
Computational Soundness of Symbolic Zero-knowledge Proofs:
Weaker Assumptions and Mechanized Verification

Michael Backes
Saarland University and MPI-SWS

backes@cs.uni-saarland.de

Fabian Bendun
Saarland University

bendun@cs.uni-saarland.de

Dominique Unruh
University of Tartu

dominique.unruh@ut.ee

Abstract—The abstraction of cryptographic operations by
term algebras, called symbolic models, is essential in almost
all tool-supported methods for analyzing security protocols.
Significant progress was made in proving that symbolic models
offering basic cryptographic operations such as encryption and
digital signatures can be sound with respect to actual crypto-
graphic realizations and security definitions. Even abstractions
of sophisticated modern cryptographic primitives such as zero-
knowledge (ZK) proofs were shown to have a computationally
sound cryptographic realization, but only in ad-hoc formalisms
and at the cost of placing strong assumptions on the underlying
cryptography, which leaves only highly inefficient realizations.

In this paper, we make two contributions to this problem
space. First, we identify weaker cryptographic assumptions
that we show to be sufficient for computational soundness of
symbolic ZK proofs. These weaker assumptions are fulfilled
by existing efficient ZK schemes as well as generic ZK
constructions. Second, we conduct all computational soundness
proofs in CoSP, a recent framework that allows for casting com-
putational soundness proofs in a modular manner, independent
of the underlying symbolic calculi. Moreover, all computational
soundness proofs conducted in CoSP automatically come with
mechanized proof support through an embedding of the applied
π-calculus.

Keywords-Symbolic zero-knowledge proofs; computational
soundness; weaker assumptions; mechanized proofs

I. I NTRODUCTION

Proofs of security protocols are known to be error-prone
and, owing to the distributed-system aspects of multiple
interleaved protocol runs, awkward for humans to make.
Hence work towards the automation of such proofs started
soon after the first protocols were developed. From the start,
the actual cryptographic operations in such proofs were
idealized into so-called symbolic models, following [22],
[23], [36], e.g., see [28], [41], [2], [33], [38], [15]. This
idealization simplifies proof construction by freeing proofs
from cryptographic details such as computational restric-
tions, probabilistic behavior, and error probabilities. It was
not at all clear whether symbolic models are a sound
abstraction from real cryptography with its computational
security definitions. Existing work has largely bridged this
gap for symbolic models offering the core cryptographic
operations such as encryption and digital signatures, e.g.,
see [3], [30], [12], [11], [31], [37], [20], [18], [42].

While symbolic models traditionally comprised only ba-
sic cryptographic operations, recent work has started to
extend them to more sophisticated primitives with unique
security features that go far beyond the traditional goal
of cryptography to solely offer secrecy and authenticity of
communication. Zero-knowledge (ZK) proofs1 constitute ar-
guably the most prominent such primitive.2 This primitive’s
unique security features, combined with the recent advent
of efficient cryptographic implementations of this primitive
for special classes of problems, have paved the way for its
deployment in modern applications. For instance, ZK proofs
can guarantee authentication yet preserve the anonymity of
protocol participants, as in the Civitas electronic voting
protocol [19] or the Pseudo Trust protocol [34], or they
can prove the reception of a certificate from a trusted
server without revealing the actual content, as in the Direct
Anonymous Attestation (DAA) protocol [17]. More recently,
ZK proofs have been used to develop novel schemes for
anonymous webs of trust [7] as well as privacy-aware proof-
carrying authorization [35].

A symbolic abstraction of (non-interactive) ZK proofs has
recently been put forward in [9]. The proposed abstraction
is suitable for mechanized proofs [9], [6] and was already
successfully used to produce the first fully mechanized proof
of central properties of the DAA protocol. A computa-
tional soundness result for such symbolic ZK proofs has
recently been achieved as well [13]. However, this work
imposes strong assumptions on the underlying cryptographic
implementation of zero-knowledge proofs: Among other
properties, the zero-knowledge proof is required to satisfy
the notion of extraction zero-knowledge; so far, only one
(inefficient) scheme is known that fulfills this notion [26].
Thus the vast number of recently proposed, far more efficient

1A zero-knowledge proof [24] consists of a message or a sequence of
messages that combines two seemingly contradictory properties: First, it
constitutes a proof of a statementx (e.g, x = ”the message within this
ciphertext begins with0”) that cannot be forged, i.e., it is impossible, or
at least computationally infeasible, to produce a zero-knowledge proof of
a wrong statement. Second, a zero-knowledge proof does not reveal any
information besides the bare fact thatx constitutes a valid statement.

2Examples of other primitives studied in the symbolic setting are blind-
signatures (e.g., in [29]), Diffie-Hellman-style exponentiation (e.g., in [1]),
or private contract signatures (e.g., in [27]).

zero-knowledge schemes, and particularly those schemes
that stem from generic ZK constructions, are not com-
prised by this result. Hence they do not serve as sound
instantiations of symbolic zero-knowledge proofs, leaving all
actually deployed ZK protocols without any computational
soundness guarantee. In addition, the result in [13] casts
symbolic ZK proofs within an ad-hoc formalism that is not
accessible to existing formal proof tools.

A. Our Contribution

In this paper, we make the following two contributions to
this problem space:

• First, we identify weaker cryptographic assumptions
that we show to be sufficient for obtaining a com-
putational soundness result for symbolic ZK proofs.
Essentially, we show that the strong notion of extraction
zero-knowledge required in [13] can be replaced by
the weaker notion of simulation-sound extractability.
In contrast to extraction zero-knowledge, simulation-
sound extractability constitutes an established property
that many existing cryptographic constructions satisfy.
In particular, there exist generic constructions for trans-
forming any non-interactive ZK proof into a ZK proof
that satisfies simulation-sound extractability (and the
remaining properties that we impose for computational
soundness) [39], as well as several efficient schemes
that are known to satisfy simulation-sound extractability
(and the remaining properties), e.g., [32], [25], [40].
Thus requiring simulation-sound extractability instead
of extraction zero-knowledge greatly extends the pool
of cryptographic constructions for ZK proofs that con-
stitute sound implementations, and it for the first time
enables the computationally sound deployment of effi-
cient ZK realizations.
• Second, we conduct all computational soundness proofs

in CoSP [5], a recent framework that allows for cast-
ing computational soundness proofs in a conceptually
modular and generic way: provingx cryptographic
primitives sound fory calculi only requiresx + y
proofs (instead ofx · y proofs without this framework),
and the process of embedding calculi is conceptually
decoupled from computational soundness proofs of
cryptographic primitives. In particular, computational
soundness proofs conducted in CoSP are automatically
valid for the appliedπ-calculus, and hence accessible
to existing mechanized verification techniques.

B. Outline of the Paper

First, we introduce our symbolic abstraction of (non-
interactive) ZK proofs within CoSP in Section II. Section III
contains the weaker cryptographic assumptions that we show
to be sufficient for achieving computational soundness of
ZK proofs. Our main theorem is presented in Section IV
for which we give a proof overview in Section V. We show

how to use our result in the applied-π calculus in Section VI.
Section VII concludes and outlines future work.

II. SYMBOLIC MODEL FORZERO-KNOWLEDGE

In this section, we describe our symbolic abstraction of
zero-knowledge proofs.

Terms and constructors. We model nonces, probabilistic
public-key encryption and signatures, pairs, strings, andzero-
knowledge proofs. Except for the latter, our modeling closely
follows that of [5]. The following grammar describes the set
T of all terms that may occur in the symbolic model:

t ::=enc(ek(N), t, N) | ek(N) | dk(N) |

sig(sk(N), t, N) | vk(N) | sk(N) |

crs(N) | ZK(crs(N), t, t, N) |

pair(t, t) | S | N |

garbage(N) | garbageEnc(t, N) |

garbageSig(t, N) | garbageZK(t, t, N)

S ::= empty | string0(S) | string1(S)

HereN represents nonces and ranges overNP ∪NE , two
disjoint infinite sets of nonces, the protocol nonces and ad-
versary nonces, respectively.ek(N), dk(N), vk(N), sk(N)
represent encryption, decryption, verification, and signing
keys.enc(ek(N1), t, N2) represents an encryption under pub-
lic key ek(N1) of plaintextt using algorithmic randomness
N2. (Symbolically, the algorithmic randomness just allows
to distinguish different encryptions of the same plaintext;
computationally, it will actually be the randomness used by
the encryption algorithm.)sig(sk(N1), t, N2) is a signature
of t under signing keysk(N1) with algorithmic random-
nessN2. Bitstrings can be expressed using terms matching
the nonterminalS. garbage(N) represents invalid terms,
garbageEnc(t, N) and garbageSig(t, N) represent invalid
encryptions and signatures (but which at a first glance seem
to be valid encryptions/signatures with public keyt).

Zero-knowledge proofs.The interesting part are the zero-
knowledge proofs. To understand the meaning of a term
ZK(crs(N), x, w,M), we first need to introduce the relation
Rsym

adv . This relation is part of the symbolic modeling, but
all our results are parametric inRsym

adv . (I.e., our result
holds for any choice ofRsym

adv , as long asRsym
adv satisfies

certain constraints.)Rsym
adv specifies what a valid witness

for a particular statement would be. For example, if we
wish to show that we know a decryption keyw that
decrypts a given ciphertextx, then we defineRsym

adv :=
{(x,w) : ∃N,M, t.x = enc(ek(N), t,M), w = dk(N)}.3

3Notice that it is no restriction that statement and witness consist of
only one argument: we can encode tuples using thepair-constructor. Also,
it is no restriction that we use the same relation for all ZK-proofs: To
encode multiple relationsR1, . . . , Rn, we can define a relationR :=
{((a, x), w) : ∃i.a = ai ∧ (x,w) ∈ Ri} where ai are distinct terms
without names or variables.

2

The term ZK(crs(N), x, w,M) then represents a zero-
knowledge proof constructed with respect to a common
reference stringcrs(N) with statementx and witnessw and
using algorithmic randomnessM . A valid proof satisfies
(x,w) ∈ Rsym

adv . Note that our symbolic model does not
ensure that any termZK(crs(N), x, w,M) is a valid proof.
Instead, we provide a destructorverifyZK below that allows
to check the validity. As we will see below, the statementx
can be extracted from a proof, but the witnessw is hidden.

Destructors. Protocol operations on terms are described
by a set of destructors. These are partial functions from
Tn to T (where n depends on the destructor). The de-
structors are specified in Figure 1. Note that there are
a number of destructors that do not modify their input
(isek, iszk, equals, verifysig, . . .). These are useful for test-
ing properties of terms: The protocol can, e.g., compute
isek(t) and then branch depending on whether the destructor
succeeds. We only describe the destructors related to ZK
proofs. getPub(t) returns the statementx proven by a
ZK proof t. getPub does not check whether the proof
is actually valid; for this, we haveverifyZK(t1, t2) which
checks whethert2 is a valid proof with respect to the CRS
t1. If so, t2 is returned (and can, e.g., be fed intogetPub);
otherwise⊥ is returned.iscrs(t) andiszk(t) allow us to test
if t is a CRS or a (possibly invalid) zero-knowledge proof.

Protocols. We use the protocol model from the CoSP
framework [5]. There, a protocol is modeled as a (possibly
infinite) tree of nodes. Each node corresponds to a particular
protocol action such as receiving a term from the adversary,
sending a previously computed term to the adversary, ap-
plying a constructor or destructor to previously computed
terms (and branching depending on whether the application
is successful), or picking a nonce. We do not describe the
protocol model in detail here, but it suffices to know that a
protocol can freely apply constructors and destructors (com-
putation nodes), branch depending on destructor success, and
communicate with the adversary. Despite the simplicity of
the model, it is powerful enough to embed powerful calculi
such as the appliedπ-calculus (shown in [5]) or RCF, a
core calculus for F# (shown in [10]). (In Section VI, we
present our computational soundness result in the applied
π-calculus.)

Protocol conditions.The protocols we consider are subject
to a number of conditions, listed in the Appendix. The
most interesting protocol condition isvalid proofs condition:
During the symbolic execution of the protocol, whenever
the protocol constructs a ZK proofZK(c, x, w,N) we have
(x,w) ∈ Rsym

honest. HereRsym
honest is some fixed but arbitrary

relation with Rsym
honest ⊆ Rsym

adv (like in Rsym
adv , our results

are parametric inRsym
honest). In the simplest case, we would

have Rsym
honest := Rsym

adv . Then the valid proofs condition
simply requires that the protocol never tries to construct
a ZK-proof with an invalid witness. (We only impose this

condition on the honest protocol, not on the adversary.) In
some cases, however, it may be advantageous to letRsym

honest

be strictly smaller thanRsym
adv . This permits us to model a

certain asymmetry in guarantees given by a zero-knowledge
proof system: To honestly generate a valid proof, we need a
witness with(x,w) ∈ Rsym

honest, but given a malicious prover,
we only have the guarantee that the prover knows a witness
with (x,w) ∈ Rsym

adv . We callRsym
honest the usage restriction.

The adversary. The capabilities of the adversary are de-
scribed by a deduction relation⊢. S ⊢ t means that from
the termsS, the adversary can deducet. ⊢ is defined by the
following rules:

m ∈ S

S ⊢ m

N ∈ NE

S ⊢ N

S ⊢ t1, . . . , tn t1, . . . , tn ∈ T

F constructor or destructor F (t1, . . . , tn) ∈ T

S ⊢ evalF (t̄)

Note that the adversary cannot deduce protocol nonces.
These are secret until explicitly revealed. The capabilities of
the adversaries with respect to the network (intercept/modify
messages) are modeled explicitly by the protocol: if the
adversary is allowed to intercept message, the protocol
explicitly communicated through the adversary.

Protocol execution.Given a particular protocolΠ (modeled
as a tree), the set of possible protocol traces is defined by
traversing the tree: in case of an input node the adversary
nondeterministically picks a termt with S ⊢ t whereS are
the terms sent so far through output nodes; at computation
nodes, a new term is computed by applying a constructor or
destructor to terms computed/received at earlier nodes; then
the left or right successor is taken depending on whether the
destructor succeeded. The sequence of nodes we traverse in
this fashion is called asymbolic node traceof the protocol.
By specifying sets of node traces, we can specify trace
properties for a given protocol. We refer to [5] for details
on the protocol model and its semantics.

III. C OMPUTATIONAL IMPLEMENTATION

We now describe how to implement the constructors
and destructors from the preceding section computationally.
Following [5], we do so by specifying a partial deterministic
function AF : ({0, 1}∗)n → {0, 1}∗ (the computational
implementation ofF) for each constructor or destructor
F : Tn → T. Intuitively, AF should behave asF ,
only on bitstrings, e.g.,Aenc(ek ,m, r) should encryptm
using encryption keyek and algorithmic randomnessr. The
distributionAN specifies the distribution according to which
nonces are picked. In Appendix B we give the full list
of implementation conditions that the computational imple-
mentation must fulfill. These are mostly simple syntactic
conditions (such asAfst(Apair(x, y)) = x). Furthermore,

3

dec(dk(t1), enc(ek(t1),m, t2)) = m

verifysig(vk(t1), sig(sk(t1), t2, t3)) = t2

isek(ek(t)) = ek(t)

isvk(vk(t)) = vk(t)

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

iscrs(crs(t1)) = crs(t1)

iszk(ZK(t1, t2, t3, t4)) = ZK(t1, t2, t3, t4)

iszk(garbageZK(t1, t2, t3)) = garbageZK(t1, t2, t3)

ekof(enc(ek(t1), t2, t3)) = ek(t1)

ekof(garbageEnc(t1, t2)) = t1

crsof(ZK(crs(t1), t2, t3, t4)) = crs(t1)

crsof(garbageZK(t1, t2, t3)) = t1

vkof(sig(sk(t1), t2, t3)) = vk(t1)

vkof(garbageSig(t1, t2)) = t1

fst(pair(t1, t2))) = t1

snd(pair(t1, t2)) = t2

unstring0(string0(s)) = s

unstring1(string1(s)) = s

getPub(ZK(t1, t2, t3, t4)) = t2

getPub(garbageZK(t1, t2, t3)) = t2

equals(x, x) = x

verifyZK(crs(t1),ZK(crs(t1), t2, t3, t4))

= ZK(crs(t1), t2, t3, t4) if (t2, t3) ∈ R
sym

adv

Figure 1. Definition of destructors. If no rule matches, a destructor returns⊥.

we require thatAenc and Asig correspond to an IND-
CCA secure encryption scheme and a strongly unforgeable
signature scheme. These conditions are essentially the same
as in [5]. Here, we will only discuss the cryptographic
properties the implementation of ZK proofs should satisfy.

Properties of ZK proofs. In [14], it was shown that for
getting computational soundness of (non-interactive) zero-
knowledge proofs, we need at least the following properties:4

Completeness(if prover and verifier are honest, the proof
is accepted),extractability (given a suitable trapdoor, one
can get a witness out of a valid proof – this models the
fact that the prover knows the witness),zero-knowledge
(given a suitable trapdoor and a true statementx, a ZK-
simulator can produce proofs without knowing a witness
that are indistinguishable from normally generated proofs
for x), unpredictability(two proofs are equal only with neg-
ligible probability), length-regularity(the length of a proof
only depends on the length of statement and witness), and
some variant ofnon-malleability(see below). Furthermore,
they required for convenience that the verification and the
extraction algorithm are deterministic.

The interesting property is non-malleability: Intuitively,
non-malleability means that given a proof for some state-
mentx, it is not possible to derive a proof for some other
statementx′, even if x logically entailsx′. (For example,
given a proof that the ciphertextc contains a plaintexti < 5
it should not be possible to construct a proof thatc contains
i < 6.) There are several variants of non-malleability; [14]
used the notion ofextraction zero-knowledgewhich is a
strong variant of extractability (we are aware of only one
scheme in the literature that has this property [26]). They left
it as an open problem whether weaker variants also lead to

4It was not shown that these are the minimal properties, but itwas shown
that none of these properties can be dropped without suitable substitute.

computational soundness. We answer this question positively.
We use the weaker and more popular notion ofsimulation-
sound extractability. In a nutshell, this notion guarantees that
the adversary cannot produce proofs from which no witness
can be extracted, even when given access to a ZK-simulator.

We actually need an even weaker property:honest
simulation-sound extractability. Here the adversary may ask
the ZK-simulator to produce a simulated proof forx if he
knows a witnessw for x.

In the symbolic model, we have distinguished two rela-
tions Rsym

adv andRsym
honest, the first modeling what the adver-

sary is able to do, the second modeling what honest partici-
pants are allowed to do. Similarly, our definition ofweakly
symbolically-sound zero-knowledge proofdistinguishes two
relations Rcomp

adv ⊇ Rcomp
honest. All conditions assume that

honest participants use(x,w) ∈ Rcomp
honest. (“Weakly” dis-

tinguishes our notion from that in [14] which requires
extraction ZK.)

Definition 1 (Weakly symbolically-sound ZK proofs):A
weakly symbolically-sound zero-knowledge proof system
for relationsRcomp

honest, R
comp
adv is a tuple of polynomial-time

algorithms(K,P,V) such that there exist polynomial-time
algorithms(E,S) and the following properties hold:

• Completeness: Let a polynomial-time adversaryA be
given. Let (crs, simtd, extd) ← K(1η). Let (x,w) ←
A(1η, crs). Let proof ← P(x,w, crs). Then with
overwhelming probability inη, it holds(x,w) 6∈ Rcomp

adv

or V(x, proof, crs) = 1.

• Zero-Knowledge: Fix a polynomial-time oracle ad-
versary A. For given crs, simtd, let OP(x,w) :=
P(x,w, crs) if (x,w) ∈ Rcomp

honest andOP(x,w) := ⊥
otherwise, and letOS(x,w) := S(x, crs, simtd) if

4

(x,w) ∈ Rcomp
honest andOS(x,w) := ⊥ otherwise. Then

|Pr[AOP(1η, crs) = 1 : (crs, . . .)← K(1η)]

− Pr[AOS(1η, crs) = 1 : (crs, . . .)← K(1η)]|

is negligible inη.
• Honest simulation-sound extractability: Let

a polynomial-time oracle adversaryA be
given. Let (crs, simtd, extd) ← K(1η). Let
O(x,w) := S(x, crs, simtd) if (x,w) ∈ Rcomp

honest

and⊥ otherwise. Let(x, proof) ← AO(1η, crs). Let
w ← E(x, proof, extd). Then with overwhelming
probability, if V(x, proof, crs) = 1 andproof was not
output byO then (x,w) ∈ Rcomp

adv .
• Unpredictability: Let a polynomial-time adversary
A be given. Let (crs, simtd, extd) ← K(1η).
Let (x,w, proof ′) ← A(1η, crs, simtd, extd). Then
with overwhelming probability, it holdsproof′ 6=
P(x,w, crs) or (x,w) 6∈ Rcomp

honest.
• Length-regularity: Let two witnessesw and w′, and

statementsx and x′ be given such that|x| = |x′|,
and |w| = |w′|. Let (crs, simtd, extd)← K(1η). Then
let proof ← P(x,w, crs) andproof′ ← P(x′, w′, crs).
Then we get|proof| = |proof′| with probability1.
• Deterministic verification and extraction: The algo-

rithmsV andE are deterministic.
(We do not explicitly list soundness because it is implied by
honest simulation-sound extractability.) ⋄

We then require thatAcrs, AZK, AverifyZK
correspond to

the key generationK, proverP, and verifierV of a weakly
symbolically-sound ZK proof system for some relations
Rcomp

honest, R
comp
adv . We stress that using the construction in

[39] on a length-regular and extractable NIZK leads to
weakly symbolically-sound ZK proof system. The proof is
analogous to the one in [39], see Appendix G.

The relations. It remains to specify what conditions we
place on the relationsRcomp

honest, R
comp
adv . Obviously, we can-

not expect computational soundness if we allow arbitrary
Rcomp

honest, R
comp
adv . Instead, we need to formulate the fact

that Rcomp
honest, R

comp
adv somehow correspond to the symbolic

relationsRsym
honest, R

sym
adv . We thus give minimal requirements

on the relationship between those relations. Essentially,
we want that whenever(x,w) ∈ Rsym

honest then for the
corresponding computational bitstringsmx,mw we have
(mx,mw) ∈ Rcomp

honest; this guarantees that if symbolically, we
respect the usage restrictionRsym

honest, then computationally
we only use witnesses the honest protocol is allowed to use.
And whenever(mx,mw) ∈ Rcomp

adv we have(x,w) ∈ Rsym
adv ;

this guarantees that a computational adversary will not be
able to prove statementsmx that do not also correspond
to statementsx that can be proven symbolically. (Formally,
these conditions are used to show Lemmas 4 and 6 in the
computational soundness proof below.) To model correspon-
dence between the symbolic termsx,w and the bitstrings

mx,mw, we define a functionimgη that translates a term to
a bitstring (essentially by applyingAF for each constructor
F). The functionimgη depends on an environmentη, a par-
tial function T → {0, 1}∗ that assigns bitstrings to nonces
and adversary-generated terms. We use the definition of a
consistent environmentthat lists various natural properties
an environment will have (such as mappingZK-terms to
bitstrings of the right type); the definition of consistent envi-
ronments is deferred to Appendix C. Given these notions, we
can formalize the conditionsRcomp

honest, R
comp
adv should satisfy:

Definition 2 (Implementation of relations):A pair of re-
lations Rcomp

honest, R
comp
adv on {0, 1}∗ implement a relation

Rsym
adv on T with usage restrictionRsym

honest if the following
conditions hold for any consistentη ∈ E :

(i) (x,w) ∈ Rsym
honest and imgη(x) 6= ⊥ 6= imgη(w) =⇒

(imgη(x), imgη(w)) ∈ Rcomp
honest

(ii) (imgη(x), imgη(w)) ∈ Rcomp
adv =⇒ (x,w) ∈ Rsym

adv

(iii) Rsym
honest ⊆ Rsym

adv andRcomp
honest ⊆ Rcomp

adv ⋄

We briefly give some examples for symbolic relations and
their implementation. The detailed proofs that they indeed
satisfy Definition 2 are postponed to Appendix H.

Valid encryptions.Several protocols require one party needs
to show that a produced ciphertext is valid. This is basically
done by showing, that there is some randomness, such that
the encryption algorithm, applied to a public encryption key
and the content, leads to the given ciphertext. Symbolically,
this can be abstracted to the following relation:

Rsym
honest := {((enc(k,m, r), k,m), r) : k,m ∈ T, r ∈ NP }

Rsym
adv := {((enc(k,m, r), k,m), r∗) : k,m, r∗ ∈ T, r ∈ N}

Rcomp
honest := {((Aenc(k,m, r), k,m), r) : k,m, r ∈ {0, 1}∗}

Rcomp
adv := {((Aenc(k,m, r), k,m), r∗) : k,m, r, r∗ ∈ {0, 1}∗}

Ability of decrypting.In section VI, we give a short example,
how automated verification for the symbolic model can
be done. We give a variation of the Needham-Schroeder
protocol that uses a proof a party is able to decrypt a given
ciphertext. Therefore, we use the following relations:

Rsym
honest := {((m

′,m1), d) : m
′,m1, d ∈ T

such thatdec(d,m1) 6= ⊥}

Rsym
adv := Rsym

honest ∪ {((m
′,m1), d) :

m1 = garbageEnc(t,M), t ∈ T,M ∈ N}

Rcomp
adv := Rcomp

honest := {((m
′,m1), d) : m

′,m1, d ∈ {0, 1}
∗

such thatAdec(d,m1) 6= ⊥}

Summary of implementation conditions. Summarizing,

we require that the functionsAF satisfy a list of imple-
mentation conditions. The most important condition is that
Acrs, AZK, AverifyZK

correspond to a weakly symbolically-
sound ZK proof system for some relationsRcomp

honest, R
comp
adv

which implementRsym
adv with usage restrictionRsym

honest.

5

Protocol execution.The CoSP framework specifies seman-
tics for executing a given protocol in the computational
model given an computational implementationAF . The
execution is analogous to the symbolic execution (page 3),
except that computation nodes apply functionsAF instead
of constructors and destructors (with branching depending
on AF (. . .)

?
= ⊥). Input and output nodes receive and send

bitstrings to a probabilistic polynomial-time adversary.This
probabilistic process yields a trace of nodes, thecomputa-
tional node trace. Details are specified in [5].

IV. COMPUTATIONAL SOUNDNESS

Using the definitions from Section II and III, we can
finally state our main result. Atrace propertyis a prefix-
closed, efficiently decidable setP of node traces. We say a
protocolΠ symbolically satisfiesP if every symbolic node
trace (see page 3) ofΠ is in P . We sayΠ computationally
satisfiesP if the computational node trace (see page 6) is
in P with overwhelming probability.

Theorem 1 (Computational soundness of ZK proofs):
Let Π be a protocol satisfying the protocol conditions listed
in the appendix. LetAF be a computational implementation
satisfying the implementation conditions from Section III.
Then for any node traceP , if Π symbolically satisfiesP ,
thenΠ computationally satisfiesP . ⋄
We describe the proof in Section V.

V. THE PROOF

In this section, we describe our proof of computational
soundness (Theorem 1). First, we describe how the compu-
tational soundness proof for encryptions and signatures is
done in the CoSP framework (Section V-A). To understand
our proof it is essential to understand that proof first. Then,
we sketch how computational soundness of zero-knowledge
proofs that have the extraction zero-knowledge property was
shown in [14] (Section V-B). It is instructive to compare
their approach to ours. In Section V-C, we describe the idea
underlying our proof (using simulation-sound extractability
instead of extraction-soundness). Finally, in Section V-Dwe
give an overview over our proof. The full proof is given in
appendix E. The lemmas in this overview are simplified and
informal.

A. Computational soundness proofs in CoSP

Remember that in the CoSP framework, a protocol is
modeled as a tree whose nodes correspond to the steps of
the protocol execution; security properties are expressedas
sets of node traces. Computational soundness means that for
any polynomial-time adversaryA the trace in the computa-
tional execution is, except with negligible probability, also a
possible node trace in the symbolic execution. The approach
for showing this is to construct a so-called simulatorSim.
The simulator is a machine that interacts with a symbolic
execution of the protocolΠ on the one hand, and with

A Sim Π

τ

β

Figure 2. A typical CoSP simulator

the adversaryA on the other hand; we call this a hybrid
execution. (See Figure 2.) The simulator has to satisfy the
following two properties:

• Indistinguishability: The node trace in the hybrid exe-
cution is computationally indistinguishable from that in
the computational execution with adversaryA.
• Dolev-Yaoness: The simulatorSim never (except for

negligible probability) sends termst to the protocol
with S 0 t whereS is the list of termsSim received
from the protocol so far.

The existence of such a simulator then guarantees computa-
tional soundness: Dolev-Yaoness guarantees that only node
traces occur in the hybrid execution that are possible in the
symbolic execution, and indistinguishability guaranteesthat
only node traces occur in the computational execution that
can occur in the hybrid one.

How to construct a simulator? In [5], the simulatorSim is
constructed as follows: Whenever it gets a term from the pro-
tocol, it constructs a corresponding bitstring and sends itto
the adversary, and when receiving a bitstring from the adver-
sary it parses it and sends the resulting term to the protocol.
Constructing bitstrings is done using a functionβ, parsing
bitstrings to terms using a functionτ . (See Figure 2.) The
simulator picks all random values and keys himself: For each
protocol nonceN , he initially picks a bitstringrN . He then
translates, e.g.,β(N) := rN andβ(ek(N)) := Aek(rN) and
β(enc(ek(N), t,M)) := Aenc(Aek(rN), β(t), rM). Translat-
ing back also is natural: Givenm = rN , we letτ(m) := N ,
and if c is a ciphertext that can be decrypted asm using
Adk(rN), we setτ(c) := enc(ek(N), τ(m),M). However,
in the last case, a subtlety occurs: what nonceM should we
use as symbolic randomness inτ(c)? Here we distinguish
two cases:

If c was earlier produced by the simulator: Thenc was
the result of computingβ(t) for somet = enc(ek(N), t′,M)
and some nonceM . We then simply setτ(c) := t and have
consistently mappedc back to the term it came from.

If c was not produced by the simulator: In this case it
is an adversary generated encryption, andM should be
an adversary nonce to represent that fact. We could just
use a fresh nonceM ∈ NE , but that would introduce the
need of additional bookkeeping: If we computet := τ(c),
and later β(t) is invoked, we need to make sure that
β(t) = c in order for theSim to work consistently (formally,
this is needed in the proof of the indistinguishability of
Sim). And we need to make sure that when computing
τ(c) again, we use the sameM . This bookkeeping can be

6

avoided using the following trick: We identify the adversary
nonces with symbolsNm annotated with bitstringsm. Then
τ(c) := enc(ek(N), τ(m), N c), i.e., we setM := N c. This
ensures that differentc get different randomness noncesN c,
the samec is always assigned the sameN c, andβ(t) is easy
to define:β(enc(ek(N),m,N c)) := c because we know that
enc(ek(N),m,N c) can only have been produced byτ(c).

To illustrate, here are excerpts of the definitions ofβ and
τ (the first matching rule counts):

• τ(c) := enc(ek(M), t, N) if c has earlier been output
by β(enc(ek(M), t, N)) for someM ∈ N, N ∈ NP

• τ(c) := enc(ek(M), τ(m), N c) if c is of type cipher-
text andτ(Aekof (c)) = ek(M) for someM ∈ NP and
m := Adec(Adk(rM), c) 6= ⊥
• β(enc(ek(N), t,M)) := Aenc(Aek(rN), β(t), rM) if
M ∈ NP

• β(enc(ek(M), t, Nm)) := m if M ∈ NP

Bitstringsm that cannot be suitably parsed are mapped into
termsgarbage(Nm) and similar that can then be mapped
back byβ using the annotationm.

Showing indistinguishability. Showing indistinguishability
essentially boils down to showing that the functionsβ andτ
consistently translate terms back and forth. More precisely,
we show thatβ(τ(m)) = m andτ(β(t)) = t. Furthermore,
we need to show that in any protocol step where a construc-
tor or destructorF is applied to termst1, . . . , tn, we have
that β(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)). This makes
sure that the computational execution (whereAF is applied)
stays in sync with the hybrid execution (whereF is applied
and the result is translated usingβ). The proofs of these facts
are lengthy (involving case distinctions over all constructors
and destructors) but do not provide much additional insight;
they are very important though because they are responsible
for most of the implementation conditions that are needed
for the computational soundness result.

Showing Dolev-Yaoness.The proof of Dolev-Yaoness is
where most of the actual cryptographic assumptions come
in. In this sketch, we will slightly deviate from the original
proof in [5] for easier comparison with the proof in the
present paper. The differences are, however, inessential.
Starting from the simulatorSim, we introduce a sequence
of simulatorsSim4, Sim5, Simf . (We start the numbering
with 4 because we later introduce additional simulators.)

In Sim4, we change the functionβ as follows: When
invoked asβ(enc(ek(N), t,M)) with M ∈ NP , instead
of computingAenc(Aek(rN), β(t), rM), β invokes an en-
cryption oracleON

enc to produce the ciphertextc. Similarly,
β(ek(N)) returns the public key provided by the oracle
ON

enc. The hybrid executions ofSim and Sim4 are then
indistinguishable. (Here we use that the protocol conditions
guarantee that no randomness is used in two places.) Also,
the functionτ is changed to invokeON

enc whenever it needs
to decrypt a ciphertext while parsing. Notice that ifc was

returned byβ(t) with t := enc(. . .), thenτ(c) just recalls
the termt without having to decrypt. HenceON

enc is never
asked to decrypt a ciphertext it produced.

In Sim5, we replace the encryption oracleON
enc by a

fake encryption oracleON
fake that encrypts zero-plaintexts

instead of the true plaintexts. SinceON
enc is never asked

to decrypt a ciphertext it produced, IND-CCA security
guarantees that the hybrid executions ofSim4 and Sim5

are indistinguishable. Since the plaintexts given toON
fake

are never used, we can further changeβ(enc(N, t,M)) to
never even compute the plaintextβ(t).

Finally, in Simf , we additionally changeβ to use a
signing oracle in order to produce signatures. As in the
case ofSim4, the hybrid executions ofSim5 andSimf are
indistinguishable.

Since the hybrid executions ofSim and Simf are indis-
tinguishable, in order to show Dolev-Yaoness ofSim, it is
sufficient to show Dolev-Yaoness ofSimf .

The first step to showing this is to show that whenever
Simf invokesβ(t), thenS ⊢ t holds (whereS are the terms
received from the protocol). This follows from the fact that
β is invoked on termst0 sent by the protocol (which are then
by definition inS), and recursively descends only into sub-
terms that can be deduced fromt0. In particular, inSim5 we
made sure thatβ(t) is not invoked byβ(enc(ek(N), t,M));
t would not be deducible fromenc(ek(N), t,M).

Next we prove that wheneverS 0 t, then t contains
a visible subtermtbad with S 0 tbad such thattbad is a
protocol nonce, or a ciphertextenc(. . . , N) whereN is a
protocol nonces, or a signature, or a few other similar cases.
(Visibility is a purely syntactic condition and essentially
means thattbad is not protected by an honestly generated
encryption.)

Now we can conclude Dolev-Yaoness ofSimf : If it does
not hold,Simf sends a termt = τ(m) wherem was sent
by the adversaryA. Then t has a visible subtermtbad .
Visibility implies that the recursive computation ofτ(m)
had a subinvocationτ(mbad) = tbad . For each possible
case of tbad we derive a contradiction. For example, if
tbad is a protocol nonce, thenβ(tbad) was never invoked
(sinceS 0 tbad) and thusmbad = rN was guessed by the
simulator without ever accessingrN which can happen only
with negligible probability. Other cases are excluded, e.g.,
by the unforgeability of the signature scheme and by the
unpredictability of encryptions.

Thus,Simf is Dolev-Yao, henceSim is indistinguishable
and Dolev-Yao. Computational soundness follows.

B. Computational soundness based on extraction ZK

We now describe how computational soundness for zero-
knowledge proofs was shown in [14], based on the strong
assumption of extraction zero-knowledge. Our presentation
strongly deviates from the details of the proof in [14]; we
explain what their proof would be like if recast in the CoSP

7

framework. This makes it easier to compare the proof to our
proof and the proof described in the preceding section.

Extraction zero-knowledge is a strong property that guar-
antees the following: It is not possible to distinguish a
prover-oracle from the a simulator-oracle, even when given
access to an extraction oracle that extracts the witnesses
from arbitrary proofs except the ones produced by the
prover/simulator-oracle. Notice that there is a strong analogy
to IND-CCA secure encryption. The prover-oracle corre-
sponds to an encryption-oracle, the witness to the plaintext,
the simulator-oracle to a fake encryption-oracle encrypting
zero-plaintexts, and the extractor-oracle to a decryption-
oracle.

This analogy allows us to adapt the idea for proving
computational soundness of encryptions to the case of
ZK proofs. As in the proof described in Section V-A,
we construct a simulatorSim with translation func-
tions τ and β. We extendβ and τ to deal with ZK
proofs in the obvious way:β(ZK(crs(N), t, t′, N)) :=
AZK(Acrs(rN), β(t), β(t′), rN)) and β(ZK(. . . , Nm)) :=
m. When parsing a ZK proofz, we setτ(z) := t if t was
earlier output byβ(z). Otherwise, we obtain the statementx
from z by applyingAgetPub, we identify from whichrN the
CRS used inz was computed, and we get the witnessw by
applying the extraction algorithm. (Ifz was produced with
respect to a CRS that was not produced by the simulator,
we set τ(z) := garbageZK(. . .).). Finally, τ(z) returns
ZK(crs(N), τ(x), τ(w), Nz).

The proof of indistinguishability is analogous to that in
Section V-A, except that we use the extractability property
of the proof system to make sure that the simulator does not
abort when invoking the extraction algorithm while trying to
parse a ZK proofz in τ(z). Notice that plain extractability
(as opposed to simulation-sound extractability) can be used
here since we do not use a ZK-simulator in the construction
of Sim.

To prove Dolev-Yaoness, we proceed as in Section V-A,
except that we introduce three more intermediate simula-
tors Sim1, Sim2, and Sim3. (See Figure 3.) InSim1, we
invoke a prover-oracleON

ZK with statementβ(t) and wit-
nessβ(t′) in β(ZK(crs(N), t, t′,M)) instead of computing
AZK(Acrs(rN), β(t), β(t′), rM). (This is analogous toSim4

above.)ON
ZK aborts if the witness is not valid.

In Sim2, we replace the prover-oracleON
ZK by a ZK-

simulator-oracleON
sim. That oracle runs the ZK-simulator

(after checking that the witness is valid). Extraction zero-
knowledge guarantees that this replacement leads to an in-
distinguishable hybrid execution. (We need that the witness
is checked before running the simulator because extraction
zero-knowledge gives no guarantees in the case of invalid
witnesses, even if the witness is not actually used by the
ZK-simulator.)

Finally, in Sim3 we modify the ZK-simulator-oracleON
sim

such that it does not check the witness any more. A protocol

condition guarantees that this check would succeed anyway,
so this change leads to an indistinguishable hybrid execution.
Furthermore, since witnesses given toON

sim are never used,
we can further changeβ(ZK(crs(N), t, t′,M)) to never even
compute the witnessβ(t′).

The rest of the proof is analogous to that in Section V-A.
I.e., we continue with the simulatorSim3, Sim4, Simf as
described there and show thatSimf is Dolev-Yao. When
showing that inSimf , β(t) is only invoked whenS ⊢ t, we
also make use of the fact thatβ(ZK(crs(N), t, t′,M)) does
not descend into the witnessβ(t′) any more.

Note that this computational soundness proof crucially
depends on the extraction ZK property. We need to use the
extractor in the construction ofτ , and we need to replace the
prover-oracle by a ZK-simulator-oracle in order to make sure
thatβ does not descend into witnesses. And that replacement
takes place in a setting where the parsing functionτ and thus
the extractor is used.

C. Proof idea

We now describe the idea of our approach that allows us
to get rid of extraction ZK. As explained in Section V-B,
we cannot use the extractor as part of the parsing function
τ if we do not have extraction ZK. However, the following
observation shows that we might not need to run the ex-
tractor: Although in the computational setting, the only way
to compute a witness is to extract it (unless the relation is
trivial), in the symbolic setting, given a symbolic statement
x, it is typically easy to compute a corresponding symbolic
witnessw. (E.g., when proving the knowledge of a secret
key that decrypts a termx = enc(ek(N), t,M), then the
witness isdk(N) which can just be read offx.) We stress
that we do not claim that the witness can be deduced (in the
sense of⊢) from x, only that it can be efficiently computed.

Thus, for an adversary-generated proofz with CRS
Acrs(rN) and statementmx and that passes verification, we
defineτ(z) as follows: We runw := SymbExtr(S, x) and
return τ(z) := ZK(crs(N), x, w,Nz). Here S is the list
of terms received by the protocol so far,SymbExtr(S, x)
denotes an arbitrary witnessw satisfying the following two
conditions:w is a valid witness forx (i.e., (x,w) ∈ Rsym

adv)
andS ⊢ w. (Our result assumes thatw = SymbExtr(S, x)
is efficiently computable wheneverw exists, this will be the
case for most natural relations.)

The conditionS ⊢ w is necessary since otherwise the
simulator Sim would produce a proof that the adversary
could not have deduced (since he could not have deduced the
witness), and thus the simulator would not be Dolev-Yao.

Assume for the moment thatSymbExtr(S, x) always
succeeds (i.e., in the hybrid execution, there always is a
w with (x,w) ∈ Rsym

adv and S ⊢ w). In this case, we
can finish the proof analogously to that in Section V-B:
Indistinguishability ofSim follows by carefully checking
all cases, and the Dolev-Yaoness by the same sequence of

8

Sim Sim1 Sim2 Sim3 Sim4 Sim5 Simf
DY DY DY,ZK DY,ZK DY,ZK DY,ZK

original
simulator

use proof oracle
check witness

use simulation oracle
check witness

use simulation oracle
do not check witness

use encryption
oracle

use fake
encryption oracle

use signing
oracle

Figure 3. Simulators used in the proof. An arrow marked DY means Dolev-Yaoness is propagated from one simulator to the other. An arrow marked ZK
means ZK-breaks are propagated (needed in Section V-D).

simulators as in Section V-B. We do not need extraction
zero-knowledge when going fromSim1 to Sim2, though,
because inSim1, no extractor is used (we use symbolic
extraction instead). Thus the zero-knowledge property is
sufficient instead of extraction zero-knowledge.

But how do we show thatSymbExtr(S, x) always
succeeds? Two things might go wrong. First, there might
be no valid witnessw with (x,w) ∈ Rsym

adv . Notice that the
extractability property only guarantees that computationally,
a valid witness for the computational statementmx exists.
This does not necessarily imply that translating that witness
into a term (e.g., usingτ) yields a valid symbolic witness.
Second, there might be a valid witnessw, but that witness is
not deducable (S 0 w). Again, extractability only guarantees
that the adversary “knows” a witness in the computational
setting, this does not necessarily imply deducability in the
symbolic setting.

In essence, to show thatSymbExtr(S, x) succeeds, we
need a kind of computational soundness result: Whenever
computationally, there the adversary knows a valid witness,
then symbolically, the adversary knows a valid witness. This
seems problematic, because it seems that we need to use a
computational soundness result within our proof of compu-
tational soundness – a seeming circularity. Fortunately, this
circularity can be resolved: The fact thatSymbExtr(S, x)
succeeds is used only when proving thatSim is indistin-
guishable (i.e., mimics the computational execution well).
But the fact thatSymbExtr(S, x) succeeds does not relate
to the computational execution at all. In fact, it turns out to
be closely related to the Dolev-Yaoness and can be handled
in the same proof. And that proof does not use the fact that
symbolic extraction succeeds.

D. Proof overview

We now give a more detailed walk-through through our
proof. This exposition can also be seen as a guide through
the full proof in appendix E.

The simulator. The first step is to define the simulatorSim,
i.e., the translation functionβ andτ . Here, we only present
the parts of the definition related to ZK proofs (the first
matching rule counts):

1) τ(z) := crs(N) if z = Acrs(rN) for someN that
occurred in a subterm of the formcrs(N) before

2) τ(z) := crs(Nz) if z is of type common reference
string

3) τ(z) := ZK(crs(N1), t1, t2, N2) if z has earlier
been output byβ(ZK(crs(N1), t1, t2, N2)) for some
N1, N2 ∈ NP

4) τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-
knowledge proof andτ(z) was computed earlier and
has outputZK(crs(N), x, w,Nz)

5) τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-
knowledge proof,τ(Acrsof(z)) = crs(N) for some
N ∈ NP , AverifyZK

(Acrsof(z), z) = z, mx :=
AgetPub(z) 6= ⊥, x := τ(mx) 6= ⊥ and w :=
SymbExtr(S, x) whereS is the set of terms sent to
the adversary so far.

6) β(crs(N)) := Acrs(rN) if N ∈ NP

7) β(crs(N c)) := c
8) β(ZK(crs(N1), t1, t2, N2)) := AZK(Acrs(rN1), β(t1),

β(t2), rN2) if N1, N2 ∈ NP

9) β(ZK(crs(t0), t1, t2, N
s)) := s

10) β(garbageZK(t1, t2, N
z)) := z

HereSymbExtr(S, x) returns a witnessw with (x,w) ∈
Rsym

adv andS ⊢ w if suchw exists, and⊥ otherwise. A key
point is what to do whenSymbExtr(S, x) fails. We will
later show that this happens with negligible probability only,
but for now we need to specify the behavior in this case:

• WhenSymbExtr(S, x) returns⊥ in the rule 5), we
say anextraction failureoccurred. In this case, the sim-
ulator runs the extractor (using the extraction trapdoor
corresponding toAcrs(rN)) to get a (computational)
witnessmw for mx. ThenSim computesw := τ∗(x)
whereτ∗ is defined likeτ , except that the rule 5) is
dropped (henceτ∗ will map an adversary-generated ZK-
proof always to agarbageZK-term). Then the simulator
aborts. If(x,w) 6∈ Rsym

adv , we say aZK-breakoccurred.

The reader may wonder why we let the simulator compute
a symbolic witnessw in case of an extraction failure even
thoughw is never used. The reason is that we later show
that thisw always has(x,w) ∈ Rsym

adv and S ⊢ w, which
contradicts the fact that we get an extraction failure in the
first place. The reason for usingτ∗ instead ofτ is that we
have to avoid getting extraction failures within extraction
failures.

The sequence of simulators.As in Section V-B, we con-
struct a sequence of simulators. The sequence is essentially
the same (see Figure 3):Sim1 differs fromSim by using a
prover-oracle for constructing ZK-proofs in of invokingAZK

directly in β. We also use that oracle to obtain the CRS, and

9

for extractingmw after an extraction failure. InSim2, we
replace the prover-oracle by a ZK-simulator-oracle. If the
oracle is invoked with an invalid witness, it aborts instead
of running the ZK-simulator. InSim3, we still use a ZK-
simulator-oracle, but we do not check the witness first. Thus
β(w) is not invoked on witnesses any more in rule 8).Sim4

replacesAenc and Adec by calls to an encryption oracle,
Sim5 replaces that encryption oracle by a fake encryption
oracle using zero-plaintexts, andSimf finally uses a signing
oracle instead ofAsig.

We can now show thatSimf is Dolev-Yao. The proof
of this fact is analogous to the case the proof sketched
in Section V-B. We even show something slightly stronger,
namely that neitherτ nor τ∗ outputs an undeducable term:

Lemma 1 (Simf is Dolev-Yao):For any invocationt :=
τ(m) or t := τ∗(m), we haveS ⊢ t whereS are the terms
sent to the simulator so far. In particular,Simf is Dolev-Yao.
⋄
Now, as in Section V-B, we showSim is Dolev-Yao iffSimf

is Dolev-Yao. Later, we will also need preservation of the
property that ZK-breaks do not occur.

Lemma 2 (Preservation of simulator-properties):• Sim
is Dolev-Yao iff Simf is. • In the hybrid execution ofSim
extraction failures occur with negligible probability iffthe
same holds forSimf . • In the hybrid execution ofSim2

(not Sim!) ZK-breaks occur with negligible probability iff
the same holds forSimf . ⋄
Dolev-Yaoness, extraction failures, and ZK-breaks carry
over fromSim3 to Sim4 and fromSim5 to Simf because
the randomness used in encrypting and signing is not re-used
by protocol condition 3. (Notice that randomness might have
occurred within a witness, but due to the change inSim3, we
do not invokeβ(w) on witnesses any more.) Dolev-Yaoness,
extraction failures, and ZK-breaks carry over fromSim4 to
Sim5 due to the IND-CCA property. Dolev-Yaoness and
extraction failures carry over fromSim to Sim1 because the
randomness used for constructing ZK-proofs is not reused
by protocol condition 3.

Furthermore, Dolev-Yaoness and extraction failures carry
over from Sim1 to Sim2 because of the zero-knowledge
property of the proof system. There is a subtlety here:
Sim1 does use the extractor (namely after an extraction
failure). So usually, we would not be allowed to apply the
zero-knowledge property (we would need extraction ZK).
But fortunately, after an extraction failure, no terms are
sent by the simulator. Thus, anything that happens after an
extraction failure has no impact on whether the simulator
is Dolev-Yao or not. Thus, for analyzing whether Dolev-
Yaoness carries over fromSim1 to Sim2, we can assume that
those simulators abort directly after incurring an extraction
failure (without invoking the extractor afterwards). Thenno
extractions occur in the simulator, and we can use the zero-
knowledge property. Analogously, extraction failures carry
over fromSim1 to Sim2.

Notice that we cannot use the same trick to show that ZK-
breaks carry over fromSim1 to Sim2: Whether ZK-breaks
occur is determined only after the invocation of the extractor.
Fortunately, we only need that ZK-breaks carry over from
Sim2 to Simf .

To show Lemma 2, it remains to show that Dolev-Yaoness,
extraction failures, and ZK-breaks carry over fromSim2 to
Sim3. The only difference between these simulators is that
Sim3 does not check whether the witnessmw given to the
ZK-simulation-oracle is valid (i.e.,(β(t1), β(t2)) ∈ Rcomp

honest

in rule 8). Thus, to conclude the proof of Lemma 2, we need
to show that the probability that the ZK-simulation-oracleis
called with an invalid witness is negligible.

No invalid witnesses. To show that the ZK-simulation-
oracle is only called bySim2 with valid computational
witnessesβ(t1), we need to show two things:

Lemma 3 (No invalid symbolic witnesses):If Sim3 is
Dolev-Yao, then in rule 8), we have(t1, t2) ∈ Rsym

honest with
overwhelming probability. The same holds forSim. ⋄

Lemma 4 (Relating the relations, part 1):In an execu-
tion of Sim3 the following holds with overwhelming proba-
bility: if (x,w) ∈ Rsym

honest then(β(x), β(w)) ∈ Rcomp
honest. The

same holds forSim. ⋄
Once we have these lemmas, Lemma 2 follows: We know
from Lemma 1 thatSimf is Dolev-Yao. We have already
shown that this property carries over toSim3. Thus by
Lemmas 3 and 4,(β(t1), β(t2)) ∈ Rcomp

honest in rule 8).
To show Lemma 3, we observe the following: If the

simulator sends only terms that are deducible (i.e., that
a symbolic adversary could also have sent), then in the
hybrid execution, no execution trace occurs that could not
have occurred in the symbolic execution either. By protocol
condition 10, in a symbolic execution,(t1, t2) ∈ Rsym

honest

whenever the protocol constructs anZK(crs(N), t1, t2,M)-
term. Since rule 8) only applies to such protocol-generated
terms (ZK-terms fromτ haveM ∈ NE), it follows that
(t1, t2) ∈ Rsym

honest in rule 8). Lemma 3 follows. Lemma 4
follows because we required thatRcomp

honest, R
comp
adv implement

Rsym
adv with usage restrictionRsym

honest; Definition 2 was de-
signed to make Lemma 4 true.

Thus, Lemmas 3 and 4 hold, thus Lemma 2 follows. Since
Simf is Dolev-Yao by Lemma 1, it follows with Lemma 2
that Sim is Dolev-Yao. It remains to show thatSim is
indistinguishable.

Indistinguishability of Sim. As described in Section V-A,
to show indistinguishability ofSim, the main subproof is
to show (a) thatβ(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn))
when the protocol computesF (t1, . . . , tn). And, of course,
we need (b) that the simulator does not abort. The proof of
(a) is, as before, done by careful checking of all cases. The
only interesting case isF = verifyZK. Here we need that an
honestly-generated ZK proof with statementx and witness
w passes verification symbolically (x,w ∈ Rsym

honest) iff it

10

passes verification computationally ((β(x), β(w) ∈ Rsym
honest).

Fortunately, we have already derived all needed facts: By
Lemmas 1 and 3,(x,w) ∈ Rsym

honest with overwhelming
probability. And then by Lemma 4,(β(x), β(w) ∈ Rsym

honest.
To show (b), we need to show that no extraction failures

occur. The approach for this is a bit roundabout, we first
analyzeSim2:

Lemma 5 (No ZK-breaks):In the hybrid execution of
Sim2, ZK-breaks occur with negligible probability. ⋄

To show this, we use the simulation-sound extractability
property of the proof system to show that the valuesmx,mw

extracted by the extractor after an extraction failure satisfy
(mx,mw) ∈ Rcomp

adv . And then it follows that(x,w) ∈ Rsym
adv

with x := τ(mx), w := τ∗(mw) by the converse of
Lemma 4:

Lemma 6 (Relating the relations, part 2):In an execu-
tion of Sim2 the following holds with overwhelming prob-
ability: if (mx,mw) ∈ Rcomp

adv then (τ(mx), τ
∗(mw)) ∈

Rsym
adv . ⋄

Thus Lemma 5 is shown. From this, with Lemma 2 we get
that ZK-breaks occur with negligible probability also for
Simf . Based on this fact, we can show the following lemma:

Lemma 7 (No extraction failures):In the hybrid execu-
tion of Simf , extraction failures occur with negligible prob-
ability. ⋄

To see this, we use that ZK-breaks do not occur in the
execution ofSimf . Thus, by definition of ZK-breaks, this
means that(x,w) ∈ Rsym

adv for the termsx := τ(mx)
and w := τ(mw) computed after the extraction failure.
Furthermore, by Lemma 1, it follows thatS ⊢ w. But then,
by definition,SymbExtr(x, S) would have output aw or
another witness, but not⊥. Thus the extraction failure would
not have occurred. This shows Lemma 7.

Finally, from Lemmas 5 and 2 we get that extraction
failures occur with negligible probability in the execution
of Sim, too. Thus property (b) also holds, thus we have
shownSim to be indistinguishable.

Notice that the roundabout way throughSim2 andSimf to
show that extraction failures do not occur withSim is neces-
sary: We cannot directly show Lemma 5 forSimf because
Simf uses the simulator to prove untrue statements (e.g.,
it may prove that a ciphertext contains a certain value, but
since we use a fake encryption oracle, that ciphertext actually
contains a zero-plaintext), so simulation-sound extractability
cannot be applied. Also, we cannot use the factS ⊢ τ∗(x)
directly onSim because this fact cannot be propagated from
Simf to Sim (sinceτ∗ is executed after the extractor is used,
we would need extraction ZK to bridge fromSim2 to Sim1).

Concluding the proof. We have shown thatSim is Dolev-
Yao and indistinguishable. From [5, Thm. 1] we then imme-
diately get Theorem 1.

VI. Z ERO-KNOWLEDGE IN THE APPLIEDπ-CALCULUS

In [5] it was shown how to use computational soundness
results in the CoSP framework (such as our result) and
derive computational soundness results for a dialect of the
appliedπ-calculus (see [5] for a description of the calculus
together with semantics for symbolic and computational
execution). Basically, they present a generic transformation
that translates a process in the appliedπ-calculus into a
CoSP process (generic means that the transformation works
for any symbolic model, including the one presented here).
Thus, all that needs to be done to get a computational
soundness result for zero-knowledge proofs in the appliedπ-
calculus is to write down what conditions a process needs to
satisfy such that the translated process satisfies the protocol
conditions (listed in the appendix):

Definition 3 (Valid processes):A process P̃ in the ap-
plied π-calculus isvalid if it satisfies the following two
properties:

(i) The processP̃ matches the following grammar: Let
x, xd, xs, xc stand for different sets of variables (general
purpose, decryption key, signing key, and CRS variables).
Let a, r, rz stand for three sets of names (general purpose,
randomness, and ZK randomness names).M̃, Ñ ::= x | xc |
a | pair(M̃, Ñ) | S̃ and S̃ ::= string0 (S̃) | string1 (S̃) |
empty , and let D̂ be an arbitrary term consisting of con-
structors, destructors, variables, and names exceptrz and
D̃ ::= M̃ | isek(D̃) | isenc(D̃) | dec(xd, D̃) | fst(D̃) |
snd(D̃) | ekof(D̃) | equals(D̃, D̃) | isvk(D̃) | issig(D̃) |
verifysig(D̃, D̃) | vkof(D̃) | iscrs(D̃) | crsof(D̃) |

verifyZK(xc, D̃) | iszk(D̃) | getPub(D̃) | unstring0 (D̃) |
unstring1 (D̃) and

P̃ , Q̃ ::= M̃〈Ñ〉.P̃ | M̃(x).P̃ | 0 | (P̃ | Q̃) | !P̃ | νa.P̃ |

let x = D̃ in P̃ else Q̃ | event(e).P̃ |

νr.let x = ek(r) in let xd = dk(r) in P̃ |

νr.let x = enc(isek(D̃1), D̃2, r) in P̃ else Q̃ |

νr.let x = vk(r) in let xs = sk(r) in P̃ |

νr.let x = sig(xs, D̃1, r) in P̃ else Q̃ |

νr.let xc = crs(rz) in P̃ |

νr.event zk .

let x = ZK(xc, D̃1, D̂, rz) in P̃ else Q̃

(Note that in each of the last six production rules, several
occurrences ofr or rz denote the same name.)

(ii) For any process Q that does not contain
events, if P̃ |Q →∗ E[event zk .let x =
ZK(t1, t2, t3, t4) in P1 else P2] with an evaluation
context E, then (t2η, t3η) ∈ Rsym

honest for any bijective
mappingη from names to nonces. ⋄
Analogous to [5, Thm. 4], we obtain:

Theorem 2 (Computational soundness of ZK proofs):
Let P̃ be a closed valid process andAF a computational

11

implementation satisfying the implementation conditions
from Section III. Then for anyπ-trace property5 ℘, if P
symbolically satisfies℘, then P computationally satisfies
℘.

Automated analysis in Proverif. To show the usability of
our modeling, we have analyzed a toy protocol in ProVerif
[16]. Our protocol is a variant of the Needham-Schroeder-
Protocol in which the recipient proves that he knows a nonce
instead of sending that nonce back.

A B
m1 := enc(ekB , N1, r1)

ZK(crs, (enc(ekA, N2, r2),m1), dkB , r3)

enc(ekB, N2, r4)

The relations used for the ZK-proofs areRsym
honest =

{((m′,m1), (dk)) : dec(dk,m1) 6= ⊥} and Rsym
adv =

Rsym
honest ∪ {((m

′,m1), (dk)) : m1 = garbageEnc(t, N), t ∈
T, N ∈ N}, i.e., B proves that he can decryptm1. The
partm′ of the statement is not used in the relation, but the
non-malleablity of our ZK proofs ensures that the adversary
cannot changem′ in an existing proof. In the Appendix H,
we prove that this relation satisfies definition 2, thus the
abstraction is sound.

We express this protocol in the appliedπ-calculus:

P := νrA.let ekA = ek(rA) in let dkA = dk(rA) in

νrB .let ekB = ek(rB) in let dkB = dk(rB) in

νrC .let crs = crs(rC) in

ch〈(ekA, ekB, crs)〉.(!A|!B)

A := event beginA.νN1.

νr1.let m1 = enc(ekB, N1, r1) in ch〈m1〉.ch(m2).

let stmt = getPub(verifyZK(crs,m2)) in

if snd(stmt) = m1 then

let N2 = dec(dkA, fst(stmt)) in

νr4.let m3 = enc(ekB, N2, r4) in

ch〈m3〉.event endA

B := event beginB.ch(m1).

let N1 = dec(dkB,m1) in νN2.

νr2.let c = enc(ekA, N2, r2) in

νr3.event zk .let m2 = ZK(crs, (c,m1), dkB, r3) in

ch〈m2〉.ch(m3).

if N2 = dec(dkB,m3) then event endB

5A π-trace property is essentially a prefix-closed set of sequences of
events that are allowed to occur. See [5] for a precise definition and for the
definition of “symbolically/computationally satisfying”a π-trace property.

This protocol can be directly encoded in ProVerif.6 The
definition of the destructorverifyZK depends on the relation
Rsym

adv , we can encode it in ProVerif as

reduc verifyZK(crs(t1),
zk(crs(t1),(c,enc(ek(r1),x,r2)),dk(r1),t4))

= zk(crs(t1),(c,enc(ek(r1),x,r2)),dk(r1),t4);
verifyZK(crs(t1),

zk(crs(t1),(ciph,garbageEnc(t2,t3)),t4,t5))
= zk(crs(t1),(ciph,garbageEnc(t2,t3)),t4,t5).

ProVerif can automatically show thatP symbolically
satisfies the trace propertiesendA ⇒ beginB andendB ⇒
beginA. To show thatP also computationally satisfies
that trace property, we need to show thatP is valid. P
satisfies the syntactic condition (Definition 3(i)). To check
that a processP satisfies the dynamic condition (ii), we
use ProVerif again: We replace every occurrence ofP ′ =
let x = ZK(t1, t2, t3, t4) in P1 else P2 by let x′ =
checkzk (t2, t3) in P ′ else event badzk where checkzk is
a destructor that checks if its arguments are inRsym

honest:

reduc checkzk((c,enc(ek(r1),x,r2)),dk(r1)) = empty

ProVerif automatically shows that the eventbadzkdoes
not occur. It follows thatP is valid.

VII. C ONCLUSIONS

In this paper, we have shown that computational sound-
ness of symbolic ZK proofs can be achieved under realistic
cryptographic assumptions for which efficient realizations
and generic constructions are known. The computational
soundness proof has been conducted in CoSP, and hence
it holds independent of the underlying symbolic calculi and
comes with mechanized proof support.

We conclude by highlighting several open questions that
we consider as future work. First, current abstractions model
non-interactive ZK proofs, i.e., a ZK proof constitutes a
message that can forwarded, put into other terms, etc. Devel-
oping a symbolic abstraction to reflect (the more common)
interactive ZK proofs thus requires a conceptually different
approach, as such proofs cannot be replayed, put into other
terms, etc. We plan to draw ideas from a recently proposed
symbolic abstraction for (interactive) secure multi-party com-
putation [8] to reflect this behavior. Second, recent work has
investigated the soundness of cryptographic implementations
on the source code level, e.g., in F# [10]. Developing
a computational soundness result for ZK implementations
would allow to safely use existing libraries that offer ZK
implementations to higher-level protocols. Finally, sound-
ness proofs of individual primitives have typically been
proved in isolation, without a guarantee that the soundness
result prevails when composed. We plan to build on recent
work on composable soundness notions [21] to establish a
composable soundness result for ZK proofs.

6We provide the ProVerif input online at
http://www.infsec.cs.uni-saarland.de/∼bendun/zk-cosp/

12

http://www.infsec.cs.uni-saarland.de/~bendun/zk-cosp/

REFERENCES

[1] M. Abadi and C. Fournet. Mobile values, new names, and
secure communication. InPOPL ’01: Proceedings of the
28th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages, pages 104–115, New York, NY,
USA, 2001. ACM Press.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. InProc. 4th ACM Conference on
Computer and Communications Security, pages 36–47, 1997.

[3] M. Abadi and P. Rogaway. Reconciling two views of cryp-
tography (the computational soundness of formal encryption).
Journal of Cryptology, 15(2):103–127, 2002.

[4] M. Backes, D. Hofheinz, and D. Unruh. Cosp: A general
framework for computational soundness proofs. InACM CCS
2009, pages 66–78, November 2009. Preprint on IACR ePrint
2009/080.

[5] M. Backes, D. Hofheinz, and D. Unruh. A general framework
for computational soundness proofs - or - the computational
soundness of the applied pi-calculus. IACR ePrint Archive
2009/080, 2009.

[6] M. Backes, C. Hriţcu, and M. Maffei. Type-checking zero-
knowledge. In15th ACM Conference on Computer and
Communications Security (CCS 2008), pages 357–370. ACM
Press, 2008.

[7] M. Backes, S. Lorenz, M. Maffei, and K. Pecina. Anonymous
webs of trust. InProceedings of the 10th international con-
ference on Privacy enhancing technologies, PETS’10, pages
130–148, Berlin, Heidelberg, 2010. Springer-Verlag.

[8] M. Backes, M. Maffei, and E. Mohammadi. Computationally
sound abstraction and verification of secure multi-party com-
putations. In K. Lodaya and M. Mahajan, editors,FSTTCS,
volume 8 of LIPIcs, pages 352–363. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2010.

[9] M. Backes, M. Maffei, and D. Unruh. Zero-knowledge in the
applied pi-calculus and automated verification of the direct
anonymous attestation protocol. InIEEE Symposium on
Security and Privacy 2008, pages 158–169, May 2008.

[10] M. Backes, M. Maffei, and D. Unruh. Computationally sound
verification of source code. InACM CCS 2010, pages 387–
398. ACM Press, October 2010. Preprint on IACR ePrint
2010/416.

[11] M. Backes and B. Pfitzmann. Symmetric encryption in a
simulatable Dolev-Yao style cryptographic library. InProc.
17th IEEE Computer Security Foundations Workshop (CSFW),
pages 204–218, 2004.

[12] M. Backes, B. Pfitzmann, and M. Waidner. A composable
cryptographic library with nested operations (extended ab-
stract). In Proc. 10th ACM Conference on Computer and
Communications Security, pages 220–230, 2003. Full version
in IACR Cryptology ePrint Archive 2003/015, Jan. 2003,
http://eprint.iacr.org/2003/015.

[13] M. Backes and D. Unruh. Computational soundness of
symbolic zero-knowledge proofs against active attackers.In
21st IEEE Computer Security Foundations Symposium, CSF
2008, 2008. To appear.

[14] M. Backes and D. Unruh. Computational soundness of sym-
bolic zero-knowledge proofs.Journal of Computer Security,
18(6):1077–1155, 2010. Preprint on IACR ePrint 2008/152.

[15] D. Basin, S. Mödersheim, and L. Viganò. OFMC: A symbolic
model checker for security protocols.International Journal
of Information Security, 2004.

[16] B. Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. In14th IEEE Computer Secu-
rity Foundations Workshop (CSFW-14), pages 82–96, Cape
Breton, Nova Scotia, Canada, June 2001. IEEE Computer
Society.

[17] E. F. Brickell, J. Camenisch, and L. Chen. Direct anonymous
attestation. InProc. 11th ACM Conference on Computer and
Communications Security, pages 132–145. ACM Press, 2004.

[18] R. Canetti and J. Herzog. Universally composable symbolic
analysis of mutual authentication and key exchange protocols.
In Proc. 3rd Theory of Cryptography Conference (TCC),
volume 3876 ofLNCS, pages 380–403. Springer, 2006.

[19] M. R. Clarkson, S. Chong, and A. C. Myers. Civitas:
Toward a Secure Voting System. InProceedings of the 2008
IEEE Symposium on Security and Privacy, pages 354–368,
Washington, DC, USA, 2008. IEEE Computer Society.

[20] V. Cortier and B. Warinschi. Computationally sound, auto-
mated proofs for security protocols. InProc. 14th European
Symposium on Programming (ESOP), pages 157–171, 2005.

[21] V. Cortier and B. Warinschi. A composable computational
soundness notion. chicago, usa, october 2011. acm press. In
Proc. 18th ACM Conference on Computer and Communica-
tions Security. ACM Press, 2011.

[22] D. Dolev and A. C. Yao. On the security of public key proto-
cols. IEEE Transactions on Information Theory, 29(2):198–
208, 1983.

[23] S. Even and O. Goldreich. On the security of multi-party
ping-pong protocols. InProc. 24th IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 34–39, 1983.

[24] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof systems.SIAM Journal on
Computing, 18(1):186–207, 1989.

[25] J. Groth. Simulation-sound nizk proofs for a practicallan-
guage and constant size group signatures. InIn proceedings
of ASIACRYPT ’06, LNCS series, pages 444–459. Springer-
Verlag, 2006.

[26] J. Groth and R. Ostrovsky. Cryptography in the multi-
string model. In A. Menezes, editor,CRYPTO, vol-
ume 4622 of Lecture Notes in Computer Science, pages
323–341. Springer, 2007. Full version available at
http://www.cs.ucla.edu/∼rafail/PUBLIC/85.pdf. The defini-
tion of extraction zero-knowledge is only contained in the
full version.

13

http://eprint.iacr.org/2003/015
http://www.cs.ucla.edu/~rafail/PUBLIC/85.pdf

[27] D. Kähler, K. Ralf, and T. Wilke. Deciding properties of
contract-signing protocols. Technical Report IFI 0409, CAU
Kiel, 2004.

[28] R. Kemmerer, C. Meadows, and J. Millen. Three systems
for cryptographic protocol analysis.Journal of Cryptology,
7(2):79–130, 1994.

[29] S. Kremer and M. Ryan. Analysis of an electronic voting
protocol in the applied pi-calculus. InProc. 14th European
Symposium on Programming (ESOP), LNCS, pages 186–200.
Springer-Verlag, 2005.

[30] P. Laud. Semantics and program analysis of computationally
secure information flow. InProc. 10th European Symposium
on Programming (ESOP), pages 77–91, 2001.

[31] P. Laud. Symmetric encryption in automatic analyses for
confidentiality against active adversaries. InProc. 25th IEEE
Symposium on Security & Privacy, pages 71–85, 2004.

[32] H. Li and B. Li. An unbounded simulation-sound non-
interactive zero-knowledge proof system for np. InCISC,
pages 210–220, 2005.

[33] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. InProc. 2nd International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1055 ofLNCS, pages
147–166. Springer, 1996.

[34] L. Lu, J. Han, Y. Liu, L. Hu, J.-P. Huai, L. Ni, and J. Ma.
Pseudo trust: Zero-knowledge authentication in anonymous
p2ps. IEEE Trans. Parallel Distrib. Syst., 19:1325–1337,
October 2008.

[35] M. Maffei and K. Pecina. Position paper: Privacy-awareproof-
carrying authorization. InPLAS 2011, 2011. To appear.

[36] M. Merritt. Cryptographic Protocols. PhD thesis, Georgia
Institute of Technology, 1983.

[37] D. Micciancio and B. Warinschi. Soundness of formal
encryption in the presence of active adversaries. InProc.
1st Theory of Cryptography Conference (TCC), volume 2951
of LNCS, pages 133–151. Springer, 2004.

[38] L. Paulson. The inductive approach to verifying cryptographic
protocols.Journal of Cryptology, 6(1):85–128, 1998.

[39] A. Sahai. Non-malleable non-interactive zero knowledge and
adaptive chosen-ciphertext security. InProceedings of the
40th Annual Symposium on Foundations of Computer Science,
FOCS ’99, pages 543–, Washington, DC, USA, 1999. IEEE
Computer Society.

[40] A. Sahai. Simulation-sound non-interactive zero knowledge.
Technical report, IBM RESEARCH REPORT RZ 3076, 2001.

[41] S. Schneider. Security properties and CSP. InProc. 17th
IEEE Symposium on Security & Privacy, pages 174–187,
1996.

[42] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and M. Waid-
ner. Cryptographically sound theorem proving. InProc.
19th IEEE Computer Security Foundations Workshop (CSFW),
pages 153–166, 2006.

APPENDIX

A. Protocol conditions

In this section we formally state the protocol conditions
used in the main result of the paper. Summarized the
protocol conditions require that we do not sent secret keys
and that all relations used in zero-knowledge proofs are
reasonable.

1) The annotation of eachcrs-node, each key-pair(ek, dk)
and (vk, sk) is a fresh nonce. which does not occur
anywhere else.

2) There is no node annotated with a
garbage, garbageEnc, garbageSig, garbageZK,
or N ∈ NE constructor in the protocol.

3) The last argument of aenc, sig,ZK constructor are
fresh nonces. These nonces are not used anywhere else
except in case ofenc and sig as part of a subterm of
the third argument in aZK-node.

4) A dk-node is only used as first argument fordec-node
or as subterm of the third argument in aZK-node.

5) A sk-node is only used as first argument forsig-node
or as subterm of the third argument in aZK-node.

6) The first argument of adec-computation node is adk-
node.

7) The first argument of asig-computation node is ask-
node.

8) The first argument of aZK-computation is acrs-
computation node which is annotated by a nonceN ∈
NP . This nonce is only used as annotation of thiscrs
node and nowhere else.

9) The first argument of averifyZK-computation is acrs-
computation node which is annotated by a nonceN ∈
NP . This nonce is only used as annotation of thiscrs
node and nowhere else.

10) The protocol respects the usage restrictionRsym
honest in

the following sense:
In the symbolic execution of the protocol, when-
ever a ZK-computation-nodeν is reached, then
(f(νx), f(νw)) ∈ Rsym

honest wheref is the function map-
ping nodes to terms (cf. the definition of the symbolic
execution in [5] or appendix D) andνx andνw are the
second and third argument ofν.

11) For the relationRsym
adv it holds: There is an efficient

algorithmSymbExtr, that given a termM together
with a setS of terms (which was generated according to
any protocol satisfying the protocol conditions above),
outputs a termN , such thatS ⊢ N and(N,M) ∈ Rsym

adv

or outputs⊥ if there is no such termN . We call a re-
lation satisfying this property symbolically extractable.

12) The relationRsym
adv is efficiently decidable.

We will call a protocol satisfying these constraints a safe
protocol. The class of safe protocols is the set of all protocols
which are safe.

14

B. Implementation conditions

Essentially the implementation conditions say that the
zero-knowledge proof system is weakly symbolically-sound,
the encryption scheme is IND-CCA secure, the signature
scheme is strongly existentially unforgeable and several
trivial conditions as e.g. thatunstringi is the inverse of
stringi.7

1) The implementation is an implementation according to
Definition 8 (see Section D).

2) There are disjoint and efficiently recognizable sets of
bitstrings representing the node types nonce, cipher-
text, encryption key, decryption key, signature, verifi-
cation key, signing key, common reference string, zero-
knowledge proof, pair and payload-string.
The images ofAN have type nonce (for allN ∈ N),
Aenc have type ciphertext,Aek have type encryption
key, Adk have type decryption key,Asig have type
signature,Avk have type verification key,Ask have type
signing key,Acrs have type common reference string,
AZK have type zero-knowledge proof,Apair have type
pair, andAstring0 , Astring1 , Aempty have type payload
string.

3) The implementationAN for noncesN ∈ NP compute
uniform distributions on{0, 1}k and output the sampled
value tagged as nonce (herek is the security parameter).

4) If Adec(dkN ,m) 6= ⊥ thenAekof(m) = ekN , i.e. the
decryption only succeeds if the corresponding encryp-
tion key can be extracted out of the ciphertext.

5) Avkof(Asig(Ask(x), y, z)) = Avk(x) for all y ∈
{0, 1}∗ andx, z nonces. Ife is of type signature then
Avkof(e) 6= ⊥, otherwiseAvkof(e) = ⊥.

6) For all m, k ∈ {0, 1}∗, k having type encryption
key, and r 6= r′ ∈ {0, 1}∗ with |r| = |r′| holds
that Aenc(k,m, r) and Aenc(k,m, r′) are equal with
negligible probability.

7) For allm, k ∈ {0, 1}∗, k having type signing key, and
r 6= r′ ∈ {0, 1}∗ with |r| = |r′| holds thatAsig(k,m, r)
andAsig(k,m, r′) are equal with negligible probability.

8) The implementationsAek, Adk, Aenc, andAdec belong
to an encryption scheme(KeyGenenc,ENC,DEC)
which is IND-CCA secure.

9) The implementationsAvk,Ask,Asig, and Averifysig
be-

long to a signature scheme(KeyGensig, SIG,VERsig)
which is strongly existential unforgeable.

10) All implementations are length regular, i.e. if the input
has the same length the output will have the same too.

11) For m1,m2 ∈ {0, 1}∗ holds Afst(Apair(m1,m2)) =
m1 andAsnd(Apair(m1,m2)) = m2

12) Adec(Adk(r), Aenc(Aek(r),m, r′)) = m for all r, r′

nonces.
13) Let k ∈ {0, 1}∗ be an encryption key andm,n ∈

7 The implementation conditions up to 19 follow the ones in [4]. The
remaining ones are used to show soundness w.r.t. zero-knowledge.

{0, 1}∗ such thatn is of type nonce. Then holds
Aekof(Aenc(k,m, n)) = k. If c ∈ {0, 1}∗ is not of type
ciphertext thenAekof(c) = ⊥.

14) Letvk, sk ∈ {0, 1}∗ be a keypair, i.e.(vk, sk) is in the
image ofKeyGensig, then holds for allm,n ∈ {0, 1}∗:
Avkof(Asig(sk,m, n)) = vk.

15) Averifysig
(Avk(r), Asig(Ask(r),m, r′)) = m for all r, r′

nonces.
16) For allp, s ∈ {0, 1}∗ we have thatAverifysig

(p, s) 6= ⊥
impliesAvkof(s) = p.

17) Form ∈ {0, 1}∗ holdsAunstringi(Astringi(m)) = m for
i ∈ {0, 1} andAstring0(m) 6= Astring1(m).

18) For all m ∈ {0, 1}∗ of type zero-knowledge proof
holds thatiszk(m) = m and if m has not type zero-
knowledge proof, theniszk(m) = ⊥. The same holds
for issig w.r.t. the type signature andisenc w.r.t. the
type ciphertext.

19) If k ∈ {0, 1}∗ is not of the type encryption key then
holds for all m,n ∈ {0, 1}∗ that Aenc(k,m, n) = ⊥.
The same has to hold for the type signing key and the
implementation of signatures.

20) The implementationAcrs, AZK, AverifyZK
belongs to

a zero-knowledge proof system(K,P,V) which is
a weak symbolically-sound zero-knowledge proof sys-
tem.

21) For all z ∈ {0, 1}∗ holds AverifyZK
(crsof(z), z) ∈

{⊥, z}, whereAverifyZK
(crsof(z), z) = z if and only

if z is correct w.r.t. to the verifier of the proof system.
22) If z ∈ {0, 1}∗ is not of type zero-knowledge, then

verifyZK(crsof(z), z) = ⊥.
23) For all p, q, r, s ∈ {0, 1}∗ we have that z =

AZK(p, q, r, s) 6= ⊥ impliesAcrsof(z) = p.
24) For all z ∈ {0, 1}∗ holds: If z is not of type zero-

knowledge proof thenAcrsof(z) = ⊥.
25) If z := AZK(m̄) 6= ⊥ thenAverifyZK

(Acrsof(z), z) = 1.
26) If (x,w) 6∈ Rcomp

honest then for all c, r ∈ {0, 1}∗, it holds
AZK(c, x, w, r) = ⊥.

27) Let c, x, w, n ∈ {0, 1}∗ such thatc is of type crs and
let z = AZK(c, x, w, n). If z 6= ⊥ then holds thatx =
AgetPub(z).

28) We require that the relationsRcomp
honest, R

comp
adv are an

implementation ofRsym
adv with usage restrictionRsym

honest

in the sense of Definition 2.
29) For d ∈ {0, 1}∗ of type decryption key there is a

efficiently computable functionp : {0, 1}∗ → {0, 1}∗

such that for allm,n ∈ {0, 1}∗, n of type nonce, it
holdsAdec(d,Aenc(p(d),m, n)) = m, i.e. p computes
the encryption key corresponding tod. The analogous
statement has to holds for signing keys and verification
keys.

C. Consistent environments andimgη

Definition 4: Let E be the set of all partial functionsη :
T→ {0, 1}∗. We will call such anη an environment.

15

Let an implementationA for the symbolic model by given.
Define the partial functionimgη : T → {0, 1}∗ for η ∈ E
by taking the first matching rule:

• For a nonceN defineimgη(N) := η(N)
• For a termt = crs(N) defineimgη(crs(N)) := η(t)
• For a termt = ZK(crs(N), x, w,M) defineimgη(t) :=
η(t)
• Let C be a constructor from{ek, dk, vk, sk, enc, sig,
crs, garbageZK, garbageSig, garbageEnc, garbage}.
For t = C(t1, . . . , tn−1, N) with N ∈ NE define
imgη(t) := η(t).
• For a term C(t1, . . . , tn) define
imgη(C(t1, . . . , tn)) := AC(imgη(t1), . . . , imgη(tn)) ,
if for all i we haveimgη(ti) 6= ⊥, and⊥ otherwise.

An environmentη is consistent if the following conditions
are satisfied:8

• η is injective.
• For each constructorC we require that the bitstring
imgη(C(t1, . . . , tn)) has the type as follows: The con-
structorsenc, garbageEnc are mapped to type cipher-
text, sig, garbageSig to signatures,ZK, garbageZK to
ZK proofs, ek, dk, vk, sk to encryption, decryption,
verification, signing key, respectively.crs to common
reference string,pair to pair, string0, string1, empty
to payload-string,N to nonce,garbage has none of
these types.
• Aekof(imgη(enc(ek(N), t,M))) = imgη(ek(N)) for

all N,M ∈ NP , t ∈ T.
• For all t = sig(sk(N), u,M) with N,M ∈ N, u ∈
T it holds: verifysig(vkof(t), t) 6= ⊥ implies that
Averifysig

(imgη(vkof(t)), imgη(t)) imgη(u).
• For t = ZK(crs(N), x, , w,M) with M ∈ N holds:

1) AverifyZK
(imgη(crs(N)), η(t)) = η(t)

2) AgetPub(η(t)) = imgη(x)
3) Acrsof(η(t)) = imgη(crs(N))

• For all t1, t2 ∈ T it holds that
Averifysig

(imgη(garbageSig(t1, t2))) = ⊥
• For all N,M ∈ N, t ∈ T it holds that
Adec(imgη(dk(N)), imgη(enc(ek(N), t,M))) =
imgη(t) and imgη(t) 6= ⊥.
• For all enc(ek(N), t,M) ∈ T it holds: If
imgη(enc(ek(N), t,M)) =: c 6= ⊥, then it follows
Aekof(c) = imgη(ek(N)).
• For all enc(ek(N), t,M) ∈ T it holds: If
imgη(enc(ek(N), t,M)) 6= ⊥ and d ∈ {0, 1}∗ such
that imgη(ek(N)) = p(d)9, then it follows that
Adec(d, imgη(enc(ek(N), t,M))) = imgη(t).

As long as theη used in the proof of lemma 11 stays
consistent, it is possible to add many more properties to the
list. In fact, not all of them are used in the soundness result

8We consider a condition in which a termt occurs such thatimgη(t) =
⊥ as satisfied.

9Wherep is the function defined in implementation condition 29.

itself, but to prove that the example relations given satisfy
definition 2.

D. CoSP Review

We start with the definitions that capture symbolic notions
of protocols and executions and proceed with their compu-
tational counterpart. After that, we introduce computational
soundness as well as sufficient conditions for achieving
computational soundness in CoSP.

Symbolic Model.We first introduce the notion of a symbolic
model, which comprises basic concepts such as constructors,
destructors, and deduction relations.

Definition 5 (Symbolic model):A constructor C is a
symbol with an arity. We writeC/n ∈ C to say that the
setC contains a constructorC with arity n. A nonceN is
a symbols with zero arity. Amessage typeT over C and
N is a set of terms over constructorsC and noncesN. A
destructorD of arity n over a message typeT is a partial
mapTn → T. If D is undefined ont, we writeD(t) = ⊥.
A deduction relation⊢ over a message typeT is a relation
between2T andT.

A symbolic modelM = (C,N,T,D,⊢) consists of a set
of constructorsC, a set of noncesN, a message typeT
overC andN with N ⊆ T, a set of destructorsD overT,
and a deduction relation⊢ overT.
To unify notation, ifF is a constructor or nonce, we write
evalF (t1, . . . , tn) := F (t) if F (t) ∈ T and evalF (t) := ⊥
otherwise. IfF is a destructor, we writeevalF (t) := F (t)
if F (t) 6= ⊥ andevalF (t) := ⊥ otherwise.

Protocols in CoSP essentially constitute a tree with distin-
guished nodes for computations, input, output and branches.

Definition 6 (CoSP protocol):A CoSP protocolΠs is a
tree with a distinguished root and labels on edges and nodes.
Each node has a unique identifierN and one of the following
types:
• Computation nodes are annotated with a constructor,

nonce, or destructorF/n together with the identifiers of
n (not necessarily distinct) nodes. Computation nodes
have exactly two successors; the corresponding edges
are labeled with yes and no, respectively.
• Output nodes are annotated with the identifier of one

node. An output node has exactly one successor.
• Input nodes have no further annotation.An input node

has exactly one successor.
• Control nodes are annotated with a bitstringl. A control

node has at least one and up to countably many succes-
sors annotated with distinct bitstringsl′ ∈ {0, 1}∗. (We
call l the out-metadata andl′ the in-metadata.)
• Nondeterministic nodes have no further annotation.

Nondeterministic nodes have at least one and at most
finitely many successors; the corresponding edges are
labeled with distinct bitstrings.

Assigning each nondetrerministic node a probability distri-
bution over its successors yields the notion of aprobabilistic

16

CoSP protocol. A probabilistic CoSP protocol is called
efficientif the lengths of all identifiers inN are polynomially
bounded, and the labels ofN can be computed in polynomial
time.

The symbolic execution of a CoSP protocol for a given
symbolic model consists of a sequence of triples(S, ν, f)
where S represents the knowledge of the adversary,ν
represents the current node identifier in the protocol, and
f represents a partial function mapping already processed
node identifiers to messages.

Definition 7 (Symbolic execution):Let a symbolic model
(C,N,T,D,⊢) and a CoSP protocolΠs be given. A full
trace is a (finite) list of tuples(Si, νi, fi) such that the
following conditions hold:

• Correct start:S1 =, ν1 is the root ofΠs, f1 is a totally
undefined partial function mapping node identifiers to
terms.
• Valid transition: For every two consecutive tuples
(S, ν, f) and (S′, ν′, f ′) in the list, let ν̃ be the node
identifiers in the annotation ofν and definẽt through
t̃j := f(ν̃j). We have:

– If ν is a computation node with constructor, destruc-
tor or nonceF , thenS′ = S. If m := evalF (t̃) 6= ⊥,
ν′ is the yes-successor ofν in Πs, andf ′ = f(ν :=
m). If m = ⊥, thenν′ is the no-successor ofν and
f ′ = f .

– If ν is an input node, thenS′ = S and ν′ is the
successor ofν in Πs and there exists anm with
S ⊢ m andf ′ = f(m := m).

– If ν is an output node, thenS′ = S ∪ {t̃1}, ν is the
successor ofν in Πs andf ′ = f .

– If ν is a control node or a nondeterministic node,
thenν′ is a successor ofν andf ′ = f andS′ = S.

A list of node identifiers(νi) is a node trace if there is a
full node trace with these node identifiers.

Computational Model.To define the corresponding compu-
tational execution of a CoSP protocol, we have to introduce
computational implementations for a symbolic model.

Definition 8 (Computational implementation):Let a sym-
bolic model M = (C,N,T,D,⊢) be given. A compu-
tational implementationA is a family of functionsA =
(Ax)x∈C∪D∪N such thatAF for F/n ∈ C ∪D is a partial
deterministic functionN×({0, 1}∗)n → {0, 1}∗, andAN for
N ∈ N is a total probabilistic function with domainN and
range{0, 1}∗ (i.e. it specifies a probability distribution on
bitstrings that depends on its argument). The first argument
of AF andAN represents the security parameter. All func-
tionsAF have to be computable in deterministic polynomial-
time, and allAN have to be computable in probabilistic
polynomial-time.

The computational execution essentially follows the same
rules as the symbolic one, except that the functionf stores
bitstrings corresponding to nodes in the computational case,

and that the implementations of symbolic constructors and
destructors are used.

Definition 9 (Computational execution):Let a symbolic
modelM = (C,N,T,D,⊢), a computational implementa-
tion A of M, and a probabilistic CoSP protocolΠp be given.
Let a probabilistic polynomial-time interactive machineE
(the adversary) be given, and letp be a polynomial. We
define a probability distributionNodesp

M,A,Πp,E
(k), the

computational node trace, on (finite) lists of node identifiers
(νi) according to the following probabilistic algorithm (both
the algorithm and the adversary run on inputk):

• Initial state: ν1 := ν is the root of Πp. Let f be
the empty partial function from node identifiers to bit-
strings, and letn be an initially empty patrial function
from N to bitstrings.
• For i = 2, 3, . . . do:

– Let ν̃ be the node identifiers in the annotation ofν.
m̃j := f(ν̃j).

– Proceed according to the type of nodeν. All cases
are similar to the ones of the symbolic execution,
but here we use the computational implementation
instead of the symbols (constructors and destructors
are executed, nonces are sampled once and their
result is cached). A list of the full detailed cases can
be found in [4].

– Let νi := ν.
– Let len be the number of nodes from the root toν

plus the total length of all bitstrings in the range of
f . If len > p(k), stop.

Computational soundness.We finally introduce trace prop-
erties and computational soundness in CoSP.

Definition 10 (Trace property):A trace propertyP is an
efficiently decidable and prefix-closed set of (finite) listsof
node identifiers.

Let M = (C,N,T,D,⊢) be a symbolic model andΠs

a CoSP protocol. ThenΠs symbolically satisfies a trace
propertyP in M iff every node trace ofΠs is contained
in P . Let A be a computational implementation ofM
and letΠp be a probabilistic CoSP protocol. Then(Πp, A)
computationally satisfies a trace propertyP in M iff for
all probabilistic polynomial-time interactive machinesE
and all polynomialsp, the probability is overwhelming that
Nodesp

M,A,Πp,E
(k) ∈ P .

Definition 11 (Computational soundness):A
computational implementationA of a symbolic model
M = (C,N,T,D,⊢) is computationally sound for a class
P of CoSP protocols iff for every trace propertyP and
for every efficient probabilistic CoSP protocolΠp, we
have that (Πp, A) computationally satisfiesP whenever
the corresponding CoSP protocolΠs of Πp symbolically
satisfiesP andΠs ∈ P .

In the remainder of this section, we introduce the concept
of a simulator. Simulators with specific properties have

17

been shown to constitute a sufficient condition for achieving
computational soundness. We will exploit this in our main
soundness theorem.

Definition 12 (Simulator):A simulator is an interactive
machineSim that satisfies the following syntactic require-
ments:

• When activated without input, it replies with a term
m ∈ T.
• When activated with somet ∈ T, it replies with an

empty output.
• When activated with a bitstring labell it answers with

some bitstring.
• When activated with(info, ν, t) where ν is a node

identifier andt ∈ T, it replies with(proceed).
• At any point (especially instead of replying), it may

terminate.

The simulator thus constitutes a technique to map sym-
bolic executions onto computational executions by translat-
ing the symbols to bitstrings and vice versa. This is realized
by an hybrid execution as follows.

Definition 13 (Hybrid execution):Let Πp be a probabilis-
tic CoSP protocol, and letSim be a simulator. We define a
probability distributionH-TraceM,Πp,Sim(k) on (finite) lists
of tuples (Si, νi, fi) called the full hybrid trace according
to the following probabilistic algorithmΠC , run on inputk,
that interacts withSim. (ΠC is called t he hybrid protocol
machine associated withΠp and internally runs a symbolic
simulation ofΠp as follows:)

• Start: S1 := S := ∅, ν1 := ν is the root ofΠp, and
f1 := f is a totally undefined partial function mapping
node identifiers toT. RunΠp on ν.
• Transition: Fori = 2, 3, . . . do the following:

– Let ν̃ be the node identifiers in the label ofν. Define
t̃ throught̃j := f(ν̃j).

– Proceed depending on the type ofν. The computation
nodes are treated as in the symbolic execution and
for the input, output and control nodes we use
the simulator. Nondeterministic nodes are sampled
according to the annotated probability distribution
(Full details of the cases can be found in [4]).

– Send(info, ν, t) to Sim. When receiving an answer
(proceed) from Sim, continue.

– If Sim has terminated, stop. Otherwise let
(Si, νi, fi) := (S, ν, f).

The probability distribution of the (finite) listν1, . . . pro-
duced by this algorithm we denote byH-NodesM,Πp,Sim(k).
We call this distribution the hybrid node trace.

The existence of a simulator that fulfills two distinguished
properties, DY-style and indistinguishable, has been shown
sufficient for needs to fulfill to establish computational
soundness. DY-style means that the adversary should not be
able to sent terms which cannot be deduced from the adver-
sary’s knowledge. Indistinguishable means that an adversary

should not be able to distinguish a hybrid execution (which
involves the simulator and the symbolic protocol) from an
computational execution. We speak of agood simulator if
both properties are fulfilled.

Definition 14 (Good simulator):A simulator Sim is
Dolev-Yao style(short: DY) for M and Πp, if with over-
whelming probability the following holds: In an execution
of Sim+ΠC , for eachl, let ml ∈ T be thel-th term sent
(during processing of one ofΠC ’s input nodes) fromSim
to ΠC in that execution. LetTl ⊂ T be the set of all terms
thatSim has received fromΠC (during processing of output
nodes) prior to sendingml. Then we haveTl ⊢ ml.

A simulator Sim is indistinguishablefor M, Πp, an
implementationA, an adversaryE, and a polynomialp,

if Nodesp
M,A,Πp,E

(k)
C
≈ H-NodesM,Πp,Sim(k), i.e., if the

computational node trace and the hybrid node trace are
computational indistinguishable.

A simulator isgood if it is Dolev-Yao style and indistin-
guishable.

Theorem 3 (Good simulator implies soundness [4]):Let
M = (C,N,T,D,⊢) be a symbolic model, letP be a
class of CoSP protocols, and letA be a computational
implementation ofM. Assume that for every efficient
probabilistic CoSP protocolΠp (whose corresponding
CoSP protocol is inP), every probabilistic polynomial-
time adversaryE, and every polynomialp, there exists
a good simulator forM,Πp, A,E, and p. Then A is
computationally sound for protocols inP .

E. Detailed Soundness Proof

In this section, we give the complete soundness proof. We
enumerated the lemmas as in the body of the paper. The goal
is to prove the following Theorem:

Theorem 1 (Computational soundness of ZK proofs):
Every good implementationA is a computationally sound
implementation of the symbolic modelM (defined in the
appendix A) for the class of safe protocols. ⋄

To prove the Theorem, we will use Theorem 3. Thus it is
a simulator based proof. We first define the simulator in a
generic way, such that it is easier to prove that the simulator
is indistinguishable from a computational execution. Then
we change this simulator leading to other simulators which
are all indistinguishable. The last simulator in the chain of
modified ones can then easily shown to be DY-style. Finally,
combining these properties, we can apply Theorem 3 which
then proves the Theorem.

Definition of the Simulator. Given an adversaryE and a
polynomialp we construct a simulatorSim with respect to
E andp. We assume that for eachm ∈ {0, 1}∗ there is an
Nm ∈ NE . For a fixed execution, we may assume without
loss of generality that the setNP is split into two disjoint
setsN andR. Our protocol conditions enforce that nonces
used for algorithmic randomness are not used somewhere

18

else in the protocol. These will be considered to be in the
setR.

If the simulator receives a labelL from a control node
it forwards it to the adversary, waits for an answer, and
forwards the answer to the protocol. For the other queries
we will use three functionsℓ : T → N, β : T → {0, 1}∗

andτ : {0, 1}∗ → T which are defined below. The simulator
chooses for eachN ∈ NP an rN ∈ {0, 1}∗ (Sim samples
according toAN on the fly and caches the result). Upon
receiving at ∈ T from the protocol, the simulator computes
β(t) and forwards it to the adversaryE. When it receives
a m ∈ {0, 1}∗ from the adversary it computesτ(m) and
forwards the result to the protocol. Finally, when it receives
(info, ν, t) from the protocol it addsℓ(t) to len and if
len > p(k) the simulator terminates, otherwise it answers
(proceed). Initially len is set to0.

Remember, for a constructorZK, we denote its computa-
tional implementation byAZK.

The partial functionsβ : T→ {0, 1}∗ and ℓ:
• β(N) := rN if N ∈ NP

• β(Nm) := m
• β(enc(ek(N), t,M)) := Aenc(Aek(rN), β(t), rM) if
M ∈ NP

• β(enc(ek(M), t, Nm)) := m if M ∈ NP

• β(ek(N)) := Aek(rN) if N ∈ NP

• β(ek(Nm)) := m
• β(dk(N)) := Adk(rN) if N ∈ NP

• β(dk(Nm)) := d such thatτ(d) = dk(Nm) was
computed earlier
• β(sig(sk(N), t,M)) := Asig(Ask(rN), β(t), rM) if
N,M ∈ NP

• β(sig(sk(M), t, Ns)) := s
• β(vk(N)) := Avk(rN) if N ∈ NP

• β(vk(Nm)) := m
• β(sk(N)) := Ask(rN) if N ∈ NP

• β(sk(Nm)) := s such that τ(s) = sk(Nm) was
computed earlier
• β(crs(N)) := Acrs(rN) if N ∈ NP

• β(crs(N c)) := c
• β(ZK(crs(N1), t1, t2, N2)) :=
AZK(Acrs(rN1), β(t1), β(t2), rN2) if N1, N2 ∈ NP

• β(ZK(crs(t0), t1, t2, N
s)) := s

• β(pair(t1, t2)) := Apair(β(t1), β(t2))
• β(string0(t)) := Astring0(β(t))
• β(string1(t)) := Astring1(β(t))
• β(empty) := Aempty()
• β(garbage(N c)) := c
• β(garbageEnc(t, N c)) := c
• β(garbageSig(t, Ns)) := s
• β(garbageZK(t1, t2, N

z)) := z
• β(t) := ⊥ if no case matches
The functionℓ is defined byℓ(t) := |β(t)|.
The functionτ : {0, 1}∗ → T: (by taking the first

matching rule)

• τ(r) := N if r = rN for someN ∈ N andN occurred
in a term sent fromΠC

• τ(r) := N r if r is of type nonce
• τ(c) := enc(ek(M), t, N) if c has earlier been output

by β(enc(ek(M), t, N)) for someM ∈ N, N ∈ NP

• τ(c) := enc(ek(M), τ(m), N c) if c is of type cipher-
text andτ(Aekof (c)) = ek(M) for someM ∈ NP and
m := Adec(Adk(rN), c) 6= ⊥
• τ(c) := garbageEnc(τ(Aekof (c)), N

c) if c is of type
ciphertext
• τ(c) := ek(N) if c = Aek(rN) for some N that

occurred in a subterm of the formek(N) or dk(N)
before
• τ(c) := ek(N c) if c is of type encryption key
• τ(c) := dk(N) if c = Adk(rN) for some N that

occurred in a subterm of the formek(N) or dk(N)
before
• τ(c) := dk(Ne) if c is of type decryption key ande is

the encryption key corresponding toc
• τ(s) := sig(sk(M), t, N) if s has earlier been output

by β(sig(sk(M), t, N)) for someM,N ∈ NP

• τ(s) := sig(sk(M), τ(m), Ns) if s is of type signature
andτ(Avkof (s)) = vk(M) for someM ∈ N andm :=
Averify(Avkof(s), s) 6= ⊥
• τ(s) := garbageSig(τ(Avkof (s)), N

s) if s is of type
signature
• τ(s) := vk(N) if s = Avk(rN) for someN that

occurred in a subterm of the formvk(N) or sk(N)
before
• τ(s) := vk(Ns) if s is of type verification key
• τ(s) := sk(N) if s = Ask(rN) for some N that

occurred in a subterm of the formvk(N) or sk(N)
before
• τ(s) := sk(N c) if s is of type signing key andc is the

signing key corresponding tos
• τ(z) := crs(N) if z = Acrs(rN) for someN that

occurred in a subterm of the formcrs(N) before
• τ(z) := crs(Nz) if z is of type common reference

string
• τ(z) := ZK(crs(N1), t1, t2, N2) if z has earlier

been output byβ(ZK(crs(N1), t1, t2, N2)) for some
N1, N2 ∈ NP

• τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-
knowledge proof andτ(z) was computed earlier and
has outputZK(crs(N), x, w,Nz)
• τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-

knowledge proof,τ(Acrsof(z)) = crs(N) for some
N ∈ NP , AverifyZK

(Acrsof(z), z) = z, mx :=
AgetPub(z) 6= ⊥, x := τ(mx) 6= ⊥ and w :=
SymbExtr(S, x) whereS is the set of terms sent to
the adversary so far.
If w = ⊥, we say anextraction-failureon (N, z,mx)
occurred, see below for the behavior ofSim in this
case.

19

• τ(z) := garbageZK(c, x,Nz) if z is of type zero-
knowledge proof, c := τ(Acrsof(z)) and x :=
τ(AgetPub(z)).
• τ(m) := pair(τ(Afst(m)), τ(Asnd(m))) if m is of type

pair
• τ(m) := string0(τ(m

′)) if m is of type payload-string
andm′ := Aunstring0(m) 6= ⊥
• τ(m) := string1(τ(m

′)) if m is of type payload-string
andm′ := Aunstring1(m) 6= ⊥
• τ(m) := empty if m is of type payload-string and
m = Aempty()
• τ(m) := garbage(Nm) otherwise
When an extraction-failure on(N, z,mx) occurs (i.e.,

when in the computation ofτ , SymbExtr(S, x) returns
w = ⊥), the simulator computes(crs, simtd, extd) ←
K(1η; rN) to get the extraction trapdoorextd corresponding
to crs = Acrs(rN). Then the simulator invokesmw :=
E(mx, z, extd) and computesx := τ(mx) as well as
w := τ∗(mw). If (x,w) 6∈ Rsym

adv , we say aZK-break
occurred. Then (no matter whether a ZK-break occurred or
not), the simulator aborts.

We defineτ∗ by the same case distinction asτ but remove
the case in which an extraction failure may occur (i.e., the
case where we invokeSymbExtr(S, x)). Consequently,
every adversary generated ZK-proof is parsed asgarbageZK
by τ∗. Thus, by definition, there is no extraction failure
during a computation ofτ∗.
Soundness Proof.The previously defined simulator is in-
distinguishable from a computational execution and DY. To
prove this we start by constructing a faking simulator in
several steps. The construction is split in steps because
it is easier to prove some properties for the intermediate
simulators and show that they carry over to the final one
than showing them for the final simulator directly. Thus, in
the following subsection, we define the faking simulator in
detail.

1) The faking simulator.:
• We defineSim1 like Sim but we changeβ to use

zero-knowledge oracles instead of computingAcrs

and AZK. More precisely, assume an oracleOZK

that internally picks(crs, simtd, extd) ← K(1η) and
that responds to three kinds of queries: Upon a
(crs)-query, it returnscrs, and upon a(prove, x, w)-
query, it returnsP(x,w, crs) if (x,w) ∈ Rcomp

honest

and ⊥ otherwise. Upon a(extd)-query, it returns
extd. For eachN ∈ NP , Sim1 maintains an in-
stanceON

ZK of OZK. ThenSim1 computesβ(crs(N))
with N ∈ NP as β(crs(N)) := ON

ZK(crs),
and Sim1 computesβ(ZK(crs(N1), t1, t2, N2)) with
N1, N2 ∈ NP as β(ZK(crs(N1), t1, t2, N2)) :=
ON

ZK(prove, β(t1), β(t2)). In case of an extraction-
failure, Sim1 performs a(extd)-query to getextd.
(Here and in the descriptions ofSim2, . . . , Sim5, Simf ,
we implicitly require thatβ(t) caches the results of

the oracle queries and does not repeat the oracle query
whenβ is applied to thesameterm t again.)
In the definition ofτ(z) = crs(N) for N ∈ NP , instead
of checkingz = Acrs(rN), Sim1 checks whetherz is
equal to the(crs)-query outcomes for all oraclesON

ZK

which have been used so far.
• We defineSim2 like Sim1, except that we replace the

oracleOZK by an oracleOsim. That oracle behaves like
OZK, except that upon a(prove, x, w)-query, it returns
S(x, crs, simtd) if (x,w) ∈ Rcomp

honest and⊥ otherwise.
• We defineSim3 like Sim2, except that we replace the

oracleOsim by an oracleO′
sim. That oracle behaves like

Osim, except that upon a(prove, x, w)-query, it returns
S(x, crs, simtd) (even if (x,w) /∈ Rcomp

honest). Therefore
the simulator only queries(prove, x) and does not
computew any more.
• We defineSim4 like Sim3, but we changeβ and τ

to use encryption oracles instead of computingAenc,
Adec, Aek, Adk. More precisely, assume an oracle
Oenc that internally picks(ek, dk) ← KeyGenenc(1

η)
and that responds to three kinds of queries: Upon
an (ek)-query, it returnsek. Upon a (enc,m)-query,
it returnsENC(ek,m). Upon a (dec, c)-query, it re-
turns DEC(dk, c). Sim4 maintains an instanceON

enc

for eachN ∈ NP . Then Sim4 computesβ(ek(N))
with N ∈ NP as β(ek(N)) := ON

enc(ek). And
it computesβ(enc(ek(N), t,M)) with N,M ∈ NP

as β(enc(ek(N), t,M)) := ON
enc(enc, β(t)). And it

computesβ(dk(N)) := ⊥. And in the computation
of τ(c) for c of type ciphertext, the computation of
Adec(Adk(rN), c) is replaced byON

enc(dec, c).
In the definition ofτ(c) = ek(N) and τ(c) = dk(N)
for N ∈ NP , instead of checkingc = Aek(rN) and
c = Adk(rN), Sim4 checks whetherc is equal to
the corresponding query outcomes for all oraclesON

enc

which have been used so far.
• We defineSim5 like Sim4, except that we replace the

oracleOenc by an oracleOfake. That oracle behaves
like Oenc, except that upon an(enc, x)-query, it returns
ENC(ek, 0|x|).
• We defineSimf like Sim5, but we changeβ to use

signing oracles instead of computingAvk, Ask, Asig.
More precisely, we assume an oracleOsig that in-
ternally picks (vk, sk) ← KeyGensig(1

η) and that
responds to two kinds of queries: Upon a(vk)-
request, it returnsvk, and upon a(sig,m)-request,
it returns SIG(sk,m). Simf maintains an instance
ON

sig for each N ∈ NP . Then Simf computes
β(vk(N)) with N ∈ NP as β(vk(N)) := ON

sig(vk).
And β(sk(N)) with N ∈ NP as β(sk(N)) :=
⊥. And β(sig(sk(N), t,M)) with N,M ∈ NP as
β(sig(sk(N), t,M)) := ON

sig(sig, β(t)).
In the definition ofτ(c) = vk(N) and τ(c) = sk(N)

20

for N ∈ NP , instead of checkingc = Avk(rN) and
c = Ask(rN), Simf checks whetherc is equal to
the corresponding query outcomes for all oraclesON

sig

which have been used so far.
2) Dolev-Yaoness:The next steps towards the soundness

proof are the following. First, we analyze the underivable
terms structure. Doing so, we exclude cases in the proof of
DY-ness using structural arguments. Thus, when showing
DY-style, we only need to consider the cases involving
cryptographic arguments.

Lemma 8:For any invocation ofτ or τ∗ in the hybrid
execution ofSimf , let m denote the input toτ or τ∗, let
u′ denote the output ofτ or τ∗, and letS be the set of all
messages sent fromΠC to Simf up to that invocation ofτ
or τ∗.

Let C be a context andu ∈ T such thatu′ = C[u] and
S 6⊢ u.

Then there is a termtbad and a contextD such thatD
can be obtained by the following grammar:

D ::= � | pair(t,D) | pair(D, t) | enc(ek(N), D,M)

| enc(D, t,M) | sig(sk(M), D,M ′)

| ZK(t,D, t′,M) | ZK(D, t, t′,M)

| garbageEnc(D,M) | garbageSig(D,M)

| garbageZK(D, t,M) | garbageZK(t,D,M)

with M,M ′ ∈ NE , t, t
′ ∈ T

with u = D[tbad] such thatS 6⊢ tbad and such that one of
the following holds:

1) tbad ∈ N
2) tbad = enc(p,m,N) with N ∈ NP

3) tbad = sig(k,m,N) with N ∈ NP

4) tbad = ZK(crs(M), x, w,N) with M,N ∈ NP

5) tbad = sig(sk(N),m,M) with N ∈ NP , M ∈ NE

6) tbad = crs(N) with N ∈ NP

7) tbad = ek(N) with N ∈ NP

8) tbad = vk(N) with N ∈ NP

9) tbad = sk(N) with N ∈ NP

10) tbad = dk(N) with N ∈ NP

Proof: We prove the lemma by structural induction
on u. We formulate the proof for an invocation ofτ , for
an invocation ofτ∗ the proof is identical. There are the
following cases:
Case 1: ” u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)}

with N 6∈ NP ”
Let u = C(N) for C ∈ {ek, vk, crs, dk, sk}. By
protocol conditions 1 and 8 eachC-node has as
annotation a nonce fromNP . Thereforeu cannot
be honestly generated, that means there is some
e ∈ {0, 1}∗ such thatτ(e) = u andu has the form
C(Ne). But thenS ⊢ u contradicting the premise
of the lemma.

Case 2: ” u ∈ {ek(N), vk(N), crs(N), dk(N), sk(N)}
with N ∈ NP ”

Then the claim is fulfilled withD := � andtbad =
u.

Case 3: ”u = garbage(u1)”
By protocol condition 2 no garbage term is gen-
erated by the protocol. Therefore there is ac ∈
{0, 1}∗ such thatτ(c) = garbage(N c) = u. But
this means thatS ⊢ u, contradicting the premise
of the lemma.

Case 4: ”u = garbageEnc(u1, u2) or u =
garbageSig(u1, u2)”
By protocol condition 2 no garbage term is gen-
erated by the protocol. So there exists ac ∈
{0, 1}∗ with τ(c) = garbageEnc(u1, N

c) or
τ(c) = garbageSig(u1, N

c). Since S ⊢ N c it
follows that S 6⊢ u1, becauseS 6⊢ u. Applying
the induction hypothesis onu1 leads to a con-
text D′ and a termtbad. Using this termtbad
and the contextgarbageEnc(D′, N c), respectively
garbageSig(D′, N c), shows the claim.

Case 5: ”u = garbageZK(u1, u2, u3)”
As in the previous case followsu3 = N c with
c ∈ {0, 1}∗, soS 6⊢ u1 or S 6⊢ u2. For the first case
we can apply the induction hypothesis tou1 leading
to tbad and contextD′. Then we use context
garbageZK(D′, u2, u3) to satisfy the lemma. In
the other case we apply the induction hypothesis to
u2 leading to contextgarbageZK(u1, D

′, u3) and
tbad.

Case 6: ”u = pair(u1, u2)”
SinceS 6⊢ u there is ani ∈ {1, 2} such thatS 6⊢
ui. Let D be the context andtbad the term given
by applying the induction hypothesis toui. Then
D1 := pair(D,M) or D2 := pair(M,D) is the
context for the termu depending oni with the
same termtbad.

Case 7: ”u = empty”
This case cannot happen becauseS ⊢ empty, so
the premise of the lemma is not fulfilled.

Case 8: ”u = string0(u1) or u = string1(u1)”
Again the premise is not fulfilled since inductively
S ⊢ u1 with base caseu1 = empty and therefore
S ⊢ stringi(u1) for i ∈ {0, 1}.

Case 9: ”u = N with N ∈ NP \N ”
This case is impossible sinceu is not in the range
of τ .

Case 10: ”u = N with N ∈ N ”
The contextD := � and termtbad := u satisfy the
lemma in this case.

Case 11: ”u = N with N ∈ NE”
In this caseS ⊢ u by definition and therefore the
lemma’s premise does not hold.

Case 12: ”u = enc(u1, u2, N) with N ∈ NP ”
The lemma is satisfied bytbad = u andD = �.

Case 13: ”u = enc(u1, u2, u3) with u3 6∈ NP andS 6⊢ u1”

21

Since u3 6∈ NP it follows that u cannot be
honestly generated because of protocol condition
3. Therefore there is ac ∈ {0, 1}∗ with τ(c) =
enc(ek(M), u2, N

c) = u for some M ∈ NP .
Apply the induction hypothesis tou1 getting tbad
and contextD we can defineD′ := enc(D, u2, N

c)
fulfilling the claim of the lemma withtbad.

Case 14: ”u = enc(u1, u2, u3) with u3 6∈ NP andS ⊢ u1”
Since u3 6∈ NP it follows that u cannot be
honestly generated because of protocol condition
3. Therefore there is anc ∈ {0, 1}∗ with τ(c) =
enc(ek(M), u2, N

c) = u for some M ∈ NP .
SinceS ⊢ u1, S ⊢ N c, andS 6⊢ u, it follows that
S 6⊢ u2. Let D be the context andtbad be the term
resulting by the induction hypothesis applied tou2.
ThenD′ := enc(ek(M), D,N c) together withtbad
satisfies the lemma.

Case 15: ”u = sig(u1, u2, N) with N ∈ NP ”
Use contextD := � and tbad = u.

Case 16: ”u = sig(sk(N), u1, u3) with u3 6∈ NP andN ∈
NP ”
Sinceu ∈ T andu3 6∈ NP follows thatu3 ∈ NE .
Therefore the contextD := � andtbad = u proves
the claim.

Case 17: ”u = sig(u1, u2, u3) andu3 6∈ NP andu1 is not
of the formsk(N) with N ∈ NP ”
Sinceu3 6∈ NP we get by protocol condition 3 that
u is not honestly generated, i.e., there is ans ∈
{0, 1}∗ such thatτ(s) = sig(sk(M), u2, N

s) = u
with M ∈ N. Becauseu1 has not the formsk(N)
for any N ∈ NP follows thatM ∈ NE, so S ⊢
M and thereforeS ⊢ sk(M). In total we have
S ⊢ u1, S ⊢ u3 but S 6⊢ u which implies that
S 6⊢ u2. Applying the induction hypothesis tou2

leads to a contextD and a termtbad. Defining
D′ := sig(sk(M), D,Ns) completes the claim.

Case 18: ”u = ZK(crs(M), u1, u2, N) with N,M ∈ NP ”
Defining tbad = u andD := � suffices.

Case 19: ”u = ZK(crs(M), u1, u2, N) with N 6∈ NP , M ∈
NP ”
Consider the following cases:

• S 6⊢ crs(M)
Define tbad = crs(M) and D :=
ZK(�, u1, u2, N) to satisfy the lemma.
• S 6⊢ u2

Since N 6∈ NP the termu was not honestly
generated. That means thatu2 was constructed
using theSymbExtr and thereforeS ⊢ u2. So
this case cannot happen.
• S 6⊢ u1

In this case we use the induction hypothesis on
u1 to get the termtbad and a contextD. Then
using tbad and D′ := ZK(crs(M), D, u2, N)

satisfies the lemma.

Case 20: ”u = ZK(crs(M), u1, u2, N) with M 6∈ NP ”
This case cannot occur becauseu is not in the range
of τ .

In any hybrid execution, terms are generated via the
functionsτ and τ∗. In their definition, the case distinction
whetherβ outputted the input bitstring or not is done very
often. Thus, in the following lemma, we show thatβ is only
called on derivable terms in the execution ofSimf .

Lemma 9:For any (direct or recursive) call of the func-
tion β(t) performed bySimf , it holds thatS ⊢ t whereS
is the set of all terms sent byΠC to Simf up to that point.

Proof: Prove it by induction on the recursion depth of
theβ-function. The base case is thatβ(t) is directly invoked.
But then t itself was received by the protocol, i.e.,t ∈ S
and thereforeS ⊢ t.

So let β(t) be called as subroutine of somet′. By
induction hypothesis we haveS ⊢ t′. We need to show
that S ⊢ t. According to the definition ofβ there are the
following possibilities fort′:

1) t′ = sig(sk(N), t,M) with N,M ∈ NP

2) t′ = pair(t1, t2) with t ∈ {t1, t2}
3) t′ = string0(t) or t′ = string1(t)
4) t′ = enc(ek(Ne), t,M) with M ∈ NP

5) t′ = ZK(crs(M), t, t2, N) with N,M ∈ NP

Note that the caset′ = enc(ek(N), t,M) with N,M ∈
NP does not occur because – in contrast toSim – the
simulator Simf does not recursively invokeβ on t but
uses an oracle and producesENC(ekN , 0ℓ(t)). The case
t′ = ZK(crs(M), t1, t, N) is not possible, either, because
the simulatorSimf calls the simulation oracle to construct
the proof and thereforeβ(·) is not called on the witnesst.

Case 1: S ⊢ sig(sk(N), t,M) = t′. Using
verify(vkof(t′), t′) = t we getS ⊢ t.

Case 2: S ⊢ pair(t1, t2) = t′. With fst(t′) = t1, snd(t′) =
t2, andt ∈ {t1, t2} we getS ⊢ t.

Case 3: The casest′ = string0(t) and t′ = string1(t)
work as the two preceding usingunstring0 and
unstring1.

Case 4: S ⊢ enc(ek(Ne), t,M). BecauseS ⊢ Ne it
follows that S ⊢ dk(Ne), so decryption can be
applied resulting int.

Case 5: S ⊢ ZK(crs(M), t, t2, N) = t′. The lemma fol-
lows by applying the destructorgetPub.

We combine the preceding lemmas to achieve DY-style
of Simf . The lemma is generalized to not only show DY-
style of Simf , but also that each output ofτ and τ∗ in an
execution is derivable. Doing so, we are able to reuse the
lemma when proving the absence of extraction failures.

Lemma 10 (Simf is Dolev-Yao):For any invocation
τ(m) of τ or τ∗(m) of τ∗ in the hybrid execution ofSimf ,

22

the following holds with overwhelming probability: LetS
be the set of termst that the protocol sent to the adversary
up to the invocationτ(m) or τ∗(m). ThenS ⊢ τ(m) or
S ⊢ τ∗(m), respectively.

In particular,Simf is DY for M andΠ.
Proof: Assume there occurs anm as input ofτ or τ∗

such thatS 6⊢ τ(m) or S 6⊢ τ∗(m), respectively. Consider
the first such inputm.

Now we can use lemma 8 with contextC = � andu′ =
u = t leading to a termtbad and a contextD such that
tbad is of the form 1-10 given by the lemma. Letmbad be
the corresponding bitstring, i.e.τ(mbad) = tbad. For each
of these cases we will derive that it can only happen with
negligible probability. Note thatτ∗ only differs from τ in
the case a ZK-proofZK(crs(N), x, w,M) is output with
M ∈ NE. We formulate the proof for an invocation ofτ ;
the case ofτ∗ is identical.
Case 1: ” tbad = N ∈ N ”.

By construction ofβ andSimf follows thatSimf

has only access torN if β(N) is computed directly
or in τ . BecauseS 6⊢ N we get by Lemma 9 thatβ
was never invoked onN , i.e.Simf has only access
to rN via τ . Considering the definition ofτ , we see
that rN is used for comparisons. In particular, if
τ(r) is called for anr having type nonce then the
simulator checks for allN ∈ NP that occurred in
a term sent by the protocol, whetherr = rN . This
check does not help guessingrN because it only
succeeds ifrN was guessed correctly and therefore
the probability thatmbad = rN as input ofτ is
negligible.

Case 2: ” tbad = enc(p,m,N) with N ∈ NP ”.
By definition τ only returnstbad if β(tbad) was
called earlier. But sinceS 6⊢ tbad and Lemma 9
this case cannot occur.

Case 3: ” tbad = sig(k,m,N) with N ∈ NP ”.
This case is completely analogue to the case that
tbad = enc(p,m,N) with N ∈ NP .

Case 4: ” tbad = ZK(crs(M), x, w,N) with N,M ∈ NP ”.
By definition of τ , tbad is only returned if it was a
result ofβ(tbad) earlier. But becauseS 6⊢ tbad and
Lemma 9 this can not be the case.

Case 5: ” tbad = crs(N) with N ∈ NP ”.
By definition of τ , the oracleON

ZK constructed
the bitstring mbad. Thus β was either called
on crs(N) or on some ZK-proof of the form
ZK(crs(N), ·, ·, ·). In the first case, by Lemma 9,
it follows S ⊢ tbad. In the latter case, by the same
lemma, it followsS ⊢ ZK(crs(N), ·, ·, ·) and thus
S ⊢ crs(N) using destructorgetPub.

Case 6: ” tbad = sig(sk(N),m′,M) with N ∈ NP , M ∈
NE”.
BecauseS 6⊢ tbad follows thatβ was not invoked
on tbad. Thereforembad is a signature that was

not produced by the signing oracle, but it is valid
with respect to verification keyvkN . Because of
the strong existential unforgeability this can only
be the case with negligible probability.10

Case 7: ” tbad = ek(N) with N ∈ NP ”.

By definition of τ and sinceτ(mbad) = ek(N),
it follows that the oracleON

enc produced this key
in an earlier call ofβ. Thus one of the following
terms have been called byβ earlier:ek(N), dk(N),
or enc(ek(N), ·, ·). The casedk(N) is impossible
becausedk is only allowed to be part of the
witness inZK proofs and in decryptions (protocol
conditions 4). Since the witnesses are not computed
usingβ in Simf , it follows thatdk(N) can not be
input to β at all.
Considering the remaining cases, it follows by
Lemma 9 that eitherS ⊢ ek(N) or S ⊢
enc(ek(N), ·, ·). In the latter caseS ⊢ ek(N) using
destructorekof. SoS 6⊢ tbad is impossible.

Case 8: ” tbad = vk(N) with N ∈ NP ”.

This case is analogue to the casetbad = ek(N)
with the possible oracle queries in while comput-
ing β on vk(N), sk(N), or sig(sk(N), ·, ·). The
case sk(N) corresponds todk(N) and thus it
is impossible. In the remaining cases, it follows
that S ⊢ vk(N) (using vkof constructor on the
signature). SoS 6⊢ tbad is impossible.

Case 9: ” tbad = sk(N) with N ∈ NP ”.
If tbad = sk(N) then mbad is the bitstringskN .
Thus the simulator was able to computeskN with
access only to signatures. By the strong existential
unforgeability of the signature scheme, this can
only happen with negligible probability.

Case 10: ” tbad = dk(N) with N ∈ NP ”.
If tbad = dk(N) then mbad is dkN . So the
simulator was able to computedkN with only
access to an decryption oracle and the public key.
By the CCA property, this can only occur with
negligible probability.

In total, we get thatS 6⊢ tbad can only be the case with
negligible probability.

Hence,S 0 τ(m) happens only with negligible probabil-
ity.

3) Indistinguishability: The next goal is to exclude ex-
traction failures. First, we take a closer look at the relations
and connect them to the functionsβ and τ . We defined
the cryptographic conditions usingimgη. In the following
lemma we will see how this definition allies to the simula-
tors’ executions.

10Note that an adversary against this property is allowed to use the
extraction trapdoor. The same holds the property of CCA.

23

Lemma 11 (Relating the relations):Let Rcomp
honest, R

comp
adv

be relations implementingRsym
adv with usage restriction

Rsym
honest.

1) In the hybrid execution ofSim andSim3 it holds with
overwhelming probability: If(x,w) ∈ Rsym

honest andx,w
occur as node annotation of a ZK node in the execution,
then it holds(β(x), β(w)) ∈ Rcomp

honest.
2) In the hybrid execution ofSim2 it holds with over-

whelming probability: If(mx,mw) ∈ Rcomp
adv for some

bitstringsmx,mw, then it holds(τ(mx), τ
∗(mw)) ∈

Rsym
adv .

Proof: We first define an environmentη mapping terms
to bitstrings.η depends on the current state of the execution.
We will useη in both parts of the lemma. So lett1, . . . , tn
be the terms sent by the protocol to the simulator so far.

For any term or subtermt that occurs as argument toβ
or output ofτ , we defineη as follows:
• For t = Nm defineη(t) := m.
• For t = C(t1, . . . , tn, N

m) defineη(t) := m for all C
as stated in definition 4.11

• For t = crs(N) with N ∈ NP defineη(t) to be the crs
produced by the oracleON

ZK.
• For t = ZK(crs(N), x, w,M) with N,M ∈ NP define
η(t) to be proof produced byON

ZK in the computation
of β(t).
• For t = N with N ∈ NP we distinguish 2 cases. Ift

does neither occur in a term of the formcrs(t) nor in
ZK(c, x, w, t) for somec, x, w then defineη(t) := rN .
Otherwise letη(t) be undefined, i.e.η(t) := ⊥.

Note thatη is a consistent environment with overwhelm-
ing probability.

Most properties of consistency are satisfied by construc-
tion. The ZK case holds because of the indistinguishability
of true proofs and their simulations. The only property that
needs to be proven is the injectivity ofη. We distinguish by
the type ofη’s output.
• Type nonce. ForN,M ∈ NP , a collision occurs with

negligible probability, becauserN = rM occurs with
negligible probability. The caseη(Na) = η(N b) for
a 6= b is even impossible. So consider the caseη(N) =
η(M) for N ∈ NP ,M ∈ NE.
By protocol condition 2, it follows thatM was output
of τ , i.e. M = Nn for somen ∈ {0, 1}∗. First, let
N be a nonce occurred insidecrs(N). Then it holds
η(N) = ⊥ 6= n = η(Nn).
Otherwise, ifN was used beforen was received by
the simulator, thenn would have been parsed toN
by construction ofτ . So the first occurrence ofN
has to be aftern was received. But then the adversary
guessed a nonce. This can only happen with negligible
probability.

11They are{ek, dk, vk, sk, enc, sig, crs, garbageZK, garbageSig,
garbageEnc, garbage}

• Type decryption key. For the same reasons as in the case
of type nonce we only consider the caseη(dk(N)) =
η(dk(M)) for N ∈ NP ,M ∈ NE . By protocol
condition 2, it follows thatdk(M) = dk(Nd) for some
d ∈ {0, 1}∗, dk(Nd) was subterm of an output ofτ ,
andd was not output ofβ earlier (otherwised would
have been parsed todk(N)). So the adversary used
either no input or only encryptions plus the encryption
key to computedk(N). By the CCA property, this can
only be the case with negligible probability.
• Type signing key. This case is completely analogue to

the decryption key type using the strongly existentially
unforgeability instead of the CCA property.
• Type encryption key. As in the previous cases we can

only need to considerη(ek(N)) = η(ek(M)) for N ∈
NP ,M ∈ NE . By protocol condition 2, it follows that
ek(M) = ek(Ne) for somee ∈ {0, 1}∗. But thenτ
parsede to ek(Ne), so neitherek(N) nor dk(N) was
used. This means the adversary guessed an encryption
key without having any information about it. This can
only happen with negligible probability.
• Type verification key and common reference string.

Analogue to the case of encryption key.
• Type zero-knowledge proof. Becauseτ is determin-

istic, the adversary can not generate two different
zero-knowledge proofs which are mapped to the same
bistring. So if there is a collision, then between a
protocol generated proof and a adversary generated one.
• Type ciphertext and signature. Analogue to the case of

zero-knowledge proofs.
• Type pair. If there is a collision of two pairs, then there

is a collision in the first argument and in the second. So
by induction hypothesis this case occurs with negligible
probability.
• Type payload-string. This type does not contain any

nonces. So applyingη to a term of this type leads to a
unique bitstring which cannot be hit by any other term
of this type (by implementation condition 17).
• No type. The only term which has no type isgarbage(t)

for t ∈ T. By protocol condition 2 and construction of
τ , it has to hold thatt = Nm for somem ∈ {0, 1}∗.

Proof of part1 of the lemma.
By Definition 212, it suffices to show that if(x,w) ∈
Rsym

honest then there is a consistentη ∈ E such that
(imgη(x), imgη(w)) = (β(x), β(w)) since β(x) 6= ⊥ 6=
β(w). We show that theη defined above satisfies this
criterium. Here, we prove the case forSim3. The proof for
Sim is analoguous with the only difference in the cases of
ZK andcrs. Here, the definition ofη is done as forenc and
ek and the proof, as well.

12The part we will use here says(x, w) ∈ R
sym

honest
and imgη(x) 6=

⊥ 6= imgη(w) implies (imgη(x), imgη(w)) ∈ R
comp

honest
.

24

For any termt that can occur in the execution ofSim3

as annotation of a ZK node’s statement or witness, we
show thatimgη(t) = β(t). This will be done by structural
induction on the termt:

• ” t = N with N ∈ NP ”. In this caseβ(N) = rN .
The nonceN may not occur as last argument ofZK
or crs and insidex or w (protocol conditions 3 and
8). SoN did not occur as last argument ofZK nor as
argument ofcrs. Thus, it holdsimgη(N) = η(N) = rN
by definition ofη.
• ” t = N with N ∈ NE”. In this caseN = Nn for some
n ∈ {0, 1}∗. Thusη(Nn) = n = β(Nn).
• ” t ∈ {ek(u), dk(u), vk(u), sk(u)} with u ∈ T”. In this

case, it holds thatu ∈ N. If u ∈ NE, i.e. u = N c for
somec ∈ {0, 1}∗, then β(t) = c = η(t) = imgη(t)
by construction. So, consideru ∈ NP . Let C ∈
{ek, dk, vk, sk} be the constructor such thatt = C(u).
Then imgη(t) = AC(imgη(u))

(∗)
= AC(β(u)) = β(t).

Since u ∈ NP and occurs inC(u), it follows that
u does neither occur incrs(u) nor in ZK(c, x, w, u)
for c, x, w ∈ T (protocol conditions forbid that these
nonces are used more than once). Thusimgη(u) =
ru = β(u). Hence equality(∗) holds.
• ” t = crs(N) with N ∈ NP ”. By definition β(t)

produces thecrs using ON
ZK and imgη(crs(N)) =

η(crs(N)) which was defined asβ(t). Thus, it holds
imgη(t) = β(t).
• ” t = crs(N) with N ∈ NE”. This case is analogue to

the caseek(N) with N ∈ NE .
• ” t = enc(u1, u2, u3)”. If u3 ∈ NE , then this case

is analogue to the caset = ek(u). So let N :=
u3 ∈ NP . Then β(t) = Aenc(β(u1), β(u2), rN) =
Aenc(imgη(u1), imgη(u2), rN) by induction hypothe-
sis. The nonceN may only occur inside this encryption
and as witness of the ZK-proof (protocol condition 3).
Thus, byrN = η(N) = imgη(N), it follows β(t) =
Aenc(imgη(u1), imgη(u2), imgη(N)) = imgη(t).
• ” t = sig(u1, u2, u3)” If u3 ∈ NE , then this case is

analogue to the caset = ek(u). So letN := u3 ∈ NP .
By definition of τ , it follows that t was honestly
generated. This means there was asig-computation
node that producedt. By protocol condition 7 this
node is annotated by ansk-node. Since the protocol
only uses its randomness (protocol condition 1), it
follows that u1 = sk(M) for someM ∈ NP . Then,
it holds β(t) = Asig(Ask(rM), β(u2), rN). Again,
rN = imgη(N); the same holds forM . Since
β(sk(M)) = Ask(M), it follows by induction hypoth-
esis thatAsk(rM) = imgη(sk(M)). In total, it holds
β(t) = Asig(imgη(sk(M)), imgη(u2), imgη(N)) =
imgη(t).
• ” t = pair(u1, u2) where u1, u2 ∈ T”. By induc-

tion hypothesis, it followsβ(ui) = imgη(ui). Thus,

it holds β(pair(u1, u2)) = Apair(β(u1), β(u2)) =
Apair(imgη(u1), imgη(u2)) = imgη(pair(u1, u2)).
• ” t ∈ {string0(u), string1(u), empty} with u ∈ T”.

These cases are analogue to the caset = pair(u1, u2).
• ” t ∈ {garbage(u1), garbageSig(u1, u2, u3),
garbageEnc(u1, u2), garbageZK(u1, u2, u3, u4)}
whereui ∈ T”. By protocol condition 2 follows thatt
was generated byτ , i.e. the last argument oft has the
form Nm for somem ∈ {0, 1}∗. By definition ofβ, it
holds thatβ(t) = m. On the other hand, by definition
of imgη, it holds imgη(t) = η(t) = m, as well.

Proof of part2 of the lemma.
It suffices to show that for eachm ∈ {0, 1}∗, that oc-
curs with non-negligible probability in a hybrid execution
of Sim2, there is someη such thatm = imgη(τ(m))
holds. Then it follows by definition 213 (mx,mw) ∈
Rcomp

adv =⇒ (imgη(τ(mx)), imgη(τ(mw))) ∈ Rcomp
adv =⇒

(τ(mx), τ
∗(mw)) ∈ Rsym

adv .
Take the same definition ofη as in the case before. Note

that this definition is canonical for an execution and does
not depend on the termτ(m).

We will provem = imgη(τ(m)) by structural induction.
Note that this suffices forτ∗, as well, since all cases forτ∗

occur inτ .
• τ(m) = N for someN ∈ NP

By construction ofτ , it follows that N ∈ N . Thus
N was not argument of acrs or the last argument
of a ZK node, by protocol conditions 1 and 3. Then
imgη(τ(m)) = rN = m where the last equality holds
because of the definition ofτ .
• τ(m) = Nm

Then by construction ofη holds thatimgη(τ(m)) =
imgη(N

m) = η(Nm) = m.
• τ(m) = enc(ek(M), t, N) for someM ∈ N, N ∈ NP

By definition of η holds that
imgη(τ(m)) = imgη(enc(ek(M), t, N))
= Aenc(Aek(η(M)), imgη(t), η(N)). By definition of
τ follows that m was earlier output byβ and thus
evaluatingt again usingimgη gives the same bitstring
mt, rN is the same argument as in the earlier call
and ek(M) is the same, too. By determinism of the
implementations (implementation condition 1) follows
that the output ism.
• τ(s) = sig(sk(M), t, N) for someM,N ∈ NP

This case is analogue to the one ofenc(ek(M), t, N)
for someM ∈ N, N ∈ NP .
• τ(m) = ek(N) for someN ∈ NP

By definition of τ , it follows m = Aek(rN). On the
other hand, it holds thatimgη(ek(N)) = Aek(η(N)) =
Aek(rN) = m by construction.
• τ(m) ∈ { vk(N), sk(N), dk(N)} for someN ∈ NP

13At this point we use(imgη(x), imgη(w)) ∈ R
comp

adv
implies(x,w) ∈

R
sym

adv
.

25

The same as the case ofek(N).
• τ(m) = crs(N) for someN ∈ NP

By definition of τ follows that m was output after
a call of β on crs(N). Thus m was output by the
oracle andη(N) is by definition the randomness used
by the oracle to constructm. Thus imgη(crs(N)) =
Acrs(η(N)) = m where the last equality holds because
of the definition ofη(N).
• τ(m) = ZK(crs(N1), t1, t2, N2) for someN1, N2 ∈
NP

By definition of η follows that
imgη(ZK(crs(N1), t1, t2, N2)) =
η(ZK(crs(N1), t1, t2, N2)) = m.
• τ(m) = pair(t1, t2)

This case follows by the induction hypothesis and the
determinism of the implementations.
• τ(m) ∈ {string0(t1), string1(t1), empty}

The case ofempty is trivial, since the implementation
is deterministic. For the other cases holds that - by
definition ofτ - t1 = τ(m′) havingm′ = Aunstringi(m)
where i ∈ {0, 1} and τ(m) = stringi(t1). Applying
the induction hypothesis tot1 leads to imgη(t1) =
m′ and thus imgη(τ(m)) = Astringi(imgη(τ(m

′)))
= Astringi(m

′) = Astringi(Aunstringi(m)) = m. Here
the last equality holds by implementation condition 17.
• τ(m) ∈ {enc(ek(M), t, Nm), ek(Nm),
dk(Nm), garbageEnc(t, Nm), sig(sk(M), t, Nm),
garbageSig(t, Nm), vk(Nm), sk(Nm), crs(Nm),
ZK(crs(M), x, w,Nm), garbageZK(c, x,Nm),
garbage(Nm)} for someM ∈ NP

All of these cases follow immediately by definition of
η and definition 4.

The proof forSim2 is the same. Remind, the only differ-
ence betweenSim3 andSim2 is thatSim3 does not check
if (x,w) ∈ Rcomp

honest any more.

In the next step, we will show that ZK-breaks almost never
occur in the execution of the simulatorSim2. It is more
convenient to show this forSim and transfer it toSim instead
of showing it forSim directly.

Lemma 5 (No ZK-breaks):In the hybrid execution of
the simulatorSim2, ZK-breaks occur only with negligible
probability. ⋄

Proof: We have to show that the case(x,w) 6∈ Rsym
adv

occurs with negligible probability. We do this by a case
distinction on(mx,mw) 6∈ Rcomp

adv .
First, consider that it holds(mx,mw) 6∈ Rcomp

adv . The
hybrid execution ofSim2 is a valid adversary for the honest
simulation-sound extractability game, becauseSim2 only
sends a(prove, x, w) query toOsim if (x,w) ∈ Rcomp

honest. In
this case, the protocol sends a proofz such that an extraction-
failure happens and the extraction extracts amw such that
(mx,mw) 6∈ Rcomp

adv (wheremx = AgetPub(z)). Thus the
adversary wins the honest simulation-sound extractability

game which can only happen with negligible probability.
Thus the case(mx,mw) 6∈ Rcomp

adv occurs with negligible
probability. Therefore, in this case, it does not matter if
(x,w) ∈ Rsym

adv or not.
Now, consider the case that(mx,mw) ∈ Rcomp

adv holds.
By Lemma 11, it follows that(τ(mx), τ

∗(mw)) ∈ Rsym
adv

with overwhelming probability. Sincex = τ(mx) andw =
τ∗(mw), it follows that (x,w) 6∈ Rsym

adv can only occur with
negligible probability.

Therefore a ZK-break in the execution ofSim2 can only
occur with negligible probability.

Before we transfer the results toSim, we prove a technical
lemma that helps connectingSim2 and Sim3. Especially,
this lemma shows how it is possible to prove that protocol
conditions, which are formulated for the symbolic execution,
hold for the hybrid execution of some simulator, as well.

Lemma 3 (No invalid symbolic witnesses):Assume that
Sim3 is DY. Then, in the hybrid execution ofSim3, for each
ZK node with argumentst1, t2, t3, t4, it holds that(t2, t3) ∈
Rsym

honest with overwhelming probability.
The same holds forSim if Sim is DY. ⋄

Proof: If Sim3 is DY, then the hybrid execution ofSim3

corresponds to a symbolic execution with overwhelming
probability.

By definition of the hybrid execution, any hybrid execu-
tion is a valid symbolic execution, as long as the simulator
does not send a term in the adversary’s knowledge. Since
Sim3 is DY, this occurs only with negligible probability.

In the symbolic execution, the property(t2, t3) ∈ Rsym
honest

holds by protocol condition 10. Thus in the case that the
hybrid execution corresponds to a symbolic one, it follows
that (t2, t3) ∈ Rsym

honest with overwhelming probability.
The same proof shows the statement forSim.
Now, we will formalize the connection of the simulators

and transfer the results we have proven before. Thus, we
achieve the following results: First, we show that ZK-breaks
transfer toSimf . Second, we show that all simulators are
DY-style. Thus, we may use all protocol conditions in all
simulators, as we have shown in Lemma 3. Finally, we show
that the node traces of all simulators are indistinguishable.

Lemma 2 (Preservation of simulator-properties):

(i) Let P2 andPf denote the probability of a ZK-break in
the hybrid execution of the simulatorSim2 andSimf ,
respectively. Then|P2 − Pf | is negligible.

(ii) Let P and Pf denote the probability of extraction
failures in the hybrid execution of the simulatorSim
andSimf , respectively. Then|P − Pf | is negligible.

(iii) The simulatorSim is Dolev-Yao style if and only if
the simulatorSimf is.

⋄
Proof:

For x ∈ {1, . . . , 5, f} or x being the empty word, let
ZKBreakx denote the event that in the hybrid execution

26

of the simulatorSimx, a ZK-break occurs. The same way,
we denote the event that a simulatorSimx is DY in that
execution byDYx. We abbreviateH-NodesM,Πp,Simx

(k) as
H-Nodesx.

To show the lemma, we will show that

(DY,H-Nodes)
C
≈ (DY1,H-Nodes1) (1)

(DY1,H-Nodes1)
C
≈ (DY2,H-Nodes2) (2)

(ZKBreak2,DY2,H-Nodes2)
C
≈ (ZKBreak3,DY3,H-Nodes3)

(3)

(ZKBreak3,DY3,H-Nodes3)
C
≈ (ZKBreak4,DY4,H-Nodes4)

(4)

(ZKBreak4,DY4,H-Nodes4)
C
≈ (ZKBreak5,DY5,H-Nodes5)

(5)

(ZKBreak5,DY5,H-Nodes5)
C
≈ (ZKBreakf ,DYf ,H-Nodesf)

(6)

This will then imply statements (i)-(iii) from the lemma. It
is obvious that Dolev-Yao-ness and ZK-breaks transfer as
stated in the lemma by transitivity. But the extraction failures
transfer because the in the presence of an extraction failure
each simulator immediately stops. Thus if the extraction
failures would not transfer as stated above, it would be
possible to differentiate the node traces by their length.

We will show (ZKBreak2,DY2,H-Nodes2)
C
≈

(ZKBreak3,DY3,H-Nodes3)
at the end, because we need the intermediate result to prove
it.

• (DY,H-Nodes)
C
≈ (DY1,H-Nodes1)

TransformingSim to Sim1 is done by replacing invoca-
tions of the ZK algorithms by oracle-queries. We can
replaceAcrs(rN) by a (crs)-query toON

ZK becauseN
is only used inside thiscrs (protocol condition 8) and
the distributions of the implementation and the oracle
are the same. Sinceτ(c) in Sim1 not checks whether
c = Acrs(rN) but whetherc is the result of some(crs)-
query, the node traces have the same distribution.
The same holds for the replacement ofAZK by the
(prove , x, w) oracle query toON

ZK. The randomness – the
fourth argument of the ZK proof – only occurs inside this
proof and nowhere else (protocol condition 3), so we can
replace it by the oracle’s randomness as in thecrs case.
By implementation condition 26, it holds that if(x,w) 6∈
Rcomp

honest the implementation, as well as the oracle, output
⊥. So AZK and the (prove, x, w)-query return⊥ in
the same cases. In the case that(x,w) ∈ Rcomp

honest both
compute a proof ofx using witnessw. Thus, it holds

(DY,H-Nodes)
C
≈ (DY1,H-Nodes1).

• (DY1,H-Nodes1)
C
≈ (DY2,H-Nodes2)

In this step we replaceOZK by OSim which returns a
simulated proof forx if for the input (x,w) it holds that

(x,w) ∈ Rcomp
honest.

If we change both simulators to not extract the proof
in case of an extraction failure, then theH-Nodes does
not change. The simulator stops after handling extraction
failures in any case. By definition of zero-knowledge these
two modified cases are indistinguishable (using the fact
that the simulator and prover are only invoked if(x,w) ∈
Rcomp

honest). Thus (DY1,H-Nodes1) and (DY2,H-Nodes2)
are indistinguishable, too.

• (ZKBreak3,DY3,H-Nodes3)
C
≈

(ZKBreak4,DY4,H-Nodes4)
In this step we replace encryptions, decryptions and key-
generation by an encryption-oracle as we did for the zero-
knowledge proofs in the step fromSim to Sim1. Because
Sim3 does not compute witnesses of zero-knowledge
proofs anymore, nonces of encryptions are only used once
(by protocol condition 3). Nonces of keys were already
only used once (by protocol condition 1). So replacing the
implementation of encryptions, decryptions and the public
key does not change the distribution of the node trace
or ZK-Breaks (since we adaptedτ accordingly, cf. the
replacement ofAcrs in Sim1). In addition we can define
β(dk(N)) := ⊥ because decryption keys are not used
as input toβ (by protocol condition 4 and the use of an
oracle for decrypting).
We did neither change the bitstrings that are sent to the
adversary nor the way they are parsed. So the property of
DY did not change, either.

• (ZKBreak4,DY4,H-Nodes4)
C
≈

(ZKBreak5,DY5,H-Nodes5)
In the step fromSim4 to Sim5, the only change that is
done is the replacement of the encryption oracle by a
fake oracle that always encrypts0|m| instead ofm. By
construction ofτ the protocol execution asks only for
decryptions of ciphertexts which were not generated by
the encryption oracle (since onlyβ invokes the encryption
oracle). So a run of the protocol is a valid adversary for
the CCA property where the challenger is the encryption
oracle. To get indistinguishability the adversary has to be
able to use ZK-breaks, DYness and node traces to dis-
tinguish both executions. Obviously, it is possible to use
DYness and the node traces. For the case of ZK-breaks,
we have to require thatRsym

adv is efficiently decidable.
Thus replacingENC by Ofake leads to an indistinguish-
able execution and hence(ZKBreak4,DY4,H-Nodes4)
and(ZKBreak5,DY5,H-Nodes5) are computationally in-
distinguishable.

• (ZKBreak5,DY5,H-Nodes5)
C
≈

(ZKBreakf ,DYf ,H-Nodesf)
As in the case forSim3 andSim4, we have the case that
after removing the witnesses inSim3 the nonces, used
as randomness for signatures, are only used (by protocol
condition 3) once for signing a message.

27

The same holds for verification and signing keys (by
protocol condition 1). Thus we can replace signing
and computation of verification/signing keys by invo-
cations of Osig without changing the distribution of
(ZKBreak,DY,H-Nodes) (since we adoptedτ accord-
ingly, cf. the replacement ofAcrs in Sim1). In a run of
the protocolβ is never applied tosk(N) (by protocol
condition 5 and the use of an oracle for signing), so
we can defineβ(sk(N)) := ⊥ without changing the
distribution of (ZKBreak,DY,H-Nodes).

• (ZKBreak2,DY2,H-Nodes2)
C
≈

(ZKBreak3,DY3,H-Nodes3)

We have already proven that(DYf)
C
≈ (DY3). To-

gether with the fact thatSimf is DY (Lemma 10),
it follows that Sim3 is DY. By Lemma 3, it follows
that (t2, t3) ∈ Rsym

honest for all ZK-nodes with argu-
ments t1, . . . , t4 in a hybrid execution ofSim3 (with
overwhelming probability). Applying Lemma 11 leads
to (β(t2), β(t3)) ∈ Rcomp

honest for a hybrid execution of
Sim3 with overwhelming probability. The only difference
betweenSim2 and Sim3 is that Sim2 checks whether
(β(t2), β(t3)) ∈ Rcomp

honest. Because this check would suc-
ceed with overwhelming probability inSim3, it actually
succeeds inSim2.
Thus the distribution of(ZKBreak,DY,H-Nodes) is the
same inSim2 as inSim3.

Using the preceding lemma together with the generalized
DY lemma, it is easy to prove that extraction failures during
Simf ’s execution occur with negligible probability. Thus by
the preceding lemma, it follows that the same holds forSim.

Lemma 7 (No extraction failures):In a hybrid execution
of the simulatorSimf holds: An extraction failure can only
occur with negligible probability. ⋄

Proof: Assume an extraction-failure occurs with non-
negligible probability. Thenτ(z) is called for a bitstringz of
type zero-knowledge proof such that the symbolic extraction
fails.

So z was not generated by the protocol, i.e. it was not
output of the simulation oracle, and the correspondingcrs
was generated by the protocol (otherwiseτ would not invoke
the symbolic extraction). LetN ∈ NP be defined by
crs(N) = τ(Acrs(z)). Let mx := AgetPub(z), x := τ(mx),
mw := E(mx, z, extdN)),14 w := τ(mw). Let S denote the
set ofT that the protocol already sent to the simulator in
this execution.

We haveSymbExtr(S, x) = ⊥ by definition of extrac-
tion failures. Thus one of the following cases occurs with
non-negligible probability.

1) (x,w) 6∈ Rsym
adv

2) S 6⊢ w

14Here,extdN is the extraction trapdoor that the simulator receives from
the oracleON

ZK by querying(extd).

3) (x,w) ∈ Rsym
adv andS ⊢ w andSymbExtr(S, x) = ⊥

We prove for each case that it occurs with negligible
probability leading to a contradiction to the assumption that
an extraction-failure occurs with non-negligible probability.

Case1: ”(x,w) 6∈ Rsym
adv ”

This would be a ZK-break. Thus, this case only
occurs with negligible probability because of
Lemma 5 and Lemma 2 (i).

Case2: ”S 6⊢ w”
By Lemma 10 and sincew = τ∗(mw), this case
can only occur with negligible probability.

Case3: ”(x,w) ∈ Rsym
adv and S ⊢ w and

SymbExtr(S, x) = ⊥”
By definition,SymbExtr returns only⊥ if there
is no w such that(x,w) ∈ Rcomp

adv andS ⊢ w. So
this case cannot occur.

The only thing, that is missing to apply Theorem 3 is to
show thatSim is indistinguishable from an computational
execution.

Lemma 12:Sim is indistinguishable forM,Π, A,E and
for every polynomialp.

Proof:
We will first show that when fixing the random-

ness of the adversary and the protocol, the node trace
Nodesp

M,A,Πp,E
in the computational execution and the node

traceH-TraceM,Πp,Sim in the hybrid execution are equal.
Hence, fix the variablesrN for all N ∈ NP , fix a random
tape for the adversary, and for each non-deterministic node
ν fix a choiceeν of an outgoing edge.

We assume that the randomness is chosen such
that all bitstrings rN , Aek(rN), Adk(rN), Avk(rN),
Ask(rN), Aenc(e,m, rN), Asig(s,m, rN) , Acrs(rN), and
AZK(c, x, w, rN) are all pairwise distinct for allN ∈ R
if they are well-formed.15

Note that this is the case with overwhelming probability:
For terms of different types this follows from implementa-
tion condition 2. For keys, this follows from the fact that
if two randomly chosen keys would be equal with non-
negligible probability, the adversary could guess secret keys
and thus break the IND-CCA property or the strong exis-
tential unforgeability (implementation conditions 8 and 9).
For nonces, if two random noncesrN , rM would be equal
with non-negligible probability, so would encryption keys
Aek(rN) and Aek(rM). For encryptions, by implementa-
tion condition 6, the probability thatAenc(e,m, rN) for
random rN of type nonce matches any given string is
negligible. Lete, e′,m,m′, r, r′ be bitstrings. Fore 6= e′,
it holds thatAenc(e,m, rN) 6= Aenc(e

′,m′, r′N), because
Aekof returns in one casee and in the othere′. So if

15That means thate is of type encryption key,s of type signing key,c
of type common reference string andx,w,m ∈ {0, 1}∗ result from some
evaluation ofβ in the execution.

28

Aenc(e,m, rN) = Aenc(e
′,m′, r′N), it holds e = e′. Addi-

tionally, m = m′ because decryption, usinge as argument,
deterministically computesm. So the only case that can
occur isAenc(e,m, rN) = Aenc(e,m, rN ′ . Since by proto-
col condition 3, eachAenc(e,m, rN) computed byβ uses a
fresh noncerN , this case occurs with negligible probability.
Analogously for signatures (implementation condition 7,
protocol conditions 3 and 5). and for zero-knowledge proofs
(implementation condition 20, protocol conditions 3 and 8).

Additionally, we assume that there is no extraction failure
in the hybrid execution ofSim. By Lemma 7 extraction
failures do not occur in the hybrid execution ofSimf .
Since the probability of an extraction failure in the hybrid
execution ofSim and Simf differ only by a negligible
function (Lemma 2 (ii)), extraction failures only occur with
negligible probability inSim. This is the only case in which
the simulator aborts early.

In the following, we designate the valuesfi and νi in
the computational execution byf ′

i andν′i, and in the hybrid
execution byfC

i and νCi . Let s′i denote the state of the
adversaryE in the computational model, andsCi the state
of the simulated adversary in the hybrid model.

Claim 1: In the hybrid execution, for any∀m ∈ {0, 1}∗ :
β(τ(m)) = m.
This claim follows by induction over the length of
m and by distinguishing the cases in the definition
of τ . A detailed proof is in the section F.

Claim 2: In the hybrid execution, for any termt stored at
a nodeν, β(t) 6= ⊥.
By Definition of β, any termt with β(t) = ⊥
has a subterm of the formZK(t1, t2, t3, t4) with
t4 6∈ N, t1 not of the formcrs(N) with N ∈ N,
or (β(t2), β(t3)) 6∈ Rcomp

adv or a subterm with a
similar form of encryption-, signature- or garbage-
terms. These are never generated byτ nor by the
protocol.

Claim 3: For all terms t 6∈ R that occur in the hybrid
execution,τ(β(t)) = t.
By induction on the structure oft and using the as-
sumption thatrN , Aek(rN), Adk(rN), Avk(rN),
Ask(rN), as well as all occuring encryptions and
signatures are pairwise distinct for allN ∈ R.

Claim 4: In the hybrid execution, at any computation node
ν = νi with constructor or destructorF and
arguments̄ν1, . . . , ν̄n the following holds: Lettj
be the term stored at nodēνj (i.e., tj = f ′

i(ν̄j)).
Thenβ(evalF (t)) = AF (β(t1), . . . , β(tn)). Here
the left hand side is defined iff the right hand side
is.
The proof for this claim is lengthy and thus
postponed to the section F.

For given fixed randomness (see above), letν′i, f
′
i be

the nodes and functions as in the computational trace and

νCi , fC
i be the ones in the hybrid trace. Lets′i be the state of

the adversary before execution of thei-th node andsCi the
corresponding state of the adversary in the hybrid execution.

We will now show that Nodesp
M,A,Πp,E

=
H-NodesM,Πp,Sim(k).

To prove this, we show the following invariant:f ′
i = β ◦

fC
i andν′i = νCi ands′i = sCi for all i ≥ 0 by induction on
i

Base casei = 0. The adversaryE is in its starting
configuration,i.e.s′0 = sC0 , the node mapping functionf
is totally undefined,f ′

0 = fC
0 = and the current node is the

root of the protocol,ν′0 = νC0 , so the invariant is satisfied
for i = 0.

Induction hypothesis: For allj ≤ i holdsνj = νCj , fj =
β ◦ fC

j andsj = sCj .
Induction step:i→ i+ 1:
We make a case distinction by the type of the nodes:

1) If ν′i = νCi is a computation node annotated
with constructor or destructorF , we have
that f ′

i+1(ν
′
i) = AF (f

′
i(ν̄1), . . . , f

′
i(ν̄n)) =

AF (β(f
C
i (ν̄1)), . . . , β(f

C
i (ν̄n))) for some

nodes ν̄s. And fC
i+1(ν

′
i) = fC

i+1(ν
C
i) =

evalF (f
C
i (ν̄1), . . . , f

C
i (ν̄n)). From Claim 4 it follows

that β(fC
i+1(ν

′
i)) = f ′

i+1(ν
′
i) where the lhs is defined

iff the rhs is. Henceβ ◦ fC
i+1 = f ′

i+1.
By Claim 2, β(fC

i+1(ν
C
i)) is defined if fC

i+1(ν
C
i)

is. Hence fC
i+1(ν

C
i) is defined iff f ′

i+1(ν
′
i) =

f ′
i+1(β(f

C
i+1(ν

C
i))) is. If fC

i+1(ν
C
i) is defined, then

νCi+1 is the yes-successor ofνCi and the no-successor
otherwise. Iff ′

i+1(ν
′
i) is defined, thenν′i+1 is the yes-

successor ofν′i = νCi and the no-successor otherwise.
ThusνCi+1 = ν′i+1.
The adversaryE is not invoked, hences′i+1 = sCi+1. So
the invariant holds fori+1 if ν′i is a computation node
with a constructor or destructor.

2) If ν′i = νCi is a computation node annotated with nonce
N ∈ NP , we have thatf ′

i+1(ν
′
i) = rN = β(N) =

β(fC
i+1(ν

′
i)). Henceβ ◦ fC

i+1 = f ′
i+1. By Definition 9,

ν′i+1 is the yes-successor ofν′i. SinceN ∈ T, νCi+1 is
the yes-successor ofνCi = ν′i. Thusν′i+1 = νCi+1. The
adversaryE is not invoked, hences′i+1 = sCi+1. So the
invariant holds fori + 1 if ν′i is a computation node
with a nonce.

3) If ν′i = νCi is an input node, the adversaryE in the
computational execution and the simulator in the hybrid
execution is asked for a bitstringm′ or bitstringtC , re-
spectively. The simulator produces this string by asking
the simulated adversaryE for a bitstringmC and set-
ting tC := τ(mC). Sinces′i = sCi , we havem′ = mC .
Then by definition of the computational and hybrid
executions,f ′

i+1(ν
′
i) = m′ andfC

i+1(ν
′
i) = tC = τ(m′).

Thus f ′
i+1(ν

′
i) = m′ (∗)

= β(τ(m′)) = β(fC
i+1(ν

′
i))

where(∗) follows from Claim 1. Sincef ′
i+1 = f ′

i and

29

fC
i+1 = fC everywhere else, we havef ′

i+1 = β ◦ fC
i+1.

Furthermore, since input nodes have only one successor,
ν′i+1 = νCi+1. Since we fixed the random choices of
the execution, the adversaries state iss′i = sCi , and
sincem′ = mC , it follows that s′i+1 = sCi+1. Thus the
invariant holds fori+ 1 in the case of an input node.

4) If ν′i = νCi is an output node, the adversaryE
in the computational execution getsm′ := f ′

i(ν̄1)
where the nodēν1 depends on the label ofν′i. In the
hybrid execution, the simulator getstC := fC

i (ν̄1) and
sendsmC := β(tC) to the simulated adversaryE. By
induction hypothesis we then havem′ = mC , so the
adversary gets the same input in both executions. Thus
s′i+1 = sCi+1. Furthermore, since output nodes have only
one successor, we haveν′i+1 = νCi+1. And f ′

i+1 = f ′
i

andfC
i+1 = fC

i , sof ′
i+1 = β ◦ fC

i+1. Thus the invariant
holds for i+ 1 in the case of an output node.

5) If ν′i = νCi is a control node, the adversaryE in
the computational execution and the simulator in the
hybrid execution get the out-metadatal of the node
ν′i or νCi , respectively. The simulator passesl on to
the simulated adversary. Thus, sinces′i = sCi , we have
that s′i+1 = sCi+1, and in the computational and the
hybrid execution,E answers with the same in-metadata
l′. Thus ν′i+1 = νCi+1. Since a control node does not
modify f we havef ′

i+1 = f ′
i = β ◦ fC

i = β ◦ fC
i+1.

Hence the invariant holds fori + 1 if ν′i is a control
node.

6) If ν′i = νCi is a nondeterministic node,ν′i+1 = νCi+1

is determined byeν′

i
= eνC

i
. Since a nondeterministic

node does not modifyf and the adversary is not
activated,f ′

i+1 = f ′
i = β ◦ fC

i = β ◦ fC
i+1 and

si+1 = s′i+1. Hence the invariant holds fori + 1 if
ν′i is a nondeterministic node.

From the invariant it follows that the node trace is the
same in both executions.

Since random choices with all nonces, keys, encryptions,
and signatures being pairwise distinct occur with overwhelm-
ing probability (as discussed above), the node traces of the
real and the hybrid execution are indistinguishable.

Final Soundness Proof.Having the preceding lemmas, we
prove the computational soundness (Theorem 1).

Proof of Theorem 1:By lemma 12 we get thatSim is
indistinguishable forM,Π, A,E and for every polynomial
p. By Lemma 10,Simf is DY which transfers toSim by
lemma 2 (iii). SoSim is a good simulator. By Theorem 3
we finally conclude that the implementationA is sound for
every protocol as specified in the Theorem.

F. Proof of Claims

Proof of Claim 1: In this section we present a proof of
claim 1 of the claims used in the indistinguishability proof.
The proofs of all other claims are similar done by structural
induction.

We want to show that - in the hybrid execution ofSim -
holds∀m ∈ {0, 1}∗ : β(τ(m)) = m.

Proof: By structural induction onτ(c).

• τ(m) = N for someN ∈ NP

Thenm = rN andβ(τ(m)) = β(N) = rN = m.
• τ(m) = Nm

Thenβ(τ(m)) = β(Nm) = m
• τ(c) = enc(ek(M), t, N) and c was output by
β(enc(M), t, N))
Then β(τ(c)) = β(enc(ek(M), t, N)) =
Aenc(β(ek(M)), β(t), rM). This is equal to c
since the arguments are equal (randomness ofenc is
the third argument) and by implementation condition
1 we know thatAenc is deterministic.
• τ(c) = enc(ek(M), t, N c)

Thenβ(τ(c)) = β(enc(ek(M), t, N c) = c.
• τ(c) = garbageEnc(t, N c)

Thenβ(τ(c)) = β(garbageEnc(t, N c) = c.
• τ(c) = ek(N) for someN ∈ NP .

Then by definition ofτ , it holds c = Aek(rN) =
β(ek(N)) = β(τ(c)).
• τ(c) = ek(N c).

Thenβ(τ(c)) = β(ek(N c)) = c.
• τ(c) = dk(N) for someN ∈ NP .

Then by definition ofτ , it holds c = Adk(rN) =
β(dk(N)) = β(τ(c)).
• τ(c) = dk(N c).

Thenβ(τ(c)) = β(dk(N c)) = c.
• τ(c) = sig(sk(M), t, N) with N,M ∈ NP , earlier

output byβ(sig(sk(M), t, N)).
Then holdsβ(τ(c)) = β(sig(sk(M), t, N)) = c As in
the case of encryption we have the same arguments and
the a deterministic function, so the result has to bec
again.
• τ(c) = sig(sk(M), t, N c)

Then holdsβ(τ(c)) = β(sig(sk(M), t, N c)) = c.
• τ(c) = garbageSig(sk(M), N c)

Then holdsβ(τ(c)) = β(garbageSig(sk(M), N c)) =
c.
• τ(c) = vk(N)

Then by definition ofτ , it holds c = Avk(rN) =
β(vk(N)) = β(τ(c)).
• τ(c) = vk(N c)

Then holdsβ(τ(c)) = β(vk(N c)) = c.
• τ(c) = sk(N)

Then by definition ofτ , it holds c = Ask(rN) =
β(sk(N)) = β(τ(c)).
• τ(c) = sk(N c)

Then holdsβ(τ(c)) = β(sk(N c)) = c.
• τ(c) = ZK(crs(t1), t2, t3, N) with N ∈ NP , earlier

output byβ(ZK(crs(t1), t2, t3, N)).
This case holds because of the determinism of the
implementationAZK.

30

• τ(c) = ZK(crs(t1), t2, t3, N
c)

Then holdsβ(τ(c)) = β(ZK(crs(t1), t2, t3, N
c)) = c

by definition ofβ.
• τ(c) = crs(N) for N ∈ NP , earlier been output by
β(crs(N))
Then holds by determinism ofAcrs that β(τ(c)) =
β(crs(N)) = Acrs(rN) = c.
• τ(c) = crs(N c)

Then holdsβ(τ(c)) = β(crs(N c)) = c.
• τ(c) = garbageZK(t1, t2, N

c)
Then holdsβ(τ(c)) = β(garbageZK(t1, t2, N

c)) = c
• τ(c) = pair(t1, t2)

By construction ofτ follows that t1 = τ(Afst(c))
and t2 = τ(Asnd(c)). By induction hypothesis
follows for c1 := Afst(c) that β(τ(c1)) = c1.
The same holds forc2 := Asnd(c). Therefore
we get β(pair(t1, t2)) = Apair(β(t1), β(t2)) =
Apair(β(τ(Afst(c))), β(τ(Asnd(c)))) =
Apair(Afst(c), Asnd(c)) = c where the last equality
holds because of implementation conditions 11 and 1.
• τ(c) = string0(t)

By definition of τ follows that t = τ(c′) with
c′ = Aunstring0(c) and c′ 6= ⊥. The induc-
tion hypothesis implies thatβ(τ(c′)) = c′. So
τ(string0(t)) = Astring0(β(t)) = Astring0(c

′) =
Astring0(Aunstring0(c)) = c The last equality holds
because of implementation conditions 17 and 1.
• τ(c) = string1(t)

Analogue to the case ofτ(c) = string0(t).
• τ(c) = empty

Thenc = Aempty() = β(empty) = β(τ(c)).
• τ(c) = garbage(N c)

Thenβ(garbage(N c)) = c.

Proof of Claim 4: Proof: The proof is done by
induction on the trace length with a case distinction on all
constructors and destructorsF .

1) ”F = crs”
By protocol condition 1 the first argument of this node
is a nonce computation node, i.e.t1 = N for someN ∈
NP . Therefore holdsβ(evalcrs(t1)) = β(crs(t1)) =
Acrs(rN) = Acrs(β(N)).

2) ”F ∈ {ek, dk, vk, sk}”
Analogous to the caseF = crs.

3) ”F = ZK”
A node annotated withZK has ast1 = crs(N1) for
someN1 ∈ NP and t4 = N2 for N2 ∈ NP (protocol
conditions 8 and 3). Thus, we have:
AZK(β(t1), β(t2), β(t3), β(t4)) =
AZK(Acrs(rN1), β(t2), β(t3), rN2) =
β(evalZK(t1, t2, t3, t4)).

4) ”F = getPub”
If the argumentt is neither of the formZK(t1, t2, t3, t4)

nor garbageZK(t1, t2, t3) then β(getPub(t)) = ⊥
and AgetPub(β(t)) = ⊥, too. So first considert =
ZK(t1, t2, t3, t4). Then, by protocol conditions 3 and 8
and by definition ofτ , it follows that t1 has the form
crs(u1) with u1 ∈ N and t4 ∈ N.
Thus we haveβ(evalgetPub(ZK(crs(u1), t2, t3, t4))) =
β(t2).

Case 1:t4 = N ∈ NP

Then it holds that
AgetPub(β(ZK(crs(u1), t2, t3, N))) =
AgetPub(AZK(Acrs(rt1), β(t2), β(t3), rN)) =
β(t2) where the last equality holds because
of implementation condition 27.

Case 2:t4 = Nm ∈ NE

Then we have
AgetPub(β(ZK(crs(t1), t2, t3, N

m))) =
AgetPub(m) where τ(m) =
ZK(crs(t1), t2, t3, N

m) and
τ(AgetPub(m)) = t2 by definition of τ .
By applyingβ on both sides, it follows that
β(t2) = β(τ(AgetPub(m))) = AgetPub(m)
where the last equality holds because of
Claim 1.

Now, consider the case thatt = garbageZK(t1, t2, t3).
By protocol condition 2, it follows thatt was gener-
ated via τ . Thus, there is az ∈ {0, 1}∗ such that
t3 = Nz and t2 = τ(AgetPub(z)). Therefore, it holds
that AgetPub(β(garbageZK(t1, t2, t3))) = AgetPub(z)
(∗)
= β(τ(AgetPub(z))) = β(t2). Here, the equality(∗)
holds because of Claim 1.

5) ”F = verifyZK”
If β(t2) has not the type zero-knowledge proof, then
the left hand side is⊥ by definition ofβ, and the right
hand side is⊥ by implementation condition 22.
Therefore consider t2 to be of the form
ZK(u1, u2, u3, u4) or garbageZK(u1, u2, u3).
Additionally has to hold thatt1 = u1 and that
by protocol condition 9t1 is of the formcrs(N1) for
someN1 ∈ NP . Consider the following subcases:

a) t2 = ZK(crs(N1), u2, u3, u4) with u4 ∈ NP .
Thenu4 has the formN2 for N2 ∈ NP by protocol
conditions 8 and 3. By Lemma 3 and the fact that
Sim is DY (Lemma 10 and 2 (i)), it holds that the
proof is, valid, more precisely(u2, u3) ∈ Rsym

honest.
Therefore, it follows evalverifyZK

(t1, t2) =
t2. Thus, it holds β(t2) =
AZK(Acrs(rN1), β(u2), β(u3), rN2).
By Lemma 11 follows(β(u2), β(u3)) ∈ Rcomp

honest,
therefore – by completeness of the zero-knowledge
proof system – this gives a correct proof. Thus ver-
ification succeeds, and therefore by implementation
condition 21AverifyZK

(β(t1), β(t2)) = β(t2).
b) t2 = ZK(crs(N1), u2, u3, u4) with u4 ∈ NE.

31

Then u4 = Nz with τ(z) = t2 and by definition
of τ holds z = AverifyZK

(Acrsof(z), z)
∗
=

AverifyZK
(β(τ(Acrsof (z))), β(τ(z))) =

AverifyZK
(β(crs(N1)), β(t2)) =

AverifyZK
(β(t1)), β(t2)), on the other hand

β(evalverifyZK
(t1, t2))

∗∗
= β(t2)

∗
= β(τ(z)) = z,

where in both cases(∗) hold because of claim 1.
The equality (∗∗) requires that(u2, u3) ∈ Rsym

adv .
This holds becauset2 was constructed byτ and
thereforeu2 was constructed by symbolic extraction
(if an extraction failure has occurred, we would
already have stopped earlier) s.t.(u2, u3) ∈ Rsym

adv .
c) t2 = garbageZK(crs(N1), u2, u3).

By protocol condition 2 holds thatt2 was pro-
duced by τ . Thus u3 = Nz with τ(z) =
t2. Becauseu1 = t1 = crs(N1) for N1 ∈
NP follows by definition of τ that ⊥ =
AverifyZK

(Acrsof(z), z) = AverifyZK
(β(t1), β(t2))

(by implementation condition 21). By definition of
verifyZK follows that evalverifyZK

(t1, t2) = ⊥ and
thereforeβ(evalverifyZK

(t1, t2)) = ⊥, too.

6) ”F = iszk”
If t1 is not of the form ZK(crs(N1), u1, u2, N2)
or garbageZK(u1, u2, N1) with N1, N2 ∈ N then
β(t1) is not of type zero-knowledge proof. Therefore
Aiszk(β(t1)) = ⊥ by implementation condition 18. On
the other hand holdsβ(evaliszk(t1)) = β(⊥) = ⊥.
So let t1 be of the form ZK(crs(N1), u1, u2, N2)
or garbageZK(u1, u2, N1) with N1, N2 ∈ N. Then
β(eval(iszk(t1))) = β(t1) andAiszk(β(t1)) = β(t1) by
implementation condition 18 becauseβ(t1) has type
zero-knowledge proof.

7) ”F ∈ {isenc, issig, isek, isvk, iscrs}”
Analogue to the caseF = iszk.

8) ”F = crsof”
If t1 is not of the form ZK(u1, u2, u3, N) or
garbageZK(u1, u2, N) with N ∈ N. Then
evalcrsof(t1) = ⊥ and β(t1) is not of type zero-
knowledge proof, therefore by implementation
condition 24 holdsAcrsof(β(t1)) = ⊥.
In the other both cases holdsβ(evalcrsof(t1)) = β(u1).
Consider the following subcases:

a) t1 = ZK(u1, u2, u3, N) with N ∈ NP .
So the term was generated by the protocol, therefore
- by protocol condition 8 - holds thatu1 = crs(M)
for someM ∈ NP . Thus holdsAcrsof(β(t1)) =
Acrsof(AZK(Acrs(rM), β(u2), β(u3), rN))

∗
=

Acrs(rM) = β(crs(M)) = β(evalcrsof(t1)) where
(*) holds by implementation condition 23.

b) t1 = garbageZK(u1, u2, N).
By protocol condition 2 follows thatt1 was con-
structed by τ , i.e. t1 = garbageZK(u1, u2, N

z)
for some z ∈ {0, 1}∗ of type zero-knowledge

and u1 = τ(Acrsof (z)). Thus we have:β(u1) =
β(τ(Acrsof (z)))

∗
= Acrsof(z) = Acrsof(β(t1)) where

the last equality holds by definition ofβ and (*) holds
by claim 1.

c) t1 = ZK(u1, u2, u3, N
z) with Nz ∈ NE .

This case is analogue to the caset1 = garbageZK.

9) ”F ∈ {ekof, vkof}”
Analogue to the caseF = crsof.

10) ”F = enc”
By protocol condition 3 holds thatt3 = N for N ∈ NP .
If t1 is of the form ek(u), then β(enc(t1, t2, t3)) =
Aenc(β(t1), β(t2), rN) = Aenc(β(t1), β(t2), β(t3)),
becauseβ(N) = rN .
So let t1 be not of the form ek(u). Thus
β(enc(t1, t2, t3)) = ⊥ andAenc(β(t1), β(t2), β(t3)) =
⊥, becauseβ(t1) is not of type encryption key and
implementation condition 19.

11) ”F = dec”
By protocol condition 6,t1 = dk(N) with N ∈ NP .
We distinguish the following cases fort2:

a) t2 = enc(ek(N), u2,M) with M ∈ NP

Then Adec(β(t1), β(t2)) =
Adec(Adk(rN), Aenc(Aek(N), β(u2), rM)) = β(u2)
by implementation condition 12. Furthermore
β(dec(t1, t2)) = β(u2) by definition ofdec.

b) t2 = enc(ek(N), u2, N
c)

Then t2 was produced byτ and hencec is of type
ciphertext andτ(Adec(Adk(rN), c)) = u2. Then
by Claim 1,Adec(Adk(rN), c) = β(u2) and hence
Adec(β(t1), β(t2)) = Adec(Adk(rN), c) = β(u2) =
β(dec(t1, t2)).

c) t2 = enc(u1, u2, u3) with u1 6= ek(N)
As shown above (case F =
ekof), Aekof(β(enc(u1, u2, u3)) =
β(ekof(enc(u1, u2, u3)) = β(u1). Moreover,
from Claim 3, Aekof(β(enc(u1, u2, u3)) =
β(u1) 6= β(ek(N)) = Aek(rN). Thus by
implementation condition 4,Adec(β(t1), β(t2)) =
Adec(Adk(rN), β(enc(u1, u2, u3))) = ⊥.
Furthermore, dec(t1, t2) = ⊥ and thus
β(dec(t1, t2)) = ⊥.

d) t2 = garbageEnc(u1, N
c)

Assume that m := Adec(β(t1), β(t2)) =
Adec(Adk(rN), c) 6= ⊥. By implementation condi-
tion 13 this impliesAekof(c) = Aek(rN) and thus
τ(Aekof(c)) = τ(Aek(rN)) = ek(N). By protocol
condition 2, t2 has been produced byτ , i.e., t2 =
τ(c). Hencec is of type ciphertext. Then, however,
we would haveτ(c) = enc(ek(N), τ(m), N c) 6=
t2. This is a contradiction tot2 = τ(c), so
the assumption thatAdec(β(t1), β(t2)) 6= ⊥ was
false. So Adec(β(t1), β(t2)) = ⊥ = β(⊥) =
β(dec(t1, garbageEnc(u1, N

c))).

32

e) All other cases
Then β(t2) is not of type ciphertext. By im-
plementation condition 13,Aekof(β(t2)) = ⊥.
Hence Aekof(β(t2)) 6= Aek(rN) and by im-
plementation condition 4,Adec(β(t1), β(t2)) =
Adec(Adk(rN), β(t2)) = ⊥ = β(dec(t1, t2)).

12) ”F = sig”
By protocol conditions 3 and 7 we have that
t1 = sk(N) and t3 = M for N,M ∈ NP . Then
β(sig(t1, t2, t3)) = Asig(Ask(rN), β(t2), rM) =
Asig(β(sk(N)), β(t2), β(M)) =
Asig(β(t1), β(t2), β(t3)).

13) ”F = verifysig”
We distinguish the following subcases:

a) ”t1 = vk(N) and t2 = sig(sk(N), u2,M) with
N,M ∈ NP ”
Then Averifysig

(β(t1), β(t2)) =

Averifysig
(Avk(rN), Asig(Ask(rN), β(u2), rM))

∗
=

β(u2) = β(verifysig(t)) where (∗) uses
implementation condition 15.

b) ”t2 = sig(sk(N), u2,M) and t1 6= vk(N) with
N,M ∈ NP ”
By Claim 3, β(t1) 6= β(vk(N)) Fur-
thermore Averifysig

(β(vk(N)), β(t2)) =

Averifysig
(β(t1), Asig(Ask(rN), β(u2), rM))

∗
=

β(u2) 6= ⊥. Hence with implementation
condition 16, Averifysig

(β(t1), β(t2)) = ⊥ =
β(⊥) = verifysig(t1, t2).

c) ”t1 = vk(N) and t2 = sig(sk(N), u2,M
s)”

Then t2 was produced byτ and hences is
of type signature with τ(Avkof (s)) = vk(N)
and m := Averifysig

(Avkof(s), s) 6= ⊥ and
u2 = τ(m). Hence with Claim 1 we have
m = β(τ(m)) = β(u2) and β(t1) =
β(vk(N)) = β(τ(Avkof (s))) = Avkof(s). Thus
Averifysig

(β(t1), β(t2)) = Averifysig
(Avkof(s), s) =

m = β(u2). And β(verifysig(t1, t2)) =
β(verifysig(vk(N), sig(sk(N), u2,M

s))) = β(u2).
d) ”t2 = sig(sk(N), u2,M

s) and t1 6= vk(N)”
As in the previous case,Averifysig

(Avkof(s), s) 6= ⊥
and β(vk(N)) = Avkof(s). Since t1 6= vk(N),
by Claim 3, β(t1) 6= β(vk(N)) = Avkof(s).
From implementation condition 16 and
Averifysig

(Avkof(s), s) 6= ⊥, we have
Averifysig

(β(t1), β(t2)) = Averifysig
(β(t1), s) =

⊥ = β(⊥) = β(verifysig(t1, t2)).
e) ”t2 = garbageSig(u1, N

s)”
Then t2 was produced byτ and hences is of type
signature and eitherAverifysig

(Avkof(s), s) = ⊥
or τ(Avkof (s)) is not of the form vk(. . .).
The latter case only occurs ifAvkof(s) = ⊥
as otherwise Avkof(s) is of type verification
key and henceτ(Avkof (s)) = vk(. . .). Hence

in both casesAverifysig
(Avkof(s), s) = ⊥. If

β(t1) = Avkof(s) then Averifysig
(β(t1), β(t2)) =

Averifysig
(Avkof(s), s) = ⊥ = β(verifysig(t1, t2)).

If β(t1) 6= Avkof(s) then by implementation
condition 16, Averifysig

(β(t1), β(t2)) =
Averifysig

(β(t1), s) = ⊥. Thus in both
cases, with verifysig(t1, t2) = ⊥ we have
Averifysig

(β(t1), β(t2)) = ⊥ = β(verifysig(t1, t2)).
f) All other cases

Then β(t2) is not of type signature, hence by im-
plementation condition 5,Avkof(β(t2)) = ⊥, hence
β(t1) 6= Avkof(β(t2)), and by implementation con-
dition 16 we haveAverifysig

(β(t1), β(t2)) = ⊥ =
β(verifysig(t1, t2)).

14) ”F ∈ {pair, fst, snd, string0, unstring0, string1,
unstring1, empty}” The claim follows directly from
the definition ofβ.

15) ”F = equals”
If t1 = t2 then holdsβ(equals(t1, t2)) = β(t1) =
Aequals(β(t1), β(t1)) = Aequals(β(t1), β(t2)). So let
t1 6= t2. By Claim 3 holdsti = τ(β(ti)), so β(t1) 6=
β(t2), because otherwiset1 = t2. But then holds
Aequals(t1, t2) = ⊥ = β(equals(t1, t2))

16) ”F ∈ {garbage, garbageEnc, garbageSig,
garbageZK} ∪NE”
By protocol condition 2, the constructorF does not
occur in the protocol.

G. Generic Construction of WSSZK-Proof Systems

The construction in [39] yields weakly symbolically-
sound zero-knowledge proofs given any non-interactive zero-
knowledge proof which is length-regular and extractable.

This is summarized in the following theorem:
Theorem 4:Let π be a length regular, extractable non-

interactive zero-knowledge proof system and assume that
one way functions exist. Then the construction in [39]
leads to a weakly symbolically-sound zero-knowledge proof
systemΠ.

In paper [39], they proved that the construction satisfies
all properties listed in definition 1 except honest simulation-
extractability and length-regularity. However, we show that
it also satisfies these properties.

The construction basically uses polynomially many zero-
knowledge proofs to construct a single one, but the number
of proofs used in the combined proof is always the same.
So length-regular follows immediately. They show unpre-
dictability and simulation-soundness. Simulation-soundness
is shown by a reduction to the soundness property of the
underlying zero-knowledge proof system. The same way
one can reduce the simulation-extractability property to
extractability.

The construction in [39] uses a strong one-time signa-
ture scheme(K, sig, verifysig) which is strong existential

33

unforgeable when it is used only once and length regular.
Denoteq(k) the length of the verification key.

In addition there is assumed to be an efficiently com-
putable functiong : {0, 1}q(k) → 2q

′(k) that maps veri-
fication keys to subsets of{1, . . . , q′(k)}. Let t(k) be a
polynomial upper bound of the proof occurring in a protocol
execution,l(k) = q(k) · t(k), and q′(k) = l(k)2. Then
holds for any setm1, . . . ,mt(k) different from m that

|g(m)\
t(k)⋃

i=1

g(mi| ≥
l(k)

2
. Details on the construction of

such functions can be found in [39].
We show that the construction given in [39] satisfies the

properties. The construction is the following:

Reference String Let σ be a reference string of the proof
systemπ. Then the reference string ofΠ is Σ = σ0 ◦
σ1◦. . .◦σq′(k). The same way is the simulation trapdoor
the concatenation of the simulation trapdoors ofπ, and
the extraction trapdoor the concatenation of extraction
trapdoors ofπ.

Prover PΠ(x,wΣ):

(1) RunK(1ν) to obtain a key pair(vk, sk) for the one-
time signature scheme.

(2) For eachi in the setg(vk) provepi = Pπ(x,w, σi).
For i 6∈ g(vk), definepi := ǫ, i.e. the empty string.

(3) Let P := p1 ◦ . . . ◦ pq′(k).
(4) Output(vk, x, P, sigsk(x, P).

Verifier VΠ(x, p = (vk, x′, P, z),Σ):

(1) Checkx = x′, andverifysig((x, P), z) = 1.
(2) DecomposeP into thepi for i ∈ g(vk).
(3) Return1 if Vπ(x, pi, σi) = 1 for all i ∈ g(vk), and

0 otherwise.

Simulator SΠ(x,Σ, simtd):

1) Generatevk, sk as the prover does.
2) For i ∈ g(vk) constructpi = Sπ(x, σi, simtdi) and

otherwisepi = ǫ.
3) Let P := p1 ◦ . . . ◦ pg′(k).
4) Output(vk, x, P, sigsk(x, P)).

ExtractorE(p = (vk, x′, P, z),Σ, extd):

1) CheckVΠ)(x
′, p,Σ). If the outcome is0 return⊥.

2) For eachi ∈ g(vk) run E(pi, σi, extdi) = wi. If wi

is a witness forx′ then returnwi, otherwise go on.
3) If no witness was found return⊥.

Proof:

1) Completeness, Zero-knowledge, Unpredictability:
These properties were already shown in [39].

2) Simulation-Extractability:
Let S1, . . . , Sn be the simulated proofs that the adver-
sary has queried andp = (vk, x, P, z) the outputted
proof. If the adversaries output has not this form, the
verification would not succeed and there is nothing to
show. In addition we may assume thatp 6= Si for all
1 ≤ i ≤ n, because otherwise there is again nothing

to show. The case thatvki = vkj for two different
simulated proofsSi 6= Sj occurs with negligible
probability, so we can exclude this case. Consider the
following two cases:

Case (i): vk = vki for some1 ≤ i ≤ n. Then one of
x, P, z is different from the corresponding
one inSi = (vki, xi, Pi, zi). If x 6= xi or
P 6= Pi thenz 6= zi or the verification fails.
Thus w.l.o.g.z 6= zi. But this means that the
adversary was able to forge a signature for
the one-time signature scheme which can
only happen with negligible probability.

Case (ii): vk 6= vki for all i. In this case holds
that g(vk)\

⋃

1≤i≤n

g(vki) 6= ∅. This means

there is somej ∈ {1, . . . , q′(k)} such that
j ∈ g(vk) but j 6∈

⋃

1≤i≤n

g(vki). If the

extraction fails, then the extraction forpj
fails, too, by construction. But then, this is
a successful adversary for the extractability
of π. Thus this case can only occur with
negligible probability, too.

Together this means that an adversary for the
simulation-extractability property ofΠ can only suc-
ceed with negligible probability, what we wanted to
show.

3) Length-regularity:
The functiong always selects the same number ofi
from vk. So the number of proofs which are done is
always the same, independent ofvk. Since the proof
systemπ is length regular, each proof has the same
length. For a security parameterν the verification keys
vk have the same length Becausex and P have are
length-regular we can conclude thatsigsk(x, P) has the
same length for allx, too. Thus the overall proof is
length-regular.

Taking a closer look at the proof one can see that almost
all propertiesP of the form ”P has to holds even when the
adversary gets access to a simulation oracle” can be derived
this way when the origin proof system has the propertyP .

H. Example relations

In this section we prove that the relations shown in
section III satisfy definition 2, i.e. that the computational
relations actually implement the symbolic ones. In both
examples, we make use of the fact that the all symbolic
relations are implicitly restricted toT, and all computational
ones to non-⊥.

Valid ciphertexts
First, we consider the example of proving that a ciphertext

is valid using the randomness as witness. The relations are
defined as follows:

34

Rsym
honest := {((enc(k,m, r), k,m), r) : k,m ∈ T, r ∈ NP }

Rsym
adv := {((enc(k,m, r), k,m), r∗) : k,m, r∗ ∈ T, r ∈ N}

Rcomp
honest := {((Aenc(k,m, r), k,m), r) : k,m, r ∈ {0, 1}∗}

Rcomp
adv := {((Aenc(k,m, r), k,m), r∗) : k,m, r, r∗ ∈ {0, 1}∗}

For the proof, we need two additional requirements on
the implementation. First, we need thatAenc in injective
in the first two arguments. For the first argument, the
encryption key, this can be achieved by concatenating it
to the encryption. The second one is only implied by the
IND-CCA property if the first argument is indeed of type
encryption key, but we need it for all bitstrings. Finally, we
require that the encoding of encryption keys is dense, i.e.
that for every bitstring of type encryption key, there is a
corresponding decryption key. Summarized, this leads to the
following lemma.

Lemma 13:If, in addition to the implementation condi-
tions, it holds:

1) For all k, k′,m,m′, r ∈ {0, 1}∗ Aenc(k,m, r) =
Aenc(k,m

′, r) implies m = m′ and Aenc(k,m, r) =
Aenc(k

′,m, r) implies k = k′

2) For allk ∈ {0, 1}∗ of type encryption key, there is ad ∈
{0, 1}∗ such thatp(d) = k according to implementation
condition 29.

Then follows thatRcomp
honest, R

comp
adv implement Rsym

adv with
usage restrictionRsym

honest.
Proof: Fix a consistent environmentη and termsx,w ∈

T.
We first show that if (x,w) ∈ Rsym

honest and
imgη(x) 6= ⊥ 6= imgη(w), then (imgη(x), imgη(w)) ∈
Rcomp

honest. Thus, fix x = (enc(k,m, r), k,m)
and w = r ∈ NP . Then imgη(enc(k,m, r))
= Aenc(imgη(k), imgη(m), imgη(r)) =: Aenc(k

′,m′, r′)
Here it is crucial that imgη(x) 6= ⊥ and hence
Aenc(imgη(k), imgη(m), imgη(r)) 6= ⊥. So, it follows
(imgη(x), imgη(w)) = ((Aenc(k

′,m′, r′),m′, r′), r′) ∈
Rsym

honest.

Now we show that if (imgη(x), imgη(w)) ∈ Rcomp
adv ,

then (x,w) ∈ Rsym
adv . Fix some x,w ∈ T with

(imgη(x), imgη(w)) ∈ Rcomp
adv . Then imgη(x) =

(c′, k′,m′) := (imgη(c), imgη(k), imgη(m)) with c′ =
Aenc(k

′,m′, r′) for somec, k,m ∈ T, r′ ∈ {0, 1}∗. Since
imgη(x) = (c′, k′,m′), we havex = (c, k,m) by definition
of imgη and injectivity ofApair. By implementation condi-
tion 2, c′ = imgη(c) has type ciphertext. Thus, by definition
of consistent environments,c = enc(k1,m1, r1) for some
k1,m1, r1 ∈ T. Sincec ∈ T, r1 ∈ N.

First, consider the caser1 ∈ NP . Then c′ =
imgη(c) = Aenc(imgη(k1), imgη(m1), img(r1)). Since

Aenc is injective in its first two arguments (follows
by the assumption (1) of the lemma), we have that
imgη(k1) = imgη(k), imgη(m1) = imgη(m). Thus
(x,w) = ((enc(k,m, r1), k,m), w) ∈ Rsym

adv .
Now consider the caser1 ∈ NE . SinceAekof(imgη(c)) =

imgη(k1) by consistency ofη, it follows that imgη(k1) =
imgη(k). Additionally, imgη(k1) is of type encryption key.
By assumption (2) there is a corresponding decryption key
d ∈ {0, 1}∗. By consistency it follows thatimgη(m1) =
Adec(d, imgη(enc(k1,m1, r1))) = m′ = imgη(m). Thus
(enc(k,m, r1), k,m), w) ∈ Rsym

adv .

Ability of decryption.
In the remaining section we consider the relation used

in the pi-calculus example. Basically, we use the system to
prove that a party is able to decrypt a given message. The
additionalm′ is only used for freshness.

Rsym
honest := {((m

′,m1), d) : m
′,m1, d ∈ T

such thatdec(d,m1) 6= ⊥}

Rsym
adv := Rsym

honest ∪ {((m
′,m1), d) :

m1 = garbageEnc(t,M), t ∈ T,M ∈ N}

Rcomp
adv := Rcomp

honest := {((m
′,m1), d) : m

′,m1, d ∈ {0, 1}
∗

such thatAdec(d,m1) 6= ⊥}

Additional to the implementation conditions, we require
that for each encryption key, there is exactly one decryption
key accepted by the decryption algorithm.

Lemma 14:If, in addition to the implementation con-
ditions, it holds: For alld, d′, c ∈ {0, 1}∗ it holds: If
Adec(d, c) 6= ⊥ 6= Adec(d

′, c) then d′ = d. Then follows
thatRcomp

honest, R
comp
adv implementRsym

adv with usage restriction
Rsym

honest.
Proof: First, we observe that by implementation condi-

tions 4 and 13, it follows that ifc ∈ {0, 1}∗ is not of type
ciphertext, then for alld ∈ {0, 1}∗ it holdsAdec(d,m) = ⊥.

Fix a consistent environmentη and termsx,w ∈ T.
We start showing that if(x,w) ∈ Rsym

honest andimgη(x) 6=
⊥ 6= imgη(w), then (imgη(x), imgη(w)) ∈ Rcomp

honest. By
definition it follows thatx = (m′,m1) andw = d. Since
dec(d,m1) 6= ⊥ it follows that d = dk(N) and m1 =
enc(ek(N), t,M) for someN,M ∈ N. By consistency ofη
it follows Adec(imgη(dk(N)), imgη(m1)) = imgη(t) 6= ⊥.
Thus (imgη(x), imgη(w))) ∈ Rcomp

honest.

Now we show that if(imgη(x), imgη(w)) ∈ Rcomp
adv , then

(x,w) ∈ Rsym
adv . By definition imgη(x) = (m′,m′

1) and
imgη(w) = d′ such thatAdec(d

′,m′
1) 6= ⊥. Thusx is of the

form (m,m1) andw somed. As mentioned above, it follows
that m′

1 is of type ciphertext, sinceAdec(d
′,m′

1) 6= ⊥.
Hence, by consistency ofη it follows thatm1 has the form
enc(ek(N), t,M) for someNNP ,M ∈ N, t ∈ T or it has

35

the formgarbageEnc(t, N) for t ∈ T, N ∈ N. In the latter
case,(x,w) ∈ Rsym

adv . In the first case, by consistency ofη fol-
lows thatAdec(imgη(dk(N)), imgη(enc(ek(N), t,M))) =
imgη(t) 6= ⊥. Thus imgη(w) = d′ = imgη(dk(N)) and
hencew = dk(N) by assumption. So(x,w) ∈ Rsym

adv .

36

	Introduction
	Our Contribution
	Outline of the Paper

	Symbolic Model for Zero-knowledge
	Computational implementation
	Computational soundness
	The proof
	Computational soundness proofs in CoSP
	Computational soundness based on extraction ZK
	Proof idea
	Proof overview

	Zero-knowledge in the applied -calculus
	Conclusions
	References
	Appendix
	Protocol conditions
	Implementation conditions
	Consistent environments and img
	CoSP Review
	Detailed Soundness Proof
	The faking simulator.
	Dolev-Yaoness
	Indistinguishability

	Proof of Claims
	Generic Construction of WSSZK-Proof Systems
	Example relations

