(x) = hf,κ,`(i

′)). Next, to prove that Φ̃f,κ,` is a graph isomorphism, we need to show that if (v, v′)

is an edge in DB(κ, 2` − 1) then (Φ̃f,κ,`(v), Φ̃f,κ,`(v
′)) is an edge in AFF(F2f , Ãf,κ,`).

We first derive some relations. Recalling the definition of hf,κ,`, from Corollary C.5 we deduce
that

hf,κ,`(i+ 1 mod (2` − 1)) = ξ(i+1 mod (2`−1))(x) = x · ξi(x) +Q(x) · Ξ(x) = x · hf,κ,`(i) +Q(x) · Ξ(x) ,

where Q(x) is the polynomial quotient (of degree less than 1, i.e., Q(x) = 0 or Q(x) = 1) when
dividing x · hf,κ,`(i) by Ξ(x). (Note that, again as above, in the computation, we have used the fact
that the field F2f is “large enough”.) Therefore,

hf,κ,`(i+ 1 mod (2` − 1)) =

{
x · hf,κ,`(i) = N000

(
hf,κ,`(i)

)
if deg

(
hf,κ,`(i)

)
< `− 1

x · hf,κ,`(i) + Ξ(x) = N100

(
hf,κ,`(i)

)
if deg

(
hf,κ,`(i)

)
= `− 1

.

51

Similarly, recalling the definition of gf,κ,` and Ãf,κ,`, we see that

gf,κ,`
(
sr(w)

)
=

{
x · gf,κ,`(w) = N000

(
gf,κ,`(w)

)
if wκ = 0

x · gf,κ,`(w) + x` + x`+κ = N011

(
gf,κ,`(w)

)
if wκ = 1

and

gf,κ,`
(
sr(w)⊕ e1

)
=

{
x · gf,κ,`(w) + x` = N010

(
gf,κ,`(w)

)
if wκ = 0

x · gf,κ,`(w) + x`+κ = N001

(
gf,κ,`(w)

)
if wκ = 1

.

(Note that, in the above two equations, we have used the fact that the field F2f is “large enough”.
Specifically, by the choice f ≥ ` + κ + 1, since all the polynomials in the computation have degree
less than `+ κ+ 1, we do not have to worry about reducing modulo I(x).)

Thus, parsing v as (i, w), if (v, v′) is an edge in DB(κ, 2` − 1), then either v′ =
(
(i+ 1 mod (2` −

1)), sr(w)
)
or v′ =

(
(i+1 mod (2`−1)), sr(w)⊕e1

)
, so that either Φ̃f,κ,`(v

′) = hf,κ,`
(
(i+1 mod (2`−

1))
)

+ gf,κ,`
(
sr(w)

)
or Φ̃f,κ,`(v

′) = hf,κ,`
(
(i+ 1 mod (2` − 1))

)
+ gf,κ,`

(
sr(w)⊕ e1

)
. Either way, it is

possible to write Φ̃f,κ,`(v
′) = Nσ(v) for some σ ∈ {0, 1}3 by referring to the computations above in

order to deduce σh for the hf,κ,` term and σg for the gf,κ,` term, and setting σ = σh ⊕ σg.

We now discuss the computational properties of the (single) extended De Bruijn graph embedding
Φ̃f,κ,` defined in Lemma 8.9. First, we note that it is efficiently computable, both via an algorithm
and a certain polynomial:

Lemma 8.10. Define t
Φ̃

(f, κ, `) := tPrim(`)+`2 log `+f . There exists a t
Φ̃
-time algorithm CompΦ̃

such that Φ̃f,κ,`

(
(i, w)

)
= CompΦ̃

(
1f , 1κ, 1`, (i, w)

)
, for every three positive integers f , κ, and ` as

in Lemma 8.9, and for every i ∈ {0, . . . , 2` − 2} and w ∈ {0, 1}κ.
Moreover, there exists a multilinear polynomial P f,`,κ

Φ̃
: F`+κ

2f
→ F2f such that

P f,`,κ
Φ̃

(i, w) = CompΦ̃
(
1f , 1κ, 1`, (i, w)

)

for every i ∈ {0, . . . , 2` − 2} and w ∈ {0, 1}κ; moreover, this polynomial can be found and evaluated
in time O(w + 2`).

Proof. The injective graph isomorphism Φ̃f,κ,` : {0, . . . , 2` − 1} × {0, 1}κ → F2f can be efficiently
computed by the following algorithm:

CompΦ̃
(
1f , 1κ, 1`, (i, w)

)
≡

1. Compute Ξ := FindPrimPoly
(
1`
)
.

2. Compute α(x) := xi mod Ξ(x).
3. Compute β(x) :=

∑κ
j=1wjx

j+`−1.
4. Output α(x) + β(x).

Note that CompΦ̃ does not have to compute the degree-f irreducible polynomial I over F2 that
defines the field F2f , because both α(x) and β(x), as well as α(x) + β(x), all have degree less than f .
Moreover, CompΦ̃ has the claimed complexity parameters.

The polynomial P f,`,κ
Φ̃

is the straightforward conversion of CompΦ̃ into a circuit. Specifically,
we can take

P f,`,κ
Φ̃

(x1, . . . , x`+κ) :=

 ∑

i∈{0,1}`
hf,κ,`(i)

∏̀

j=1

(xj − (1− ij))

+ x`−1 ·

κ∑

j=1

x`+jx
j

 .

52

The double De Bruijn case. Next, we build on the “single extended De Bruijn case”, and show
how to arithmetize double extended De Bruijn graphs (according to Definition 8.4). We will not
have to work hard for this arithmetization, as most of the required arithmetization work went in to
understanding the single extended De Bruijn graph case. More concretely, the basic intuition for
arithmetizing a double extended De Bruijn graph is quite straightforward: we simply arithmetize
each of the extended De Bruijn graphs separately, and put them side by side in the same finite field,
ensuring that we have additional affine edges in the resulting affine graph to connect between them;
the operations of “putting side by side” intuitively consist of doubling the field size, and putting the
two affine graphs in two halves of the finite field, thus obtaining an extra “bit” to toggle between the
two graphs. (Technically, we actually will not have to double the field size, but it is helpful to think
about it this way.)

More precisely, we prove the following lemma:

Lemma 8.11 (Arithmetization of Double Extended De Bruijn Graphs). Fix three positive integers
f , κ, and ` with f ≥ ` + κ + 1. Let I be the irreducible polynomial of degree f over F2 output by
FindIrrPoly(1f), and let F2f := F2(x) where x is a root of I. Invoke Lemma 8.9 with the three
positive integers f , κ, and ` to obtain the function Φ̃f,κ,` and affine edges Ãf,κ,`.

Define the function Φf,κ,` : {0, 1} × {0, . . . , 2` − 2} × {0, 1}κ → F2f by

Φf,κ,`(b, i, w) := Φ̃f,κ,`(i, w) + bx`+κ .

Then, Φf,κ,` is an injective isomorphism from the double extended De Bruijn graph DDB(κ, 2`) =
(V ,E) into the affine graph AFF(F2f ,Af,κ,`), where

Af,κ,` = {N×(z) = z + xκ+` ∈ F2f [z]} ∪ Ãf,κ,` .

Note that |Af,κ,`| = 1 + |Ãf,κ,`| = 1 + 8 = 9.

Proof. The function Φf,κ,` is injective because Φ̃f,κ,` is injective and the degree of an element output
by Φ̃f,κ,` is at most `+κ−1. To see why Φf,κ,` is a graph isomorphism we note that Φ̃f,κ,` is a graph
isomorphism on the 0-th extended De Bruijn graph and x`+κ+1 + Φ̃f,κ,` is a graph isomorphism on
the extended 1-th De Bruijn graph; bi-directional edges between images of corresponding vertices
(0, i, w) and (1, i, w) in the two De Bruijn graphs are indeed affine edges given by the affine function
N× in Af,κ,` (where the “×” symbol is intended to denote “crossing” between the two De Bruijn
graphs).

The double extended De Bruijn graph embedding Φf,κ,` from Lemma 8.11 is efficiently com-
putable:

Lemma 8.12. Define tΦ(f, κ, `) := tPrim(`)+`2 log `+f . There exists a tΦ-time algorithm CompΦ
such that Φf,κ,`

(
(b, i, w)

)
= CompΦ

(
1f , 1κ, 1`, (b, i, w)

)
, for every three positive integers f , κ, and `

as in Lemma 8.11, and for every b ∈ {0, 1}, i ∈ {0, . . . , 2` − 2}, and w ∈ {0, 1}κ.
Moreover, there exists a multilinear polynomial P f,`,κΦ : F1+`+κ

2f
→ F2f such that

P f,`,κΦ (b, i, w) = CompΦ
(
1f , 1κ, 1`, (b, i, w)

)

for every b ∈ {0, 1}, i ∈ {0, . . . , 2` − 2} and w ∈ {0, 1}κ.

Proof. The injective graph isomorphism Φf,κ,` : {0, 1} × {0, . . . , 2` − 2} × {0, 1}κ → F2f can be
efficiently computed by the following isomorphism:

53

CompΦ
(
1f , 1κ, 1`, (b, i, w)

)
≡

1. Compute α(x) := CompΦ̃
(
1f , 1κ, 1`, (i, w)

)
. (Where CompΦ̃ comes from Lemma 8.10.)

2. If b = 0, output α(x); otherwise, output x`+κ + α(x).

The correctness and complexity guarantees of CompΦ immediately follow from those of CompΦ̃.
The polynomial P f,`,κΦ is the straightforward conversion of CompΦ into a circuit, as we can take:

P f,`,κΦ (x1, . . . , x1+`+κ) := x1x`+κ + P f,`,κ
Φ̃

(x2, . . . , x1+`+κ) ,

where P f,`,κ
Φ̃

comes from Lemma 8.10.

Remark 8.13. The arithmetization techniques in this section extend to handle a variety of products
of more complex graphs (other than the directed two-cycle) with De Bruijn graphs. For example,
to arithmetize the product of a (small!) clique and a De Bruijn graph, we can simply add “toggle”
high-order bits in Lemma 8.11 to keep track of which De Bruijn graph we are in. As another example,
to arithmetize the product of a (possibly large) cycle with a De Bruijn graph, instead of using toggle
bits, we can add another “artificial” cyclic group to keep track of which De Bruijn graph we are in
(the savings on the field size comes from the fact that now we only have to worry about very few
structured edges). Arithmetizing such multiple extended De Bruijn graphs may be useful for Levin
reductions from other problems.

Remark 8.14. Our Lemma 8.9 is a modified (and improved) version of [BSS08, Proposition 5.10],
which also gives an embedding of a single extended De Bruijn graph into an affine graph with
eight affine edges. Our modifications include removing a “hole” in the encoding (thus halving the
required field size) as well as making explicit the asymptotic dependence of the embedding on the two
parameters κ and ` (which are the logarithm of the height and the width of the graph, respectively).
The explicit asymptotic dependence on these parameters allows us to make precise statements about
the complexity of the embedding (see Lemma 8.10); these computational statements are needed to
eventually imply the Levin reduction that we seek.

8.2 The conversion of parameters for double extended De Bruijn graphs

We now give a conversion of parameters for sGCP with double extended De Bruijn graphs (satisfying
certain conditions) to parameters for sACSP.

At high level, the conversion will have to arithmetize the double extended De Bruijn graph
(and for this part we have already proved several lemmas in Section 8.1) and to arithmetize the
boolean circuits representing the local coloring constraints on the graph; moreover, the parameter
conversion has to keep track of how to represent and access large objects, as well as to arithmetize
the requirement of input consistency.

We now proceed to the details of the parameter conversion, which are given in the following
construction:

Construction 8.15. Fix four (proper) functions κ, `, s0, s1 : N→ N and functions. Let
(

(cV, tV,V), (αΓ, tΓ,Γ), (cC,C), (sK, tK,K), (tW,W), (tF,F)
)

be a choice of parameters for sGCP, where, for every t ∈ N,
• αΓ(t) = 4;
• Γt,1 is the identity;
• (Vt, (Γt,2,Γt,3,Γt,4)) encodes the graph DDB(κ(t), 2`(t) − 1);

54

• Ft(x, c1 · · · c|x|) is the test x ?
= c′1 · · · c′|x| where each c′i is the substring of ci from bit s0(t) to bit

s1(t), and
• FindW(1t, i) is the i-th vertex in the first column of the first De Bruijn graph in Gt and
|Wt| = 2t−(s1(t)−s0(t)+1).

Construct a choice of parameters
(
f, (mH, tH,H), (cN, tN, sN,N), (tP, sP,P), (tI, I)

)

for sACSP as follows:

1. Constructing Parameter 1. Define the (proper) field size function f : N→ N by

f(t) := “smallest solution to Equation 2” . (5)

Recall that Ft = F2(x) and x is the root of It, which is the irreducible polynomial of degree f(t)
over F2 output by FindIrrPoly(1f(t)).

Introducing useful families. Consider the following definitions:

• Define the family X =
{

Ξt(x) ∈ F2[x]
}
t∈N by Ξt := FindPrimPoly

(
1`(t)

)
.

• Define the family Y = {Yt}t∈N by

Yt :=
{
ξt,0(x), . . . , ξt,(2`(t)−2)(x) ∈ F2[x]

}
,

where ξt,0(x), . . . , ξt,(2`(t)−2)(x) ∈ F2[x] are the 2`(t)−1 distinct polynomials of degree less than
`(t) obtained by invoking Claim C.5 with the primitive polynomial Ξt ∈ X. Note that all of
these polynomials have degree less than deg(It) = f(t), and therefore ξt,0(x), . . . , ξt,(2`(t)−2)(x)
are in Ft.
Moreover, since ξt,i(x) ≡ xi mod Ξt(x), each of the ξt,i(x) can be efficiently computed from
the input (1t, i) by the following algorithm: for i ∈ {0, . . . , 2`(t) − 2},

FindY(1t, i) ≡
(a) Compute Ξt := FindPrimPoly

(
1`(t)

)
.

(b) Compute ξt,i(x) := xi mod Ξt(x).
(c) Output ξt,i(x).

• Define the dimension function mV̂ : N→ N by mV̂(t) := `(t) + κ(t) + 1.
• Define the family V̂ =

{
V̂t
}
t∈N by

V̂t :=

ξt,i(x) + x`(t)−1 ·

κ(t)∑

j=1

wjx
j

+ bx`(t)+κ(t)

i∈{0,...,2`(t)−2} ,

w∈{0,1}κ(t) ,
b∈{0,1}

(6)

= span(xj)j∈{0,...,`(t)+κ(t)} ,

so that V̂t is a mV̂(t)-dimensional linear subset of Ft specified by a basis

B
V̂t

:=
(
αV̂

1 (x), . . . , αV̂

m
V̂

(t)(x)
)

=
(
1Ft , x, . . . , x

m
V̂

(t)−1
)
.

Observe that
V̂t ⊃ Φf(t),κ(t),`(t)(V t) . (7)

55

Recall that Φf(t),κ(t),`(t) is the injection from the double extended De Bruijn graph DDB(κ(t), 2`(t)−
1) = Gt = (V t, Et) into the affine graph AFF(Ft,Af(t),κ(t),`(t)), obtained by invoking
Lemma 8.11 with the three positive integers f(t), κ(t) and `(t). (Note that by our choice of
parameters f(t) ≥ `(t) + κ(t) + 1, as required by the invocation of the lemma.)
Moreover, the basis B

V̂t
for V̂t can be efficiently computed from the input 1t by the following

algorithm:

FindV̂(1t) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
; it has root x.

(b) Compute the dimension function mV̂(t) := `(t) + κ(t) + 1.
(c) Compute the elements 1Ft , x, . . . , x

m
V̂

(t)−1 of F2(x).
(d) Output the basis

(
1Ft , x, . . . , x

m
V̂

(t)−1
)
.

• Define the dimension function mΘ : N→ N by

mΘ(t) := dlog(cC(t))e . (8)

• Define the family Θ =
{
θt,1(x), . . . , θt,mΘ(t)(x) ∈ Ft

}
t∈N by θt,i(x) := xmV̂

(t)−1+i. Each θt(x)

can be efficiently computed from the input 1t and index i by the following algorithm:

FindΘ(1t, i) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
; it has root x.

(b) Compute the dimension function mV̂(t) := `(t) + κ(t) + 1.
(c) Compute the element xmV̂

(t)−1+i of F2(x).
(d) Output xmV̂

(t)−1+i.

For convenience, for k ∈ {0, . . . , 2mΘ(t)−1}, we define θ(k)(x) to be the element
∑mΘ(t)

`=1 σ`θt,`(x),
where σ1 · · ·σmΘ(t) is the binary expansion of k − 1. Note that θ(0)(x) = 0Ft .

• Define the family V̂′ =
{
V̂ ′t
}
t∈N by

V̂ ′t :=
⋃

b1,...,bmΘ(t)∈{0,1}

(
V̂t + b1θt,1(x) + · · ·+ bmΘ(t)θt,mΘ(t)(x)

)
. (9)

Observe that

V̂ ′t = span
(
αV̂

1 (x), . . . , αV̂

m
V̂

(t)(x), θt,1(x), . . . , θt,mΘ(t)(x)
)
,

so that V̂ ′t is a mV̂′(t)-dimensional linear subset of Ft specified by a basis

B
V̂ ′t

:=
(
αV̂′

1 (x), . . . , αV̂′

m
V̂′ (t)

(x)
)

=
(
αV̂

1 (x), . . . , αV̂

m
V̂

(t)(x), θt,1(x), . . . , θt,mΘ(t)(x)
)
.

Moreover, the basis B
V̂ ′t

for V̂ ′t can be efficiently computed from the input 1t by the following
algorithm:

FindV̂′(1t) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
.

(b) Compute the basis
(
αV̂

1 (x), . . . , αV̂

m
V̂

(t)(x)
)

:= FindV̂(1t).
(c) For i = 1, . . . ,mΘ(t), compute θt,i(x) := FindΘ(1t, i).
(d) Output the basis

(
αV̂

1 (x), . . . , αV̂

m
V̂

(t)(x), θt,1(x), . . . , θt,mΘ(t)(x)
)
.

56

• Define the family Z =
{
ζt(x) ∈ Ft

}
t∈N by ζt(x) := xmV̂′ (t). Each ζt(x) can be efficiently

computed from the input 1t by the following algorithm:

FindZ(1t) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
; it has root x.

(b) Compute the dimension function mV̂′(t) := `(t) + κ(t) + 1 + mΘ(t).
(c) Compute the element xmV̂′ (t) of F2(x).
(d) Output xmV̂′ (t).

2. Constructing Parameter 2. Define the following two (proper) functions:

a dimension function mH : N→ N: mH(t) := mV̂(t) + mΘ(t) + 1 = `(t) + κ(t) + mΘ(t) + 2 ,

a time function tH : N→ N: tH(t) := tIrr(f(t)) +O(`(t) + κ(t) + mΘ(t)) .

3. Constructing Parameter 3. Define the family H =
{
Ht

}
t∈N by

Ht := V̂ ′t ∩
(
V̂ ′t + ζt(x)

)
.

Observe that

Ht = span
(
αV̂′

1 (x), . . . , αV̂′

m
V̂′ (t)

(x), ζt(x)
)
,

so that Ht is an mH(t)-dimensional linear subset of Ft specified by a basis

BHt :=
(
αH

1 (x), . . . , αH

mH(t)(x)
)

=
(
αV̂′

1 (x), . . . , αV̂′

m
V̂′ (t)

(x), ζt(x)
)
.

Moreover, the basis BHt for Ht can be efficiently computed from the input 1t by the following
algorithm:

FindH(1t) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
.

(b) Compute the basis
(
αV̂′

1 (x), . . . , αV̂′

m
V̂′ (t)

(x)
)

:= FindV̂′(1t).
(c) Compute the element ζt(x) := FindZ(1t).
(d) Output the basis

(
αV̂′

1 (x), . . . , αV̂′

m
V̂′ (t)

(x), ζt(x)
)
.

Note that FindH is a tH-time FindH-space algorithm, where:

tH(t) := tIrr(f(t)) +O(`(t) + κ(t) + mΘ(t)) .

matching the time complexity defined previously.

4. Constructing Parameter 4. Define the following three (proper) functions:

a neighborhood size function cN : N→ N: cN(t) := cC(t)(1 +
∣∣Af(t),κ(t),`(t)

∣∣) + 1 = cC(t)10 + 1 ,

a time function tN : N→ N: tN(t) := tIrr(f(t)) + tPrim(`(t)) + 2`(t) + 2κ(t) + 1 ,

a size function sN : N→ N: sN(t) := 2 .

Recall that Af(t),κ(t),`(t) is the set of affine functions obtained by invoking Lemma 8.11 with the
three positive integers f(t), κ(t), and `(t).

57

5. Constructing Parameter 5. Define the family N =
{
~Nt

}
t∈N by ~Nt := {Nt,1, . . . , Nt,cN(t) : Ft →

Ft}, where each Nt,i is a degree-1 polynomial and is defined as follows:

• Nt,k(z) := z + θ(k)(x), for k = 1, . . . , 2mΘ(t);

• Nt,2mΘ(t)+j+9(k−1)(z) := Nbin(j−1)(z) + θ(k)(x), for j = 1, . . . , 8 and k = 1, . . . , cC(t), where
N000, . . . , N111 are 8 among the 9 affine functions in the set Af(t),κ(t),`(t) obtained by invoking
Lemma 8.11 with the three positive integers f(t), κ(t), and `(t);

• Nt,2mΘ(t)+9+9(k−1)(z) := N×(z) + θ(k)(x), for k = 1, . . . , cC(t), where N× is the 9-th affine
function in the set Af(t),κ(t),`(t); and

• Nt,10·2mΘ(t)+1(z) := z + ζt(x).

Note that cN(t) = cC(t)(1 +
∣∣Af(t),κ(t),`(t)

∣∣) + 1, so there are no more neighbor functions to define
in ~Nt.

Moreover, the representation of each of the cN(t) affine functions in ~Nt can be efficiently computed
from the input 1t by the following algorithm: for i ∈ {1, . . . , cN(t)},

FindN(1t, i) ≡
(a) Compute the irreducible polynomial It := FindIrrPoly

(
1f(t)

)
; it has root x.

(b) For i = 1, . . . ,mΘ(t), compute the element θt,i(x) := FindΘ(1t, i).
(c) Compute the element ζt(x) := FindZ(1t).
(d) Compute the primitive polynomial Ξt := FindPrimPoly

(
1`(t)

)
.

(e) If i ∈ {1, . . . , cC(t)}, then letting σ1 · · ·σmΘ(t) := bin(i − 1) output (at,i(x), bt,i(x)) =

(1Ft ,
∑mΘ(t)

`=1 σ`θt,`(x)).
(f) If i = 2mΘ(t) + j + 9(k − 1) for some j ∈ {1, . . . , 9} and k ∈ {1, . . . , cC(t)}, then letting

σ1 · · ·σmΘ(t) := bin(k − 1) and θ(k)(x) :=
∑mΘ(t)

`=1 σ`θt,`(x),
i. If j = 1, then output (at,i(x), bt,i(x)) = (x, θ(k)(x)).
ii. If j = 2, then output (at,i(x), bt,i(x)) = (x, x`(t)+κ(t) + θ(k)(x)).
iii. If j = 3, then output (at,i(x), bt,i(x)) = (x, x`(t) + θ(k)(x)).
iv. If j = 4, then output (at,i(x), bt,i(x)) = (x, x`(t) + x`(t)+κ(t) + θ(k)(x)).
v. If j = 5, then output (at,i(x), bt,i(x)) = (x,Ξt(x) + θ(k)(x)).
vi. If j = 6, then output (at,i(x), bt,i(x)) = (x,Ξt(x) + x`(t)+κ(t) + θ(k)(x)).
vii. If j = 7, then output (at,i(x), bt,i(x)) = (x,Ξt(x) + x`(t) + θ(k)(x)).
viii. If j = 8, then output (at,i(x), bt,i(x)) = (x,Ξt(x) + x`(t) + x`(t)+κ(t) + θ(k)(x)).
ix. If j = 9, then output (at,i(x), bt,i(x)) = (1Ft , x

`(t)+κ(t) + θ(k)(x)).
(g) If i = 10 · cC(t) + 1, then output (at,i(x), bt,i(x)) = (1Ft , ζt(x)).

Note that FindN is a tN-time algorithm, where:

tN(t) := tIrr(f(t)) + tPrim(`(t)) +O(`(t) + κ(t) + mΘ(t)) .

matching the time complexity defined previously.

6. Constructing Parameter 6. Define the following four (proper) functions:

a size function tP : N→ N: tP(t) := sK(t) + cN(t) + mH(t) ,

a time function sP : N→ N: sP(t) := tK(t) + cN(t) + mH(t) .

58

⇥

+

bKt

Qt

Pt

cC

YFt,Ht,bVt

YFt,Ht,bV 0
t

ZFt,{0Ft ,1Ft }

⇣t⇧Ft,bVt,{0Ft,1Ft
},1

⇧Ft,bVt,{0Ft,1Ft
},mV̂

��1
f(t),(t),`(t),1

mV̂

mV̂ + cC

mV̂ + 1

1

mV̂ + cC + 1

mV̂ + 2cC

mV̂ + 3cC

mV̂ + 4cC

mV̂ + 2cC + 1

mV̂ + 3cC + 1

...

...

...

...

...

...

��1
f(t),(t),`(t),mV̂

MUX2f(t),3

MUX2f(t),3

...

MUX2f(t),3

MUX2f(t),3

...

...

...

...
...

...

cC + 1

2cC

17cC

17cC + 1

17cC + 1

18cC

1

...0

...

...
...

...

...
...

...

...

3 index bits

18cC + 1

⇥ +

Rt

...

Figure 2: Summary of the construction of Pt starting from Kt.

7. Constructing Parameter 7. We now wish to construct P starting from K. This transformation
is given in Figure 2.

8. Constructing Parameter 8. Define the following (proper) function:

a time function tI : N→ N: tI(t) := tW(t) + tΦ(t) = tW(t) + tPrim(`(t)) + `(t)2 log `(t) + f(t) .

Recall that tW is a function from Parameter 9 in Definition 6.15; also, tΦ is a function from
Lemma 8.12 invoked with the three positive integers f(t), κ(t), and `(t).

9. Constructing Parameter 9. Define the family I = {~It}t∈N = {(It,m)tm=1}t∈N by

FindI(1t, 1m) ≡
(a) If m ≤ s1(t)− s0(t) + 1:

i. For i ∈ {1, . . . ,m}, αI
i(x) := θt,i−1+s0(t)(x).

(b) Otherwise:
i. For i ∈ {1, . . . , s1(t)− s0(t) + 1}, αI

i(x) := θt,i−1+s0(t)(x).
ii. For i ∈ {s1(t)− s0(t) + 1, . . . ,m}, αI

i(x) := x`(t)−1 · xi−1−(s1(t)−s0(t)+1).
(c) Output the basis

(
αI

1(x), . . . , αI
m(x)

)
and offset 1Ft .

Thus, the algorithm FindI is a tI-time algorithm, where:

tI(t) := tW(t) + tΦ(t) ,

matching the time and space complexities defined previously.

The construction of the parameters for sACSP is now complete.

59

8.3 The Levin reduction for double extended De Bruijn graphs

We show that the parameter conversion discussed in Section 8.2 yields a Levin reduction (according
to Definition 8.1) from sGCP to sACSP with respect to the class of parameters considered in
Construction 8.15.

More precisely, consider the following definitions:

• Define PDDB to be the class of parameters for sGCP considered by Construction 8.15, i.e.,
those choices of parameters for which, for some proper functions κ, ` : N → N, for all t ∈ N,
αΓ(t) = 3 and Gt = DDB(κ(t), 2`(t) − 1).

• Define Fp : {0, 1}∗ → {0, 1}∗ to be the function that, on input a parameter choice parsGCP ∈
PDDB, performs the parameter conversion described in Construction 8.15. More precisely, Fp

works as follows:

parsGCP =

(cV, tV,FindV),
(αΓ, tΓ,FindΓ),
cC,
(sK, tK,FindK),
(tW,FindW),
(tF,CompF)

Fp7−→ parsACSP =

f,
(mH, tH,FindH),
(cN, tN, sN,FindN),
(tP, sP,FindP),
(tI,FindI)

,

where the mapping is done by following the definitions of the various new complexity functions
and algorithms (for sACSP) based on the old ones (for sGCP).

• Define Fw : {0, 1}∗ → {0, 1}∗ as follows: for every parsGCP ∈ PDDB, t ∈ N and C : V t → Ct,

Fw(parsGCP, 1
2t , C) ≡

1. Define C ′′ based on C ′ (©Equation©??), in turn based on C (©Equation©??). 6y6y6y6y
2. Define the function Ã : V̂ ′t → {0Ft , 1Ft} by Ã

(
α(x)

)
:=
(
C ′′ ◦ Φ−1

V̂ ′t

) (
α(x)

)
for all

α(x) ∈ V̂ ′t . (See©Equation©??.) 6y6y
3. Define the polynomial A : Ft → Ft as the low-degree extension of Ã in Ft, i.e., A :=

LDEFt,1,V̂t(Ã). (See©Equation©??.) 6y6y
4. Output A.

We prove the following theorem:

Theorem 8.16. The pair of functions (Fp, Fw) is a Levin reduction from sGCP to sACSP with
respect to PDDB.

We divide the proof of Theorem 8.16 into three claims:
• in Claim 8.17, we explain why both Fp and Fw are polynomial-time computable;
• in Claim 8.18, we show the “completeness” and “soundness” of Fp; and
• in Claim 8.19, we show that Fw produces good witnesses.

60

Claim 8.17. The functions Fp and Fw are polynomial-time computable.

Proof. The efficiency of Fp easily follows by inspection of how the parameters are converted in
Construction 8.15. (Essentially, all the new functions and algorithms are “easy combinations” of
previous functions and algorithms, and thus not hard to write down.) The efficiency of Fw easily
follows from the fact that it can run in time that is polynomial in 12t , which is plenty of time for
computing the low-degree extension of Ã based on the input coloring C.

Claim 8.18. For every choice of parameters parsGCP ∈ PDDB and for every instance (x, 1t) ∈ {0, 1}∗,
(x, 1t) ∈ sGCP(parsGCP) if and only if (x, 1t) ∈ sACSP(Fp(parsGCP)).

Proof. Fix a choice of parameters parsGCP ∈ PDDB for sGCP and an instance (x, 1t) ∈ {0, 1}∗.
Completeness. First, we prove the “completeness” direction of the statement: we need to prove that
if (x, 1t) ∈ sGCP(parsGCP) then (x, 1t) ∈ sACSP(Fp(parsGCP)). So suppose that (x, 1t) ∈ sGCP,
and let C : V t → Ct be a coloring that witnesses this fact. Define A := Fw(parsGCP, 1

2t , C). We now
argue that A is a witness for (x, 1t) ∈ sACSP(Fp(parsGCP)).

Following the definition of sACSP (Definition 6.18), there are two requirements to satisfy:

• Satisfiability of constraints. We need to show that the assignment polynomial A satisfies the
constraint polynomial Pt, i.e.,

∀α(x) ∈ Ht , Pt

(
α(x), A

(
Nt,1(α(x))

)
, . . . , A

(
Nt,cN(t)(α(x))

))
= 0Ft .

And, indeed, since C : V t → Ct satisfies the coloring constraints induced by Kt and Mt,

– C satisfies the coloring constraints induced by K̂t (see©Equation©??), so that 6y6y
– C satisfies the coloring constraints induced by Rt (see©Equation©??), so that 6y6y
– A satisfies the constraints polynomial Qt (see©Equation©??), so that 6y6y
– A satisfies the constraint polynomial Pt (see©Equation©??), 6y6y

as desired.

• Consistency with the instance. For every index i ∈ {1, . . . , |x|}, letm := dlog |x|e and αi,m(x) be
the i-th element in span(αI

1(x), . . . , αI
m(x)). We need to show that the assignment polynomial

A is consistent with the instance (x, 1t), i.e.,

x = bit
(
A(α1,m(x))

)
· · · bit

(
A(α|x|,m(x))

)
,

And, indeed, since we know that Ft
(
x,
(
C(vi)

)|x|
i=1

)
= 0, where vi is the i-th element in Wt,

and we also know by assumption that Ft(x, c1 · · · c|x|) is the test x ?
= c′1 · · · c′|x| where each c′i

is the substring of ci from bit s0(t) to bit s1(t), by our definition of A the above equation
holds: essentially, we have “distributed” the bit of each color of a vertex vi among various field
elements, and all of these field elements that are relevant for the test are accounted for in the
definition of It (see©Equation©??). 6y6y

61

This concludes the proof of the “completeness” direction of the statement.
Soundness. Next, we prove the “soundness” direction of the statement: we need to prove that
if (x, 1t) ∈ sACSP(Fp(parsGCP)) then (x, 1t) ∈ sGCP(parsGCP). So suppose instead that we have
(x, 1t) ∈ sACSP(Fp(parsGCP)), and let A : Ft → Ft be a polynomial that witnesses this fact. Consider
A|

V̂t
, the restriction of A to V̂t. We argue that A|

V̂t
takes on values in {0Ft , 1Ft}. Indeed, assume

by way of contradiction that there exists α(x) ∈ V̂t such that A(α(x)) 6∈ {0Ft , 1Ft}. Let α′(x) :=
Nt,cN(t)(α(x)) = α(x) + ζt(x), and note that α′(x) ∈ V̂t + ζt(x). By setting

(
x0, x1, . . . , xcN(t)

)
:=(

α(x), A(Nt,1(α(x))), . . . , A(Nt,cN(t)(α(x)))
)
, this means that the second summand in©Equation©?? 6y6y

does not vanish; since the first summand does vanish, we reach a contradiction to the fact that A is a
witness to (x, 1t) ∈ sACSP (because it does not satisfy the constraint polynomial Pt). We conclude
that A|

V̂t
takes on values in {0Ft , 1Ft}, as claimed. We can now define the function C : V t → Ct by

∀ v ∈ V t , C(v) :=
(
A
(
Φf(t),κ(t),`(t)(v) + θ(k)

))
k=1,...,cC(t)

. (10)

It is easy to see that C is a witness for (x, 1t) ∈ sGCP(parsGCP) by inspection of the construction.
This concludes the proof of the “soundness” direction of the statement. As both directions have now
been shown, the proof is now complete.

Claim 8.19. For every choice of parameters parsGCP ∈ PDDB and for every instance (x, 1t) ∈
{0, 1}∗, if C is a witness to “(x, 1t) ∈ sGCP(parsGCP)” then Fw(1t, C) is a witness to “(x, 1t) ∈
sACSP(Fp(parsGCP))”.

Proof. The claim follows immediately from the fact that in the proof of the “completeness” direction of
the statement from Claim 8.18, we have constructed, starting from a valid coloring C and according
to Fp, a valid assignment polynomial A for (x, 1t): by first considering the function Ã, and then
takings its low-degree extension over V̂t in Ft.

62

A Routing Networks

We provide additional details and references for the facts mentioned in Definition 6.2. Concretely,
we describe an algorithm for routing a given permutation over “three and a half” De Bruijn graphs
connected in tandem; this will imply, in particular, a proof of Claim 6.5. While the routing properties
of De Bruijn graphs are folklore, we have not been able to find explicit algorithms in the literature
for routing, so we devote this section to deduce an explicit routing algorithm.

A.1 Butterfly Networks and Isomorphic Graphs of Interest

We begin by introducing a fundamental family of graphs studied in parallel systems: butterfly
networks.

Definition A.1. Let κ be a positive integer. The κ-dimensional butterfly network, denoted BNκ,
is a directed graph consisting of κ + 1 “columns” each containing 2κ vertices identified with κ-bit
strings. A vertex v in layer i ∈ {0, . . . , κ− 1} with identifier w ∈ {0, 1}κ has two neighbors in layer
i+ 1 with identifier w and w ⊕ ei+1. (See Figure 3 for an example.)

A reversed butterfly network is, as the name suggests, obtained by reversing the direction of the
edges in a butterfly network:

Definition A.2. Let κ be a positive integer. The κ-dimensional reversed butterfly network,
denoted BNr

κ, is a directed graph consisting of κ+ 1 “columns” each containing 2κ vertices identified
with κ-bit strings. A vertex v in layer i ∈ {0, . . . , κ−1} with identifier w ∈ {0, 1}κ has two neighbors
in layer i+ 1 with identifier w and w ⊕ eκ−i. (See Figure 4 for an example.)

The reversed butterfly network BNr
κ is in fact isomorphic to the butterfly network BNκ via a

graph isomorphism permuting the rows by reversing the bits of a row’s identifier.

Claim A.3. Let κ be a positive integer. The map φκ : {0, . . . , κ} × {0, 1}κ → {0, . . . , κ} × {0, 1}κ
defined by φκ(i, w) = (i, wr) is a graph isomorphism from BNr

κ to BNκ.

Note that indeed the graph isomorphism φκ is “row-rigid” in the sense that it only “shuffles” the
rows of the reversed butterfly network, by mapping a row with identifier w to the row wr.

Proof. Let a = ((i, w), (i+ 1, w′)) be an edge in BNr
κ. Then:

• If w′ = w, then φκ(a) = ((i, wr), (i+ 1, wr)) is an edge in BNκ.

• If w′ = w ⊕ eκ−i, then φκ(a) = ((i, wr), (i+ 1, (w ⊕ eκ−i)r)) = ((i, wr), (i+ 1, wr ⊕ ei+1)) is an
edge in BNκ.

Conversely, let b = ((i, w), (i+ 1, w′)) be an edge in BNκ. Then:

• If w′ = w, then φ−1
κ (b) = ((i, wr), (i+ 1, wr)) is an edge in BNr

κ.

• If w′ = w⊕ ei+1, then φ−1
κ (b) = ((i, wr), (i+ 1, (w⊕ ei+1)r)) = ((i, wr), (i+ 1, wr ⊕ eκ−i)) is an

edge in BNr
κ.

As there are the same number of edges in both BNr
κ and BNκ, the proof of the claim is complete.

We shall also be interested in De Bruijn graphs.

63

Definition A.4. Let κ be a positive integer. The κ-dimensional De Bruijn graph, denoted DBκ,
is a directed graph consisting of κ + 1 “columns” each containing 2κ vertices identified with κ-bit
strings. A vertex v in layer i ∈ {0, . . . , κ− 1} with identifier w ∈ {0, 1}κ has two neighbors in layer
i+ 1 with identifier sr(w) and sr(w)⊕ e1, where sr denotes the cyclic “shift right” bit operation. (See
Figure 5 for an example.)

A De Bruijn graph DBκ is also isomorphic to the butterfly network BNκ via a graph isomorphism
that cyclically shifts the bits of the identifier of a vertex depending on the index of the column in
which the vertex lies.

Claim A.5. Let κ be a positive integer. The map ψκ : {0, . . . , κ} × {0, 1}κ → {0, . . . , κ} × {0, 1}κ
defined by ψκ(i, w) = (i, sri−1(wr)) is a graph isomorphism from BNκ to DBκ.

Note that, unlike the graph isomorphism from a reversed butterfly network to a butterfly network,
the graph isomorphism from a butterfly network to a De Bruijn graph does not “mess up” the order
of vertices in the first and last columns; this fact is important later in this section because it implies
that the graph isomorphism easily extends to when networks are connected in tandem.

Proof. Let a = ((i, w), (i+ 1, w′)) be an edge in BNκ. Then:

• If w′ = w, then ψκ(a) = ((i, sri−1(w)r), (i+ 1, sri(wr))) is an edge in DBκ.

• If w′ = w ⊕ ei+1, then ψκ(a) = ((i, sri−1(wr)), (i + 1, sri((w ⊕ ei+1)r))) = ((i, sri−1(wr)), (i +
1, sri(wr)⊕ e1)) is an edge in DBκ.

Conversely, let b = ((i, w), (i+ 1, w′)) be an edge in DBκ. Then:

• If w′ = sr(w), then φ−1
κ (b) = ((i, sli−1(w)r, (i+1, sli(sr(w))r)) = ((i, sli−1(w)r, (i+1, sli−1(w)r))

is an edge in BNκ.

• If w′ = sr(w) ⊕ e1, then φ−1
κ (b) = ((i, sli−1(w)r, (i + 1, sli(sr(w) ⊕ e1)r)) = ((i, sli−1(w)r, (i +

1, sli−1(w)r ⊕ ei+1)) is an edge in BNκ.

As there are the same number of edges in both BNκ and DBκ, the proof of the claim is complete.

0 1 2 3
000

001

010

011

100

101

110

111

Figure 3: Three-dimensional
butterfly network.

0 1 2 3
000

001

010

011

100

101

110

111

Figure 4: Three-dimensional
reversed butterfly network.

0 1 2 3
000

001

010

011

100

101

110

111

Figure 5: Three-dimensional
De Bruijn graph

64

A.2 Beneš Networks and Their Rearrangeability

A Beneš network is a routing network that is able to route any permutation [Ben65]; this property
is known as re-arrangeability.

A Beneš network is the “concatenation” of a butterfly network and a reversed butterfly network:

Definition A.6. Let κ be a positive integer. The κ-dimensional Beneš network, denoted Benešκ,
is a κ-dimensional butterfly network and a κ-dimensional reversed butterfly network connected in
tandem. More precisely, Benešκ is a directed graph with 2κ+ 1 “columns” numbered 0, . . . , 2κ, each
containing 2κ vertices identified with κ-bit strings; a vertex v = (i, w) in layer i ∈ {0, 1, . . . , 2κ− 1}
with identifier w ∈ {0, 1}κ has two neighbors in layer i+ 1 with identifiers w and w⊕ ai respectively,
where ai ∈ {0, 1}κ is equal to ei+1 if i ∈ {0, . . . , κ− 1} and is equal to e2κ−i if i ∈ {κ, . . . , 2κ− 1}.

More concretely, an κ-dimensional Beneš network can be used to route either 2κ+1 packets using
edge disjoint paths (where each vertex in the network receives and sends two packets) [Lei92, Theorem
3.10] or to route 2κ packets using vertex disjoint paths (where each vertex in the network receives
and sends exactly one packet) [Lei92, Theorem 3.11].

As we are interested in the latter form of routing, we recall explicitly the theorem and its con-
structive proof:

Theorem A.7 ([Wak68, OTW71, Lei92]). Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a
permutation. There exists a set Sπ of 2κ vertex-disjoint paths such that each vertex (0, w) in Benešκ
is connected to (2κ+ 1, π(w)). Moreover, Sπ can be found in O(κ · 2κ) time and space.

Nassimi and and Sahni [NS82] show how to modify the algorithm from the proof of Theorem A.7
to run in parallel time O(κ2).

Proof. The existence of the “routing” Sπ will follow from the correctness of the algorithm that we
present, which will always return a valid solution.

First let us describe the idea at high level. The idea is to use the recursive structure of a Beneš
network; indeed, note that, by removing the “leftmost” and “rightmost” layers of a Beneš network
(i.e., layer 0 and layer 2κ), we obtain two (κ − 1)-dimensional Beneš networks — a “top” one and
a “bottom” one. We can recursively solve any routing problem on the smaller Beneš networks, and
thus we are left to reduce the routing on the original network to use the routing on the smaller
sub-networks. (And, of course, the base case with κ = 1 is trivial to solve.)

A fast algorithm immediately follows from the above intuition. Indeed, consider the algorithm
BenešRoute that, on input a positive integer κ and π : {0, 1}κ → {0, 1}κ (specified as a table), is
defined as follows:

BenešRoute(κ, π) ≡

1. If κ = 1, then:

(a) If π(0) = 0 and π(1) = 1 then route both (0, 0) and (0, 1) using identity edges.
(b) Otherwise, if π(0) = 1 and π(1) = 0 then route both (0, 0) and (0, 1) using cross

edges.

2. If κ > 1, then repeat the following until all vertices in the column 0 are routed:

(a) Choose vertex u = (0, w) that is not routed ant let (2κ,w′) where w′ = π(w).
(b) Route u using the upper sub-network:

i. “Forward” route u to (1, w) if w1 = 0 and to (1, w ⊕ e1) otherwise.

65

ii. “Backward” route (2κ,w′) to (2κ − 1, w′) if w′1 = 0 and to (2κ − 1, w′ ⊕ e1)
otherwise.

(c) Set π′(ŵ) to be ŵ′ where ŵ and ŵ′ are the least significant κ − 1 bits of w and w′

respectively.
(d) Route (2κ,w′⊕ e1) using the lower sub-network: Let (0, w′′) be the source of (2κ,w′)

where w′′ = π−1(w′).
i. Route (2κ,w′) to (2κ− 1, w′) if w′1 = 1 and to (2κ,w′ ⊕ e1) otherwise.
ii. Route (0, w′′) to (1, w′′) if w′′1 = 1 and to (1, w′′ ⊕ e1) otherwise.

(e) Set π′′−1(ŵ′) to be ŵ′′ where ŵ′ and ŵ′′ are the least significant κ− 1 bits of w′ and
w′′ respectively.

(f) Set u = (0, w′′ ⊕ e1).
(g) If u is routed then goto Step 2 Otherwise goto Step 2b.

3. Run BenešRoute(κ− 1, π′) recursively on the upper sub-network.

4. Run BenešRoute(κ− 1, π′′) recursively on the lower sub-network.

The correctness of BenešRoute easily follows from an induction argument. Furthermore, since the
algorithm visits every vertex in Benešκ a constant number of times and Benešκ has (κ + 1) · 2κ
vertices, we deduce that the space and time complexities are O(κ · 2κ).

Example A.1. We give a pictorial example for the computation of BenešRoute(3, π) when π is
given by the following permutation:

000 7→ 010 , 001 7→ 011 , 010 7→ 101 , 011 7→ 110 , 100 7→ 000 , 101 7→ 001 , 110 7→ 111 , 111 7→ 100 .

Step 1: Step 2:

00 7→ 10

Step 3:

00 7→ 10

Step 4:

00 7→ 10

11 7→ 10

66

Step 5:

00 7→ 10

11 7→ 10

Step 6:

00 7→ 10
11 7→ 00

11 7→ 10

Step 7:

00 7→ 10
11 7→ 00

11 7→ 10

Step 8:

00 7→ 10
11 7→ 00

11 7→ 10
00 7→ 00

Step 9:

00 7→ 10
11 7→ 00

11 7→ 10
00 7→ 00

Step 10:

00 7→ 10
11 7→ 00
01 7→ 11

11 7→ 10
00 7→ 00

Step 11:

00 7→ 10
11 7→ 00
01 7→ 11

11 7→ 10
00 7→ 00

Step 12:

00 7→ 10
11 7→ 00
01 7→ 11

11 7→ 10
00 7→ 00
10 7→ 11

67

Step 13:

00 7→ 10
11 7→ 00
01 7→ 11

11 7→ 10
00 7→ 00
10 7→ 11

Step 14:

00 7→ 10
11 7→ 00
01 7→ 11
10 7→ 01

11 7→ 10
00 7→ 00
10 7→ 11

Step 15:

00 7→ 10
11 7→ 00
01 7→ 11
10 7→ 01

11 7→ 10
00 7→ 00
10 7→ 11

Step 16:

00 7→ 10
11 7→ 00
01 7→ 11
10 7→ 01

11 7→ 10
00 7→ 00
10 7→ 11
01 7→ 01

Step 17:

00 7→ 10
11 7→ 00
01 7→ 11
10 7→ 01

11 7→ 10
00 7→ 00
10 7→ 11
01 7→ 01

Step 18:

In the last step, the algorithm recursively routes the upper permutation through the upper sub-
network and the lower permutation through the lower sub-network, and finally obtains the desired 8
vertex disjoint paths.

A.3 Routing Bit-Reversal Permutations

The κ-dimensional bit-reversal permutation brκ : {0, 1}κ → {0, 1}κ is the permutation that, for every
w ∈ {0, 1}κ, is defined by brκ(w) := wr.

We observe that two butterfly networks connected in tandem are capable of “routing” the bit-
reversing permutation.

Claim A.8. Let κ be a positive integer. The permutation brκ can be routed on two κ-dimensional
butterfly networks connected in tandem. Moreover, the routing can be found in O(κ · 2κ) time and
space.

68

Proof. Consider the operations of “fold left” and “fold right”, denoted flκ and frκ respectively, on a
κ-bit string w that are defined as follows: letting w = σ0||σ1 if κ is even and w = σ0||b||σ1 if κ is
odd, with |σ0| = |σ1| and b ∈ {0, 1},

fold left fold right
even case σ0||σ1 −→ (σ0 ⊕ σr

1)||σ1 σ0||σ1 −→ σ0||(σ1 ⊕ σr
0)

odd case σ0||b||σ1 −→ (σ0 ⊕ σr
1)||b||σ1 σ0||b||σ1 −→ σ0||b||(σ1 ⊕ σr

0)
.

Now observe that brκ(w) =
(
flκ ◦ frκ ◦ flκ

)
(w).

We now show the following two facts:

1. One can route flκ using layers 0 through dκ/2e of a κ-dimensional butterfly network. The proof
is by induction over the dimension κ:

• For κ = 1, we have that fl1 is the identity permutation and thus can be trivially routed
using layers 0 and 1 of a 1-dimensional butterfly network by simply using the two straight
edges.
• For κ = 2, the routing is the following:

0 1 2
00

01

10

11

• For κ > 2, define the function fκ : {0, 1}κ → {0, 1}κ as follows

fκ(w1 · · ·wκ) = w1 ⊕ wκ||w2 · · ·wκ .

For any w ∈ {0, 1}κ, flκ(w) can be computed using fκ and flκ−2 in the following way:
(a) Compute w1 ⊕ wκ||w2 · · ·wκ ← fκ(w).
(b) Compute w′ = flκ−2(w2 · · ·wκ−1).
(c) Output w1 ⊕ wκ||w′||wκ.
Recall that each vertex (i, w) is connected to (i+1, w) and (i+1, w⊕ei+1) in BNκ. Thus,
we can first route any (0, w) to (1, fκ(w)) using layers 0 and 1 of the butterfly network, by
choosing the appropriate edge depending on wκ. Then, using the induction hypothesis,
we can route each vertex (1, w1 · · ·wκ) to (dκ/2e, w1||flκ−2(w2 · · ·wκ−1)||wκ) using the two
(κ − 1)-dimensional subnetworks corresponding to the two different “fixed” values of w1.
This could be done since by the induction hypothesis for any w2 · · ·wκ−1 we can route
(1, w2 · · ·wκ−1) to (d(κ − 2)/2e, flκ−2(w2 · · ·wκ−1)) using a (κ − 2)-dimensional network
and therefore any (1, w2 · · ·wκ) can be routed to (d(κ− 1)/2e,
flκ−2(w2 · · ·wκ−1)||wκ) using a (κ− 1)-dimensional butterfly network.

2. One can route frκ using layers dκ/2e through κ of a κ-dimensional butterfly network.

• For κ = 1, we have that fr1 is the identity permutation and thus can be trivially routed
using layers 0 and 1 of a 1-dimensional butterfly network by simply using the two straight
edges.

69

• For κ = 2, the routing is the following:

0 1 2
00

01

10

11

• For κ > 2, define the function gκ : {0, 1}κ → {0, 1}κ as follows

gκ(w1 · · ·wκ) = w1 · · ·wκ−1||wκ ⊕ w1 .

For any w ∈ {0, 1}κ, frκ(w) can be computed using gκ and frκ−2 in the following way:
(a) Compute w′1 · · ·w′κ−1 = frκ−2(w2 · · ·wκ−1).
(b) Compute w1||w′1 · · ·w′κ−1||wκ ⊕ w1 ← fκ(w1||w′1 · · ·w′κ−1||wκ).
(c) Output w1||w′1 · · ·w′κ−1||wκ ⊕ w1.
By using the induction hypothesis, we know that we can route each vertex (dκ/2e, w1 · · ·wκ)
to
(κ− 1, w1||frκ−2(w2 · · ·wκ−1)||wκ) using the 2bκ/2c dκ/2e-dimensional subnetworks corre-
sponding to the four different “fixed” values for the tuple (w1, · · · , wbκ/2c). Recall that
each vertex (i, w) is connected to (i + 1, w) and (i + 1, w ⊕ ei+1) in BNκ. Thus, we can
next route any (κ− 1, w) to (κ, gκ(w)) using layers κ− 1 and κ of the butterfly network,
by choosing the appropriate edge depending on wκ.

Finally, we note that we are essentially done: to route brκ = flκ ◦ frκ ◦ flκ on two κ-dimensional
butterfly networks connected in tandem, we first route flκ using the first half of the first network,
then route frκ using the second half of the first network, then route flκ using the first half of the
second network, and then finally route the identity permutation using the remaining second half of
the second network.

A.4 Simulating Beneš Networks with Butterfly Networks

Recall that a Beneš network is the concatenation of a butterfly network and a reversed butterfly
network. For technical reasons, the reversed butterfly network is very inconvenient from an arithme-
tization standpoint (due to the need to keep the out-degree of the graph embedding in Section 8 as
low as possible). Thus, we seek to do without it.

Specifically, we now show how, as far as routing is concerned, the reversed butterfly network can
be “simulated” via five butterfly networks. In particular, because Beneš networks are re-arrangeable
(see Theorem A.7), we deduce that so are six butterfly networks connected in tandem, a graph which
we denote BN‡6κ .

The high level idea is to simply use the the graph isomorphism from a reversed butterfly network
to a butterfly network given by Claim A.3. However, the isomorphism “messes up” the connections
with the preceding butterfly network. Fortunately, the isomorphism only shuffles rows of the re-
versed butterfly network according to a bit reversal permutation, and therefore we can “undo” the
damage by preceding and following the butterfly network obtained by the isomorphism by bit-reversal
permutations (each of which can be realized with two butterfly networks, as we saw in Claim A.8).

We therefore obtain the following claim:

70

Claim A.9. Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a permutation. There exists a set
S′π of 2κ vertex-disjoint paths such that each vertex (0, w) in BN‡6κ is connected to (6κ + 1, π(w)).
Moreover, S′π can be found in O(κ · 2κ) time and space.

Proof. Invoking Theorem A.7, we know that we can find (efficiently) a set of paths Sπ routing π on
a κ-dimensional Beneš network. We show how to map the 2κ vertex-disjoint paths Sπ over Benešκ
to 2κ vertex-disjoint paths S′π over BN‡6κ , by appropriately replacing the “second half” of each path p
in Sπ (that is the part of the path that would have traveled through the reversed butterfly network,
which needs to be simulated).

Specifically, for each path p in Sπ write p = p1p2 by “splitting” the path in half; note that p2 uses
the reversed butterfly network. Let w and w′ be the starting vertex and ending vertex in the path
p2. Our strategy is to replace p2 with a new (longer) path p′2, over five butterfly networks, that is
equivalent to p2 as far as routing is concerned. Concretely, let p̃2 be the path obtained by taking
the image of p2 under φκ (the graph isomorphism from BNr

κ to BNκ); then set p′2 := qap̃2qb where
qa and qb are respectively the paths (each over two butterfly networks) used to route w and (w′)r

according to the bit-reversal permutation obtained via Claim A.8.
It is then easy to verify that the path p′ = p1p

′
2 has the same “end points” as p but, instead of

using a Beneš network, uses six butterfly networks connected in tandem. Note that the collection
S′π of paths p′ obtained as above, each from a path p in Sπ, is indeed vertex-disjoint (as each of the
three “segments” qa, p̃2, and qb of p′2 were picked without replacement from vertex-disjoint sets of
paths) and routes π.

Finally, the efficiency guarantees of Theorem A.7 and Claim A.8, as well as the efficiency of
computing φκ, easily imply an algorithm with the claimed efficiency.

In fact, we can improve Claim A.9 to use only four butterfly networks connected in tandem,
by simply omitting the bit reversal permutation carried out by the last two butterfly networks, by
simply routing a different permutation π′ obtained from π which already reverses the bits of the
output of π.

Claim A.10. Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a permutation. There exists a set
S′π of 2κ vertex-disjoint paths such that each vertex (0, w) in BN‡4κ is connected to (4κ + 1, π(w)).
Moreover, S′π can be found in O(κ · 2κ) time and space.

Proof. We can modify the proof of Claim A.9 by routing the permutation π′ := brκ ◦ π on the
first four butterfly networks and neglecting to use the last two butterfly networks to “undo” the bit
reversal over rows induced by the graph isomorphism φκ.

A.5 De Bruijn Graphs and Their Rearrangeability

We finally deduce the fact that four De Bruijn graphs connected in tandem form a rearrangeable
network.

Claim A.11. Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a permutation. There exists a set
S′′π of 2κ vertex-disjoint paths such that each vertex (0, w) in DB‡4κ is connected to (4κ + 1, π(w)).
Moreover, S′′π can be found in time and space O(κ · 2κ) or parallel time O(κ2).

Proof. From Claim A.5 (and the comment after it), we deduce that there is a graph isomorphism
from BN‡4κ to DB‡4κ that preserves the order of the first and last column. Therefore, in order to find
the desired set of paths S′′π we can simply take the image under the graph isomorphism of each path
in the set S′π guaranteed by Claim A.10. The efficiency of the algorithm follows from the efficiency
guarantees of Claim A.5 and the efficiency of computing the graph isomorphism. Parallelism is
preserved.

71

How to route with only 3κ+ dκ/2e (“three and a half ”) De Bruijn graphs connected in tandem?
To begin with, we note that we can already “save a column”: in light of the explicit algorithm in

the proof of Theorem A.7, we could have defined Beneš networks (Definition A.6) to only have 2κ
columns (by avoiding the repeated “minimal cross” at the juncture of the butterfly network and the
reversed butterfly network), and the Beneš network routing algorithm could have still been made to
work.

Then, to save a half of a De Bruijn, we do as follows:

1. Find first a set of paths routing the given permutation on the newly defined Beneš network.

2. Use the first κ + 1 De Bruijn columns (i.e., column 0 through κ) to hold the partial paths on
the first κ+ 1 Beneš columns.

3. Then use De Bruijn columns κ through 2κ + dκ/2e to route a bit-reversing permutation, fol-
lowing Claim A.8.

4. Then use De Bruijn columns 2κ+ dκ/2e through 3κ+ dκ/2e − 1 to hold the partial paths on
the Beneš columns κ+ 1 through 2κ− 1.

Overall we have used 3κ+ dκ/2e De Bruijn columns.

72

B Circuit Diagrams17

Let M = 〈w, k,A,C〉 be a random-access machine. (See definitions in Section 6.4.) Let us recall and
define some notation: w is the register width, k is the number of registers, (1 + k)w is the size of a
configuration, n is the number of instructions, u is the width of an opcode. We provide details for
the circuits we encounter in this paper:

• in Section B.1, we give the circuit for the transition function δM of M , and

• in Section B.2, we give the circuit for the coloring constraint function obtained in the reduction
from BHRAM(M) to sGCP from Section 7.

Notation. We use AND, OR, XOR, and NOT gates, as well as standard components such as
MUX, DEMUX, and CMP (comparator). For CMP taking two input wires x and y, we label the
output by “=”, “>”, or “<”, to mean that the output is 1 if x = y, x > y, and x < y respectively.
Also, IF a circuit that, on input a decision bit b, decides to output one of two input bits x or y.

B.1 Transition Function

w(k+1)

code

OUT
ENFORCER

AND

ALU

CONSISTENCY
ENFORCERn

PC R0,…,Rk-1 PC’ R0’,…,Rk-1’

MUX

MUX

arg1

MUX

arg2
log(k+1)

log(k+1)

w
w(k+1)

MUX

result

CMP

w

w

log(k+1)

opcode
u

SIF

IS_ALU_OK

=

OR

XOR AND

NOT

Figure 6: High-level view of a circuit for δM , the transition function of M . (See Defini-
tion 6.12.) There are three main “modules”: the consistency enforcer is given in Figure 7,
the out enforcer is given in Figure 8, and the special-instruction flag (SIF) is given in
Figure 9. We do not provide a circuit for the arithmetic logic unit (ALU).

17We are grateful to Ohad Barta for carefully reviewing and providing corrections to the circuits of this section.

73

PC

Rk-1PC’ Rk-1’

result
DEMUX

CMP CMP

WAS_ Rk-1_WRITTEN

WAS_PC_WRITTEN OR

OR

=

=

AND

log(k+1)

w

ww w

...

CLA adder

1

OR

=

WAS_ R0_WRITTEN

R0 R0’

...

ww

CMP

...

Figure 7: The consistency enforcer outputs 1 if and only if all the registers but the
destination register are the same.

PC’

CMP

R0’,…,Rk-1’

=

w
kw

opcode

CMP

OUT

uu

AND=

0

kw

NOT

w

Figure 8: The out enforcer outputs 1 if and only if the opcode is out, pc′ = 0, and all
the primed registers are 0.

load store readA

CMP CMP CMP

XOR

=
= =

readB

CMP

=

u u u u u

opcode

Figure 9: The special-instruction flag (SIF) outputs 1 if and only if the opcode is one
of the “special” instructions (namely, readA, readB, load, and store).

74

B.2 Coloring Constraint Function For sGCP

τ SS3τ3

t
w(k+1) w(k+1)

S2τ2s2s3 swib S1τ1s1

w(k+1)

CHECK CONDITIONS
1,2, and5

CHECK CONDITIONS
3 and 4

XOR

t t t w(k+1)

NOT

t

Figure 10: High-level view of a circuit for Kt (see Equation 3), i.e., the above circuit
outputs 1 if and only if the colors in the neighborhood of a vertex (b, i, w) in an extended
De Bruijn graph satisfy the requirements of Definition 7.12. The circuit has two main
components, the first checking items 1, 2, and 5 of the definition (given in Figure 11), and
the second checking items 3 and 4 of the definition (given in Figure 12).

τ S
S1τ1

t

w(k+1)

S2τ2s2s1
swib

CMP0

S3τ3s3

CMP

t

CMP

w(k+1)

NOT

NOT

AND

=

=
CMP

=
AND

OR

NOT

t

CMP=

AND

CMP

CMP

=

=

XOR

CMP

AND

=

=

AND

OR

t t

NOT

CMP

=

NOT

L-1

w(k+1)

w(k+1)

Figure 11: Outputs 1 if and only if two colors of neighbors in an extended De Bruijn graph
satisfy conditions 1, 2, and 5 of the validity part in Definition 7.12.

75

τ SS1τ1

t
w(k+1)

S2τ2 s2s1 swi b

w(k+1)
t CMP L-1

=

CODE
CONSISTENCY

CODE
CONSISTENCY

t

MEMORY
CONSISTENCY

MEMORY
CONSISTENCY

IF CIRCUIT
IF CIRCUIT

IF CIRCUIT

IF CIRCUIT

0

w(k+1)

CMP

AND

Figure 12: Outputs 1 if and only if two colors of neighbors in an extended De Bruijn graph
satisfy conditions 3 and 4 of the validity part in Definition 7.12. The modules of code
consistency and memory consistency are respectively given in Figure 13 and Figure 14.

τ S S’τ’

TRANSITION

FUNCTION

CLA

ADDER

1

CMP

AND=

t w(k+1)

w(k+1)

t

NOT

t

Figure 13: This circuit outputs 1 if and only if τ ′ = τ + 1 and S S′.

76

code

n

PC R0,…,Rk-1 PC’R0’,…,Rk-1’

MUX

wk wk

opcode MUX
code

CMP

pload

CMP

store

CMP

pload

CMP

store

opcode

XOR

= =
XOR

= =

CMP

OR

=

AND

NOT

τ τ'

MEMORY

ORDER

XOR

w

u

n

w

u

Figure 14: Outputs 1 if and only if both S and S′ contain memory instructions and (τ ′, S)
precedes (τ ′′, S′) in memory (see Definition 7.2) or (τ ′′ = τ ′ ∧ S′ = S). The memory-order
module is given in Figure 15.

code

PC R0,…,Rk-1 PC’ R0’,…,Rk-1’

MUX

MUX

arg1

MUXarg2

w

opcode

τ ‘τ

CMP code
MUX

MUX arg1

MUX arg2

opcode

CMP

CMP

pload
pload

CMP

CMP

store

store

AND

= =

= =

AND

<

CMP

<
CMP

AND

Def 7.2

(i)

=

CMP

XOR
XOR

=

IF

CIRCUIT

=

AND

Def 7.2

(ii)

0

CMP

AND

Def 7.2

(iii)

=

XOR

n log(k+1)

log(k+1)

n

IF

CIRCUIT

1

=

=

0

CMP

0

=

wkwkw

t t

t

log(k+1)

log(k+1)

u
u

log(k+1)

w

w

w

t

w

w

w

Figure 15: Outputs 1 if and only if the two input configurations are memory ordered as
defined in Definition 7.2.

77

C Finite Fields and Efficient Computation

We review some computational properties of finite fields; we also develop a number of algorithmic
results that are crucial for “arithmetizing” graph coloring problems in Section 8 in a way that ensures
that certain high-degree polynomials have small arithmetic circuits computing them.

Throughout, linearized polynomials (see [LN97, Section 2.5]) will play a crucial role both for
speeding up further already efficient computations (e.g., faster interpolation and evaluation algo-
rithms in Section C.3 and Section C.4) as well as for ensuring that certain high-degree polynomials
can be computed efficiently (in Section C.6 and Section C.7).

Whenever possible, we state results for a generic field characteristic p; we will be explicit when
we must take p = 2 (which ultimately is the special case of our interest). Also, whenever we
make statements about the time or space complexity of an algorithm, we will make the simplifying
assumption that basic field operations can be performed in unit time and field elements can be stored
at unit cost.

C.1 Irreducible and Primitive Polynomials

We represent elements of a finite field as polynomials modulo an irreducible polynomial of the ap-
propriate degree. Specifically, to represent elements of Fq, where q = pf and p is the characteristic
of Fq: we consider any irreducible polynomial I over Fp of degree f ; I has a root x in Fq and thus
Fq = Fp(x), so that every element of Fq can be uniquely expressed as a polynomial in x over Fp of
degree less than f . See [LN97, Section 2.5] for more details. In particular, this representation will
allow us to perform field operations in time that is polylogarithmic in the field size and space that
is logarithmic in the field size.

Irreducible polynomials of a given degree over a finite field can be found deterministically, in
polynomial time if the characteristic is small [Sho88, Corollary 3.2]:

Theorem C.1 (Finding Irreducible Polynomials). There exists a deterministic algorithm FindIrrPoly
that, on input (p, 1f) where p is a prime and f is a positive integer, computes an irreducible poly-
nomial I of degree f over Fp in time poly(p, f). Specifically, there exists a universal constant c > 0
such that the running time of FindIrrPoly(p, 1f) is

O
(
p1/2+cf3+c + (log p)2f4+c

)
;

in particular, FindIrrPoly(1f) := FindIrrPoly(2, 1f) runs in polynomial time. (For convenience,
we denote by tIrr the time complexity of this algorithm.)

We will only deal with (finite) fields of characteristic 2, so, for simpliciy, every time we invoke
FindIrrPoly, we will leave implicit the first input p = 2, and write only FindIrrPoly(1f).

Next, we recall the definition of a primitive polynomial; for more details about primitive polyno-
mials, see [LN97, Section 3.1].

Definition C.2. Let p be a prime and ` a positive integer. A polynomial Ξ of degree ` over Fp is
primitive over Fp if Ξ is the minimal polynomial over Fp of a primitive element of Fp`.

Finding primitive polynomials is not known to be easy:

Theorem C.3 (Finding Primitive Polynomials). There exists a deterministic algorithm FindPrimPoly
that, on input (p, 1`) where where p is a prime and ` is a positive integer, computes a primitive polyno-
mial Ξ of degree ` over Fp in time poly(p`). We define FindPrimPoly(1`) := FindPrimPoly(2, 1`).
(For convenience, we denote by tPrim time complexity of this algorithm.)

78

Proof. Shoup [Sho99] shows how to compute a minimal polynomial of degree ` in time poly(`).
Hence, the “hard” part is to find a primitive element of Fp` . Shparlinski [Shp96] shows that a
primitive element of Fp` can be found in time approximately O(p`/4).

Nonetheless, we will usually be interested in primitive polynomials of low degree, so the ineffi-
ciency of finding them will not matter. (And, in practice, one always relies on pre-computed tables
anyways; see Remark C.6.)

We use primitive polynomials in Section 8 to create “artificial” cyclic groups inside a finite field
of characteristic 2, in order to embed a certain graph into an affine graph over the finite field. The
ability to create cyclic structure is given by the following claim:

Claim C.4. Let ` be a positive integer, and let Ξ be a primitive polynomial of degree ` over F2.
Then, for any non-negative integers i and j, xi and xj are congruent modulo the polynomial Ξ if and
only if i and j are congruent modulo 2` − 1.

Proof. Recall the following fact:

Theorem ([LN97, Theorem 3.18]). Let p be a prime. The monic polynomial P of positive
degree m over Fp is a primitive polynomial over Fp if and only if (−1)mP (0) is a primitive
element of Fp and the least positive integer r for which xr is congruent modulo P to some
element of Fp is r = pm−1

p−1 . In case P is primitive over Fq, we have xr ≡ (−1)mP (0) mod
P (x).

We invoke the above theorem with p := 2, P := Ξ, and m := `. We obtain that r = 2`−1. Moreover,
since Ξ is primitive, Ξ(0) 6= 0 (by [LN97, Theorem 3.16]) and thus, over a field of characteristic
2, we have that (−1)mΞ(0) = Ξ(0) = 1. We deduce that 1, x, . . . , x2`−2 6≡ 0, 1 mod Ξ(x) and
x2`−1 ≡ 1 mod Ξ(x), thereby proving the claim.

The above claim gives us the following simple corollary:

Corollary C.5. Let ` and Ξ as in Claim C.4. Define ξi(x) := xi mod Ξ(x) for i = 0, . . . , 2` − 2.
Then, for any i ∈ {0, . . . , 2` − 2} and positive integer c,

ξ(i+c mod (2`−1))(x) = xc · ξi(x) +Q(x) · Ξ(x) ,

where Q(x) is the (unique) polynomial quotient in F2[x] when dividing xc · ξi(x) by Ξ(x).

Proof. The corollary easily follows from the definition of the ξ0(x), . . . , ξ(2`−2)(x), Claim C.4, and
the definition of congruence under division of univariate polynomials:

ξ(i+c mod (2`−1))(x) = x(i+c mod (2`−1)) mod Ξ(x) (by definition of ξ(i+c mod (2`−1))(x))

≡ xi+c mod Ξ(x) (since xi ≡ xj mod Ξ(x)⇔ i ≡ j mod (2` − 1))

≡ xc · xi mod Ξ(x)

≡ xc · ξi(x) mod Ξ(x) ,

so that ξ(i+c mod (2`−1))(x) = xc · ξi(x) +Q(x) · Ξ(x), as desired.

Remark C.6. Ultimately we are interested in practical implementations of the Levin reductions
discussed in this paper. In practice, one keeps tables of irreducible and primitive polynomials, so
that we will not worry much about the time needed to compute such polynomials of the correct
degree.

79

C.2 Linear Maps and Sparse Polynomials

Ben-Sasson et al. [BSGH+05, Section 5] discuss the computational advantages of working with linear
subspaces of finite fields; while some of the underlying algebraic facts were already used in [BSS08]
and [BSGH+06], their computational properties were only used in [BSGH+05], where they are critical
to argue for an efficient verifier.

In this section, we recall some of the results of Ben-Sasson et al. [BSGH+05, Section 5], and
complement them with further details and new results altogether (which ultimately are needed for
an explicit description of an efficient PCP verifier, as constructed by [BSCGT12]). For a more in-
depth discussion of the theory of linear algebra for vector spaces over finite fields, see [LN97, Chapter
3.4].

Throughout this section, we let B ⊆ F be two fields of sizes |B| = p and pf respectively. For a
linear subset H ⊆ F of dimension h over the (smaller) field B (i.e., there is a basis (α1, . . . , αh) of
elements in F such that every element of H can be expressed as

∑h
i=1 ciαi with c1, . . . , ch ∈ B), we

say that a function g : H → F is a B-linear map if g(ax+ by) = ag(x) + bg(y) for every x, y ∈ H and
a, b ∈ B.

A first observation is that B-linear maps can be represented as sparse low-degree polynomials.
(In other words, they have sparse low-degree extensions; see Section C.4.)

Claim C.7 ([BSGH+05, Proposition 5.1]). Let H ⊆ F be a vector space of dimension h over the
(smaller) field B and g : H → F a B-linear map. Then there exists a (unique) polynomial ĝ : F → F
of the form

ĝ(x) =
h−1∑

i=0

cix
pi ,

where c0, . . . , ch−1 ∈ F, such that ĝ agrees with g on all of H. Moreover, given the evaluations of g
on any basis BH for H, the coefficients c0, . . . , ch−1 can be computed with poly(h, log p) arithmetic
operations over F.

Remark C.8. By inspecting the proof of Claim C.7, we see that the B-linearity of f implies that
the coefficients c0, . . . , ch−1 are the (unique) solution to the following linear system: letting BH =
(e1, . . . , eh),

e1 ep1 ep
2

1 · · · ep
h−1

1

e2 ep2 ep
2

2 · · · ep
h−1

2
...

...
. . .

...
eh eph ep

2

h · · · ep
h−1

h

·

c0

c1
...

ch−1

 =

g(e1)
g(e2)
...

g(eh)

 . (11)

Hence, given g(e1), . . . , g(eh), the coefficients c0, . . . , ch−1 can indeed be found using O(h2 log p+h3)
arithmetic operations over F, because finding the entries of the matrix from BH requires O(h2 log p)
arithmetic operations via repeated squaring, and then O(h3) arithmetic operations are needed for
Gaussian elimination. Later, in Section C.4.4, we shall discuss anO(h2 log h·log p) recursive algorithm
for finding the coefficients c0, . . . , ch−1.

Once the coefficients c0, . . . , ch−1 have been computed, however, evaluating ĝ at a given point
α ∈ F is a very simple arithmetic circuit, involving only the use of repeated squaring to find
α, αp, . . . , αp

h−1 , multiplying each αi by the respective coefficient ci, and adding up the results.

A very important class of polynomials are vanishing polynomials [BSGH+05, Definition 5.2]:

80

Definition C.9. For any subset S of F, the S-vanishing polynomial in F, denoted ZS(x), is
defined to be the polynomial in F[x] whose zeros are precisely the elements of S, that is,

ZS(x) =
∏

s∈S
(x− s) .

It is easy to see that when S is a vector space over the base field B, then ZS : F→ F is a B-linear
map, and we call ZS a subspace polynomial :

Claim C.10 ([BSGH+05, Proposition 5.3]). If S is a vector space over the base field B then ZS : F→
F is a B-linear map, that is,

• for all u, v ∈ F, ZS(u+ v) = ZS(u) + Zs(v), and

• for all a ∈ B and v ∈ F, ZS(a · v) = a · ZS(v).

Because of the above properties, a subspace polynomial is also known as a linearized polynomial.
In particular, one can show, using Claim C.7, that, whenever S is a vector space over the base field
B, ZS is sparse and its coefficients can be found fast:

Claim C.11 ([BSGH+05, Proposition 5.4]). If S is a d-dimensional vector space over the base field
B, then there exist c1, . . . , cd−1 ∈ F such that

ZS(x) = xp
d

+
d−1∑

i=0

cix
pi .

Moreover, the coefficients c0, . . . , cd−1 can be computed with poly(d, log p) arithmetic operations over
F, when given as input a basis BS for S.

Example C.1. There are important special cases where finding a subspace polynomial is very easy
(and one need not even solve any linear system to find the coefficients of the polynomial):

• If S = F, then ZS(x) = xp
f − x.

• If p divides f , then ZS(x) = xp
f/p − x.

Furthermore, if the characteristic of the field is p = 2, then xpf/p − x = xp
f/p

+ x, which is the field
trace function from Fpf to Fpf/p .

Whenever possible, we will try to work with such special cases, to take advantage of “super-sparse”
subspace polynomials, and thus greatly speed up computations.

Remark C.12. For notational convenience, we denote by FindSubspPoly the algorithm that, on
input (an irreducible polynomial representing) F and a basis (e1, . . . , ed) for S, outputs an arithmetic
circuit [ZS]A for computing ZS ; note that [ZS]A has size O(d).

Since Claim C.11 relies on Claim C.7, FindSubspPoly could in principle require O(h2 log p+h3)
field operations (see Remark C.8). Furthermore, we are not “allowed” to benefit from the even
faster O(h2 log h · log p)-time O(h)-space algorithm mentioned in Remark C.8 (and discussed in Sec-
tion C.4.4) for finding the desired coefficients in Claim C.7, because FindSubspPoly is a subroutine
of that faster algorithm.

Indeed, in this special case, there is instead a simple recursive algorithm, which requires only
O(d2 log p) running time and O(d log p) space.

81

Specifically, first note that, for d > 1,

ZS(x) = Zspan(e1,...,ed)(x)

=

p∏

i=1

Zspan(e1,...,ed−1)+(i−1)ed(x)

=

p∏

i=1

Zspan(e1,...,ed−1)(x− (i− 1)ed)

=

p∏

i=1

(
Zspan(e1,...,ed−1)(x)− (i− 1) · Zspan(e1,...,ed−1)(ed)

)

=

p∏

i=1

(
Zspan(e1,...,ed−1)(x) + (i− 1) · Zspan(e1,...,ed−1)(ed)

)
(by rearranging)

=

p∑

i=1

∑

r1<···<ri
r1,...,ri∈{1,...,i}

r1 · · · ri

Zspan(e1,...,ed−1)(ed)

p−iZspan(e1,...,ed−1)(x)i

= Zspan(e1,...,ed−1)(x)p + (p− 1)Zspan(e1,...,ed−1)(ed)
p−1Zspan(e1,...,ed−1)(x) (since p is prime)

= Zspan(e1,...,ed−1)(x
p) + (p− 1)Zspan(e1,...,ed−1)(ed)

p−1Zspan(e1,...,ed−1)(x) . (12)

Therefore, the following algorithm computes the coefficients for ZS(x): on input an irreducible
polynomial I for representing F and the basis (e1, . . . , ed) for S,

FindSubspPoly(I, e1, . . . , ed) ≡
1. If d = 1, output xp + (p− 1)ep−1

1 x.
2. If d > 1, do the following:

(a) Run FindSubspPoly(e1, . . . , ed−1) to generate [Zspan(e1,...,ed−1)]
A.

(b) Using [Zspan(e1,...,ed−1)]
A, compute [Zspan(e1,...,ed)]

A by following Equation 12.
(c) Output [Zspan(e1,...,ed)]

A.

The correctness of FindSubspPoly easily follows from the derivation of Equation 12 above, and
its time complexity of O(d2 log p) and space complexity of O(d log p) easily follows from its simple
recursive structure.

C.3 Polynomial Evaluation

The problem of polynomial evaluation is the following:

• input: a field F, a subset S ⊆ F, and a polynomial P (x) ∈ F[x] of degree at most |S| − 1;

• output: a function p : S → F such that p(α) = P (α) for every α ∈ S; p is known as the
evaluation of P over S.

Note that the problem of polynomial evaluation easily generalizes to finding multi-variate evaluations
of multi-variate polynomials; this generalization will not be of interest to us for the purpose of
constructing Levin reductions (though will briefly arise in [BSCGT12] for optimizing the speed of
the PCP prover).

A naïve evaluation of a polynomial of degree d at a point takes O(d2) field operations; using
Horner’s method, only O(d) field operations are required. Still, if d is on the order of |S|, then
evaluation of the polynomial over S would take O(|S|2) field operations.

82

Not surprisingly better algorithms are known:

Theorem C.13 ([vzGG03, Corollary 10.8]). A polynomial evaluation over S of a polynomial of
degree at most |S| − 1 can be computed in O(M(|S|) log |S|) field operations, where M(n) is the time
to multiply two polynomials of degree at most n. (Recall that, ithout additional assumptions on S,
the best upper bound on M(n) is O(nlog 3) ≈ O(n1.585), via Karatsuba’s algorithm.)

Fortunately, in the applications that we have in mind, the sets S in which we will be interested
do satisfy additional properties: they will be linear subsets of the field. Therefore, we will be able to
benefit from faster evaluation algorithms that use additive FFT methods to obtain great quasilinear
running times.

Specifically, in the special case (of our interest) where F = F2f for some f ∈ N and S is a linear
subset of F, much faster algorithms are known. This is the problem of polynomial evaluation over
linear subsets.

For example, the additive FFT of the von zur Gathen and Gerhard [vzGG96] has complexity
O(|S|(log |S|)2); this algorithm derives its speed from the use of linearized polynomials. (This algo-
rithm is given explicitly in [BSCGT12].)

Algorithms with even better asymptotic complexity are known; see for example [Mat08, Chapters
3]. Nonetheless, the von zur Gathen and Gerhard additive FFT can be implemented very easily and
does not “hide” any big constants in its practical running time.

We note that Bhattacharyya [Bha05, Section 2.1] also developed a fast algorithm for evaluation
over linear subsets, but his algorithm in practice performs worse than the von zur Gathen and
Gerhard additive FFT.

C.4 Polynomial Interpolation

The problem of polynomial interpolation is the following:

• input: a field F, a function p : S → F with S ⊆ F;

• output: a polynomial P (x) ∈ F[x] of degree at most |S| − 1 that agrees with p on S; P is
known as the low-degree extension of p in F.

Note that the problem of polynomial interpolation easily generalizes to finding multi-variate low-
degree extensions of multi-variate functions.

In this section we discuss computational properties of the problem of polynomial interpolation,
especially in some special cases that play a particularly important role in the applications that we
consider.

C.4.1 Existence and uniqueness of low-degree extensions

We begin by recalling that low-degree extensions exist and are unique; for completeness, we shall
review the proof of this fact.

Theorem C.14. Let F be a finite field, m a positive integer, s1, . . . , sm positive integers, and
S1, . . . , Sm subsets of F with respective cardinalities s1, . . . , sm.

For any function f : S1 × · · · × Sm → F there exists a unique m-variate polynomial f̂ : Fm → F
such that the following two conditions are satisfied:
(i) Low Degree: for i = 1, . . . ,m, the degree of f̂ in the i-th variable is less than si, and
(ii) Consistency: f̂ agrees with f on S1× · · ·×Sm, that is, for every (α1, . . . , αm) ∈ S1× · · ·×Sm,

it is the case that f̂(α1, . . . , αm) = f(α1, . . . , αm).

83

We call f̂ the low-degree extension of f in F, and denote it LDEF,m,(S1,...,Sm)(f).

In other words, the low-degree extension of a function is simply a polynomial that has the function
“embedded” into it; moreover, this polynomial is unique.

The first step in the proof of Theorem C.14 is to establish that the low-degree extension of the
zero function (which certainly exists) is unique:

Lemma C.15. Let F, m, s1, . . . , sm, and S1, . . . , Sm be as in Theorem C.14, and let z : S1 × · · · ×
Sm → F be the zero function on S1 × · · · × Sm. Then LDEF,m,(S1,...,Sm)(z) is the unique (m-variate)
identically-zero polynomial over F.

Proof. By induction on m. In the case m = 1, the lemma follows from the fact that a univariate
polynomial with positive degree d cannot have more than d roots: indeed, since the polynomial
LDEF,1,(S1)(z) is required to vanish on all s1 elements of S1, and yet have degree less than s1, it must
be the case that LDEF,1,(S1)(z) is the (unique) identically-zero polynomial. In the casem > 1, assume
the lemma holds for all positive integers m′ less than m, and consider any m-variate polynomial ẑ
that is a low-degree extension of z in F. Let α be any element in F, and consider the (m− 1)-variate
polynomial ẑα over F defined by ẑα(x2, . . . , xm) := ẑ(α, x2, . . . , xm). By the inductive assumption, ẑα
is the unique (m− 1)-variate identically-zero polynomial over F, because it is a low-degree extension
in F of the function zα, where zα(x2, . . . , xm) := z(α, x2, . . . , xm). Next, let ~β = (β2, . . . , βm) be any
element in Fm−1, and consider the univariate polynomial ẑ~β defined by ẑ~β(x1) := ẑ(x1, β2, . . . , βm).
Again, by the inductive assumption, ẑ~β is the unique univariate identically-zero polynomial over
F, because it is a low-degree extension in F of the function z~β , where z~β(x1) := z(x1, β2, . . . , βm).
We conclude that ẑ vanishes everywhere on Fm, and thus is the unique m-variate identically-zero
polynomial over F.

The next step is to use the previous lemma to deduce that low-degree extensions are unique,
when they exist:

Corollary C.16. Let F, m, s1, . . . , sm, and S1, . . . , Sm be as in Theorem C.14. Given a function
f : S1 × · · · × Sm → F, if a low-degree extension of f in F exists, then it is unique.

Proof. Suppose that two distinct m-variate polynomials f̂1 and f̂2 are low-degree extensions of f
over F. Then, the polynomial ẑ′ := f̂1 − f̂2 would be a not-identically-zero low-degree extension of
the all-zero function on S1 × · · · × Sm. This contradicts Lemma C.15, which guarantees that the
only low-degree extension of the all-zero function on S1 × · · · × Sm is the m-variate identically-zero
polynomial over F.

We are left to show that low-degree extensions actually exist. We do this for point functions first:

Lemma C.17. Let F, m, s1, . . . , sm, and S1, . . . , Sm be as in Theorem C.14, and let ~α = (α1, . . . , αm)
be an element in S1×· · ·×Sm. There exists a (unique) m-variate polynomial δF,m,(S1,...,Sm),~α : Fm → F
such that:
• for i = 1, . . . ,m, the degree of δF,m,(S1,...,Sm),~α in the i-th variable is si − 1,
• δF,m,(S1,...,Sm),~α(~α) = 1F, and
• δF,m,(S1,...,Sm),~α(S1 × · · · × Sm − {~α}) = {0F}.

Proof. Define the “Lagrange interpolant” polynomial δF,m,(S1,...,Sm),~α : Fm → F by

δF,m,(S1,...,Sm),~α(~x) :=

m∏

i=1

 ∏

βi∈Si−{αi}

xi − βi
αi − βi

 .

84

For every i = 1, . . . ,m,

degxi
(
δF,m,(S1,...,Sm),~α(~x)

)
= degxi

 ∏

βi∈Si−{αi}

xi − βi
αi − βi

 = si − 1 .

Moreover, δF,m,(S1,...,Sm),~α(~α) =
∏m
i=1

∏
βi∈Si−{αi}

αi−β
αi−β = 1. Finally, for every ~γ ∈ S1×· · ·×Sm−{~α},

~γ and ~α differ in at least one coordinate i ∈ {1, . . . ,m}, so that γi ∈ Si; hence,
∏
βi∈Si−{αi}

γi−βi
αi−βi =

0F, because, when βi = γi, the numerator of the ratio becomes zero. (Note that, since βi ∈ Si−{αi},
the denominator never vanishes!)

The uniqueness of δF,m,(S1,...,Sm),~α follows from Corollary C.16, because δF,m,(S1,...,Sm),~α is a low-
degree extension of the “point” function that is equal to one on {~α} and zero everywhere else on
S1 × · · · × Sm.

Finally, constructing low-degree extensions for general functions easily follows from the previous
lemma, by taking appropriate linear combinations of low-degree extensions of point functions:

Proof of Theorem C.14. For every ~α = (α1, . . . , αm) in S1 × · · · × Sm, let δF,m,(S1,...,Sm),~α : Fm → F
be the polynomial guaranteed by Lemma C.17. Define the polynomial f̂ : Fm → F by

f̂(x1, . . . , xm) =
∑

~α∈S1×···×Sm

f(~α) · δF,m,(S1,...,Sm),~α(x1, . . . , xm) .

Indeed, for every i = 1, . . . ,m,

degxi
(
f̂(x1, . . . , xm)

)
≤ max

~α∈S1×···×Sm

{
degxi

(
δF,m,(S1,...,Sm),~α(x1, . . . , xm)

)}
= si − 1 < si ;

also, for every ~α′ ∈ S1 × · · · × Sm,

f̂(~α′) =
∑

~α∈S1×···×Sm

f(~α) · δF,m,(S1,...,Sm),~α(~α) = f(~α′) · 1F = f(~α′) .

The uniqueness of f̂ follows from Corollary C.16, because f̂ is, by construction, a low-degree extension
of f .

C.4.2 Complexity of the general case

We now briefly discuss the computational properties of low-degree extensions, in the general case.
Univariate case. One way to compute a low-degree extension is to simply follow the construc-
tive proof of Theorem C.14, a process known as Lagrange interpolation. The Lagrange interpolant
polynomials can be pre-computed for a given set of evaluating points S (and can thus be used for
distinct functions f defined over S); this can be done in |S|2 time. Then, the linear combination of
the Lagrange interpolant polynomials can also be computed in |S|2 time [vzGG03, Theorem 5.1]

An alternative to Lagrange interpolation, with the same time complexity, is Newton interpolation
[vzGG03, Exercise 5.11].

Also, we recall that, in the univariate case, polynomial interpolation can alternatively be viewed
as having to find the solution of a linear system of |S| equations involving a Vandermonde matrix.

However, even when no additional properties are assumed about S, there are faster divide-and-
conquer algorithms to compute a low-degree extension:

85

Theorem C.18 ([vzGG03, Corollary 10.12]). A low-degree extension can be computed in O(M(|S|) log |S|)
field operations, where M(n) is the time to multiply two polynomials of degree at most n. (Recall that,
ithout additional assumptions on S, the best upper bound on M(n) is O(nlog 3) ≈ O(n1.585), via Karat-
suba’s algorithm.)

Fortunately, in the applications that we have in mind, the sets S in which we will be interested
do satisfy additional properties: they will be linear subsets of the field. Therefore, we will be able to
benefit from faster interpolation algorithms that use additive inverse FFT methods to obtain great
quasilinear running times. (See Section C.4.3.)
Multivariate case. Once again, one way to proceed is to follow the constructive proof of Theo-
rem C.14: the Lagrange interpolant polynomials from the proof of Theorem C.14 can be pre-computed
for a given set of evaluating points S1 × · · · × Sm in

∏m
i=1 |Si|2 time; then, the linear combination of

the Lagrange interpolant polynomials can also be found in
∏m
i=1 |Si|2 time.

C.4.3 Interpolation over linear subsets

In the special case (of our interest) where F = F2f for some f ∈ N and S is a linear subset of F, much
faster algorithms are known. This is the problem of polynomial interpolation over linear subsets.

For example, the additive inverse FFT that is the “dual” of the von zur Gathen and Gerhard
additive FFT [vzGG96] has complexity O(|S|(log |S|)2); this algorithm also derives its speed from
the use of linearized polynomials. (This algorithm is given explicitly in [BSCGT12].)

Algorithms with even better asymptotic complexity are known; see for example [Mat08, Chapters
4.4 and 4.5]. Nonetheless, the von zur Gathen and Gerhard additive inverse FFT can be implemented
very easily and does not “hide” any big constants in its practical running time.

We note that Bhattacharyya [Bha05, Section 2.1] also developed a fast algorithm for interpolation
over linear subsets, but his algorithm in practice performs worse than the von zur Gathen and Gerhard
additive inverse FFT.

C.4.4 Linearized interpolation

Another special case (of our interest) is a problem that we call linearized polynomial interpolation:

• input: a basis B = (α1, . . . , αh) and a vector of values ~β = (β1, . . . , βh);

• output: a linearized polynomial P (x) =
∑h−1

j=0 γjx
2j ∈ F[x] such that P (αi) = βi.

In other words, we are asked to solve the following linear system:

α1 α2
1 α4

1 · · · α2h−1

1

α2 α2
2 α4

2 · · · α2h−1

2
...

...
...

. . .
...

αh α2
h α4

h · · · α2h−1

h

γ0

γ1
...

γh−1

 =

β1

β2
...
βh

 . (13)

Note that it is indeed important for α1, . . . , αh to be linearly independent, otherwise the system may
not always have a solution.

Recall from Remark C.8 that the problem of linearized polynomial interpolation arises when
finding the coefficients of the (sparse) low-degree extensions of maps that are linear over the base
field; finding these sparse low-degree extensions is important when we intend to carefully arithmetize
boolean circuits. See Section C.7 for more details.

Kopparty suggested to us an approach mimicking the Vandermonde algorithm [Kop10]:

86

Theorem C.19. There exists an algorithm SolveLPIP such that, on input an irreducible polynomial
I, basis B = (α1, . . . , αh), and vector ~β = (β1, . . . , βh), solves the linearized polynomial interpolation
problem in O(h2 log h · log p) time and O(h) space.

Proof. The idea is to use linearized polynomials and solve the problem recursively. We describe the
desired algorithm SolveLPIP in three main steps:

1. Find two linearized polynomials Q(x) and R(x) of respective degrees at most 2bh/2c and 2dh/2e

such that:

Q(α1) = Q(α2) = · · · = Q(αbh/2c) = 0F and R(αbh/2c+1) = R(αbh/2c+2) = · · · = R(αh) = 0F .

Note that Q(x) and R(x) can be found in O(h2 log p) field operations via divide and conquer,
e.g., by settingR(x) := FindSubspPoly(I, (α1, . . . , αbh/2c)) andR(x) := FindSubspPoly(I, (αbh/2c+1, . . . , αh)).
(See Remark C.12.)

2. Compute

α′1 := R(α1), α′2 := R(α2), . . . , α′bh/2c := R(αbh/2c) and

α′bh/2c+1 := Q(αbh/2c+1), α′bh/2c+2 := Q(αbh/2c+2), . . . , αh := Q(αh) .

3. Recursively solve two (smaller) linearized polynomial interpolation problems by computing

R′(x) := SolveLPIP(I,B(0), ~β(0)) and Q′(x) := SolveLPIP(I,B(1), ~β(1))

where

B(0) := (α′1, . . . , α
′
bh/2c) and ~β(0) := (β1, . . . , βbh/2c)

B(1) := (α′bh/2c+1, . . . , α
′
h) and ~β(1) := (βbh/2c+1, . . . , βh) .

4. Compute the polynomial P (x) := Q′(Q(x)) +R′(R(x)), and output P (x).

Note that:

• for i = 1, . . . , bh/2c, P (αi) = Q′(Q(αi)) +R′(R(αi)) = Q′(0F) +R′(α′i) = 0F + βi = βi, and

• for i = dh/2e, . . . , h, P (αi) = Q′(Q(αi)) +R′(R(αi)) = Q′(α′i) +R′(0F) = βi + 0F = βi.

Moreover, the composition and the addition of two linearized polynomials is still a linearized polyno-
mial; in particular, since Q(x), Q′(x), R(x), and R′(x) are all linearized polynomials, so is Q′(Q(x))
and R′(R(x)), and thus P (x) as well. By induction, the degrees of R′ and Q′ are respectively at most
2bh/2c−1 and 2dh/2e−1, so that Q′(Q(x)) and R′(R(x)) have degrees that are respectively at most at
most 2bh/2c2dh/2e−1 = 2h−1 and 2dh/2e2bh/2c−1 = 2h−1.

As for the number of field operations, the recursion is T (h) = h2 log p+ 2T (h/2) +h2 so that the
overall number of required field operations is O(h2 log h log p). A space complexity of O(h) can be
achieved by using an analogous iterative algorithm.

87

C.5 A Canonical Embedding

We give a general purpose way of embedding a set into large enough finite extension fields. Crucial
to us is the simple observation that if the set has cardinality that is a power of the characteristic of
the field, then the image of the set is a subspace over the base field. The lemma also spells out the
computational cost of performing and reversing this embedding.

Lemma C.20 (Canonical Embedding of Finite Sets into Finite Fields). Let p be a prime, f a positive
integer, and F a field extension of Fp of degree f , represented via an irreducible polynomial I with
root x. Define Ψf : {0, 1}f → F to be the function that maps a p-ary string s1 · · · sf to the element∑f−1

j=0 sjx
j in F.

Then, Ψf is a bijection from {0, 1}f to F, and we call Ψf the canonical embedding of {0, 1}f into
the finite field of degree f over Fp.

In particular, for any set A with |A| ≤ pr for some positive integer r not larger than f , Ψf injects
A into F. Furthermore, if |A| = pr, then Ψf (A) is a linear subset of F of dimension r over Fp,
specified by a basis (1F, x, . . . , x

r−1).
Moreover, Ψf and Ψ−1

f are efficiently computable: there exist linear-time algorithms CompΨ and
CompΨ−1 such that

Ψf (s1 · · · sf) = CompΨ
(
1f , s1 · · · sf

)
and Ψ−1

f

f−1∑

j=0

sjx
j

 = CompΨ−1

1f ,

f−1∑

j=0

sjx
j

 .

Alternatively: there exist boolean circuit families {CompΨf}f∈N and {CompΨ−1
f }f∈N for computing

Ψf and Ψ−1
f , and the circuits in both families have linear size, constant depth, and can be constructed

in time linear in the circuit size.

Proof. That Ψf is a bijection is clear from its definition. If |A| = pr, then

Ψf (A) =

r−1∑

j=0

ajx
j : a1, . . . , ar−1 ∈ {0, . . . , p− 1}

 = spanFp(1, x, . . . , x

r−1) ,

so that Ψf (A) is an r-dimensional linear subset of F over Fp. Next, the algorithms that compute Ψf

and Ψ−1
f can be defined as follows:

CompΨ(1f , s1 · · · sf) ≡
1. Compute α(x) :=

∑f−1
j=0 sjx

j in the finite field F.
2. Output α(x).

CompΨ−1(1f , α(x)) ≡
1. For i = 1, . . . , f : set si to be the coefficient of xi−1 in α(x).
2. Output s1 · · · sf .

The corresponding circuit families can be easily deduced from the algorithms.

88

C.6 Some Useful Families of Polynomials

We discuss here some (families of) polynomials, along with their complexities, that we shall find
useful in our arithmetization constructions of Section 8.

We begin with CMP polynomials, which are direct arithmetizations of corresponding boolean com-
parator circuits. For example, given a 3-bit string σ = 100, the σ-CMP polynomial over F is given by
CMPF,σ(x1, x2, x3) = x1(1F−x2)(1F−x3); for α1(x), α2(x), α3(x) ∈ {0F, 1F}, CMPF,σ(α1(x), α2(x), α3(x)) =
1F if and only if α1(x), α2(x), α3(x) correspond to the bits of σ.

Definition C.21 (CMP Polynomial). Let F be a finite field, m a positive integer, and σ an m-bit
string. The σ-CMP polynomial over F, denoted CMPF,σ, is the m-variate polynomial over F
defined by

CMPF,σ(x1, . . . , xm) := y
(σ1)
1 · · · y(σm)

m ,

where y
(σi)
i is defined to be xi if σi = 1 and (1F − xi) if σi = 0 for i = 1, . . . ,m. Note that

CMPF,σ is multilinear and, moreover, can be computed by a dlog(m)e-depth F-arithmetic circuit with
m− weight(σ) field subtractions and m− 1 field multiplications (and this circuit can be constructed
in time that is linear in its size).

Next, we introduce MUX polynomials that, as the name suggests, are simply arithmetizations of
corresponding boolean MUX circuits. For example, the 2-bit multiplexer polynomial over F is the
polynomial

MUXF,2
(
s1, s2, x0, x1, x2, x3) = (1− s1)(1− s2)x0 + (1− s1)s2x1 + s1(1− s2)x2 + s1s2x3 .

Definition C.22 (MUX Polynomial). Let F be a finite field and m a positive integer. The m-bit
multiplexer polynomial over F, denoted MUXF,m, is the (m + 2m)-variate polynomial over F
defined by

MUXF,m
(
s1, . . . , sm, x0, . . . , x(2m−1)

)
:=

∑

σ∈{0,1}m
CMPF,σ(s1, . . . , sm) · xσ .

Note that MUXF,m is a multilinear homogeneous polynomial of degree (m+ 1) and, moreover, can be
computed by a (dlog(m)e+1+m)-depth F-arithmetic circuit with m field subtractions, 2m ·((m−1)+1)
field multiplications, and 2m field additions; furthermore, this circuit can be constructed in time that
is linear in its size by giving the input (F,m) to an algorithm FindMUX.

Another class of polynomials that we use are alternator polynomials; roughly, given two subsets
T, S ⊆ F with T ⊆ S, we are interested in the polynomial that is equal to 1 on T but vanishes
everywhere on S − T . Similarly to vanishing polynomials, when T and S are vector spaces, the
corresponding alternator polynomial has a small arithmetic circuit that computes it (though, unlike
in the case of subspace polynomials, the polynomial itself will not be sparse).

Theorem C.23. Let H ⊆ F be a vector space of dimension h over the (smaller) field B, and let
K ⊆ H be a vector space of dimension k over B. Let YF,H,K : F→ F the low-degree extension of the
function over H that is equal to 1 over K but vanishes everywhere on H − K; we call YF,H,K the
alternator polynomial of K in H over F.

There exists a O(max{k2, (h−k)2} log p)-time O(h log p)-space algorithm FindAlternator that,
on input (an irreducible polynomial representing) F, a basis (µ1, . . . , µh) for H, and a dimension k
with k ≤ h, computes a O(h)-size ph-degree F-arithmetic circuit [YF,H,K]A that computes YF,H,K .

89

Proof. If K = H, then the theorem trivially follows by letting YF,H,K be the constant polynomial
that is everywhere equal to 1.

So assume that K (H (so that k < h), in which case we argue as follows. Let BK = (µ1, . . . , µk)
be a basis for K, and let BH = (µ1, . . . , µk, µk+1, . . . , µh) be its completion to a basis for H. Let
ZK(x) ∈ F[x] be the vanishing polynomial for K (cf. Definition C.9), and recall that ZK(x) is
B-linear (cf. Claim C.10). Furthermore, by Lemma C.11, ZK(x) is sparse and its coefficients can be
efficiently computed when given the basis BK ; specifically, we know from Remark C.12 that there
exists an algorithm FindSubspPoly that, on input (F,BK), in time O(k2 log p) = poly(k, log p)

outputs c(K)
0 , . . . , c

(K)
k−1 ∈ F such that

ZK(x) = xp
k

+
k−1∑

i=0

c
(K)
i xp

i
.

For i ∈ {k + 1, . . . , h}, define νi := ZK(µi). Observe that νk+1, . . . , νh are linearly independent
for, if not, then, using the B-linearity of ZK it is possible to show that ZK has more than pk roots,
which is a contradiction because the degree of ZK is only pk.

So let L be the (h−k)-dimensional B-linear subset spanned by νk+1, . . . , νh, and let ZL(x) ∈ F[x]
be its vanishing polynomial. Again invoking Claim C.10 and then Lemma C.11, we deduce that
ZL(x) has the form

ZL(x) = xp
h−k

+

h−k−1∑

i=0

c
(L)
i xp

i
,

where the coefficients c(L)
0 , . . . , c

(L)
h−k−1 ∈ F may be computed in time O((h − k)2 log p) = poly(h −

k, log p) by the algorithm FindSubspPoly on input (F,BL).
Define the polynomial P ∈ F[x] as18

P (x) :=
ZL(x)

c
(L)
0 x

= xp
h−k−1 +

h−k−1∑

i=0

c
(L)
i

c
(L)
0

xp
i−1 .

Finally, define the polynomial Q ∈ F[x] as

Q(x) := P
(
ZK(x)

)
=
(
ZK(x)

)ph−k−1
+
h−k−1∑

i=0

c
(L)
i

c
(L)
0

(
ZK(x)

)pi−1
.

We claim that YF,H,K(x) = Q(x). Indeed,

deg(Q) = deg(ZK) · deg(P) < deg(ZK) · deg(ZL) = pk · ph−k = ph .

Moreover,

• for any α ∈ K, Q(α) = P (ZK(α)) = P (0F) = c
(L)
0 /c

(L)
0 = 1F; and

• for any α ∈ H − K, then ZK(α) is a non-zero element of L, so that ZL(α) = 0, and thus
Q(α) = 0.

18Note that the coefficient of x in a subspace polynomial is never equal to zero. Indeed, suppose by way of
contradiction that ZS(x) is a subspace polynomial where the coefficient of x is equal to zero. Then, ZS(x) = R(xp) =
(R′(x))p for some linearized polynomials R and R′. Note that every root of ZS(x) is a root of R′(x), but the degree
of R′(x) is smaller than the number of roots of ZS(x), which is a contradiction.

90

So that indeed Q agrees on H with the function that is equal to 1 over K and is equal to 0 on H−K
and, moreover, is of degree at most |H| = ph. Thus, by the uniqueness of low-degree extensions (cf.
Theorem C.14), it must indeed be the case that YF,H,K(x) = Q(x).

Now that we have an explicit form for YF,H,K(x), we can say something about what kind of circuit
is needed for computing YF,H,K(x), and how fast such a circuit may be generated. Note that, unlike
a subspace polynomial, YF,H,K(x) is not sparse, because it involves raising a sum of terms (namely,
ZK(x)) to powers pi−1 for i ∈ {1, . . . , h−k}, and ph−k−1 is large.19 Nonetheless, given an element
α ∈ F, YF,H,K(α) may be computed efficiently, by first computing β := ZK(α), and then computing
P (β), because both ZK and P are sparse. (And being able to compute the polynomial efficiently is
all that we will need.) Thus, we can define the algorithm FindAlternator as follows:

FindAlternator
(
F, (µ1, . . . , µh), k

)
≡

1. If k = h, output the constant circuit 1F; otherwise con-
tinue.

2. Define BK := (µ1, . . . , µk).
3. Compute [ZK]A := FindSubspPoly(F,BK).
4. For i = k + 1, . . . , h, compute νi := ZK(µi).
5. Define BL := (νk+1, . . . , νh).
6. Compute [ZL]A := FindSubspPoly(F,BL).
7. Compute [ZL(x)

c
(L)
0 x

]A.

8. Compute [YF,H,K]A as the composition of [ZK]A and
[ZL(x)

c
(L)
0 x

]A.

9. Output [YF,H,K]A.

x

[ZK]A

[
ZL(x)

c
(L)
1 x

]A

Note that [YF,H,K]A has size O(h). Furthermore, the time complexity of FindAlternator is given

by O(k2 log p)+O((h−k)k log p)+O((h−k)2 log p) and its space complexity is given by O(h log p).

Finally, we discuss polynomials that represent projection functions over linear subspaces.

Definition C.24. Let H ⊆ F be a vector space of dimension h over the base field B, and consider
the basis BH = (1, x, . . . , xh−1) for H. (Recall that x is a root of the irreducible polynomial I used
to represent F.) For j ∈ {1, . . . , h}, define pF,H,B,j : H → F to be the function that, for any λ =∑h

i=1 λix
i−1 ∈ H, outputs λj ∈ B.

Let us first establish B-linearity:

Lemma C.25. Let H ⊆ F be a vector space of dimension h over the base field B. Then, for every
j ∈ {1, . . . , h}, the function pF,H,B,j from Definition C.24 is B-linear.

Proof. Fix any two elements λ =
∑h

i=1 λix
i−1 and γ =

∑h
i=1 γix

i−1 in H. Then, for any two elements
α and β in B,

pF,H,B,j(αλ+ βγ) = pF,H,B,j

(
h∑

i=1

(αλi + βγi)xi−1

)

= αλj + βγj

= α · pF,H,B,j
(

h∑

i=1

λix
i−1

)
+ β · pF,H,B,j

(
h∑

i=1

γix
i−1

)

19Indeed, note that (α+ β)p
i−1 = 1

q−1

∏i−1
j=0(α

pj + βp
j

) is a product of 2i terms.

91

= α · pF,H,B,j(λ) + β · pF,H,B,j(γ) ,

as desired.

Because a projection function is B-linear, we can express it as a sparse polynomial:

Lemma C.26. Let H ⊆ F be a vector space of dimension h over the base field B. Then, for every
j ∈ {1, . . . , h}, there exists a unique polynomial ΠF,H,B,j : F→ F of the form

ΠF,H,B,j(x) :=
h−1∑

i=0

αix
pi , (14)

where α0, . . . , αh−1 ∈ F, such that ΠF,H,B,j agrees on all of H with the function pF,H,B,j from Defini-
tion C.24; we call ΠF,H,B,j the projection polynomial for the j-th bit in H with respect to B over
F. Moreover, the coefficients α0, . . . , αh−1 can be computed in O(h2 log h · log p) = poly(h, log p) time
and O(h) space.

In particular, there exists a poly(h, log p)-time algorithm FindΠ that, on input (an irreducible
polynomial representing) F, a basis BH for H, and an index j ∈ {1, . . . , h}, computes a O(h log p)-size
F-arithmetic circuit [ΠF,H,B,j]

A that computes ΠF,H,B,j.

Proof. Fix every j ∈ {1, . . . , h}. By Lemma C.25, pF,H,B,j is B-linear. Hence, by Claim C.7, the
equality in Equation 14 follows. That the coefficients α0, . . . , αh−1 may be computed in the claimed
efficiency follows from Remark C.8 (and note that in this case, since g = pF,H,B,j , g(e1), . . . , g(eh) can
all be easily computed in O(h2) time because ei = xi−1 and g(ej) = 1F and g(ej) = 0F for i 6= j).

C.7 Efficient Algebraic Computation

Let F be an extension field of F2 = {0F, 1F}, H an h-dimensional linear subset of F, and BH =
(e1, . . . , eh) a basis for H.

Define bit : F → {0, 1} ∪ {⊥} to be the function that maps F2 to the two boolean values and
F− F2 to {⊥}, that is, bit(0F) = 1, bit(1F) = 1, and bit(α) =⊥ for every α ∈ F− F2.

Define binBH : H → {0, 1}h to be the function that gives the representation of elements in H in
terms of the basis BH ; that is, for any α =

∑h
j=1 λjej ∈ H, with λ1, . . . , λh ∈ F2 and e1, . . . , eh ∈ F,

it holds that binBH (α) = (bit(λ1), . . . ,bit(λh)). Note that binBH is injective, so that referring to
binBH as a representation of the elements in H (with respect to the basis BH) is indeed justified.

The function binBH can naturally be extended to give the basis representation of elements in a
product of linear subsets: for i = 1, . . . ,m, let Hi be an hi-dimensional linear subset of F, and let
BHi = (e

(i)
1 , . . . , e

(i)
hi

) be a basis for Hi; then the function

binBH1
,...,BHm : H1 × · · · ×Hm → {0, 1}h1+···+hm

is defined by
binBH1

,...,BHm (α1, . . . , αm) := binBH1
(α1) ◦ · · · ◦ binBHm (αm) ,

where ◦ is the string concatenation operator. Thus, it is natural to call binBH1
,...,BHm (α1, . . . , αm) a

binary representation of an element (α1, . . . , αm) ∈ H1 × · · · ×Hm.
Ben-Sasson and Sudan [BSGH+05, Theorem 5.5] showed that any small-depth, small-size, single-

bit-output boolean circuit operating on the binary representation of elements in a product space
Hm, for some linear subset H of F, can be converted into an equivalent arithmetic circuit of small
size and moderate degree (exponential in the depth) over F. (In particular, any bit of the binary
representation of an element in Hm can be computed efficiently.)

92

An unfortunate yet seemingly inherent cost of arithmetizing boolean circuits is that retrieving
any single bit of a field element induces a polynomial of very high degree; thus we shall use this
tool very sparingly in our reductions. Indeed, it is because of this cost that in Section 8, when
arithmetizing sGCPs, we choose to “stripe” the bit of a color across many field elements instead of
simply “packing” these in one field element and retrieve them later with a polynomial; we still have
to invoke this result, though, to “know” where we are in the graph.

Here we prove a simple but useful generalization of [BSGH+05, Theorem 5.5] and take the oppor-
tunity to state its improved complexity in light of the fast algorithm of Section C.4.4. Specifically,
we allow for the product space to consist of different (linear) subsets and we allow for the output
of the boolean circuit to consist of multiple bits. We also choose to state the theorem in terms of
the multiplicative degree (see Section 6) of the boolean circuit to be arithmetized, as multiplicative
degree is in our setting a finer and more convenient complexity metric.

Theorem C.27 (Arithmetizing boolean Circuits over Linear Spaces). Let F be an extension field of
F2, m a positive integer, and, for i = 1, . . . ,m, Hi an hi-dimensional linear subset of F with a basis
BHi = (e

(i)
1 , . . . , e

(i)
hi

).
Fix a positive integer ρ. For any boolean function g : {0, 1}h1+···+hm → {0, 1}ρ computed by a

boolean circuit C of size s and (multiplicative) degree D, there exist ρ polynomials ĝ1, . . . , ĝρ : Fm → F
such that:

1. For i = 1, . . . ,m and j = 1, . . . , ρ, the degree in the i-th variable of the j-th polynomial is

|Hi|
2

max
k−

∑i−1
r=0 hr∈{1,...,hi}

D[k → j]

where we defined h0 := 0;
2. All of the polynomials are simultaneously computable by a multi-element-output F-arithmetic

circuit Ĉ of size O(
∑m

i=1 h
2
i + s); and

3. For every (α1, . . . , αm) in H1 × · · · ×Hm,

bit
(
ĝ1(α1, . . . , αm)

)
◦ · · · ◦ bit

(
ĝρ(α1, . . . , αm)

)
= g
(
binBH1

,...,BHm (α1, . . . , αm)
)
.

Moreover, Ĉ can be constructed in time O(
∑m

l=1 h
3
l log hl + s) and space O(

∑m
i=1 h

2
i + s) when given

as input the basis BHl for each linear space Hl and C.

First, we prove that any bit of the binary representation of an element in H1 × · · · ×Hm can be
computed efficiently; specifically, any individual bit, say a bit of an element in the subspace Hl, can
be extracted by a polynomial of degree at most 2hl−1 = |Hl|/2 that is computable by an F-arithmetic
circuit of size at most O(hl):

Lemma C.28. Define h0 := 0. Fix any l ∈ {1, . . . ,m} and ι ∈ {1, . . . , hl}, and consider the special
case where g is the projection to the (ι+

∑l−1
i=0 hi)-th bit of the input. Then there exists a polynomial

ĝl,ι : Fm → F of degree at most |Hl|/2 computable by an F-arithmetic circuit Ĉl,ι of size O(hl) such
that, for every (α1, . . . , αm) in H1 × · · · ×Hm,

bit
(
ĝl,ι(α1, . . . , αm)

)
= g
(
binBH1

,...,BHm (α1, . . . , αm)
)
.

Moreover, given the basis BHl = (e
(l)
1 , . . . , e

(l)
hl

), Ĉl,ι can be constructed in time O(h2
l log hl).

93

Proof. Consider the function g̃ : H1 × · · · × Hm → F satisfying (bit ◦ g̃) = (g ◦ binBH1
,...,BHm).20

Observe that (bit ◦ g̃)(H1× · · ·×Hm) = {0, 1}, so we deduce that g̃(H1× · · ·×Hm) = F2; moreover,
for any two α =

∑m
i=1

∑hi
j=1 λ

(i)
j e

(i)
j and β =

∑m
i=1

∑hi
j=1 γ

(i)
j e

(i)
j in H1 × · · · ×Hm,

(bit ◦ g̃)(α+ β) = g
(
binBH1

,...,BHm (α+ β)
)

= bit(λ(l)
ι) + bit(γ(l)

ι)

= g
(
binBH1

,...,BHm (α)
)

+ g
(
binBH1

,...,BHm (β)
)

= (bit ◦ g̃)(α) + (bit ◦ g̃)(β) ,

implying that g̃ is a F2-linear map.
Invoking Claim C.7 with F, B = F2, H = Hl, h = hl, and the (also F2-linear) function g̃|Hl , we

deduce that there exists a (unique) low-degree extension ĝ′l,ι : F → F of g̃|Hl that agrees with g̃|Hl
on Hl and has the form ĝ′l,ι(xl) =

∑hl−1
j=0 cjx

2j

l , where c0, . . . , chl−1 ∈ F is a solution to the following
system of hl linear equations:

hl−1∑

j=0

cjπj(e
(l)
s) = g̃|Hl(e(l)

s) : s = 1, . . . , hl

 , (15)

where πj is the mapping xl 7→ x2j

l . Given the basis BHl = (el1, . . . , e
(l)
hl

), we can compute g̃|Hl(e
(l)
1), . . . , g̃|Hl(e

(l)
hl

)

in O(h2
l) time and then, by Remark C.8, compute the coefficients c0, . . . , chl−1 in O(h2

l log hl) time.
Therefore, ĝ′l,ι can be computed by the F-arithmetic circuit Ĉ ′l,ι of size O(hl) (computable in

O(h2
l log hl) time from BHl) that, on input xl, (1) computes the powers xl, x2

l , . . . , x
2hl−1

l (by repeated
squaring); and (2) outputs the linear combination

∑hl−1
j=0 cjx

2j

l .
To finish the proof of the lemma, we note that we can simply let Ĉ be the circuit that works with

that component of Fm in which the projected bit is present, and ignore the remaining components
of Fm; specifically, we let ĝl,ι(x1, . . . , xm) := ĝ′l,ι(xl) and Ĉl,ι(x1, . . . , xm) := Ĉ ′l,ι(xl).

The case for a general boolean function g is obtained by constructing an arithmetic circuit that
first extracts all the individual bits and then uses a straightforward arithmetization of the original
boolean circuit C:

Proof of Theorem C.27. For each l ∈ {1, . . . ,m} and ι ∈ {1, . . . , hl}, invoking Lemma C.28 with l
and ι, we deduce that there exists a polynomial ĝl,ι of degree at most |Hl|/2 (which is computable by
an F-arithmetic circuit Ĉl,ι of O(hl) size) that agreees with π

(l)
j , the projection to the (ι+

∑l−1
i=0 hi)-th

bit of the input, on H1 × · · · ×Hm; moreover, Ĉl,ι can be constructed in O(h2
l log hl) time from BHl .

We deduce that there exists an F-arithmetic circuit Ĉbin of size
∑m

i=1 hiO(hi) = O(
∑m

i=1 h
2
i)

that extracts all the individual bits of the input: we define Ĉbin to be the multi-output circuit that
computes each Ĉl,ι,

Ĉbin(x1, . . . , xm) = ×ml=1 ×hlι=1 Ĉl,ι(x1, . . . , xm) .

Note that Ĉbin has
∑m

l=1 hl outputs, and, for l ∈ {1, . . . ,m} and ι ∈ {1, . . . , hl}, the (ι +
∑l−1

i=0 hi)-
th output contains only variable xl, with degree at most |Hl|/2. Moreover, from the definition of
Ĉbin and the constructibility of each Ĉl,ι, we deduce that Ĉbin can be constructed in time

∑m
l=1 hl ·

O(h2
l log hl) = O(

∑m
l=1 h

3
l log hl), when given as input the basis BHl for each linear space Hl.

20Note that g̃ depends on BH1 , . . . ,BHm , but we drop this subscript.

94

Next, we argue that there exists a ρ-element-output F-arithmetic circuit Ĉg of size O(s) that, on
input the

∑m
i=1 hi individual bits

21 of an input in H1 × · · · × Hm, computes g and, moreover, the
polynomial induced by Ĉg has (multiplicative) degree (function) D and can be constructed in time
O(s) from C (which was the boolean circuit of size s and depth d that computes g). Indeed, letting
Ĉg be the straightforward arithmetization of C does the job: for example, the arithmetization of the
AND and NOT gate is performed as AND(x, y) = x · y and NOT(x) = 1− x; the arithmetized gates
compute the intended values whenever x and y take values in F2, which is the case.22

Finally, to finish the proof, we let Ĉ = Ĉg ◦ Ĉbin, so that the overall size is O(
∑m

i=1 h
2
i + s). As

for the multiplicative degree: letting h0 := 0, for i = 1, . . . ,m and j = 1, . . . , ρ, the degree in the
i-th variable of the j-th polynomial is

|Hi|
2
·
(

max
k−

∑i−1
r=0 hr∈{1,...,hi}

D[k → j]

)
.

Moreover, from the constructibility of Ĉg and Ĉbin, we deduce that Ĉ can be constructed in time
O(
∑m

l=1 h
3
l log hl + s) and space O(

∑m
i=1 h

2
i + s) when given as input the basis BHl for each linear

space Hl and C.

21Actually, bits represented as elements of F2.
22More generally, any binary gate G(x, y) is replaced by an appropriate multilinear polynomial in x and y, which

extends the corresponding mapping F2 × F2 → F2.

95

References
[AF07] Masayuki Abe and Serge Fehr. Perfect NIZK with adaptive soundness. In TCC ’07: Proceed-

ings of the 4th Theory of Cryptography Conference on Theory of Cryptography, pages 118–136,
Berlin, Heidelberg, 2007. Springer-Verlag.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Proceedings of the 37th International Colloquium on
Automata, Languages and Programming, ICALP ’10, pages 152–163, 2010.

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An 0(n log n) sorting network. In Proceedings
of the 15th Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, 1983.

[AV77] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for hamiltonian circuits and
matchings. In Proceedings on 9th Annual ACM Symposium on Theory of Computing, STOC ’77,
pages 30–41, 1977.

[BC12] Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In Proceedings of the 32nd Annual International Cryptology Con-
ference on Advances in Cryptology, CRYPTO ’12, 2012.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCCT11] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. Cryptology
ePrint Archive, Report 2011/443, 2011.

[BCCT12] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition
and bootstrapping for SNARKs and proof-carrying data. Cryptology ePrint Archive, Report
2011/95, 2012.

[BEG+91] Manuel Blum, Will Evans, Peter Gemmell, Sampath Kannan, and Moni Naor. Checking the
correctness of memories. In Proceedings of the 32nd Annual Symposium on Foundations of
Computer Science, FOCS ’91, pages 90–99, 1991.

[Ben65] Václav E. Beneš. Mathematical theory of connecting networks and telephone traffic. New York,
Academic Press, 1965.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, STOC ’91, pages 21–32, 1991.

[BG08] Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2008. Preliminary version appeared in CCC ’02. We reference
the version available online at http://www.wisdom.weizmann.ac.il/~oded/PS/ua-rev3.ps.

[BGV12] Zvika Brakerski, Craig Gentry, and Vaikuntanathan Vinod. (leveled) fully homomorphic encryp-
tion without bootstrapping. In Proceedings of the 4th Symposium on Innovations in Theoretical
Computer Science, ITCS ’12, pages 309–325, 2012.

[Bha05] Arnab Bhattacharyya. Implementing probabilistically checkable proofs of proximity. Technical
Report MIT-CSAIL-TR-2005-051, MIT, 2005. Available at http://dspace.mit.edu/handle/
1721.1/30562.

[BHZ87] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP have short interactive proofs?
Information Processing Letters, 25(2):127–132, 1987.

[BOGKW88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover interactive
proofs: how to remove intractability assumptions. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, STOC ’88, pages 113–131, 1988.

96

http://www.wisdom.weizmann.ac.il/~oded/PS/ua-rev3.ps
http://dspace.mit.edu/handle/1721.1/30562
http://dspace.mit.edu/handle/1721.1/30562

[BSCGT12] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. Towards practical PCPs,
2012. Electronic Colloquium on Computational Complexity.

[BSGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of the 26th Annual
ACM Symposium on Theory of Computing, STOC ’04, pages 1–10, 2004. Full version available
at http://people.seas.harvard.edu/~salil/research/shortPCP.pdf.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Short
PCPs verifiable in polylogarithmic time. In Proceedings of the 20th Annual IEEE Conference
on Computational Complexity, CCC ’05, pages 120–134, 2005.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006. Preliminary versions of this paper have appeared in Proceedings of the 36th
ACM Symposium on Theory of Computing and in Electronic Colloquium on Computational
Complexity.

[BSS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM Journal
on Computing, 38(2):551–607, 2008. Preliminary version appeared in STOC ’05.

[BSSVW03] Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low
degree tests and short pcps via epsilon-biased sets. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing, STOC ’03, pages 612–621, 2003.

[CKLR11] Kai-Min Chung, Yael Kalai, Feng-Hao Liu, and Ran Raz. Memory delegation. In Proceedings
of the 31st Annual International Cryptology Conference, CRYPTO ’11, pages 151–168, 2011.

[CKV10] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using
fully homomorphic encryption. In Proceedings of the 30th Annual International Cryptology
Conference, CRYPTO ’10, pages 483–501, 2010.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 4th Symposium on Innovations in
Theoretical Computer Science, ITCS ’12, pages 90–112, 2012.

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines. In Pro-
ceedings of the 4th Annual ACM Symposium on Theory of Computing, STOC ’72, pages 73–80,
1972.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. Two 1-round protocols for delegation of com-
putation. Cryptology ePrint Archive, Report 2011/518, 2011.

[CT10] Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay arguments from signature
cards. In Proceedings of the 1st Symposium on Innovations in Computer Science, ICS ’10, pages
310–331, 2010.

[CT12] Alessandro Chiesa and Eran Tromer. Proof-carrying data: Secure computation on untrusted
platforms (high-level description). The Next Wave: The National Security Agency’s review of
emerging technologies, 19(2):40–46, 2012.

[CTY10] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. ECCC, 2010. Available at http://eccc.hpi-web.de/report/2010/159/.

[DCL08] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP proofs from an extractability assump-
tion. In Proceedings of the 4th Conference on Computability in Europe, CiE ’08, pages 175–185,
2008.

[DFH12] Ivan Damgård, Sebastian Faust, and Carmit Hazay. Secure two-party computation with low
communication. In Proceedings of the 9th International Conference on Theory of Cryptography,
TCC ’12, pages 54–74, 2012.

97

http://people.seas.harvard.edu/~salil/research/shortPCP.pdf
http://eccc.hpi-web.de/report/2010/159/

[DT83] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous
parallel machines. In Proceedings of the 15th Annual ACM Symposium on Theory of Computing,
STOC ’83, pages 336–343, 1983.

[Fic93] Faith E. Fich. The complexity of computation on the parallel random access machine. In
[Rei93], pages 843–899, 1993.

[FvDD12] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Compilation techniques for
efficient encrypted computation. Cryptology ePrint Archive, Report 2012/266, 2012.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, pages 169–178, 2009.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing: out-
sourcing computation to untrusted workers. In Proceedings of the 30th Annual International
Cryptology Conference, CRYPTO ’10, pages 465–482, 2010.

[GGPR12] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs
and succinct NIZKs without PCPs. Cryptology ePrint Archive, Report 2012/215, 2012.

[GH98] Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Information Processing Letters, 67(4):205–214, 1998.

[GH11a] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In Proceedings of the IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS’ 11, pages 107–109, 2011.

[GH11b] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption scheme.
In Proceedings of the 29th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, EUROCRYPT ’11, pages 129–148, 2011.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: inter-
active proofs for muggles. In STOC ’08: Proceedings of the 40th Annual ACM Symposium on
Theory of Computing, pages 113–122, New York, NY, USA, 2008. ACM.

[GL03] William F. Gilreath and Phillip A. Laplante. Computer Architecture. Kluwer Academic Pub-
lishers, 2003.

[GLR11] Shafi Goldwasser, Huijia Lin, and Aviad Rubinstein. Delegation of computation without rejec-
tion problem from designated verifier CS-proofs. Cryptology ePrint Archive, Report 2011/456,
2011.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious RAMs.
Journal of the ACM, 43:431–473, May 1996.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In Proceedings of the 26th Annual International Conference on Advances in Cryptology,
CRYPTO ’06, pages 97–111, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for
NP. In Proceedings of the 25th Annual International Conference on Advances in Cryptology,
EUROCRYPT ’06, pages 339–358, 2006.

[Gro09] Jens Groth. Linear algebra with sub-linear zero-knowledge arguments. In Proceedings of the
29th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’09,
pages 192–208, 2009.

[Gro10a] Jens Groth. Short non-interactive zero-knowledge proofs. In Proceedings of the 16th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
ASIACRYPT ’10, pages 341–358, 2010.

[Gro10b] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Proceedings of
the 16th International Conference on the Theory and Application of Cryptology and Information
Security, ASIACRYPT ’10, pages 321–340, 2010.

98

[GS89] Yuri Gurevich and Saharon Shelah. Nearly linear time. In Logic at Botik ’89, Symposium on
Logical Foundations of Computer Science, pages 108–118, 1989.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length.
Journal of the ACM, 53:558–655, July 2006. Preliminary version in STOC ’02.

[GSS12a] Craig Gentry, Halevi Shai, and Nigel P. Smart. Better bootstrapping in fully homomorphic
encryption. In Proceedings of the 15th International Conference on Practice and Theory in
Public Key Cryptography, PKC ’12, pages 1–16, 2012.

[GSS12b] Craig Gentry, Halevi Shai, and Nigel P. Smart. Fully homomorphic encryption with poly-
log overhead. In Proceedings of the 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, EUROCRYPT ’12, pages 465–482, 2012.

[GVW02] Oded Goldreich, Salil Vadhan, and Avi Wigderson. On interactive proofs with a laconic prover.
Computational Complexity, 11(1/2):1–53, 2002.

[GW12] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. Cryptology
ePrint Archive, Report 2012/290, 2012.

[Har04] Prahladh Harsha. Robust PCPs of Proximity and Shorter PCPs. PhD thesis, MIT, EECS,
September 2004.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. Journal of the ACM,
24(2):332–337, 1977.

[HS00] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. Computational
Complexity, 9(3–4):157–201, Dec 2000. Preliminary version in STACS ’91.

[Jon88] Douglas W. Jones. The ultimate RISC. ACM SIGARCH Computer Architecture News, 16:48–
55, June 1988.

[Jon93] Neil D. Jones. Constant time factors do matter. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing, STOC ’93, pages 602–611, 1993.

[Kan05] Rajgopal Kannan. The KR-Beneš network: A control-optimal rearrangeable permutation net-
work. IEEE Transactions on Computers, 54(5):534–544, 2005.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, STOC ’92, pages 723–732, 1992.

[Kol53] Andrey N. Kolmogorov. To the definition of an algorithm. Uspekhi Matematicheskikh Nauk,
8(4):175–176, 1953.

[Kop10] Swastik Kopparty. Private communication, 2010.

[KRR12] Yael Kalai, Ran Raz, and Ron Rothblum. Where delegation meets Einstein. Isaac Newton
Institute for Mathematical Sciences, Formal and Computational Cryptographic Proofs, 2012.

[KU58] Andrey N. Kolmogorov and Vladimir A. Uspenskĭı. To the definition of an algorithm. Us-
pekhi Matematicheskikh Nauk, 13(4):3–28, 1958. In Russian. English translation in in AMS
Translations, ser. 2, vol. 21 (1963), 217Ð-245.

[KvLP88] Jyrki Katajainen, Jan van Leeuwen, and Martti Penttonen. Fast simulation of Turing machines
by random access machines. SIAM Journal on Computing, 17(1):77–88, 1988.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and architectures: array, trees, hy-
percubes. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

[Lip12] Helger Lipmaa. Progression-free sets and sublinear pairing-based non-interactive zero-
knowledge arguments. In Proceedings of the 9th Theory of Cryptography Conference on Theory
of Cryptography, TCC ’12, pages 169–189, 2012.

[LL92] Michael C. Loui and David R. Luginbuhl. Optimal on-line simulations of tree machines by
random access machines. SIAM Journal on Computing, 21(5):959–971, 1992.

99

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, Cambridge,
UK, second edition edition, 1997.

[Mat08] Todd Mateer. Fast Fourier Transform algorithms with applications. PhD thesis, Clemson
University, 2008.

[Mei12] Or Meir. Combinatorial pcps with short proofs. In Proceedings of the 26th Annual IEEE
Conference on Computational Complexity, CCC ’12, 2012.

[Mer89] Ralph C. Merkle. A certified digital signature. In CRYPTO ’89: Proceedings of the 9th Annual
International Cryptology Conference, pages 218–238, New York, NY, USA, 1989. Springer-
Verlag New York, Inc.

[Mic00] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298,
2000. Preliminary version appeared in FOCS ’94.

[NRS94] Ashish V. Naik, Kenneth W. Regan, and D. Sivakumar. On quasilinear-time complexity theory.
In Proceedings of the 11th Annual Symposium on Theoretical Aspects of Computer Science,
STACS ’94, pages 325–349, 1994.

[NS82] David Nassimi and Sartaj Sahni. Parallel algorithms to set up the Beneš permutation network.
IEEE Transactions on Computers, 31(2):148–154, 1982.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applica-
tions. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, STOC ’89,
pages 33–43, 1989.

[Ofm65] Yuri P. Ofman. A universal automaton. Transactions of the Moscow Mathematical Society,
14:200–215, 1965.

[OTW71] D. C. Opferman and N. T. Tsao-Wu. On a class of rearrangeable switching networks - part i:
Control algorithm. Bell System Technical Journal, 50(5):1579–1600, 1971.

[Pap94] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, USA,
1994.

[Pau78] Wolfgang J. Paul. Komplexitätstheorie. Teubner, Stuttgart, Germany, 1978.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. Journal of
the ACM, 26:361–381, April 1979.

[Pip73] Nicholas Pippenger. The complexity theory of switching networks. Technical Report 487, MIT
Research Lab of Electronics, 1973.

[Pip77] Nicholas Pippenger. Superconcentrators. SIAM Journal on Computing, 6(2):298–304, 1977.

[PR79] W. J. Paul and R. Reischuk. On time versus space II. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, FOCS ’79, pages 298–306, 1979.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In Proceed-
ings of the 26th Annual ACM Symposium on Theory of Computing, STOC ’94, pages 194–203,
1994.

[Rei93] John H. Reif. Synthesis of parallel algorithms. Morgan Kaufman, San Mateo, CA, USA, 1993.

[Rob86] J. M. Robson. Fast probabilistic RAM simulation of single tape turing machine computations.
Information and Control, 63(1-2):67–87, 1986.

[Rob91] J. M. Robson. An O(T log T) reduction from RAM computations to satisfiability. Theoretical
Computer Science, 82(1):141–149, May 1991.

[Rob92] J. M. Robson. Deterministic simulation of a single tape turing machine by a random access
machine in sub-linear time. Information and Computation, 99(1):109–121, 1992.

100

[Rom90] John Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceed-
ings of the 22nd Annual ACM Symposium on Theory of Computing, STOC ’90, pages 387–394,
1990.

[Sch78] Claus-Peter Schnorr. Satisfiability is quasilinear complete in NQL. Journal of the ACM, 25:136–
145, January 1978.

[Sch80] Arnold Schönhage. Storage modification machines. SIAM Journal on Computing, 9(3):490–508,
1980.

[SH86] Richard E. Stearns and Harry B. III Hunt. On the complexity of the satisfiability problem
and the structure of NP. Technical Report 82-21, State University of New York at Albany,
Computer Science Department, 1986.

[Sho88] Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. In Pro-
ceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’88,
pages 283–290, 1988.

[Sho99] Victor Shoup. Efficient computation of minimal polynomials in algebraic extensions of finite
fields. In Proceedings of the 1999 International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC ’99, pages 53–58, New York, NY, USA, 1999. ACM.

[Shp96] Igor Shparlinski. On finding primitive roots in finite fields. Theoretical Computer Science,
157(2):273–275, 1996.

[Spi95] Daniel Spielman. Computationally Efficient Error-Correcting Codes and Holographic Proofs.
PhD thesis, MIT, Mathamatics Department, May 1995.

[Tho78] C. D. Thompson. Generalized connection networks for parallel processor intercommunication.
IEEE Transactions on Computers, 27(12):1119–1125, 1978.

[VL88] Ramarathnam Venkatesan and Leonid Levin. Random instances of a graph coloring problem
are hard. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC
’88, pages 217–222, 1988.

[vzGG96] Joachim von zur Gathen and Jürgen Gerhard. Arithmetic and factorization of polynomial over
f2. In Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computa-
tion, ISSAC ’96, pages 1–9, New York, NY, USA, 1996. ACM.

[vzGG03] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge University
Press, New York, NY, USA, 2 edition, 2003.

[Wak68] Abraham Waksman. A permutation network. Journal of the ACM, 15(1):159–163, 1968.

[Wee05] Hoeteck Wee. On round-efficient argument systems. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming, ICALP ’05, pages 140–152, 2005.

101

	Abstract
	Contents
	1 Introduction
	1.1 Random-Access Machine Computations
	1.2 Our Focus: Succinct Arguments for NP

	2 Overview of Results
	2.1 Programming circuits: from BHRAM to circuit satisfaction
	2.2 Programming polynomials: from BHRAM to algebraic constraint satisfaction
	2.3 Extensions

	3 Open Problems
	4 Proof Strategy
	4.1 Step 1: From BHRAM To sGCP By Localizing & Structuring Constraints
	4.2 Step 2: From sGCP To sACSP By Arithmetizing Constraints

	5 Roadmap of Technical Sections
	6 Definitions
	6.1 Levin Reductions
	6.2 Routing Networks
	6.3 Finite Fields
	6.4 Random-Access Machines
	6.5 sGCP: A Generic Succinct Graph Coloring Problem
	6.6 sACSP: A Generic Succinct Algebraic Constraint Satisfaction Problem

	7 From BHRAM To sGCP
	7.1 Step 1: From RAMs to computation graphs
	7.2 Step 2: From computation graphs to (double) De Bruijn graphs
	7.3 Step 3: From (double) De Bruijn graphs to succinct GCPs
	7.4 Step 4: The Levin reduction

	8 From sGCP To sACSP
	8.1 An embedding and some lemmas for double extended De Bruijn graphs
	8.2 The conversion of parameters for double extended De Bruijn graphs
	8.3 The Levin reduction for double extended De Bruijn graphs

	A Routing Networks
	A.1 Butterfly Networks and Isomorphic Graphs of Interest
	A.2 Beneš Networks and Their Rearrangeability
	A.3 Routing Bit-Reversal Permutations
	A.4 Simulating Beneš Networks with Butterfly Networks
	A.5 De Bruijn Graphs and Their Rearrangeability

	B Circuit Diagrams
	B.1 Transition Function
	B.2 Coloring Constraint Function For sGCP

	C Finite Fields and Efficient Computation
	C.1 Irreducible and Primitive Polynomials
	C.2 Linear Maps and Sparse Polynomials
	C.3 Polynomial Evaluation
	C.4 Polynomial Interpolation
	C.5 A Canonical Embedding
	C.6 Some Useful Families of Polynomials
	C.7 Efficient Algebraic Computation

	References

