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Abstract

We give the first proof of security for an identity-based encryption scheme in the quantum
random oracle model. This is the first proof of security for any scheme in this model that requires
no additional assumptions. Our techniques are quite general and we use them to obtain security
proofs for two random oracle hierarchical identity-based encryption schemes and a random
oracle signature scheme, all of which have previously resisted quantum security proofs, even
using additional assumptions. We also explain how to remove the extra assumptions from prior
quantum random oracle model proofs. We accomplish these results by developing new tools for
arguing that quantum algorithms cannot distinguish between two oracle distributions. Using a
particular class of oracle distributions, so called semi-constant distributions, we argue that the
aforementioned cryptosystems are secure against quantum adversaries.

Keywords: Quantum, Random Oracle, IBE, Signatures

1 Introduction

While quantum computation is not yet viable, Shor [Sho97] showed that when fully realized, quantum
computers will break most of the cryptosystems used today, namely those based on the difficulty
factoring and the discrete log problem. This has sparked the field of post-quantum cryptography,
the search for classical systems secure against quantum adversaries. To be secure in this setting,
a system must have an underlying difficult problem for quantum computers, as well as a security
reduction showing how to solve this problem using a quantum adversary that breaks the system.
Problems based on lattices have so far resisted quantum attacks, and there is a considerable amount
of literature on lattice-based cryptosystems. However, random oracle security proofs for these
constructions typically only consider classical adversaries, thus failing to show security in the
quantum world.

The random oracle model [BR93] is one area where many classical proofs lack quantum equivalents.
This model is of interest because random oracle schemes tend to be more efficient than their standard
model counterparts. Consequently, the most efficient lattice-based schemes are often constructed in
the random oracle model. For example, Gentry, Peikert, and Vaikuntanathan [GPV08] show how to
construct signatures and identity-based encryption (IBE). Cash et al. [CHKP10] and Agrawal, Boneh,
and Boyen [ABB10] give hierarchical IBE schemes both in the standard model and the random
oracle model, with the random oracle constructions being more efficient than the corresponding
standard model schemes. Gordon, Katz, and Vaikuntanathan [GKV10] give a group signature
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scheme, while Boneh and Freeman [BF11] demonstrate a homomorphic signature scheme, all in the
random oracle model.

All of these papers prove security against adversaries with classical access to the random oracle.
However, when the scheme is instantiated, the random oracle is replaced with a hash function H,
which a quantum adversary may evaluate on a quantum superposition of inputs. To model this
ability, it is necessary to allow a quantum adversary to make quantum queries to the random oracle.
We call this model the quantum random oracle model.

Proving security in the quantum random oracle model presents many challenges. Among them is
the difficulty of efficiently simulating the random oracle. In the classical case, the random oracle is
simulated on the fly, only generating randomness as needed. In the quantum setting, the adversary
can query the oracle on an exponential superposition of inputs. Therefore, to make even the first
query look random to the adversary, it would seem that we would need exponential randomness.

In addition to this difficulty, there are classical random oracle techniques that do not make
sense if the adversary has quantum access to the random oracle. One such technique is that of
Bellare and Rogaway [BR93] for proving the security of the Full Domain Hash signature scheme.
In this technique, the reduction algorithm is given a challenge c to solve, and randomly guesses
which oracle query the adversary will use to break the scheme. The algorithm embeds c into the
response for this query, and if both the guess is correct and the adversary breaks the scheme, then
the algorithm will be able to solve c.

In the quantum setting, this argument no longer applies because each oracle query might be over
a superposition of exponentially many inputs. We could choose a random query and plug c into all
outputs for that query, but this will not look like a random oracle to the adversary. Alternatively,
we could choose one oracle input and plug c into the corresponding output for all queries. However,
our chance of guessing correctly will then be exponentially small.

1.1 Our Contributions

We resolve some of the issues outlined above by giving a quantum analog of the technique of Bellare
and Rogaway [BR93] and demonstrating how to simulate a random oracle without any additional
computational assumptions. Specifically, we:
• Describe new ways to argue that quantum algorithms cannot distinguish between two distri-

butions of oracles.
• Apply these techniques to a new type of distribution of oracles, which we call semi-constant

distributions, showing that they cannot be distinguished from random oracles.
• Use our results on semi-constant distributions to prove that the random oracle IBE scheme

of Gentry et al. [GPV08] is secure against quantum adversaries. The basic idea is to plug
the challenge c into a small fraction of inputs to the oracle, making the oracle seen by the
adversary a semi-constant distribution. The adversary thus behaves as though the oracle is
random. If the adversary happens to use any of the inputs in this fraction, we are able to
solve c.
• Show that this technique is general by applying it to the random oracle hierarchical IBE

schemes of Cash et al. [CHKP10] and Agrawal et al. [ABB10].
• Prove that the generic Full Domain Hash signature scheme [BR93] is secure against quantum

adversaries, though this remains a theoretical result until a trapdoor permutation is found
that is secure against quantum adversaries.
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• Use our techniques and k-wise independent functions to solve the problem of simulating
quantum random oracles, thus making the above results unconditional.

1.2 Related Work

Quantum random oracles have been used in several prior works. For example, Bennett et
al. [BBBV97] prove several quantum complexity results, including a proof that quantum com-
puters cannot solve all of NP, relative to a random oracle. In a cryptographic setting, quantum
random oracles have been used by Aaronson [Aar09] to construct quantum money and by Brassard
and Salvail [BS08] and Brassard et al. [BHK+11] to construct quantum analogs of Merkle’s Puzzles.

Boneh et al. [BDF+11] give a random oracle scheme that is secure against quantum adversaries
with classical access to the oracle, but is insecure once the adversary has quantum access to the
oracle. Despite this result, they show that there are circumstances in which a classical random
oracle security reduction can also be used in the quantum setting. However, their proof techniques
do not apply to the schemes analyzed in this paper. Additionally, their proof simulates the random
oracle using a pseudorandom function (PRF) that is secure against quantum adversaries, hence
making their results conditional on the existence of a so-called quantum-secure PRF. We note that
Zhandry [Zha12] shows that such PRFs can be built from quantum-secure pseudorandom generators,
which can, in turn, be built from lattices.

There has also been progress toward converting classical security proofs into quantum proofs
outside of the random oracle model. For instance, Unruh[Unr10] shows that classical statistical
security in Canetti’s universal composabitily (UC) model implies quantum statistical security.
Hallgren, Smith, and Song [HSS11] give a two-party protocol that is quantum computationally
secure in the UC.

2 Preliminaries

A function ε(n) is negligible if it is non-negative and smaller than any inverse polynomial. That is,
for any polynomial p(n), ε(n) < 1/p(n) for all sufficiently large n.

A probabilistic polynomial time (PPT) algorithm is a classical randomized algorithm that runs
in time polynomial in the size of its input. We also call such algorithms efficient.

2.1 Weight Assignments

A weight assignment on a set X is a function D : X → R such that
∑
x∈X D(x) = 1. We sometimes

write PrD[event] to represent the sum of the weights of all outcomes consistent with that event. A
distribution on X is a weight-assignment D such that D(x) ≥ 0 for all x ∈ X . If D is a distribution,
way that x occurs with probability D(x). Let UX denote the uniform distribution over X . That is,
UX (x) = 1/|X |. When the set X is clear, we may omit the subscript.

We define the distance between two weight assignments D1 and D2 over a set X as

|D1 −D2| =
∑
x∈X
|D1(x)−D2(x)|

If |D1 −D2| ≤ ε, we say that D1 and D2 are ε-close.
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Given a set of weight assignments Dy over X , indexed by y ∈ Y, and a weight assignment D
over Y, we can define a weight assignment D′ over X where

D′(x) =
∑
y∈Y

D(y)Dy(x)

We write D′ =
∑
y∈Y D(y)Dy. Say each of the Dys are actually distributions. Given two weight

assignments D1 and D2 over Y, define D′1 =
∑
y∈Y D1(y)Dy and D′2 =

∑
y∈Y D2(y)Dy. Then:

∣∣D′1 −D′2∣∣ =
∑
x∈X

∣∣∣∣∣∣
∑
y∈Y

(D1(y)−D2(y))Dy(x)

∣∣∣∣∣∣
≤

∑
x∈X ,y∈Y

|(D1(y)−D2(y))Dy(x)|

=
∑

x∈X ,y∈Y
|D1(y)−D2(y)|Dy(x)

=
∑
y∈Y
|D1(y)−D2(y)| = |D1 −D2|

Consider the set of functions H : X → Y for sets X and Y , denoted by HX ,Y . Consider a weight
assignment D on HX ,Y . Let W ⊆ X . We define the marginal weight assignment DW of D on HW,Y
where the weight of a function HW : W → Y is equal to the sum of the weights of all H ∈ HX ,Y
that agree with HW on W. In other words,

DW(HW) = Pr
D

[H(w) = HW(w)∀w ∈ W]

We call two weight assignments D1 and D2 on HX ,Y k-wise equivalent if for all W ⊆ X of size
k, the marginal weight assignments D1,W and D2,W (of D1 and D2) over HW,Y are identical.

2.2 Quantum Computation

A quantum algorithm is an algorithm executed on a quantum computer that produces a classical
output. Most of the background in quantum computation needed to understand this paper is for the
proof of Theorem 3.1. Since this proof appears in Appendix B, we present the necessary background
there. In the meantime, we recall a couple basic facts about quantum computation, and refer the
reader to [NC00] for a more thorough discussion.

Fact 1. Any classical computation can be implemented on a quantum computer.

Fact 2. Any function that has an efficient classical algorithm computing it can be implemented
efficiently as a quantum-accessible oracle.

Fact 3. Given a quantum algorithm A with oracle access to an oracle O, each oracle O defines a
probability distribution of the outputs of A. Hence, any weight assignment of oracles leads to a
weight assignment of outputs of A, and if two weight assignments D1 and D2 are a distance ε apart,
the weight assignment of the outputs of A under these distributions are a distance at most ε apart.
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2.3 Cryptographic Primitives

Here we briefly outline a few cryptographic primitives, and refer to Appendix A for details. All
primitives depend on a security parameter n.

An encryption scheme E is a triple of PPT algorithms (E.Gen,E.Enc,E.Dec), where E.Gen(1n)
generates secret/public keys (sk, pk), E.Encpk encrypts a message, and E.Decsk decrypts a ciphertext.
We use the indistinguishability under chosen plaintext attack (IND-CPA) notion of security [GM84].

An identity-based encryption (IBE) scheme IBE = (IBE.Gen, IBE.Extract, IBE.Enc, IBE.Dec) is
a 4-tuple of PPT algorithms where IBE.Gen(1n) generates master secret/public keys (msk,mpk),
IBE.Extractmsk generates secret keys for given identities, IBE.Encmpk encrypts a message to an identity,
and IBE.Dec decrypts a ciphertext sent to an identity by using the corresponding secret key. We
use the indistinguishability under chosen plaintext attack (IND-ID-CPA) notion of security [BF01].

A signature scheme S = (S.Gen,S.Sign,S.Ver) is a triple of PPT algorithms where S.Gen(1n)
generates secret/public keys (sk, pk), S.Signsk signs a message, and S.Verpk verifies a signature. We use
the existential unforgeablility under chosen message attack (UF-CMA) notion of security [GMR88].

A pre-image sampleable function (PSF) is a quadruple of algorithms F = (F.Gen,F.Sample, f, f−1)
where F.Gen generates private/public keys (sk, pk), fpk is a function, F.Sample samples x from a
distribution D such that fpk(x) is uniform, and f−1

sk (y) samples from D conditioned on fpk(x) = y.
For security, we use the notion of one-wayness.

A trapdoor permutation (TDP) is a special case of a PSF where f is bijective and F.Sample
simply returns a random element in the domain of fpk. Since F.Sample is already defined, we omit
it from the specification.

2.4 Random Oracle Model

In the Random Oracle Model, we assume the existence of a random function H, and give all parties
oracle access to this function. If A makes queries to an oracle H, we denote this as AH . If a system
S uses a random oracle in its specification, we denote this as SH . The algorithms comprising any
cryptographic protocol can use H, as can the adversary. Thus we modify the security games for all
cryptographic systems to allow the adversary to make random oracle queries.

When a random oracle scheme is implemented, some suitable hash function H is included in
the specification. Any algorithm (adversary included) now replaces oracle queries with evaluations
of this hash function. In the quantum setting, because a quantum algorithm can evaluate H on
an arbitrary superposition, we must allow the quantum adversary to make quantum queries to the
random oracle. We call this the quantum random oracle model.

3 Distinguishing Oracles With Quantum Queries

In this section, we give some tools for arguing that quantum algorithms cannot distinguish between
two distributions of oracles. The trivial way to bound the ability of any quantum algorithm
to distinguish two oracle distributions D1 and D2 is to bound the distance between D1 and D2
themselves. However, in many cases, the distributions we are interested in are in fact very far
apart, so we need some new techniques for arguing indistinguishability. First, we show that k-
wise equivalent distributions are indistinguishable, using techniques similar to that of Meyer and
Pommersheim [MP11]:
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Theorem 3.1. Let A be a quantum algorithm making q quantum queries to an oracle H : X → Y.
If we draw H from some weight assignment D, then for every z, the quantity PrH←D[AH() = z] is
a linear combination of the quantities PrH←D[H(xi) = ri∀i ∈ {1, ..., 2q}] for all possible settings of
the xi and ri.

This is proved in Appendix B, and immediately implies two important facts:

• If two weight assignments on oracles, D1 and D2, are 2q-wise equivalent, then any q query
quantum algorithm behaves the same under both weight assignments, since for all 2q pairs
(xi, ri), PrH←D1 [H(xi) = ri∀i ∈ {1, ..., 2q}] = PrH←D2 [H(xi) = ri∀i ∈ {1, ..., 2q}].
• If the quantities PrH←D[H(xi) = ri∀i ∈ {1, ..., 2q}] are low-degree polynomials in some param-

eter λ, then so is PrH←D[AH() = z], since it is a linear combination of the PrH←D[H(xi) =
ri∀i ∈ {1, ..., 2q}]. Moreover, PrH←D[AH() ∈ S] for any set S is also a low-degree polynomial.

We use the second fact to prove the following theorem:

Theorem 3.2. Fix q, and let Dλ be a family of distributions on HX ,Y indexed by λ ∈ [0, 1].
Suppose there are integers d and ∆ such that for every 2q pairs (xi, ri) ∈ X × Y, the function
p(λ) = PrH←Dλ [H(xi) = ri∀i ∈ {1, ..., 2q}] satisfies:

• p is a polynomial in λ of degree at most d.
• p(i)(0), the ith derivative of p at 0, is 0 for each i ∈ {1, ...,∆− 1}.

Then any quantum algorithm A making q quantum queries can only distinguish Dλ from D0 with
probability at most 4∆

(2∆)!λ
∆d2∆.

Proof. By the assumptions of the theorem, for any 2q pairs (xi, ri), the quantity PrH←Dλ [H(xi) =
ri∀i ∈ {1, ..., 2q}] is a polynomial of degree d in λ with the first ∆− 1 derivatives at 0 being 0. By
Theorem 3.1, for a q-query quantum algorithm A, PrH←Dλ [AH() = z] is a linear combination of
these values. Thus, for any z, PrH←Dλ [AH() = z] is also a polynomial in λ of degree d with the
first ∆− 1 derivatives at 0 being 0.

Now, suppose that A distinguishes Dλ from D0 with probability ε(λ). That is∑
z

∣∣∣∣ Pr
H←Dλ

[AH() = z]− Pr
H←D0

[AH() = z]
∣∣∣∣ = ε(λ) .

Let Zλ be the set of z such that z is a more likely output under Dλ than D0. That is,
PrH←Dλ [AH() = z] > PrH←D0 [AH() = z]. It is not difficult to show that

Pr
H←Dλ

[AH() ∈ Zλ]− Pr
H←D0

[AH() ∈ Zλ] = ε(λ)/2 .

Fix λ0, and consider the quantity

pλ0(λ) ≡ Pr
H←Dλ

[AH() ∈ Zλ0 ] =
∑
z∈Zλ0

Pr
H←Dλ

[AH() = z] .

Then pλ(λ) − pλ(0) = ε(λ)/2. Further, for each λ0, pλ0 is a degree-d polynomial in λ such that
p

(i)
λ0

(0) = 0 for i ∈ {1, ...,∆− 1}. It also lies in the range [0, 1] for all λ ∈ [0, 1], so we can use an
inequality by the Markov brothers [DS41] to bound the ∆-th derivative for all λ ∈ [0, 1]:∣∣∣p(∆)

λ0
(λ)
∣∣∣ ≤ 4∆∆!

2(2∆)!d
2∆
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Thus we can bound pλ0(λ) ≤ pλ0(0) + 4∆

2(2∆)!λ
∆d2∆. Setting λ0 = λ, we get

ε(λ) = 2(pλ(λ)− pλ(0)) ≤ 4∆

(2∆)!λ
∆d2∆ .

We conclude this section with another general approach toward arguing that no quantum
algorithm can distinguish between two oracle distributions D1 and D2: construct a weight assignment
D1,2 which is 2q-wise equivalent to D1 (so that the behaviors of A under D1 and D1,2 are the same)
and that is a distance at most ε from D2 (so that the behaviors of A under D1,2 and D2 are ε-close).
Then the behaviors of A under D1 and D2 are also ε-close. We formalize this latter idea with a new
pseudometric on oracle distributions:

Definition 3.3. Let D1 and D2 be two weight assignments on oracles. Fix k. Then define the
pseudometric |D1 −D2|(k) as the minimum of |D1,2 −D2| over all weight assignments D1,2 that are
k-wise equivalent D1.

Theorem 3.4. The minimum D1,2 in Definition 3.3 exists, and |D1 −D2|(k) defines a pseudometric
on weight assignments on oracles.

Proof. If D is k-wise equivalent to D1 and a distance ε from D2, we say that D is a witness to
|D1 −D2|(k) ≤ ε. If ε = |D1 −D2|(k), we call D an optimal witness.

First, we argue that an optimal witness exists: We see that D1 itself is a witness to |D1 −D2|(k) ≤
|D1 −D2|. Thus to find D1,2, we are minimizing |D1,2 −D2| (a continuous function in D1,2) over
the set of assignments D1,2 that are k-wise similar to D1 (a closed set) and at most |D1 −D2| away
from D2 (a compact set). Thus we are minimizing over a compact set, so the minimum is actually
obtained.

We now show that |D1 −D2|(k) satisfies the properties of a pseudometric:

• |D1 −D1|(k) = 0, since D1 is a witness to |D1 −D1|(k) ≤ 0, and |D1 −D2|(k) is non-negative
for all weight assignments D1 and D2.
• |D1 −D2|(k) = |D2 −D1|(k). Let D1,2 be an optimal witness for |D1 −D2|(k). Then define
D2,1 = D1 − D1,2 + D2. The sums of all weights add to 1, so this is a weight assignment.
Further, it is easy to see that |D2,1 −D1| = |D2 −D1,2| = |D1 −D2|(k). Further, since D1 is
k-wise equivalent to D1,2, when looking at the marginal weight assignment over any k inputs,
D1 and D1,2 cancel, leaving D2,1 to be k-wise equivalent to D2. Thus, D2,1 is a witness to
|D2 −D1|(k) ≤ |D1 −D2|(k). We can perform the same argument in reverse to get the other
inequality.
• |D1 −D3|(k) ≤ |D1 −D2|(k) + |D2 −D3|(k). Let D1,2 and D2,3 be the optimal witnesses for
|D1 −D2|(k) and |D2 −D3|(k). Define D1,3 = D1,2 −D2 +D2,3. It is easy to see that D3 is a
weight assignment and that |D1,3 −D3| ≤ |D1,2 −D2| + |D2,3 −D3|. It is also not difficult
to show that, since D2,3 is k-wise equivalent to D2, D1,3 must be k-wise equivalent to D1,2,
which is k-wise equivalent to D1. Hence D1,3 is a witness for the identity in question.

Observe that |D1 −D2|(k) = 0 if and only if D1 is k-wise equivalent to D2. Thus, we can
rephrase Theorem 3.1 as follows: if |D1 −D2|(2q) = 0, then no quantum algorithm making q
quantum queries can distinguish the oracle weight assignments D1 and D2. We now generalize this
to |D1 −D2|(2q) 6= 0:
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Corollary 3.5. Let D1 and D2 be two oracle distributions. Then the output weight assignment of
any q-query quantum algorithm A under D1 and D2 are |D1 −D2|(2q)-close.

Proof. Let D1,2 be an optimal witness for |D1 −D2|(2q). D1,2 is 2q-wise equivalent to D1, so by
Theorem 3.1, the behaviors of the A under D1 and D1,2 are identical. The behavior of A under D2
is |D1,2 −D2| = |D1 −D2|(2q)-close to that under D1,2, and hence D1.

We note that a slightly weaker version of Theorem 3.2 can also be proved using the above ideas.
Roughly, we pick some constants λi and find functions ai(λ) such that

p(λ) =

1−
d−∆∑
i=0

ai(λ)

p(0) +
d−∆∑
i=0

ai(λ)p(λi)

for any polynomial p of degree d such that p(i)(0) = 0 for i ∈ {1, ...,∆− 1}. The ai(λ) are basically
modified Lagrange interpolating polynomials. Next, we define a new weight assignment

D′λ =

1−
d−∆∑
i=0

ai(λ)

D0 +
d−∆∑
i=0

ai(λ)Dλi .

By defining D′λ in this way, D′λ turns out to be 2q-wise equivalent to Dλ. Because Dλi are
all distributions, the distance between D′λ and D0 is at most 2

∑d−∆
i=0 |ai(λ)|, thus showing that

|Dλ −D0|(2q) also satisfies this bound. By picking the right values for λi, we can get this bound to
be small. We can then use Corollary 3.5 to bound the distance between the output distributions of
the q-query quantum algorithm A.

4 Semi-Constant Distributions

In this section, we define a class of distributions on oracles in HX ,Y called semi-constant distributions.
Our motivation for these distributions is to support quantum Full Domain Hash-type arguments,
where a random value is inserted into a small but significant fraction of oracle inputs. The following
definition captures the essence of the this idea:

Definition 4.1. Define SCλ, the semi-constant distribution, as the distribution over HX ,Y resulting
from the following process:

• First, pick a random element y from Y.
• For each x ∈ X , do one of the following:

– With probability λ, set H(x) = y. We call x a distinguished input to H.
– Otherwise, set H(x) to be a random element in Y.

First, notice that SC0 is the uniform distribution, since in this case, the probability that an
input is distinguished is 0. We bound the ability of a quantum algorithm to distinguish between
SCλ and SC0 = U using the ideas of Section 3.

Lemma 4.2. Fix k. For each k pairs (xi, ri), the probability PrH←SCλ [H(xi) = ri∀i ∈ {1, ..., k}] is
a degree-k polynomial in λ whose first derivative is 0 at λ = 0.
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This, proved in Appendix C, shows that for any qH , we can set d = k = 2qH and ∆ = 2 in the
assumptions of Theorem 3.2. We immediately get:

Corollary 4.3. The distribution of outputs of a quantum algorithm making qH queries to an oracle
drawn from SCλ is at most a distance 8

3q
4
Hλ

2 away from the case when the oracle is drawn from the
uniform distribution.

We note that using standard quantum query results, it is possible to prove this corollary for
a bound that is first-order in λ. However, we will see in Section 5 that we need a bound that is
second-order in λ for our security results.

We do not know if this bound is tight. In Appendix C, we adapt the collision search algorithm
of Brassard et al. [BHT97] to SCλ, obtaining a distinguishing probability of Ω(q3

Hλ
2).

5 Quantum Security Arguments

In this section, we explore the random oracle proof technique of Bellare and Rogaway [BR93]. In this
technique, we plug a challenge c into a randomly chosen hash query, and hope that the adversary
uses c to break the system. If so, we can use the adversary to solve the underlying problem.

In the quantum setting, the straight-forward application of this technique breaks down. The
adversary can now query the hash function on a superposition of exponentially many inputs. If we
plug c to one of those inputs, the probability that the adversary uses c is exponentially small.

We instead plug c into some small but significant fraction of the inputs, so that the oracle is
distributed according to SCλ. As we have shown, a quantum algorithm cannot detect that this
oracle is not random, but now the adversary uses c with significant probability.

5.1 Identity-Based Encryption from Lattices

Here we prove the security of the IBE scheme from Gentry et al. [GPV08]. Their scheme is
constructed from an encryption scheme E = (E.Gen,E.Enc,E.Dec), for which there exists a trapdoor
allowing the computation of secret keys from public keys.

More specifically, let F = (F.Gen,F.Sample, f, f−1) be a pre-image sampleable function (PSF).
Suppose E.Gen(1n) works as follows: generate (msk,mpk) ← F.Gen(1n). Then, sample sk ←
F.Sample(1n), and compute pk = fmpk(sk). Output (sk, (pk,mpk)).

Gentry et al. give such an encryption scheme based on the hardness of lattice problems. Their se-
curity reduction treats the adversary as a black box, so their proof holds in the quantum setting. They
then prove the security of the IBE scheme IBE = (IBE.Gen = F.Gen, IBE.ExtractH , IBE.EncH , IBE.Dec)
where H maps identities to public keys of E and:

• IBE.Extractmsk(id)H = f−1
msk(H(id))

• IBE.Encmpk(id,m)H = E.EncH(id)(m)
• IBE.Decskid(c) = E.Decskid(c)

Theorem 5.1. Let E and F be as above, and suppose that E is quantum IND-CPA-secure. If we
model H as a random oracle, then IBE is quantum IND-ID-CPA-secure.

Proof. Let A be a quantum adversary making qH hash queries, qE extract queries queries, that
breaks IBE with advantage ε.
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Let Game0 be the standard attack game for IBE: the challenger generates (msk,mpk) from
IBE.Gen, and sends mpk to the adversary. The adversary can make (classical) extraction queries
on identities idi, to which the challenger responds with IBE.ExtractHmsk(idi), and (quantum) hash
queries to the random oracle H. A then produces an identity id∗, along with messages m0 and m1.
The challenger chooses a random bit b, and responds with IBE.Encmpk(id,mb). A is allowed to make
more extraction and hash queries, and produces a bit b′. A wins if b′ = b and for all i, idi 6= id∗. By
definition, this happens with probability 1

2 + ε.
Assume without loss of generality that A never asks for the secret key corresponding to id∗.

Let A′ be the following algorithm that makes quantum queries to an oracle H, and simulates the
interaction between A and the challenger: generate (msk,mpk) from IBE.Gen, send mpk to A. Run
A, forwarding all hash queries to H, and answering extraction queries using IBE.ExtractH . Similarly,
answer the challenge query by choosing a random b and encrypting mb to the identity id generated
by A. The output of A′ is (c, id∗, Q) where c = b⊕ b′ and Q is the list of extraction queries made
by A. We can now think of Game0 as follows: run A′ with a random oracle H to obtain (c, id∗, Q).
Report that the game is won if and only if c = 0. The number of queries to H made by A′ is qH for
direct queries, qE for queries through the extract algorithm, and 1 for the encryption of mb, for a
total of qH + qE + 1 queries.

Let λ ∈ (0, 1) to be chosen later. Let M be the identity space. Define Game1 as follows: first,
pick a subset X of M where each id ∈ M is put in X with independent probability λ. Run A′

as before to obtain (c, id∗, Q). However, now we decide if the game is won as follows: if id∗ ∈ X
and Q

⋂
X = ∅, then the game is won if c = 0. Otherwise, flip a random coin to decide if the

game is won. By our assumption that A never asks for a secret key for the challenge identity,
we must have that id∗ /∈ Q. Therefore, every identity in Q, as well as id∗, has an independent
probability λ of being in X . Thus, the conditions to not flip a coin are met with probability at least
λ(1− λqE), independent of the probability that c = 0. Thus, Game1 is won with probability at least
1
2 + λ(1− λqE)ε ≥ 1

2 + λε− qEλ2.
Let Game2 be Game1, except that we choose a random pk in the public key space of E, and set

H(x) = pk for all x in X , and choose H(x) randomly for all other x. H is now distributed according
to SCλ.

Claim 1. There exists a polynomial `(·, ·) such that A′ wins Game2 with probability at least

1
2 + λε− `(qH , qE)

4 λ2 .

We defer the precise proof to Appendix D, and instead give an informal justification: by Corollary
4.3, the output distribution of A′ in Game2 is at most a distance 8

3(qH+qE+1)4λ2 from that of Game1.
Thus, we would expect A′ to win Game2 with probability at least 1

2 +λε−
(
qE + 8

3(qH + qE + 1)4
)
λ2,

which has the desired form. Of course, deciding if A′ wins Game2 depends on the set of distinguished
inputs X , so a more careful analysis is required to justify the claim.

Let us now restate Game2 in terms of A: pick X and H as above, and perform the standard
attack game for IBE using H as the random oracle. When A produces b′, first check that no
extraction queries were in X and that the identity id∗ produced by A is in X . If so, A wins if and
only if b = b′. Otherwise, if the check fails, flip a coin to decide if A wins. We can now make the
following observation: once an extraction query in X is made or the challenge query with id∗ /∈ X is
made, we can abort running A, since we no longer need A to determine if the game is won.
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Now we describe an adversary B that breaks E. Assume B has quantum access to two random
oracles O1 and O2. O1 maps identities to randomness used by Sample. O2 maps identities to bits,
outputting 1 with probability is λ. In Section 6, we will show how to efficiently simulate these
oracles. On input (mpk, pk), B works as follows:

• Send mpk to A and simulate A, playing the role of challenger to A.
• Construct a (quantum) oracle H such that

H(id) =
{

pk if O2(id) = 1
fmpk(Sample(;O1(id))) otherwise

where Sample(; r) means run Sample with randomness r.
• When A asks for the secret key for idi, compute O2(idi). If the result is 1, output a random

bit and abort. Otherwise, respond with ski = Sample(;O1(idi)).
• When A produces the challenge query (id∗,m0,m1), check if O2(id∗) = 1. If so, send (m0,m1)

to B’s challenger. Otherwise, output a random bit and abort.
• When the challenger responds with a ciphertext, send it to A.
• When A outputs a bit b′, output the same bit.

Let X be the set of identities id such that O2(id) = 1. We can then see that the abort conditions
are equivalent to Game2. For each extract query idi that succeeds, we have that O2(idi) = 0, so

fmpk(ski) = fmpk(Sample(;O1(idi))) = H(idi)

Thus ski is a correct secret key for idi, and it is distributed correctly (since it is a random pre-image
of H(idi)). If B does not abort on the challenge query, it means O2(id∗) = 1, so H(id∗) = pk. Also,
we can see that H is distributed according to SCλ. Therefore, if B aborts, we win with probability
1
2 , and if we do not abort, we win if and only if A wins. Thus, the view of A as a subroutine of B is
the same as in Game2, and B wins with the same probability that A does. Therefore, B wins with
probability at least 1

2 + λε− `(qH ,qE)
4 λ2.

The advantage of B is at least λε − `(qH , qE)λ2/4. We can now choose λ: the maximum
advantage occurs when λ = 2ε/`(qH , qE), which gives

AdvB ≥
ε2

`(qH , qE)
Thus, if A had non-negligible advantage, so does B.

5.2 Hierarchical IBE from Lattices

In this section, we show the general idea behind adapting the techniques above to proving the
security of the hierarchical identity-based encryption (HIBE) schemes of Agrawal et al. [ABB10]
and Cash et al. [CHKP10].

In a HIBE scheme, identities are structured as a tree, with the identity of any node containing
the identity of its parent as a proper prefix. Any node on the tree can produce private keys for
any nodes in the subtree rooted at that node. We allow an adversary to adaptively take control of
an arbitrary number of nodes in the tree (and thus the subtrees rooted there). An HIBE scheme
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is secure if the adversary cannot decrypt messages encrypted to an identity id∗ of the adversaries
choice but not under its control.

In [ABB10], the random oracle scheme has an oracle H that maps identities to some random
quantities. The reduction has the following high-level structure:

• Guess which level w of the tree contains the identity id∗

• For each level i, generate some random quantities Ri.
• For each level i, simulate a separate random oracle for identities at that level. For i, guess

which query number qi will contain the hash of the level-i parent of id∗.
• Answer the jth random oracle query at level i on idi,j as follows: if j = qi, output Ri.

Otherwise, output a random value.
• Answer secret key queries on id in some special way, but fail if for all prefixes idi of id,

idi = idi,qi . That is, fail if H(idi) = Ri.
• When the adversary generates the identity id∗, we succeed if both the adversary succeeds and

if id∗ is at level w and all prefixes id∗i of id∗ satisfy id∗i = idi,qi .

We now show how to prove security by repeatedly applying the arguments of Theorem 5.1.
Basically, we iterate over levels i, and insert Ri into a λi fraction of identities at that level. In
iteration i, we say the adversary wins if it won in the previous iteration, the level-i prefix of the
chosen identity id∗ is in the λi fraction of distinguished identities (that is, H(id∗i ) = Ri), and no
signature query is. Let ` = `(qH , qE), where `(·, ·) is the polynomial from Theorem 5.1. If the
iteration i advantage is εi, then using the same techniques as in Theorem 5.1, we can set λi so that

εi ≥
ε2i−1
`

We will say that in iteration 0, the adversary wins if it normally would win and we guessed
which level id∗ belonged to correctly. That is, ε0 = ε/d, where ε is the adversary’s advantage in the
standard game. This gives us a total advantage after iteration d of at least

(ε/d)2d

`(2d−1) = `

(
ε

d`

)2d

Notice that the dependence on d in doubly-exponential, whereas in the classical proof it was
singly exponential. Thus, for the same security parameters, this proof only works for much smaller
depth than the classical proof.

These techniques apply as well to the random oracle HIBE of Cash et al. [CHKP10], though
their reduction is a bit more complicated, as there is a second random oracle G which needs to be
handled in a similar way.

5.3 Signatures from Trapdoor Permutations

Here we discuss the security of the Full Domain Hash (FDH) signature scheme:

Definition 5.2 (FDH Signatures). Let F = (F.Gen, f, f−1) be a trapdoor permutation, and a hash
function H that maps messages to images of f , let SH = (S.Gen = F.Gen,S.SignH , S.VerH) where:

• S.SignHsk(m) = f−1
sk (H(m))

12



• S.VerHpk(m,σ) =
{

accept if fpk(σ) = H(m)
reject ortherwise

We now state the main theorem of this section:

Theorem 5.3. Let F be a quantum one-way trapdoor permutation. If we model H as a random
oracle, then S is quantum UF-CMA-secure

The proof of this theorem is very similar to that of Theorem 5.1, and appears in Appendix E.

6 Simulating Random Oracles

In this last section, we explain how to efficiently simulate random oracles. All quantum random
oracle proofs to date require the reduction algorithm to have quantum access to a random oracle,
but a truly random oracle requires exponentially many bits of randomness to construct. We show
that this is not a problem:

Theorem 6.1. Any quantum algorithm A making quantum queries to random oracles Oi can be
efficiently simulated by a quantum algorithm B, which has the same output distribution, but makes
no queries.

Proof. We construct an algorithm B which simulates A, and answers queries to oracle Oi with
evaluations of efficient functions fi. Boneh et al. [BDF+11] use pseudorandom functions (PRF) for
the fi. At first glance, this seems like the only option, as we need a function fi that cannot be
distinguished from random.

Notice, however, that fi need not be secure against all adversaries, just the adversary we are
simulating. We know that our adversary makes qi queries to oracle Oi, so it suffices to have fi be
PRFs secure for up to qi quantum queries. In the classical setting, qi-wise independent functions
(functions that are qi-wise equivalent to a random function) serve as perfectly secure PRFs for up
to qi classical queries. We could hope that something similar holds in the quantum world: indeed,
according to Theorem 3.1, if fi is 2qi-wise equivalent to a random function, then the behavior of
our adversary is the same when the oracle is random and when it is fi. Thus if the fi are 2qi-wise
independent, algorithm A, as a subroutine of B, behaves identically to the case where A is given
truly random oracles. Hence, the output distribution of B is identical to that of A.

Efficient constructions of k-wise independent functions have been known for some time [Jof74,
KM94], and they have been used extensively in the derandomization literature [Lub85, ABI86, KM93].
One common approach to construct a k-wise independent function f from X to Y is to assume
that N = |Y| is a prime power and interpret Y as the field FN . Then define a matrix C with the
following properties:

• The entries are elements in FN .
• There are |X | rows and some small number r of columns.
• Each subset of k rows is linearly independent.

One such example is the Vandermonde matrix, which is used by Alon et al.[ABI86]. To define the
function f , we then pick a random vector v in FrN . f(x) is then the xth element of of the vector Cv.
Since any k rows of C are linearly independent, any k elements of Cv are independent, and hence f
is k-wise independent. The key to making this efficient is that to compute f(x), we only need the
xth row of C, which we can compute on the fly.
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Hence, we can simulate O1 from Theorem 5.1. To simulate O2, which outputs a bit such that
O2(x) = 1 with probability λ, approximate λ by some rational number a/b where b is a prime power,
and construct a k-wise independent function f ′ with range Y = {1, ..., b}. Then set

f(x) =
{

1 if f ′(x) ≤ a
0 otherwise

7 Conclusion

We have shown how to adapt certain classical random oracle arguments to the quantum random oracle
model. Specifically, we gave quantum security proofs for the IBE scheme of Gentry et al. [GPV08]
and the Full Domain Hash signature scheme. We achieved this by defining a distribution of oracles,
called semi-constant distributions, and showing that such oracles cannot be distinguished from a
random oracle by a quantum adversary. We also show how these techniques can be applied to the
random oracle HIBE schemes of Cash et al. [CHKP10] and Agrawal et al. [ABB10]. Lastly, we have
shown how to remove the need for quantum-secure pseudorandom functions from prior work.

Although we have made progress toward converting classical random oracle proofs into quantum
proofs, there is still much work to be done. First, reductions using our technique result in an
algorithm whose advantage is the square of the advantage of the underlying adversary, divided by
some other factors. While improving the reduction to first-order in the adversary’s advantage would
still be of interest for the IBE scheme and Full Domain Hash, it would not affect the qualitative
security statements. However, for the HIBE schemes, this second-order behavior results in an
exponential weakening of the security relative to the classical reduction for deep identity trees.
Therefore, to get the same qualitative security statements as in the classical world, our technique
needs to be refined to make the reduction first-order in ε.

Further work lies in proving the security of other Random Oracle Model schemes. For example,
the construction of signatures from identification protocols by Fiat and Shamir [FS87], though
similar to the proofs in this paper, still needs a quantum proof. The difficulty in the Fiat-Shamir
reduction is that the plugging step initiates the underlying identification protocol, and there is
no obvious quantum analog for this strategy. Also, different types of security arguments, such as
Fujisaki and Okamoto’s generic conversion of weakly secure encryption schemes into a CCA-secure
encryption scheme [FO99], still lack a quantum proof of security.
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A Cryptographic Primitives

Definition A.1 (Encryption Scheme). A public key encryption scheme E is a triple of PPT
algorithms (E.Gen,E.Enc,E.Dec) where

• E.Gen(1n) generates a secret/public key pair (sk, pk).
• E.Encpk(m) computes a ciphertext c.
• E.Decsk(c) computes the plaintext m, such that E.Decsk(E.Encpk(m)) = m.

We use the standard chosen plaintest attack (CPA) game [GM84] to model security:

• The challenger generates (sk, pk)← E.Gen(1n), and sends pk to the adversary A.
• A generates the challenge plaintext (m0,m1).
• The challenger chooses a bit b, and responds with the challenge ciphertext c = E.Encpk(mb).
• A makes a guess b′ for b.

The advantage of A is ε, where 1
2 + ε is the probability that b = b′. We say that E is (quantum)

IND-CPA-secure if all efficient (quantum) algorithms have only negligible advantage (in n).
An identity-based encryption (IBE) scheme IBE is an encryption scheme where identities serve

as public keys, and a trusted authority hands out the corresponding secret keys. In particular:

Definition A.2 (IBE Scheme). An identity-based encryption (IBE) scheme IBE is a quadruple of
PPT algorithms (IBE.Gen, IBE.Extract, IBE.Enc, IBE.Dec) where

• IBE.Gen(1n) generates a master secret/public key pair (msk,mpk).
• The trusted authority uses IBE.Extractmsk(id) to compute a secret key skid corresponding to the

identity id.
• IBE.Encmpk(id,m) encrypts m to identity id.
• IBE.Decskid(c) decrypts c, such that

IBE.DecIBE.Extractmsk(id)(IBE.Encmpk(id,m)) = m

We use the standard CPA attack game for IBE schemes, where the adversary can choose the
identity id for which it will attempt to decrypt, and can get the secret keys corresponding to any
other identities [BF01]. Specifically,

• The challenger generates (msk,mpk)← IBE.Gen(1n), and sends mpk to the adversary A.
• The adversary can make extraction queries on identities idi, to which the challenger responds

with IBE.Extractmsk(idi).
• The adversary generates an identity id, and two messages (m0,m1).
• The challenger chooses a random bit b, and responds with IBE.Encid(mb).
• A makes a guess b′ for b.

The advantage of A is ε, where 1
2 + ε is the probability that id 6= idi for any i and b = b′. We say

that IBE is (quantum) IND-ID-CPA-secure if all efficient (quantum) algorithms have only negligible
advantage (in n).
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Definition A.3 (Signature Scheme). A signature scheme S is a triple of PPT algorithms
(S.Gen,S.Sign,S.Ver) where

• S.Gen(1n) generates a secret/public key pair (sk, pk).
• S.Signsk(m) computes a signature σ on the message m.
• S.Verpk(m,σ) outputs accept or reject, such that S.Verpk(m, S.Signsk(m)) = accept.

We will use the standard chosen message attack (CMA) game to define security [GMR88]:

• The challenger generates (sk, pk)← S.Gen(1n), and sends pk to the adversary A.
• A can make signature queries on messages mi, to which the challenger responds with

S.Signsk(mi).
• A produces a forgery candidate (m,σ).

The advantage of A is the probability that m 6= mi for any i and Verpk(m,σ) = accept. We say
that S is (quantum) UF-CMA-secure if all efficient (quantum) adversaries have negligible advantage
(in n).

Definition A.4 (PSF). A pre-image sampleable function (PSF) is a quadruple of algorithms
F = (F.Gen,F.Sample, f, f−1) where:

• F.Gen(1n) generates a secret/public key pair (sk, pk).
• fpk is a function.
• F.Sample samples x from a distribution D such that fpk(x) is uniform.
• f−1

sk (y) samples from D conditioned on fpk(x) = y.

We model security with the following game:

• The challenger generates (sk, pk)← F.Gen(1n), and sends pk to the adversary A. It also sends
y = fpk(F.Sample()) to A.
• A makes a guess x.

The advantage of A is the probability that fpk(x) = y. We say that F is (quantum) one-way if
all efficient (quantum) algorithms have negligible advantage.

A trapdoor permutation (TDP) is a special case of a PSF where f is bijective and F.Sample
simply returns a random element in the domain of fpk. Since F.Sample is already defined, we omit
it from the specification.

B Quantum Computation

We give some background on quantum computation. For a more thorough discussion, please see
[NC00]. We also prove Theorem 3.1, which states that the output distribution of a quantum
algorithm making qH queries to a quantum oracle drawn from some distribution D depends only on
the marginal distributions of D on all subsets of 2q inputs.

Let H be a Hilbert space with an inner product 〈·|·〉, and let B = {|x〉} be an orthonormal basis
for H, index by a parameter x ∈ X . The state of a quantum system on H is specified by a vector
|φ〉 ∈ H of norm 1.
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Quantum Measurement Given a state |φ〉, we can measure |φ〉 in the basis B, obtaining the
value x ∈ X with probability |〈x|φ〉|2. Thus, to each |φ〉, we associate a distribution Dφ where
Dφ(x) = |〈x|φ〉|2. The normalization constant and the fact that B is an orthonormal basis ensure
that this is in fact a valid distribution. After measurement, the system is in state |x〉.

If B = {|x, y〉} for x ∈ X and y ∈ Y, then we can also perform a partial measurement over X .
The distribution over X is the marginal distribution of Dφ when restricted to X . That is, we obtain
the value x with probability

∑
y∈Y |〈x, y|φ〉|

2. The resulting state is the result of projecting |φ〉 to
the space spanned by {|x, y〉} for y ∈ Y, and renormalizing so that the norm is 1.

Quantum Algorithms A quantum algorithm A over a Hilbert space H with an orthonormal
basis B is specified by unitary transformation U . The input to A is an element x0 ∈ X. The
system is initialized to the basis state |x0〉, and U is applied to the system, obtaining the final state
|φ〉 = U |x0〉. Then the state is sampled according to the distribution Dφ.

Let X and Y be sets such that Y is a commutative group with addition operation ⊕. For
notational convenience, we assume that every element has order at most 2 (y ⊕ y is the identity
for all y ∈ Y). Given a function H : X → Y and third set Z, define the orthonormal basis B as
the set {|x, y, z〉} for x ∈ X , y ∈ Y, and z ∈ Z. Define the unitary transformation Htrans over the
Hilbert space spanned by B as the transformation that takes |x, y, z〉 into |x, y ⊕H(x), z〉. Htrans
is unitary, it’s own inverse, and Hermitian. As an abuse of notation, we will frequently use Htrans
and H interchangeably.

A quantum algorithm A making q quantum queries to H is then specified by a sequence of
unitary transformations U0, ..., Uq. The evaluation of A then consists of alternately applying Ui and
H to the initial state |x〉. We call

Ui−1H...U1HU0|x〉

the state of A before the ith query, and

HUi−1H...U1HU0|x〉

the state after the ith query. The final state of the algorithm is

UqH...U1HU0|x〉

We say that a quantum algorithm is efficient if q is a polynomial, and all the Ui are composed of
a polynomial number of universal basis gates (the Hadamard, CNOT, and phase shift gates are
commonly used).

Classical queries to an oracle are made by partial sampling over X before performing the query.

Density Matrix Suppose we have quantum states |φw〉 for w ∈ W, and we have a weight
assignment D on W. Then we define the density matrix

ρ =
∑
w∈W

D(x)|φw〉〈φw|

The weight of an outcome y from measurement is given by 〈y|ρ|y〉. If D is a distribution, then
this weight assignment is also a distribution, and the weight corresponds to the probability of
obtaining y if we first pick w with probability D(w), and then sample |φw〉. In this case, the density
matrix ρ summarizes the statistical behavior of the quantum system.
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Suppose we have two weight assignments D1 and D2 onW . Let D′1 and D′2 be the corresponding
weight assignments of outcomes of measurement. Since the weight assignment induced by each |φw〉
is in fact a distribution, |D′1 −D′2| ≤ |D1 −D2|.

For this paper, we will focus on the case where W is the set of oracles H from X → Y , and |φH〉
is the final state of some quantum algorithm A that makes q queries to the oracle H.

B.1 Proof of Theorem 3.1

Proof of Theorem 3.1.
Let A be some quantum oracle algorithm. Suppose right before the first query, the state of

the system is |φ0〉 =
∑
xyz αxyz|xyz〉 (which is independent of the oracle). Assume for notational

convenience that all the transition matrices Ui are identical and equal to U (the proof in the general
case is essentially identical). Let |φq,H〉 be the state of A after q queries to oracle H. That is,

|φq,H〉 = UHU....UH|φ0〉

Let ρq be the density matrix for A after q queries when the oracle H is drawn from a distribution
D:

ρq =
∑
H

Pr
D

[H]|φq,H〉〈φq,H | =
∑
H

Pr
D

[H]UHU...UH|φ0〉〈φ0|HU∗...U∗HU∗

Observe that

(UH)xyzx′y′z′ = 〈xyz|UH
∣∣x′y′z′〉

= 〈xyz|U
∣∣x′y′ ⊕H(x′)z′

〉
= Uxyz,x′y′⊕H(x′)z′

We can now evaluate ρq component-wise:

(ρq)xyz,x′y′z′ =
∑
H

Pr
D

[H](UHU...UH|φ0〉〈φ0|HU∗...U∗HU∗)xyz,x′y′z′

=
∑
H

Pr
D

[H]((UH)(UH)...(UH)|φ0〉〈φ0|(UH)∗...(UH)∗(UH)∗)xyz,x′y′z′

=
∑
H

Pr
D

[H]
∑
xqyqzq

∑
x′qy
′
qz
′
q

Uxyzxqyq⊕H(xq)zq((UH)...(UH)|φ0〉〈φ0|(UH)∗...(UH)∗)U∗x′y′z′x′qy′q⊕H(x′q)z′q
...

=
∑
H

Pr
D

[H]
∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

Uxyzxqyq⊕H(xq)zqUxqyqzqxq−1yq−1⊕H(xq−1)zq−1 ...Ux2y2z2,x1y1⊕H(x1)z1αx1y1z1

α∗x′1y′1z′1
U∗x′2y′2z′2,x′1y′1⊕H(x′1)z′1

...U∗x′qy′qz′qx′q−1y
′
q−1⊕H(x′q−1)z′q−1

U∗x′y′z′x′qy′q⊕H(x′q)z′q

Now we can rearrange the order of summation as∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

∑
H

Pr
D

[H]
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Next, notice that the summand only depends on H(xi), H(x′i) for i ∈ {1, ..., q}. This means, in the
H sum, we can sum out all the inputs x for which x 6= xi, x

′
i. Letting ri = H(xi), r′i = H(x′i), we

have that the summation over H simplifies to∑
r1...rq ,r′1...r

′
q

Pr
D

[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]

Putting it back together,

(ρq)xyz,x′y′z′ =
∑
xqyqzq

∑
x′qy
′
qz
′
q

· · ·
∑
x1y1z1

∑
x′1y
′
1z
′
1

∑
r1...rq ,r′1...r

′
q

Pr
D

[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]

Uxyzxqyq⊕rqzqUxqyqzqxq−1yq−1⊕rq−1zq−1 ...Ux2y2z2,x1y1⊕r1z1αx1y1z1

α∗x′1y′1z′1
U∗x′2y′2z′2,x′1y′1⊕r′1z′1

...U∗x′qy′qz′qx′q−1y
′
q−1⊕r

′
q−1z

′
q−1
U∗x′y′z′x′qy′q⊕r′qz′q

Thus, the density matrix ρq, which contains all the statistical information about the algorithm A,
is a linear combination of the quantities PrD[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]. In particular, the
probability of any particular output is on the diagonal of ρq, and is thus a linear combination. Since
the probabilities are real, we can take the coefficients of PrD[H(xi) = ri, H(x′i) = r′i ∀i ∈ {1, ..., q}]
to be real as well.

C More on Semi-Constant Distributions

In this section, we prove Lemma 4.2, which states that the marginal distributions for any k inputs
of oracles drawn from SCλ specified by polynomials of degree k for which the λ1 coefficient is 0. We
also describe a quantum algorithm for finding collisions in SCλ using O(λ−2/3) oracle queries.

C.1 Proof of Lemma 4.2

Proof of Lemma 4.2. Recall that SCλ is defined as follows:

• Pick y at random from Y.
• For each x ∈ X , with probability 1 − λ, set H(x) to be a random element of Y. With

probability λ, set H(x) = y.

Suppose Y contains N elements. Let α((xj), (rj)) = Pr[H(xi) = rj∀i ∈ {1, ..., k}], the probability
that xj maps to rj for k values of xj and rj . Suppose there are ` distinct rj , denoted tm, and let km
be the number of rj equal to tm (note that

∑`
m=1 km = k). Let F be the set {1, ..., `,⊥}. For each

f ∈ F , if f =⊥, f is associated with the event that tm 6= y for all m, and otherwise, f is associated
with the event that tf = y.

Let eqf,m be 1 if f = m, 0 otherwise. The probability that O(xj) = tm is 1/N if we are choosing
the output at random, and otherwise, it is 1 if tm = y and 0 otherwise. In other words, this
probability is

(1− λ) 1
N

+ λeqf,m = 1
N

+ λ

(
eqf,m −

1
N

)
.
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Since there are km copies of each tm among the rj ,

Pr[H(xi) = rj∀i ∈ {1, ..., k}|f ] =
∏̀
i=m

( 1
N

+ λ

(
eqf,m −

1
N

))km
.

Summing over all f gives

α((xi), (rj)) =
∑
f

Pr[f ]
∏̀
i=m

( 1
N

+ λ

(
eqf,m −

1
N

))km
.

This is a polynomial in λ. It is a sum of products of
∑
km = k monomials in λ, so its total

degree is at most k. Now, we shall approximate this to first order in λ, and show that the first-order
coefficient is 0:

α((xi), (rj)) =
∑
f

Pr[f ]
∏̀
m=1

( 1
N

+ λ

(
eqf,m −

1
N

))km

=
∑
f

Pr[f ]
∏̀
m=1

( 1
Nkm

+ km
1

Nkm−1λ

(
eqf,m −

1
N

))
+O(λ2)

= 1
N
∑

m
km

∑
f

Pr[f ]
∏̀
m=1

(
1 + kmNλ

(
eqf,m −

1
N

))
+O(λ2)

= 1
Nk

∑
f

Pr[f ]
(

1 +Nλ
∑̀
m=1

km

(
eqf,m −

1
N

))
+O(λ2)

= 1
Nk

+ λ

Nk−1

∑̀
m=1

km

∑
f

Pr[f ]eqf,m −
1
N

+O(λ2)

Notice that
∑
f Pr[f ]eqf,m is the probability that tm = y, which is equal to 1/N . Thus, all

the terms in the first-order coefficient cancel out, so the λ1 coefficient is 0. This completes the
lemma.

C.2 Finding Collisions in Semi-Constant Distributions

Here we explore the problem of finding a collision in an oracle drawn from a semi-constant distribution
SCλ over HX ,Y . Our motivation for studying the collision problem is as follows: a classical algorithm
making qH queries can only distinguish SCλ from random with probability O(λ2q2

H), since it can
only distinguish the two cases if it happens to query two distinguished points. Further, querying
random points, and outputting 1 if a collision is found achieves this bound. Thus, a collision search
is the best way to distinguish SCλ from random in the classical setting, and the same may also be
true in the quantum setting

Let N = |Y| be the number of elements in Y , and assume that λ >> 1
N so that finding a collision

requires (with high probability) finding a collision in the distinguished inputs.
Let c be the minimum constant such that SCλ is indistinguishable from uniform with except

with probability O(qcλ2). Corollary 4.3 shows us that c ≤ 4. We will now show that c ≥ 3, using
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the following algorithm. The algorithm is basically the algorithm of Brassard et al. [BHT97], but
modified for our purposes. It operates as follows:

• Let p = (q − 1)/2). Select a subset W ⊆ X of size p. For each x ∈ W , store the pair (x,H(x))
in a table, sorted by the second coordinate. Check if there is a collision in W. If so, output
this collision.

• Construct the oracle O(x) which is 1 if and only if x /∈ W and H(x) = H(x0) for some x0 ∈ W .
Since the entries to W are sorted by the second coordinate, this test can be performed
efficiently.

• Run Grover’s algorithm on this oracle for p queries, looking for an x /∈ W such that H(x) =
H(x0) for some x0 ∈ W.

• Output (x, x0).

The first step uses p queries. If the algorithm is given an oracle from SCλ, the probability that
we find a distinguished input in the first step is

1− (1− λ)|W| = 1− (1− λ)p ≥ pλ

Grover’s algorithm [Gro96] finds an x such that O(x) = 1 with probability Ω(p2f) using p
queries, where f is the fraction of inputs to O that map to 1. Thus, f is the fraction of x such that
x /∈ W (which is most of them) and H(x) = H(x0) for some x0 ∈ W. If we found a distinguished
input, this fraction is (in expectation) at least λ.

If we found a distinguished input in the first step (which happens with probability at least pλ),
Grover’s algorithm will find an x such that O(x) = 1 with probability Ω(p2λ) using p queries. Thus,
out algorithm uses 2p queries, and finds a collision with probability Ω(p3λ2).

If this algorithm is given a random oracle instead, the probability that we find a collision is
negligible. By adding an extra check that the output of the algorithm is indeed a collision (requiring
1 extra query since H(x0) has already been recorded), we get an algorithm using 2p+1 = q quantum
queries that distinguishes SCλ from random with probability Ω(p3λ2) = Ω(q3λ2), showing that
c ≥ 3.

D Proof of Claim 1

Here we complete the proof of Theorem 5.1 by proving Claim 1.

Proof of Claim 1. Recall the setup: A′ makes q ≡ qH + qS + 1 queries to an oracle H drawn
from SCλ, and outputs (c, id∗, Q). Let X be the set of distinguished inputs to H. If id∗ ∈ X and
Q
⋂
X = ∅, A′ wins if c = 0. Otherwise, we flip a coin to decide if A′ wins. Let p(λ) be the

probability that A′ wins. We want to show that p(λ) ≥ 1
2 + λε − `(qH ,qS)

4 λ2 for some polynomial
`(·, ·), where ε is the probability that c = 0 when A′ is given a truly random oracle, minus frac12.
We assume without loss of generality that A′ never outputs id∗ ∈ Q.

By Theorem 3.1,

Pr
H←D

[A′H() = (c, id∗, Q)] =
∑

x1,...,x2q ,r1,...,r2q

β(c, id∗, Q, (xi), (ri)) Pr
H←D

[H(xi) = ri∀i ∈ {1, ..., 2q}]
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for some coefficients β(c, id∗, Q, (xi), (ri)). Then notice that
1
2 + ε =

∑
id∗,Q

∑
x1,...,x2q ,r1,...,r2q

β(0, id∗, Q, (xi), (ri)) Pr
H

[H(xi) = ri∀i ∈ {1, ..., 2q}]

where H is a random oracle.
Call (id∗, Q) good if id∗ ∈ X and Q

⋂
X = ∅, and bad otherwise. For each c, let γc be the

probability of obtaining (c, id∗, Q) such that (id∗, Q) is good. The probability A′ wins is then:

p(λ) = γ0 + (1− γ0 − γ1)1
2 = 1

2(1 + γ0 − γ1) .

Fix a set X , and let SCX be the distribution on oracles H where a y is chosen at random, and
for each x ∈ X , H(x) = y, and for each x /∈ X , H(x) is chosen at random.

We can now compute γc:

γc =
∑
X

Pr[X ]
∑

id∗∈X

∑
Q:Q

⋂
X=∅

Pr
H←SCX

[AH() = (c, id∗, Q)]

where Pr[X ] is the probability that X is chosen as the set of distinguished inputs, and Q ranges
over sets of size qS . We can rewrite γc as

γc =
∑
id∗

∑
Q:

id∗ /∈Q

 ∑
X :

id∗∈X ,Q
⋂
X=∅

Pr[X ] Pr
H←SCX

[AH() = (c, id∗, Q)]



=
∑
id∗

∑
Q:

id∗ /∈Q

 ∑
X :

id∗∈X ,Q
⋂
X=∅

Pr[X ]
∑

x1,...,x2q
r1,...,r2q

β(c, id∗, Q, (xi), (ri)) Pr
H←SCX

[H(xi) = ri∀i]



=
∑
id∗

∑
Q:

id∗ /∈Q

 ∑
x1,...,x2q
r1,...,r2q

β(c, id∗, Q, (xi), (ri))
∑
X :

id∗∈X ,Q
⋂
X=∅

Pr[X ] Pr
H←SCX

[H(xi) = ri∀i]


We now look at the quantity∑

X :
id∗∈X ,Q

⋂
X=∅

Pr[X ] Pr
H←SCX

[H(xi) = ri∀i ∈ {1, ..., 2q}] . (D.1)

Since PrX←SCX [H(xi) = ri∀i ∈ {1, ..., 2q}] only depends on the inputs xi, and each x is put in
X with independent probability λ, we can sum out all x other than id∗, xi, or those in Q. Therefore,
we only consider X drawn as a subset of {xi : i ∈ {1, ..., 2q}}

⋃
Q
⋃
{id∗}.

Let X ′ be drawn from the subsets of {xi : i ∈ {1, ..., 2q}, xi /∈ Q, xi 6= id∗} where each element is
in X ′ with independent probability λ. We can then rewrite Pr[X ] as the probability that id∗ ∈ X
(which is λ) times the probability that Q is disjoint from X (which is (1−λ)qS ) times the probability
of drawing X ′, where X ′ = X \ {id∗}. Thus, (D.1) becomes

λ(1− λ)qS
∑
X ′

Pr[X ′] Pr
H←SCX′∪{id∗}

[H(xi) = ri∀i ∈ {1, ..., 2q}] (D.2)
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Now, each Pr[X ′] has the form λc(1− λ)d, where c is the number of elements in X ′, and d is the
number of elements left out. Thus c+ d ≤ 2q, so Pr[X ′] is a polynomial of degree at most 2q in λ.
Thus, (D.2) is a polynomial of degree at most 2q + qS + 1. Moreover, if we let λ→ 0, Pr[X ′]→ 0,
and thus (D.2) becomes

λ Pr
H←SC{id∗}

[H(xi) = ri∀i ∈ {1, ..., 2q}]

Notice that SC{id∗} is drawn as follows: pick a random y, and set H(id∗) = y, for all other x,
choose H(x) randomly. This is identical to a truly random oracle, so (D.2) is equal to

λPr
H

[H(xi) = ri∀i ∈ {1, ..., 2q}] +O(λ2) .

Plugging this into our expression for γc, we get that γc is a polynomial of degree at most
2q + qS + 1, and that it is equal to

γc =
∑
id∗

∑
Q:

id∗ /∈Q

 ∑
x1,...,x2q
r1,...,r2q

β(c, id∗, Q, (xi), (ri)) Pr
H

[H(xi) = ri∀i ∈ {1, ..., q}]

λ+O(λ2)

Notice that the first-order coefficient is the probability that the first bit of the output of A′ is c
when given a truly random oracle. Thus:

γ0 =
(1

2 + ε

)
λ+O(λ2)

γ1 =
(1

2 − ε
)
λ+O(λ2)

Thus, the probability A′ wins is

p(λ) = 1
2(1 + γ0 − γ1) = 1

2 + ελ+O(λ2)

and is specified by a polynomial of degree at most 2q + qS + 1. Since this probability is always
between 0 and 1 for all λ ∈ [0, 1], we can use the Markov brother’s inequality [DS41] to bound the
magnitude of the second derivative to at most |p′′(λ)| ≤ 2

3(2q + qS + 1)4. Integrating, we can bound
the first derivative to

p′(λ) ≥ p′(0)− 2
3(2q + qS + 1)4λ = ε− 2

3(2q + qS + 1)4λ .

Performing the integration once more, we get that

p(λ) ≥ p(0) + ελ− 1
3(2q + qS + 1)λ2 = 1

2 + ελ− `(qH , qH)
4 λ2

where `(qH , qS) = 4
3(2qH + 3qS + 2)4.
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E Proof of Theorem 5.3

We prove Theorem 5.3, which states that the FDH signature scheme is secure in the quantum
random oracle model if the underlying trapdoor permutation is secure against quantum adversaries.

Proof of Theorem 5.3. Suppose towards contradiction that there is a quantum adversary A
making qH hash queries, qS signature queries, that breaks S with probability ε. Assume without loss
of generality that A never tries to forge a signature on a message it already received a secret key for.

Let Game0 be the standard attack game for S: the challenger generates (sk, pk) from S.Gen, and
sends pk to the adversary. The adversary can make (classical) signature queries on messages mi, to
which the challenger responds with S.SignHsk(mi), and (quantum) hash queries to the random oracle H.
A wins if it can produce a pair (m∗, σ∗) such that m∗ 6= mi for any i, and S.VerHpk(m∗, σ∗) = accept.
The success probability in Game0 is ε.

Assume without loss of generality that A never asks for a signature on m∗. Let A′ be the following
algorithm that makes quantum queries to an oracle H, and simulates the interaction between A and
the challenger: generate (sk, pk) from S.Gen, send pk to A. Run A, forwarding all hash queries to
H, and answering extraction queries using S.SignH . The output of A′ is (S.VerHpk(m∗, σ∗),m∗, σ∗, Q)
where Q is the list of signature queries made by A. We can now think of Game0 as follows: run
A′ with a random oracle H to obtain (m∗, σ∗, Q). Report that the game is won if and only if
S.VerHpk(m∗, σ∗) = accept. The number of queries to H made by A′ is qH for direct queries, qS
for queries through the signature algorithm, and 1 for the check S.VerHpk(m∗, σ∗), for a total of
qH + qS + 1 queries.

Let λ ∈ (0, 1) to be chosen later. Let M be the message space. Let Game1 be Game0, except
that we choose a subset X of M as follows: for each m ∈ M, we put m in X with probability
λ. If A asks for a signature on a message in X , abort and A loses. If the message A attempts to
forge is not in X , also abort and A loses. Otherwise, follow the criteria in Game0 to decide if A
wins. The message A tries to forge must be distinct from the messages it received signatures for,
so the probabilities that each of these messages are in X is independent. Therefore, the no-abort
conditions are met with probability at least λ(1− λqS). Thus, A wins in Game1 with probability at
least λ(1− λqS)ε ≥ λε− qSλ2.

Let Game2 be Game1, except that we choose a random y in the public key space of S, and set
H(x) = y for all x in X . H is now distributed according to SCλ, and by the same arguments as
in the proof of Theorem 5.1, the probability A wins in Game2 is at least λε− `(qH ,qS)

4 λ2 for some
polynomial `(·, ·).

Let us now restate Game2 in terms of A: pick X and H as above, and perform the standard
attack game for S using H as the random oracle. When A produces (m∗, σ∗), first check that no
signature queries were in X and that the message m∗ produced by A is in X . If so, A wins if
and only if S.VerHpk(m∗, σ∗) = accept. Otherwise, if the check fails, A loses. We can now make the
following observation: once an extraction query in X is made, we can abort running A, since we no
longer need A to determine if the game is won.

Now we are ready to define an algorithm B what inverts f . Give B access to two random oracles
O1 and O2. O1 maps messages to inputs to f . O2 maps messages to bits, where the probability of
outputting 1 is λ. On input (pk, y), B works as follows:

• Send pk to A, and simulate A, playing the role of challenger to A.
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• Construct the (quantum) oracle H such that

H(m) =
{
y if O2(m) = 1
fpk(O1(m)) otherwise

• When A makes a signature query on a message mi, compute O2(mi). If the result is 1, abort.
Otherwise, return σi = O1(mi).
• When A returns a forgery candidate (m,σ), test if O2(m) = 1 and fpk(σ) = y. If so, output σ.

Otherwise, abort.

Using an analysis similar to that of Theorem 5.1, we get that the advantage of B is at least

ε2

`(qH , qS)

when we set λ = 2ε/`(qH , qS).
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