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Abstract—The abstraction of cryptographic operations by
term algebras, called symbolic models, is essential in alrsb
all tool-supported methods for analyzing security protocds.
Significant progress was made in proving that symbolic modsl
offering basic cryptographic operations such as encryptio and
digital signatures can be sound with respect to actual crypi-
graphic realizations and security definitions. Even abstrations
of sophisticated modern cryptographic primitives such as ero-
knowledge (ZK) proofs were shown to have a computationally
sound cryptographic realization, but only in ad-hoc formalisms
and at the cost of placing strong assumptions on the underlgg
cryptography, which leaves only highly inefficient realizaions.

In this paper, we make two contributions to this problem
space. First, we identify weaker cryptographic assumptios
that we show to be sufficient for computational soundness of
symbolic ZK proofs. These weaker assumptions are fulfilled
by existing efficient ZK schemes as well as generic ZK
constructions. Second, we conduct all computational soumess
proofs in CoSP, a recent framework that allows for casting co-
putational soundness proofs in a modular manner, independg
of the underlying symbolic calculi. Moreover, all computaional
soundness proofs conducted in CoSP automatically come with
mechanized proof support through an embedding of the applie
m-calculus.

Keywords-Symbolic zero-knowledge proofs; computational
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While symbolic models traditionally comprised only ba-
sic cryptographic operations, recent work has started to
extend them to more sophisticated primitives with unique
security features that go far beyond the traditional goal
of cryptography to solely offer secrecy and authenticity of
communication. Zero-knowledge (ZK) proBfsonstitute ar-
guably the most prominent such primit@é’.his primitive’s
unique security features, combined with the recent advent
of efficient cryptographic implementations of this priméi
for special classes of problems, have paved the way for its
deployment in modern applications. For instance, ZK proofs
can guarantee authentication yet preserve the anonymity of
protocol participants, as in the Civitas electronic voting
protocol [19] or the Pseudo Trust protoc@l [34], or they
can prove the reception of a certificate from a trusted
server without revealing the actual content, as in the Direc
Anonymous Attestation (DAA) protocdl [17]. More recently,
ZK proofs have been used to develop novel schemes for
anonymous webs of trust|[7] as well as privacy-aware proof-
carrying authorization [35].

A symbolic abstraction of (non-interactive) ZK proofs has
recently been put forward in[9]. The proposed abstraction
is suitable for mechanized proofs| [9].] [6] and was already
successfully used to produce the first fully mechanizedfproo
of central properties of the DAA protocol. A computa-

Proofs of security protocols are known to be error-prongional soundness result for such symbolic ZK proofs has

and, owing to the distributed-system aspects of multiplerecently been achieved as well [13]. However, this work
interleaved protocol runs, awkward for humans to makeimposes strong assumptions on the underlying cryptogeaphi
Hence work towards the automation of such proofs starteémplementation of zero-knowledge proofs: Among other
soon after the first protocols were developed. From the, starproperties, the zero-knowledge proof is required to satisf
the actual cryptographic operations in such proofs werghe notion of extraction zero-knowledge; so far, only one
idealized into so-called symbolic models, following [22], (inefficient) scheme is known that fulfills this notion [26].
[23], [36], e.g., seel[28],[[41],L12],[[33],[[38],[[15]. This Thus the vast number of recently proposed, far more efficient
idealization simplifies proof construction by freeing pi®o

from cryptographic details such as computational restric- 15 zero-knowledge proofi[24] consists of a message or a segueh
tions, probabilistic behavior, and error probabilitieswias ~ messages that combines two seemingly contradictory giegefirst, it

not at all clear whether symbolic models are a Sound:onstitutes a proof of a statement(e.g, z = "the message within this
ciphertext begins witt0") that cannot be forged, i.e., it is impossible, or

abStré}Ction _frp!”n real qry_ptography with its Com_pUtation_alat least computationally infeasible, to produce a zeroakedge proof of
security definitions. Existing work has largely bridgedsthi a wrong statement. Second, a zero-knowledge proof doesemealrany

ap for svmbolic models offering the core cryptogra hicinformation besides the bare fact thatconstitutes a valid statement.
9ap Y 9 yptograp 2Examples of other primitives studied in the symbolic settare blind-

operations such as encryption and digital signatures, €.Gignatures (e.g., in [29]), Diffie-Hellman-style exporiation (e.g., in[[1]),
see [3], [30], [12], [11], [31], 317, 120],118], 142]. or private contract signatures (e.g., inl[27]).



zero-knowledge schemes, and particularly those scheméwmw to use our result in the appliedealculus in Section V!.
that stem from generic ZK constructions, are not comSection VIl concludes and outlines future work.

prised by this result. Hence they do not serve as sound

instantiations of symbolic zero-knowledge proofs, leg\a Il. SYMBOLIC MODEL FORZERO-KNOWLEDGE

actually deployed ZK protocols without any computational |n this section, we describe our symbolic abstraction of
soundness guarantee. In addition, the result_in [13] castgero-knowledge proofs.

symbolic ZK proofs within an ad-hoc formalism that is not Terms and constructors. We model nonces, probabilistic

accessible to existing formal proof tools. public-key encryption and signatures, pairs, strings,zed-
A. Our Contribution knowledge proofs. Except for the latter, our modeling dpse
follows that of [5]. The following grammar describes the set

In this paper, we make the following two contributions toT of all terms that may occur in the symbolic model:

this problem space:

e First, we identify weaker cryptographic assumptions t m=enc(ek(N),t,N) | ek(N) | dk(N) |
that we show to be sufficient for obtaining a com- sig(sk(N),t, N) | vk(N) | sk(N) |
putational soundness result for symbolic ZK proofs. crs(N) | ZK (crs(N), £,t, N) |
Essentially, we show that the strong notion of extraction . T
zero-knowledge required i _[13] can be replaced by pair(t,t) | S| N |
the weaker notion of simulation-sound extractability. garbage(N) | garbageEnc(t, N) |
In contrast to extraction zero-knowledge, simulation- garbageSig(t, N) | garbageZK(t,t, N)
sound extractability constitutes an established property
that many existing cryptographic constructions satisfy.
In particular, there exist generic constructions for transHere N represents nonces and ranges d¥gf U Nz, two
forming any non-interactive ZK proof into a ZK proof disjoint infinite sets of nonces, the protocol nonces and ad-
that satisfies simulation-sound extractability (and theversary nonces, respectivelyk(N), dk(N), vk(N),sk(N)
remaining properties that we impose for computationakrepresent encryption, decryption, verification, and signi
soundness)_ [39], as well as several efficient schemekeys.enc(ek(NV;),t, N2) represents an encryption under pub-
that are known to satisfy simulation-sound extractabilitylic key ek(V;) of plaintextt using algorithmic randomness
(and the remaining properties), e.d.. [32]. 1[25],1[40]. N,. (Symbolically, the algorithmic randomness just allows
Thus requiring simulation-sound extractability insteadto distinguish different encryptions of the same plaintext
of extraction zero-knowledge greatly extends the poolcomputationally, it will actually be the randomness used by
of cryptographic constructions for ZK proofs that con-the encryption algorithmig(sk(N),t, N2) is a signature
stitute sound implementations, and it for the first timeof ¢+ under signing keysk(N;) with algorithmic random-
enables the computationally sound deployment of effinessN,. Bitstrings can be expressed using terms matching
cient ZK realizations. the nonterminalS. garbage(N) represents invalid terms,

e Second, we conduct all computational soundness proofgarbageEnc(t, N) and garbageSig(¢, N) represent invalid
in CoSP [[5], a recent framework that allows for cast-encryptions and signatures (but which at a first glance seem
ing computational soundness proofs in a conceptuallyo be valid encryptions/signatures with public kdy
modular and generic way: proving cryptographic

S i=empty | stringg(S) | string;(S)

N ! ! Zero-knowledge proofs.The interesting part are the zero-
primitives sound fory calculi only requiresz + y knowledge proofs. To understand the meaning of a term
proofs (instead of - y proofs without this framework), 7y ..s(N'). &, w, M), we first need to introduce the relation

and the process of embedding calculi is conceptuallypsym this relation is part of the symbolic modeling, but

: d
decoupled from computational soundness proofs of“q; results are parametric i®>™. (l.e., our result
adv ’
S satisfies

cryptographic primitives. In particular, computational 1,445 for any choice ofR*¥™, as long asR

. . adv ! adv
soundness proofs conducted in CoSP are automaticallyg 1oy constraints ™™ specifies what a valid witness
valid for the appliedr-calculus, and hence accessible ¢, o particular stat

o . e : ement would be. For example, if we
to existing mechanized verification techniques. wish to show that we know a decryption key that

B. Outline of the Paper decrypts a given ciphertext, then we defineR>" :l:3
. . . . z,w) : AN, M, t.x = enc(ek(N),t, M), w = dk(N
First, we introduce our symbolic abstraction of (non-{( ) R (ck(N), ¢, M), (N)}
'ntera_(:t've) ZK proofs within COS.P In Sect| II. Sectlofi Il SNotice that it is no restriction that statement and witnesasist of
contains the weaker cryptographic assumptions that we showvily one argument: we can encode tuples usingpthie-constructor. Also,
to be sufficient for achieving computational soundness oft is no restriction that we use the same relation for all Zigis: To
7K fs O in th . ted in Secfigh IVencode multiple relationd?1, ..., R,, we can define a relatiolkR :=
proois. Our main theorem IS presented in Sec {((a,x),w) : Fi.a = a; A (z,w) € R;} wherea; are distinct terms

for which we give a proof overview in Sectiéa V. We show without names or variables.



The term ZK(crs(N),z,w, M) then represents a zero- condition on the honest protocol, not on the adversary.) In
knowledge proof constructed with respect to a commorsome cases, however, it may be advantageous B¢t
reference stringrs(/V) with statement: and witnessv and  be strictly smaller thar?}Y;"". This permits us to model a
using algorithmic randomness/. A valid proof satisfies certain asymmetry in guarantees given by a zero-knowledge
(z,w) € RZ. Note that our symbolic model does not proof system: To honestly generate a valid proof, we need a
ensure that any terfdK (crs(NV),z, w, M) is a valid proof.  witness with(z, w) € Ry ., but given a malicious prover,
Instead, we provide a destructasrify, below that allows we only have the guarantee that the prover knows a witness
to check the validity. As we will see below, the statement with (z,w) € R>. We call R>"  the usage restriction

adv " honest
can be extracted from a proof, but the witnesss hidden.  rhe adversary. The capabilities of the adversary are de-

Destructors. Protocol operations on terms are describedscribed by a deduction relatidn. S - ¢ means that from
by a set of destructors. These are partial functions fronthe termsS, the adversary can dedute- is defined by the
T" to T (wheren depends on the destructor). The de-following rules:
structors are specified ifi_ Figur¢ 1. Note that there are

a number of destructors that do not modify their input meS N €Ng

(isek, iszk, equals, verifyg,, ...). These are useful for test- Stm SEN

ing properties of terms: The protocol can, e.g., compute Stty,... ty t1,...,tn €T

isek(t) and then branch depending on whether the destructor ' constructor or destructor  F(ty,...,t,) € T
succeeds. We only describe the destructors related to ZK S+ evalp(?)

proofs. getPub(t) returns the statement proven by a

ZK proof t. getPub does not check whether the proof Note that the adversary cannot deduce protocol nonces.
is actually valid; for this, we haveerify, (t1,%2) which ~ These are secret until explicitly revealed. The capaeditf
checks whethet; is a valid proof with respect to the CRS the adversaries with respect to the network (interceptifpod

t1. If so, t, is returned (and can, e.g., be fed ig@Pub); messages) are modeled explicitly by the protocol: if the
otherwisel is returnediscrs(t) andiszk(t) allow us to test adversary is allowed to intercept message, the protocol
if ¢is a CRS or a (possibly invalid) zero-knowledge proof. explicitly communicated through the adversary.

Protocols. We use the protocol model from the CoSP Protocol execution.Given a particular protocdl (modeled
framework [5]. There, a protocol is modeled as a (possiblyas a tree), the set of possible protocol traces is defined by
infinite) tree of nodes. Each node corresponds to a particuldraversing the tree: in case of an input node the adversary
protocol action such as receiving a term from the adversaryjondeterministically picks a termwith S ¢ whereS are
sending a previously computed term to the adversary, aphe terms sent so far through output nodes; at computation
plying a constructor or destructor to previously computednodes, a new term is computed by applying a constructor or
terms (and branching depending on whether the applicatiodestructor to terms computed/received at earlier nodes; th

is successful), or picking a nonce. We do not describe théhe left or right successor is taken depending on whether the
protocol model in detail here, but it suffices to know that adestructor succeeded. The sequence of nodes we traverse in
protocol can freely apply constructors and destructormco this fashion is called aymbolic node tracef the protocol.
putation nodes), branch depending on destructor sucaess, aBy specifying sets of node traces, we can specify trace
communicate with the adversary. Despite the simplicity ofproperties for a given protocol. We refer g [5] for details
the model, it is powerful enough to embed powerful calculion the protocol model and its semantics.

such as the applied-calculus (shown in[[5]) or RCF, a

core calculus for F# (shown i [10]). (In_Section] VI, we [1l. COMPUTATIONAL IMPLEMENTATION
present our computational soundness result in the applied \y,x now describe how to implement the constructors
m-calculus.) and destructors from the preceding section computatipnall

Protocol conditions. The protocols we consider are subject Following [5], we do so by specifying a partial determirgsti
to a number of conditions, listed in the Appendix. Thefunction Ar : ({0,1}*)" — {0,1}* (the computational
most interesting protocol conditionvalid proofs condition  implementation ofF) for each constructor or destructor
During the symbolic execution of the protocol, wheneverF : T™ — T. Intuitively, Ar should behave ad’,
the protocol constructs a ZK pro@K(c, z,w, N) we have only on bitstrings, e.9.Aenc(ek, m,r) should encryptm
(z,w) € R . Here RY™" _ is some fixed but arbitrary using encryption keyk and algorithmic randomness The

honest honest

relation with R’™ =~ C R>" (like in R, our results distributionAy specifies the distribution according to which

honest — adv !

are parametric in;>™" ). In the simplest case, we would nonces are picked. In Appendix] B we give the full list

honest

have R’ . := R}”. Then the valid proofs condition of implementation conditions that the computational imple

simply requires that the protocol never tries to construcimentation must fulfill. These are mostly simple syntactic
a ZK-proof with an invalid witness. (We only impose this conditions (such asAg(Apair(x,y)) = z). Furthermore,
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dec(dk(t1),enc(ek(t1),m,t2)) =m crsof (ZK(crs(t1), t2,t3,t4)) = crs(t1)
verify;, (Vk(t1),sig(sk(t1), t2,t3)) = t2 crsof (garbageZK (1, t2,t3)) = t1
isek(ek(t)) = ek(t) vkof (sig(sk(t1), t2,t3)) = vk(t1)
isvk(vk(t)) = vk(¢) vkof(garbageSig(t1,t2)) = t1
isenc(enc(ek(t1),t2,t3)) = enc(ek(t1), t2,t3) fst(pair(t1,t2))) = t1
isenc(garbageEnc(t1,t2)) = garbageEnc(¢1, t2) snd(pair(t1,t2)) = t2
issig(sig(sk(t1), t2,t3)) = sig(sk(t1), te, t3) unstringo (stringo(s)) = s
issig(garbageSig(t1, t2)) = garbageSig(t1, t2) unstring; (strings (s)) = s
iscrs(crs(t1)) = crs(t1) getPub(ZK(t1,t2,ts,t4)) = t2
iszk(ZK (t1, ta, ts, t4)) = ZK(t1, 2, t3, ta) getPub(garbageZK(t1,t2,13)) = to
iszk(garbageZK (t1, t2, t3)) = garbageZK(t1, t2, t3) equals(z,z) =z
ekof (enc(ek(t1), t2,t3)) = ek(t1) verify . (crs(t1), ZK(crs(t1), t2, ts, t4))
ekof (garbageEnc(t1,t2)) = t1 = ZK(crs(t1), t2, t3, ta) if (t2,t3) € R

Figure 1. Definition of destructors. If no rule matches, atmesor returns..

we require thatA.,. and Ay, correspond to an IND- computational soundness. We answer this question pdgitive
CCA secure encryption scheme and a strongly unforgeabM/e use the weaker and more popular notiorsiofiulation-
signature scheme. These conditions are essentially the sarmound extractabilityln a nutshell, this notion guarantees that
as in [5]. Here, we will only discuss the cryptographic the adversary cannot produce proofs from which no witness
properties the implementation of ZK proofs should satisfy. can be extracted, even when given access to a ZK-simulator.

Properties of ZK proofs. In [14], it was shown that for We actually need an even weaker properhonest
getting computational soundness of (non-interactivepzer simulation-sound extractabilihHere the adversary may ask
knowledge proofs, we need at least the following propeﬁles the ZK-simulator to produce a simulated proof forf he
Completenessif prover and verifier are honest, the proof knows a witnessv for z.

IS accepted)_extractablhty (g|ven_a suitable trapdoor, one In the symbolic model, we have distinguished two rela-
can get a witness out of a valid proof — this models the,.

Sym Sym : H _
fact that the prover knows the witness)ero-knowledge tions Rad" aNd By, the first modglmg what the adver_ .

) ) sary is able to do, the second modeling what honest partici-
(given a suitable trapdoor and a true statementn ZK-

X : . : pants are allowed to do. Similarly, our definition w&akly
simulator can produce proofs without knowing a witness
symbollcally -sound zero-knowledge pradibtinguishes two
that are indistinguishable from normally generated proofs

for x), unpredictability(two proofs are equal only with ne felations R, * 2 Fyoue- All COnditions assume that
z), unp Yy P a y g- w) € Ry (“Weakly” dis-

o o . honest part|C|pants usér, honest”
ligible probability), length-regularity(the length of_a proof tdﬁgwshes our notion from that in [14] which requires
only depends on the length of statement and witness), an
i . extraction ZK.)

some variant ohon-malleability(see below). Furthermore,
they required for convenience that the verification and the Definition 1 (Weakly symbolically-sound ZK proofg):
extraction algorithm are deterministic. weakly symbolically-sound zero-knowledge proof system

The interesting property is non-malleability: Intuitiyel for relations Ry 1%, i)™ is a tuple of polynomial-time
non-malleability means that given a proof for some state@lgorithms(K, P,'V)) such that there exist polynomial-time
mentz, it is not possible to derive a proof for some other algorithms(E, S) and the following properties hold:
statementz’, even if z logically entailsz’. (For example,
given a proof that the_ ciphertextcontains a plaintext < 5  Completeness: Let a polynomial-time adversarybe
|'t should not be possible to cqnstruct a proof thabn'_talns given. Let (crs, simtd, extd) « K(17). Let (x, w) «
1 <6.) There_are several _vanants of non-malle_abnr_ty: [14] A(17,crs). Let proof « P(z,w,crs). Then with
used the notlon obxtractpn zero-knowledgevhich is a overwhelming probability iy, it holds (z, w) ¢ R
strong variant of extractability (we are aware of only one or V(z, proof, crs) = 1.
scheme in the literature that has this propérty [26]). Tledy | ’ ’

it as an open problem whether weaker variants also lead to ® Zero-Knowledge: .Fix a polynomial-time oracle ad-
versary A. For given crs,simtd, let Op(z,w) :=
) i comp —
4It was not shown that these are the minimal properties, bwait shown P(x,w,.crs) if (z,w) € Rygpeq @nd Op(z,w) := L
that none of these properties can be dropped without seitaidbstitute. otherwise, and letOg(x,w) := S(z,crs,simtd) if

comp
adv



comp

(z,w) € Ry b andOs(z,w) := L otherwise. Then  m,,m,, we define a functiommg, that translates a term to
a bitstring (essentially by applying » for each constructor
[Pr[A®P (17, crs) = 1: (crs, ... ) « K(17)] F). The functionimg, depends on an environmenta par-
— Pr[A%9S (17, crs) = 1 : (crs,...) « K(17)]| tial function T — {0,1}* that assigns bitstrings to nonces
and adversary-generated terms. We use the definition of a
consistent environmerthat lists various natural properties
an environment will have (such as mappifig-terms to
i ) bitstrings of the right type); the definition of consistenvie
given. Let (crs,simtd,extd) < K(ln)'wnll'ft ronments is deferred to AppendiX C. Given these notions, we
O(z,w) := S(z,crs,simtd) if (z,w) € Ry can formalize the conditiong®™ , RES™P should satisfy:
and L otherwise. Let(x, proof) « A°(17, crs). Let honest? “Tady

w ¢« B(z,proof,extd). Then with overwhelming  pefinition 2 (Implementation of relations) pair of re-
probability, if V(x, proof, crs) = 1 andproof was not lations RE™  R™ on {0,1}* implement a relation

comp y honest’ ~ "adv 0 . . i
output byO then (z, w) € Rg,”. R¥™ on T with usage restrictior?}Y™ _ if the following
e Unpredictability: Let a polynomial-time adversary conditions hold for any consistente &:
A be given. Let (crs,simtd,extd) <« K(17). (i) (z,w) € R¥™  andimg (z) # L # img, (w) —>
Let (z,w,proof’) < A(17, crs,simtd, extd). Then ’ &n &n

honest
with overwhelming probability, it holdsproof’ #

is negligible inn.
e Honest simulation-sound extractability: Let
a polynomial-time oracle adversary. A be

(img,, (), img, (w)) € Ryo.

honest

i) (img,(z),img, (w)) € Rige? = (z,w) € Ry
P(z,w,crs) or (z,w) ¢ Rf]z?]lcpsp. (I(II)) (Fisyrgnn( )C Rs%ﬂl( a21)d Rco?}?ﬁ’ c Rcorr(lp ) adv o
e Length-regularity: Let two witnesses and w’, and “honest = “Tadv honest = “fadv _
statementsr and 2’ be given such thafz| = || We briefly give some examples for symbolic relations and

and |w| = |w'|. Let (crs, simtd, extd) < K(17). Then their implementation. The detailed proofs that they indeed
let proof « P(z,w, crs) and proof’ « P(z',w’, crs). satisfy Definition[ 2 are postponed to Appenfiik H.

Then we getproof| = |proof’| with probability 1. Valid encryptionsSeveral protocols require one party needs
e Deterministic verification and extraction: The algo-to show that a produced ciphertext is valid. This is basjcall
rithmsV and E are deterministic. done by showing, that there is some randomness, such that
(We do not explicitly list soundness because it is implied bythe encryption algorithm, applied to a public encryptioy ke
honest simulation-sound extractability.) o and the content, leads to the given ciphertext. Symbojicall
We then require thatl..s, Az, Averity,, correspond to this can be abstracted to the following relation:
. CI'ss k) verl 3 ZK
the key generatioilK, proverP, and verifierV of a weakly RY™ = {((enc(k,m, ), k,m),r) : k,m € T,r € Np}

symbolically-sound ZK proof system for some relations " . " . .
RE™P REMP \We stress that using the construction in  tadv = {((enc(k, m,r), k,m),r*) : k,m,r* € T,r € N}

honest’ ~ “adv com %
[39] on a length-regular and extractable NIZK leads toRhones = {((Aenc(k,m, 1), k,m), ) k,m,r € {0,1}7}
weakly symbolically-sound ZK proof system. The proof is R := {((Aenc(k, m,7), k,m),r*) : k,m,r,r* € {0,1}*}
analogous to the one in [39], see Appendix G.

. . . . Ability of decryptingIn sectior V], we give a short example,
The relations. It remains to specify what conditions we Y yping V] g P

; . how automated verification for the symbolic model can
place on the relationg; "> R.o"P. Obviously, we can- Y

not expect computational sour;lg;less if we allow arbitrarybe done. We give a variation of the Needham-Schroeder
rotocol that uses a proof a party is able to decrypt a given
RO™P RCO™MP - Instead, we need to formulate the factp P party yprag

honest’ * “adv ~" ciphertext. Therefore, we use the following relations:
that ;P R°™P somehow correspond to the symbolic P ¢

honest’ ~ “adv

relationsR,”™ R, We thus give minimal requirements Ry = {((m',ma),d) :m',my,d e T

on the relationship between those relations. Essentially, such thatdec(d, my) # 1}

we want that whenevefz,w) € R;" . then for the RV = Y™ U {(mmy), d)
corresponding computational bitstrings,, m,, we have adv - honest LR

(ma, my) € REO™ + this guarantees that if symbolically, we m = garbageEnc(t, M), € T, M € N}

respect the usage restrictidgj’" ., then computationally R.q," := Ryone := {((m’,m1),d) : m’,my,d € {0,1}*

we only use witnesses the rlgrggst protocol is aIIowesgnito use. such thatAgec(d, m1) # L}

And whenever(m,, m.,) € R, ;" we have(z,w) € R} . _ » »

this guarantees that a computational adversary will not b&ummary of implementation conditions. Summarizing,
able to prove statements, that do not also correspond we require that the functiongly satisfy a list of imple-
to statements: that can be proven symbolically. (Formally, mentation conditions. The most important condition is that
these conditions are used to show Leminas 4[dnd 6 in thd.., Azk, Averity,,, cOrrespond to a weakly symbolically-
computational soundness proof below.) To model corresporsound ZK proof s;s;em for some relatio " RoGP

dence between the symbolic termsw and the bitstrings which implementR:%" with usage restrictio?;> ™

honest*



Protocol execution.The CoSP framework specifies seman- T
tics for executing a given protocol in the computational A Sim I
model given an computational implementatiohr. The 3

execution is analogous to the symbolic executjon (page 3),
except that computation nodes apply functiohs instead
of constructors and destructors (with branching depending

onAp(...) = 1). Input and output nodes receive and sende aqversaryd on the other hand: we call this a hybrid

bitstrings to a probabilistic polynomial-time adversariis execution. (Sef Figurg 2.) The simulator has to satisfy the

probabilistic process yields a trace of nodes, toenputa- following two properties:

tional node t Detail ified in[5]. . . .

lonal node trace Details are specified in [5] ¢ Indistinguishability: The node trace in the hybrid exe-

IV. COMPUTATIONAL SOUNDNESS cution is computationally indistinguishable from that in

the computational execution with adversaty

e Dolev-Yaoness: The simulatdiim never (except for
negligible probability) sends termsto the protocol

Figure 2. A typical CoSP simulator

Using the definitions from Sectionl Il ard]Ill, we can
finally state our main result. Arace propertyis a prefix-
closed, efficiently _demdablg s_ﬁ Of. node traces. We say a with S ¥ ¢t where S is the list of termsSim received
protocolIT symbolically satisfie® if every symbolic node from the orotocol so far
trace (se¢ page 3) df is in P. We saylIl computationally P :

satisfiesP if the computational node trace (s€e page 6) isl he existence of such a simulator then guarantees computa-
in P with overwhelming probability. tional soundness: Dolev-Yaoness guarantees that only node

Theorem 1 (Computational soundness of ZK proofs): traces occur in the hybrid execution that are possible in the

Let IT be a protocol satisfying the protocol conditions listed SYmbolic execution, and indistinguishability guarantees
in the appendix. Let» be a computational implementation only node traces occur in the computational execution that

satisfying the implementation conditions frdm_Section |11 €&n occur in the hybrid one.
Then for any node trac®, if II symbolically satisfies?, = How to construct a simulator? In [5], the simulatorSim is

thenIl computationally satisfie®. ¢ constructed as follows: Whenever it gets a term from the pro-
We describe the proof in_Sectiod V. tocol, it constructs a corresponding bitstring and sendis it

the adversary, and when receiving a bitstring from the adver

V. THE PROOF sary it parses it and sends the resulting term to the pratocol

In this section, we describe our proof of computationalConstructing bitstrings is done using a functiénparsing
soundnesd (Theorem 1). First, we describe how the compbitstrings to terms using a function (See[Figure]2.) The
tational soundness proof for encryptions and signatures isimulator picks all random values and keys himself: For each
done in the CoSP framework (Section V-A). To understandprotocol nonceV, he initially picks a bitstringy. He then
our proof it is essential to understand that proof first. Thentranslates, e.g4(N) := ry andg(ek(N)) := Aek(rn) and
we sketch how computational soundness of zero-knowledgé(enc(ek(N),t, M)) := Aenc(Aex(rn), B(t), rar). Translat-
proofs that have the extraction zero-knowledge property waing back also is natural: Givem = ry, we letr(m) := N,
shown in [14] [Section V-B). It is instructive to compare and if ¢ is a ciphertext that can be decryptedrasusing
their approach to ours. [n_Secfion Y-C, we describe the idealqx(rn), we setr(c) := enc(ek(N),7(m), M). However,
underlying our proof (using simulation-sound extract@pil in the last case, a subtlety occurs: what noifeshould we
instead of extraction-soundness). Finally_in Secfion]w#® use as symbolic randomnessfc)? Here we distinguish
give an overview over our proof. The full proof is given in two cases:
appendiXE. The lemmas in this overview are simplified and If ¢ was earlier produced by the simulator: Themvas

informal. the result of computing(¢) for somet = enc(ek(N),t', M)
) ) and some noncé/. We then simply set(c) := ¢t and have
A. Computational soundness proofs in CoSP consistently mapped back to the term it came from.

Remember that in the CoSP framework, a protocol is If ¢ was not produced by the simulator: In this case it
modeled as a tree whose nodes correspond to the stepsisfan adversary generated encryption, ald should be
the protocol execution; security properties are expressed an adversary nonce to represent that fact. We could just
sets of node traces. Computational soundness means that fage a fresh noncd/ € N, but that would introduce the
any polynomial-time adversang the trace in the computa- need of additional bookkeeping: If we comptute= 7(c),
tional execution is, except with negligible probabilitis@a and later 5(¢t) is invoked, we need to make sure that
possible node trace in the symbolic execution. The approach(t) = c in order for theSim to work consistently (formally,
for showing this is to construct a so-called simulatam. this is needed in the proof of the indistinguishability of
The simulator is a machine that interacts with a symbolicSim). And we need to make sure that when computing
execution of the protocoll on the one hand, and with 7(¢) again, we use the samd. This bookkeeping can be



avoided using the following trick: We identify the advergar returned byg(t) with ¢ := enc(...), thenr(c) just recalls
nonces with symbol&/™ annotated with bitstrings:. Then  the termt without having to decrypt. Henc®? . is never
7(c) := enc(ek(N),7(m), N¢), i.e., we setM := N°. This  asked to decrypt a ciphertext it produced.
ensures that differentget different randomness nonch’s, In Sims, we replace the encryption oracte’ . by a
the same: is always assigned the sam&, andg(t) is easy fake encryption oracIe@%ke that encrypts zero-plaintexts
to define:3(enc(ek(N), m, N¢)) := c because we know that instead of the true plaintexts. Sine®Y . is never asked
enc(ek(N), m, N¢) can only have been produced byc). to decrypt a ciphertext it produced, IND-CCA security
To illustrate, here are excerpts of the definitionsgdodind  guarantees that the hybrid executions Sifn, and Sims

7 (the first matching rule counts): are indistinguishable. Since the plaintexts givenQg,,.
e 7(c) == enc(ek(M),t, N) if ¢ has earlier been output are never used, we can further chantfenc(N,t, M)) to
by S(enc(ek(M),t,N)) for someM € N,N € Np never even compute the plaintextt).
e 7(c) = enc(ek(M), (m), N¢) if c is of type cipher- Finally, in Simy, we additionally changes to use a
text andr (Aeor (¢)) = ek(M) for someM € Np and ~ signing oracle in order to produce signatures. As in the

m = Agqec(Aax(rar),c) # L case ofSimy, the hybrid executions dfims; andSim; are
o B(enc(ek(N),t,M)) = Aenc(Acx(rn), B(t),rar) if  indistinguishable.

M € Np Since the hybrid executions &fim and Simy are indis-
e Benc(ek(M),t,N™)) :=m if M € Np tinguishable, in order to show Dolev-YaonessSifn, it is

Bitstringsm that cannot be suitably parsed are mapped into":‘“ﬁi‘jer!t to show D0|eV-Ya0ne_ss_ 6im; .
terms garbage(N'™) and similar that can then be mapped The first step to showing this is to show that whenever
back by using the annotatiom. Simy invokes/(t), thenS + ¢ holds (whereS are the terms

received from the protocol). This follows from the fact that

Showing indis_tinguishability. S_howing indistingl_JishabiIity 3 is invoked on terms, sent by the protocol (which are then
essentially boils down to showing that the functighandr 1, yefinition in 5), and recursively descends only into sub-

consistently translate terms back and forth. More pregisel (..« that can be deduced fram In particular, inSims we
we show thats(r(m)) = m andr(5(t)) = t. Furthermore, a4e gyre that(¢) is not invoked byS(enc(ek(N),t, M));

we need to show that in any protocol step where a constru¢-, . uid not be deducible fromme(ck(N), ¢, M)
tor or destructorF is applied to termg,...,t,, we have "

that B(F'(t1,...,tn)) = Arp(B(t1),...,B(t,)). This makes
sure that the computational execution (whdre is applied)
stays in sync with the hybrid execution (whefeis applied
and the result is translated usifAyy The proofs of these facts
are lengthy (involving case distinctions over all constous
and destructors) but do not provide much additional insight?ncryption.)

they are very important though becau.s.e they are responsible Now we can conclude Dolev-Yaonessifu,: If it does
for most of the implementation conditions that are needeq1ot hold, Sim; sends a ternt = () wherem was sent

for the computational soundness result. by the adversaryd. Thent has a visible subternt,qq.
Showing Dolev-YaonessThe proof of Dolev-Yaoness is Visibility implies that the recursive computation of(mn)
where most of the actual cryptographic assumptions comBad a subinvocation(my.q) = tp.q. FOr each possible
in. In this sketch, we will slightly deviate from the origina case oft,,; we derive a contradiction. For example, if
proof in [5] for easier comparison with the proof in the ¢, is a protocol nonce, thef(ty,q) Was never invoked
present paper. The differences are, however, inessentigdince S ¥ t,,4) and thusm.; = 7y was guessed by the
Starting from the simulatoBim, we introduce a sequence simulator without ever accessing; which can happen only
of simulatorsSimy, Simj;, Simy. (We start the numbering with negligible probability. Other cases are excluded,,e.g
with 4 because we later introduce additional simulators.) by the unforgeability of the signature scheme and by the
In Simy, we change the functiop as follows: When  unpredictability of encryptions.
invoked asf(enc(ek(N),t, M)) with M € Np, instead Thus,Sim; is Dolev-Yao, henc&im is indistinguishable
of computing Acnc(Aex(rn), B(t), 7ar), B invokes an en- and Dolev-Yao. Computational soundness follows.
cryption oracleOY . to produce the ciphertext Similarly,

B(ek(N)) returns. the public key provided by the oracle B- Computational soundness based on extraction ZK
ON .. The hybrid executions ofim and Sim, are then We now describe how computational soundness for zero-
indistinguishable. (Here we use that the protocol cond#io knowledge proofs was shown ih_[14], based on the strong
guarantee that no randomness is used in two places.) Alsassumption of extraction zero-knowledge. Our presentatio
the functionr is changed to invok&® . whenever it needs strongly deviates from the details of the proof In1[14]; we

enc

to decrypt a ciphertext while parsing. Notice thatcifvas  explain what their proof would be like if recast in the CoSP

Next we prove that wheneve$ ¥ t, thent contains
a visible subtermy,q with S ¥ 3.4 such thatt,,, is a
protocol nonce, or a ciphertexiic(..., N) where N is a
protocol nonces, or a signature, or a few other similar cases
(Visibility is a purely syntactic condition and essentyall
means that,,q iS not protected by an honestly generated



framework. This makes it easier to compare the proof to oucondition guarantees that this check would succeed anyway,
proof and the proof described in the preceding section.  so this change leads to an indistinguishable hybrid executi
Extraction zero-knowledge is a strong property that guarFurthermore, since witnesses given@,, are never used,
antees the following: It is not possible to distinguish awe can further chang@(ZK(crs(N),t¢,t', M)) to never even
prover-oracle from the a simulator-oracle, even when givertompute the witnesg(t’).
access to an extraction oracle that extracts the witnessesThe rest of the proof is analogous to thafin Section]V-A.
from arbitrary proofs except the ones produced by thd.e., we continue with the simulatd$ims, Sim4, Sim; as
prover/simulator-oracle. Notice that there is a strond@ma  described there and show th8im; is Dolev-Yao. When
to IND-CCA secure encryption. The prover-oracle correshowing that inSimy, 3(¢) is only invoked whenS ¢, we
sponds to an encryption-oracle, the witness to the plaintexalso make use of the fact th&{ZK(crs(N), t,t’, M)) does
the simulator-oracle to a fake encryption-oracle encngpti not descend into the witnegX¢’) any more.
zero-plaintexts, and the extractor-oracle to a decryption Note that this computational soundness proof crucially
oracle. depends on the extraction ZK property. We need to use the
This analogy allows us to adapt the idea for provingextractor in the construction af and we need to replace the
computational soundness of encryptions to the case gfrover-oracle by a ZK-simulator-oracle in order to makessur
ZK proofs. As in the proof described ih—Section V-A, that3 does not descend into witnesses. And that replacement
we construct a simulatorSim with translation func- takes place in a setting where the parsing functi@md thus
tions = and 8. We extendS and 7 to deal with ZK the extractor is used.
proofs in the obvious way3(ZK(crs(N),t,t',N)) = )
Az (Aas(rn), B(1), B(#),rv)) and B(ZK(...,N™)) = C. Proofidea
m. When parsing a ZK proof, we setr(z) := t if ¢t was We now describe the idea of our approach that allows us
earlier output by3(z). Otherwise, we obtain the statement to get rid of extraction ZK. As explained in_Section V-B,
from z by applyingAgeipub, We identify from whichry the  we cannot use the extractor as part of the parsing function
CRS used i was computed, and we get the witnesdy 7 if we do not have extraction ZK. However, the following
applying the extraction algorithm. ( was produced with observation shows that we might not need to run the ex-
respect to a CRS that was not produced by the simulatotractor: Although in the computational setting, the onlyywa
we set7(z) := garbageZK(...).). Finally, 7(z) returns to compute a witness is to extract it (unless the relation is
ZK(crs(N), 7(x), 7(w), N?). trivial), in the symbolic setting, given a symbolic staterhe
The proof of indistinguishability is analogous to that in z, it is typically easy to compute a corresponding symbolic
[Section V-A, except that we use the extractability propertywitnessw. (E.g., when proving the knowledge of a secret
of the proof system to make sure that the simulator does ndtey that decrypts a term = enc(ek(N),¢, M), then the
abort when invoking the extraction algorithm while tryirg t witness isdk(/N) which can just be read off.) We stress
parse a ZK proot in 7(z). Notice that plain extractability that we do not claim that the witness can be deduced (in the
(as opposed to simulation-sound extractability) can bel usesense of-) from z, only that it can be efficiently computed.
here since we do not use a ZK-simulator in the construction Thus, for an adversary-generated proofwith CRS

of Sim. Aqs(ry) and statement,, and that passes verification, we
To prove Dolev-Yaoness, we proceed a$in Secfion V-Adefiner(z) as follows: We runw := SymbExtr(S, z) and
except that we introduce three more intermediate simulaeturn 7(z) := ZK(crs(N),z,w, N?). Here S is the list

tors Simy, Simg, and Sims. (See[Figure]3.) Irfim;, we  of terms received by the protocol so f&ymbExtr(S, )
invoke a prover-oracl@2. with statement3(t) and wit- denotes an arbitrary witness satisfying the following two
nesss(t’) in B(ZK(crs(N),t,t', M)) instead of computing conditions:w is a valid witness forz (i.e., (z,w) € R)))
Azx (Aes(rn), B(t), B(t),rar). (This is analogous t8imy  andS F w. (Our result assumes that= SymbExtr(S, z)
above.)O%; aborts if the witness is not valid. is efficiently computable whenevaer exists, this will be the
In Simy, we replace the prover-oracl®). by a ZK- case for most natural relations.)
simulator-oracleOY . That oracle runs the ZK-simulator ~ The conditionS - w is necessary since otherwise the
(after checking that the witness is valid). Extraction zerosimulator Sim would produce a proof that the adversary
knowledge guarantees that this replacement leads to an ieeuld not have deduced (since he could not have deduced the
distinguishable hybrid execution. (We need that the wineswitness), and thus the simulator would not be Dolev-Yao.
is checked before running the simulator because extraction Assume for the moment th&ymbExtr(S,z) always
zero-knowledge gives no guarantees in the case of invaliducceeds (i.e., in the hybrid execution, there always is a

witnesses, even if the witness is not actually used by thes with (z,w) € R and S + w). In this case, we

adv

ZK-simulator.) can finish the proof analogously to that in_Section |V-B:
Finally, in Sim3 we modify the ZK-simulator-oracl®? | Indistinguishability of Sim follows by carefully checking

such that it does not check the witness any more. A protocall cases, and the Dolev-Yaoness by the same sequence of



DY . DY . DY,ZK . DY,ZK . DY,ZK . DY,ZK .
Sim Simy Sims Simg Simy Sims Sim ¢

original use proof oracleuse simulation oracle use simulation oracle use encryption use fake use signing
simulator check witness check witness do not check witness oracle encryption oracle oracle

Figure 3. Simulators used in the proof. An arrow marked DY mseRolev-Yaoness is propagated from one simulator to therofn arrow marked ZK
means ZK-breaks are propagated (needdd in Secfioh V-D).

simulators as ifi_Secfion ViB. We do not need extraction 3) 7(z) = ZK(crs(Ny),t1,t2,No) if 2 has earlier

zero-knowledge when going frorfim; to Sims, though, been output byS(ZK(crs(Ny),t1,t2, No)) for some

because inSim;, no extractor is used (we use symbolic N1, Ny € Np

extraction instead). Thus the zero-knowledge property is 4) 7(z) = ZK(crs(N),z,w, N*) if z is of type zero-

sufficient instead of extraction zero-knowledge. knowledge proof and-(z) was computed earlier and
But how do we show thaSymbExtr(S,z) always has outpuZK(crs(N), z, w, N?)

succeeds? Two things might go wrong. First, there might 5) 7(z) = ZK(crs(N),z,w,N?) if z is of type zero-

be no valid witnessv with (z,w) € R:.". Notice that the knowledge proof,7(Acsof(z)) = crs(N) for some

extractability property only guarantees that computatilyn N € Np, Aveity,, (Acrsot(2),2) = 2z, my =

a valid witness for the computational statement exists. Agetpub(2) # L, ¢ = 1(my) # L andw :=

This does not necessarily imply that translating that veithe SymbExtr(S, z) where S is the set of terms sent to

into a term (e.g., using) yields a valid symbolic witness. the adversary so far.

Second, there might be a valid witnessbut that witness is ~ 6) S(crs(N)) = Aas(rn) if N € Np
not deducable§ ¥ w). Again, extractability only guarantees 7) B(crs(N°)) ==c¢
that the adversary “knows” a witness in the computational 8) 3(ZK(crs(N1),t1,t2, N2)) = Azk(Acs(rn, ), B(t1),
setting, this does not necessarily imply deducability ia th B(ta),rn,) if Ny, Ny € Np
symbolic setting. 9) B(ZK(crs(tg), t1,t2, N%)) :=s

In essence, to show th&tymbExtr (S, z) succeeds, we 10) B(garbageZK(t1,ts, N7)) = z
need a kind of computational soundness result: Wheneveilere SymbExtr(S, z) returns a witnessy with (z,w) €
computationally, there the adversary knows a valid Withessp™™ and S - w if suchw exists, andL otherwise. A key
then symbolically, the adversary knows a valid witnesssThi point is what to do wherSymbExtr(S, z) fails. We will
seems problematic, because it seems that we need to usgager show that this happens with negligible probabilityypn
computational soundness result within our proof of compuput for now we need to specify the behavior in this case:

tational soundness — a seeming circularity. Fortunatelg, t « When SymbExtr(S, ) returns L in the rule[5), we
circularity can be resolved: The fact thiymbExtr(5, z) say anextraction failureoccurred. In this case, the sim-

supcr?ek;jls IS USEd. o_nly ;/r\]/hen prowtn? trSa]tn IS |ntql|st|n- I ulator runs the extractor (using the extraction trapdoor
guishable (i.e., mimics the computational execution well) corresponding 1. (ry)) to get a (computational)

?u:hthe fact tr:atSymlextr(tS, z) tsuﬁc?e?S ?o.(test not relatt? witnessm,, for m,. ThenSim computesw := 7*(z)
be closely related to the Dolev-Yaoness and can be handied 1617 18 defined liker, except that the rulEls) is
: dropped (hence* will map an adversary-generated ZK-
in the same proof. And that proof does not use the fact that proof always to aarbageZK-term). Then the simulator

symbolic extraction succeeds. aborts. If(z,w) € R, we say aZK-breakoccurred.

adv’
D. Proof overview The reader may wonder why we let the simulator compute

) ) a symbolic witnessu in case of an extraction failure even
We now give a more detailed walk-through through ourinoughq is never used. The reason is that we later show
proof. This exposition can also be seen as a guide througfpat this w always has(z,w) € R¥™ and S + w, which
the full proof in appendikE. contradicts the fact that we get an extraction failure in the
The simulator. The first step is to define the simulat®im,  first place. The reason for using instead ofr is that we
i.e., the translation functiof andr. Here, we only present have to avoid getting extraction failures within extraatio

the parts of the definition related to ZK proofs (the first failures.

matching rule counts): The sequence of simulatorsAs in [Section V-B, we con-
1) 7(z) == crs(N) if z = Aus(ry) for some N that  struct a sequence of simulators. The sequence is essegntiall
occurred in a subterm of the forms(IV) before the same (sele Figuré 3Jim, differs from Sim by using a
2) 7(z) == crs(N?) if z is of type common reference prover-oracle for constructing ZK-proofs in of invokinfy,k
string directly in 5. We also use that oracle to obtain the CRS, and



for extractingm,, after an extraction failure. I1$ims, we Notice that we cannot use the same trick to show that ZK-
replace the prover-oracle by a ZK-simulator-oracle. If thebreaks carry over fronSim; to Sim,: Whether ZK-breaks
oracle is invoked with an invalid witness, it aborts insteadoccur is determined only after the invocation of the extract
of running the ZK-simulator. IrSims, we still use a ZK- Fortunately, we only need that ZK-breaks carry over from
simulator-oracle, but we do not check the witness first. Thu$im, to Simy.
B(w) is not invoked on witnesses any more in rile 8)n, To show Lemmal?, it remains to show that Dolev-Yaoness,
replacesAe,. and Aqec by calls to an encryption oracle, extraction failures, and ZK-breaks carry over fr@im, to
Sims replaces that encryption oracle by a fake encryptiorSims. The only difference between these simulators is that
oracle using zero-plaintexts, afiin ; finally uses a signing  Sims does not check whether the witness, given to the
oracle instead ofd,. ZK-simulation-oracle is valid (i.e(8(t1), 8(t2)) € Ryone.,
We can now show thabim; is Dolev-Yao. The proof in rule[8). Thus, to conclude the prooflof Lemmla 2, we need
of this fact is analogous to the case the proof sketchetb show that the probability that the ZK-simulation-oraisle
in [Section V-B. We even show something slightly strongercalled with an invalid witness is negligible.
namely that neither nor 7* outputs an undeducable term:
Lemma 1 §imy is Dolev-Yao):For any invocatiort :=
7(m) or t := 7*(m), we haveS I ¢t whereS are the terms

sent to the simulator so far. In particul8im is Dolev-Yao. Lemma 3 (No invalid symbolic witnesses): Sims  is

< . .
. . . Dolev-Yao, th 1€18), h t Sy th
Now, as irSection V-B, we shofim is Dolev-Yao iff Sim ¢ 0lev-Yao, then in 1UI€I8), we havey, t2) € Fyopes, Wi

. . . overwhelming probability. The same holds feim o
is Dolev-Yao. Later, we will also need preservation of the Lemma 4 (Relating the relations, part 1jn an execu-
property that ZK-breaks do not occur. 9 ' P )

; . S o tion of Simjs the following holds with overwhelming proba-
Lemma 2 (Preservation of simulator-properties): Sim bility: if (z,w) € B¥™ _ then(8(x), B(w)) € RE™  The
is Dolev-Yao iff Simy is. e In the hybrid execution ofim Y-, w honest T, AW honest*
extraction failures occur with negligible probability ifhe

same holds fofim. o
same holds foiSimy. e In the hybrid execution oBim, Once we have these lemmas, Lemma 2 follows: We know
(not Sim!) ZK-breaks occur with negligible probability iff

from thatSim is Dolev-Yao. We have already
the same holds fofim;. o

shown that this property carries over fims. Thus by
Dolev-Yaoness, extraction failures, and ZK-breaks carr

No invalid witnesses.To show that the ZK-simulation-
oracle is only called bySim, with valid computational
witnesses3(¢;), we need to show two things:

emmad B andl4(3(t1), B(t2)) € Ryon . in rule[8).
over from Sim3 to Simy4 and fromSims; to Sims because . . .
s ! g ! esdmulator sends only terms that are deducible (i.e., that
by protocol condition3. (Notice that randomness might hav sy_mbohc a_dversary COUlq also have sent), then in the
occurred within a witness, but due to the chang8iing, we ybrid execution, no execution trace occurs that could not
do not invoke5(w) on withesses any more.) Dolev-Yaoness, . . : ) 4

b(w) Y ) condition[I0, in a symbolic executiorit,,t2) € Ry
Sims due to the IND-CCA property. Dolev-Yaoness and WNenever the protocol constructs &R (cts(N), 11, t2, M)-
extraction failures carry over froffim to Sim; because the rms (ZK-terms fromr have M ¢ Ny, it follows that
randomness used for constructing ZK-proofs is not reuse - . £/

9 £8P {’Z,m) e RY™ i rule[8).[LemmaB follows [emma 4
Furthermore, Dolev-Yaoness and extraction failures carry ) 1 T o honest? ~“ady

over from Sim; to Simy because of the zero-knowledge Ry with usage restriction?, . ; was de-
property of the proof system. There is a subtlety here: )
Sim; does use the extractor (namely after an extraction .Thu.s, Lemmak]3 arid 4 hold, tHus Lemmia 2 follows. Since
failure). So usually, we would not be allowed to apply the S is Dolev-Yao bylLemmall, it follows with Lemmad 2
zero-knowledge property (we would need extraction zZK).' <" 2"
But fortunately, after an extraction failure, no terms arelndistinguishable.
sent by the simulator. Thus, anything that happens after amdistinguishability of Sim. As described i_Section VIA,
is Dolev-Yao or not. Thus, for analyzing whether Dolev-to show (a) that3(F(¢1,...,tn)) = Ar(B(t1),...,8(tn))
Yaoness carries over frofim; to Sims, we can assume that when the protocol computes(¢4, ..., t,). And, of course,
those simulators abort directly after incurring an exiact we need (b) that the simulator does not abort. The proof of
extractions occur in the simulator, and we can use the zeronly interesting case i8' = verify,. Here we need that an
knowledge property. Analogously, extraction failuresrgar honestly-generated ZK proof with statementind witness
over fromSim; to Sims. w passes verification symbolically(w € RY™ ) iff it

To show[Lemmal3, we observe the following: If the

the randomness used in encrypting and signing is not re-us

have occurred in the symbolic execution either. By protocol
extraction failures, and ZK-breaks carry over fr&im, to

term. Since rulé€18) only applies to such protocol-generated
by protocol conditior 3. . .

yp s follows because we required th&Rf""  R-GF implement

signed to maké Lemmd 4 true.

that Sim is Dolev-Yao. It remains to show th&im is
extraction failure has no impact on whether the simulatoto show indistinguishability oSim, the main subproof is
failure (without invoking the extractor afterwards). Them (@) is, as before, done by careful checking of all cases. The

honest
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passes verification computationallyf(x), 5(w) € RV ). VI. ZERO-KNOWLEDGE IN THE APPLIED7T-CALCULUS

Fortunately, we have already derived all needed facts: By |, [5] it was shown how to use computational soundness
Lemmasll and13(xz,w) € Ry, with overwhelming regyits in the CoSP framework (such as our result) and
probability. And then by Lemmal 45(z), 8(w) € Rignes-  derive computational soundness results for a dialect of the
To show [(b), we need to show that no extraction failuresappliedr-calculus (se€[]5] for a description of the calculus
occur. The approach for this is a bit roundabout, we firstogether with semantics for symbolic and computational
analyzeSims: execution). Basically, they present a generic transfaomat
Lemma 5 (No ZK-breaks)in the hybrid execution of that translates a process in the appliedalculus into a
Sims, ZK-breaks occur with negligible probability. o CoSP process (generic means that the transformation works

To show this, we use the simulation-sound extractabilityfor any symbolic model, including the one presented here).
property of the proof System to show that the Va'ngLSmw Thus, all that needs to be done to get a Computatlonal

extracted by the extractor after an extraction failureséati Soundness result for zero-knowledge proofs in the appiied
(Mg, my) € RES™P. And then it follows tha(z, w) € RY™ calculus is to write down what conditions a process needs to

adv adv

with z := 7(mg), w = 7*(my) by the converse of Satisfy such that the translated process satisfies thequioto

Cemma 4: conditions (listed in the appendix): .
Lemma 6 (Relating the relations, part 20 an execu- Definition 3 (Valid processes)A process P in the ap-

tion of Sim, the following holds with overwhelming prob- plied wtcalculus isvalid if it satisfies the following two
ability: if (mg,my) € RE™ then (r(my),7*(my)) €  Properties:

adv

Ry o () The processP matches the following grammar: Let

adv * . N
. . x, T4, Ts, X Stand for different sets of variables (general
Thus[Lemmab is shown. From this, wiifl Lemmia 2 we ge‘tpurpose, decryption key, signing key, and CRS variables).

that ZK-breaks occur with negligible probability also for Leta, r, r. stand for three sets of names (general purpose,

Simy. Based on this fact, we can show the following Iemma:randomness, and ZK randomness nam BN =« | ze |

. i ) a | pair(M,N) | S and S ::= stringy(S) | string;(S) |
~Lemma 7 (No extraction failures)n the hybrid execu- .1, and letD be an arbitrary term consisting of con-
tion of Sim, extraction failures occur with negligible prob- structors, destructors, variables, and names excepnd
ability. © D ou= M | isek(D) | isenc(D) | dec(zq,D) | fst(D) |
To see this, we use that ZK-breaks do not occur in thend(D) | ekof(D) | equals(D, D) | isvk(D) | issig(D) |
execution ofSim;. Thus, by definition of ZK-breaks, this Verifysig(bab) | vkof(D) | iscrs(D) | crsof(D) |

means that(z,w) € RJy for the termsz = 7(ma)  verify, (2., D) | iszk(D) | getPub(D) | unstringy (D) |
and w := 7(m,) computed after the extraction failure. yssying, (D) and

Furthermore, by Temmal 1, it follows th&tt w. But then, = ~ S ~

by definition, SymbExtr(z, S) would have output av or P, Q == M(N).P | M(x).P |0 | (P |Q)|!P |va.P |
another witness, but nat. Thus the extraction failure would let =D in P else Q | event(e).P |

not have occurred. This shols Lemmia 7.

Finally, from Lemmad15 andl2 we get that extraction . - L .
failures occur with negligible probability in the executio vr.let x = enc(isek(D1), Dy, ) in P else Q |
of Sim, too. Thus property[{b) also holds, thus we have vr.let © = vk(r) in let x4 = sk(r) in P |
shownSim to be indistinguishable.

Notice that the roundabout way throufim, andSim¢ to
show that extraction failures do not occur wiihm is neces-

vr.let x = ek(r) in let xq = dk(r) in P |

vr.let & = sig(xs, D1,7) in P else Q |

vr.let z. = crs(r,) in P |

sary: We cannot directly show Lemma 5 f8im; because vr.event zk.
Simy uses the simulator to prove untrue statements (e.g., let x = ZK(wc,ﬁl,f),rz) in P else Q

it may prove that a ciphertext contains a certain value, bu
since we use a fake encryption oracle, that ciphertext Bgtua
contains a zero-plaintext), so simulation-sound extfzlita " .
cannot be applied. Also, we cannot use the féi¢t 7*(z) (i) For ~any proce*ss @ that does not contain
directly onSim because this fact cannot be propagated fronf Vents, if P|Q, — Elevent . ohlet -

Sim to Sim (sincer* is executed after the extractor is used, 2Kt 12, b5, ta) in Py else Pfy]m with an evaluation
we would need extraction ZK to bridge frofims to Sim;).  CONtext E, then (ton,tsn) € R, for any bijective

ENote that in each of the last six production rules, several
occurrences of or r, denote the same name.)

honest

mappingn from names to nonces. o
Concluding the proof. We have shown tha$im is Dolev-  Analogous to[[5, Thm. 4], we obtain:
Yao and indistinguishable. Frorl[5, Thm. 1] we then imme- Theorem 2 (Computational soundness of ZK proofs):
diately ge{ Theoreml1. Let P be a closed valid process ant}> a computational
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implementation satisfying the implementation conditions This protocol can be directly encoded in ProVBrithe
from [Section 1. Then for anyr-trace propery o, if P

symbolically satisfiesp, then P computationally satisfies R

.

Automated analysis in Proverif. To show the usability of

our modeling, we have analyzed a toy protocol in ProVerif
[16]. Our protocol is a variant of the Needham-Schroeder-
Protocol in which the recipient proves that he knows a nonce

instead of sending that nonce back.

A

The

{((m’

Rsym

honest

T,N

my = enc(ekp, N1, 71)

B
ZK(crs, (enc(eka, No,72),m1),dkp, 13)

enc(ekp, No, r4)

sym
honest

relations used for the ZK-proofs arB
,m1),(dk)) : dec(dk,mq) # L} and R}
U {((m/,m1), (dk)) : m; = garbageEnc(t, N),t €
€ N}, i.e., B proves that he can decrypt;. The

definition of the destructoverify,;. depends on the relation
™, we can encode it in ProVerif as

adv ?

reduc verifyZK(crst,),
zk(crsq),(c,enc(ekty),z,r2)),dk(r1),t4))
= zk(crs¢1),(c,enc(ekfy),z,r2)),dk(r),t4);
verifyZK(crs(t1),
zk(crsg1),(ciph,garbageEnest3)),t4,t5))
= zk(crs¢1),(ciph,garbageEneft3)),t4,t5).
ProVerif can automatically show thaP symbolically
satisfies the trace propertiesd 4 = beging and endp =
begin 4. To show thatP also computationally satisfies
that trace property, we need to show thatis valid. P
satisfies the syntactic conditioh _(Definitioi]3(i)). To ckec
that a process” satisfies the dynamic conditiof](ii), we
use ProVerif again: We replace every occurrencePof=
let © = ZK(t1,ta,t3,t4) in Py else Py by let o/ =
checkzk(ta,t3) in P’ else event badzk where checkzk is

m

a destructor that checks if its arguments areRji’’
reduc checkzkg(enc(ekf1),z,r2)),dk(r1)) = empty

partm’ of the statement is not used in the relation, but the ProVerif automatically shows that the everadzkdoes

non-malleablity of our ZK proofs ensures that the adversary?ot occur. It follows thatP is valid.
cannot changen’ in an existing proof. In the AppendixIH,

we prove that this relation satisfies definitibh 2, thus the

abstraction is sound.
We express this protocol in the appliegcalculus:

P .=

A=

B =

vra.let eky = ek(ra) in let dky = dk(ra) in
vrp.let ekp = ek(rp) in let dkp = dk(rp) in
vre.let crs = crs(rg) in
ch{(eka,ekp,crs)).(!A|'B)

event begin 4 .vN7.

vry.let my = enc(ekp, Ni,71) in ch(my).ch(msy).
let stmt = getPub(verify, (crs, ma)) in

if snd(stmt) = my then

let No = dec(dka, fst(stmt)) in

vry.let mg = enc(ekp, Na,ry4) in

ch(mg).event end a

event begin g.ch(my).

let N1 = dec(dkp,m1) in vNs.

vry.let ¢ = enc(eka, No,m2) in

vrs.event zk.let mo = ZK(crs, (¢, mq),dkp,73) in
ch{mz).ch(ms).

if Ny = dec(dkp,ms) then event endp

5A m-trace property is essentially a prefix-closed set of secpeerof
events that are allowed to occur. Sek [5] for a precise definénd for the
definition of “symbolically/computationally satisfyingd w-trace property.
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VII. CONCLUSIONS

In this paper, we have shown that computational sound-
ness of symbolic ZK proofs can be achieved under realistic
cryptographic assumptions for which efficient realizasion
and generic constructions are known. The computational
soundness proof has been conducted in CoSP, and hence
it holds independent of the underlying symbolic calculi and
comes with mechanized proof support.

We conclude by highlighting several open questions that
we consider as future work. First, current abstractionsehod
non-interactive ZK proofs, i.e., a ZK proof constitutes a
message that can forwarded, put into other terms, etc. Bevel
oping a symbolic abstraction to reflect (the more common)
interactive ZK proofs thus requires a conceptually diffgre
approach, as such proofs cannot be replayed, put into other
terms, etc. We plan to draw ideas from a recently proposed
symbolic abstraction for (interactive) secure multi-gaam-
putation [8] to reflect this behavior. Second, recent work ha
investigated the soundness of cryptographic implemeamtati
on the source code level, e.g., in F#1[10]. Developing
a computational soundness result for ZK implementations
would allow to safely use existing libraries that offer ZK
implementations to higher-level protocols. Finally, sdun
ness proofs of individual primitives have typically been
proved in isolation, without a guarantee that the soundness
result prevails when composed. We plan to build on recent
work on composable soundness notidng [21] to establish a
composable soundness result for ZK proofs.

bwe provide the ProVerif input online at

http://www.infsec.cs.uni-saarland.ddiendun/zk-cosp/


http://www.infsec.cs.uni-saarland.de/~bendun/zk-cosp/
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1) The annotation of eachs-node, each key-paiek, dk)
and (vk, sk) is a fresh nonce. which does not occur
anywhere else.

2) There is no node annotated with
garbage, garbageEnc,  garbageSig,  garbageZK,
or N € Ng constructor in the protocol.

3) The last argument of anc,sig, ZK constructor are
fresh nonces. These nonces are not used anywhere else
except in case ofnc andsig as part of a subterm of
the third argument in @K-node.

4) A dk-node is only used as first argument farc-node
or as subterm of the third argument irZ&-node.

5) A sk-node is only used as first argument fag-node
or as subterm of the third argument irZ&-node.

6) The first argument of dec-computation node is dk-
node.

7) The first argument of aig-computation node is ak-
node.

8) The first argument of &K-computation is acrs-
computation node which is annotated by a nonte
Np. This nonce is only used as annotation of this
node and nowhere else.

9) The first argument of aerify . -computation is ars-

computation node which is annotated by a nonte

Np. This nonce is only used as annotation of this

node and nowhere else.

The protocol respects the usage restrictijfi, .

the following sense:

In the symbolic execution of the protocol, when-

ever a ZK-computation-noder is reached, then

(f(va), f(rw)) € R where f is the function map-

ping nodes to terms (cf. the definition of the symbolic

execution in[[5] or appendix]D) and, andv,, are the
second and third argument of

v It holds: There is an efficient
algorithm SymbExtr, that given a termM/ together
with a setS of terms (which was generated according to
any protocol satisfying the protocol conditions above),

outputs a termiV, such thatS - N and(N, M) € R

or outputs L if there is no such terniV. We call a re-

lation satisfying this property symbolically extractable

is efficiently decidable.

a

in

adv

We will call a protocol satisfying these constraints a safe

19th IEEE Computer Security Foundations Workshop (CSFW)protocol. The class of safe protocols is the set of all praitoc

pages 153-166, 2006.
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which are safe.



B. Implementation conditions

Essentially the implementation conditions say that the
zero-knowledge proof system is weakly symbolically-sqund

{0,1}* such thatn is of type nonce. Then holds
Aeckot (Aenc(k, m,n)) = k. If ¢ € {0,1}* is not of type
ciphertext themAexor(c) = L.

the encryption scheme is IND-CCA secure, the signaturel4) Letvk,sk € {0,1}" be a keypair, i.e(vk, sk) is in the

scheme is strongly existentially unforgeable and several

trivial conditions as e.g. thatinstring; is the inverse of
stringiﬂ

1) The implementation is an implementation according to

Definition[8 (see SectionlD).

2) There are disjoint and efficiently recognizable sets of
bitstrings representing the node types nonce, cipher-
text, encryption key, decryption key, signature, verifi-

cation key, signing key, common reference string,
knowledge proof, pair and payload-string.

The images ofdy have type nonce (for alN € N),
Acne have type ciphertextd., have type encryption
key, Aqi have type decryption keyAs, have type
signature A,y have type verification ke, have type

signing key, A..s have type common reference string,

Azk have type zero-knowledge proot,,.;; have type
pair, and Astring,, Astring: » Aempty Nave type payload
string.

3) The implementatiom ;v for noncesN € Np compute
uniform distributions or{0, 1}* and output the sampled
value tagged as nonce (hérés the security parameter).

4) If Agec(dky, m) # L then Aexor(m) = eky, i.e. the

decryption only succeeds if the corresponding encryp-

tion key can be extracted out of the ciphertext.

5) Avkof(Asig(Ask(I),y7Z)) = Avk(I) for all Yy €
{0,1}* andz, z nonces. Ife is of type signature then
Aot (€) # L, otherwiseA,yt(e) = L.

6) For all m,k € {0,1}*, k having type encryption
key, andr # ' € {0,1}* with || = || holds
that Aenc(k, m,r) and Aenc(k, m,r’) are equal with
negligible probability.

7) For allm, k € {0,1}*, k having type signing key, and
r # 1" € {0,1}* with |r| = || holds thatAg, (k, m, )
and Agig (k, m, ") are equal with negligible probability.

8) The implementationgdl.y, Aqx, Aenc, and Age. belong
to an encryption scheméKeyGen,,., ENC, DEC)
which is IND-CCA secure.

9) The implementationsl,y,As, Asig, and Averifysig be-
long to a signature scheni&eyGeng,, SIG, VERsig)
which is strongly existential unforgeable.

10) All implementations are length regular, i.e. if the ibpu

enc’

has the same length the output will have the same too.

11) Formq,mo € {0,1}* holds Afst(Apair(ml,mg)) =
my and Asnd(Apair(mlamQ)) =ma

12) Adec(Aak (1), Aenc(Aek(r),m, ")) = m for all r,¢’
nonces.

13) Let £ € {0,1}* be an encryption key anth,n €

7 The implementation conditions up [0]19 follow the oneslih [Bhe
remaining ones are used to show soundness w.r.t. zero-&dgel
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image ofKeyGeng,, then holds for alin,n € {0,1}*:

Avkof(Asig (Sk, m, n)) = vk.

15) Avmfysig (Avk(r), Asig (Ask (), m, ")) = m for all r, '
nonces.

16) For allp, s € {0,1}* we have thatélverifysig (p,s) # L
implies Aykot(s) = p.

17) Form € {0, 1}* holds Aunstring; (Astring, (M)) = m for

1€ {O, 1} and Astringo (m) 75 Astring1 (m)

18) For allm € {0,1}* of type zero-knowledge proof

holds thatiszk(m) = m and if m has not type zero-

knowledge proof, therszk(m) = L. The same holds
for issig w.r.t. the type signature andenc w.r.t. the
type ciphertext.

19) If & € {0,1}* is not of the type encryption key then
holds for allm,n € {0,1}* that Aenc(k, m,n) = L.
The same has to hold for the type signing key and the
implementation of signatures.

20) The implementationd.s, Azk, Averify,,, belongs to
a zero-knowledge proof systettK, P, V) which is
a weak symbolically-sound zero-knowledge proof sys-
tem.

21) For all z € {0,1}* holds Ayerity,, (crsof(2),z) €

{L, 2z}, where Ayerity,, (crsof(z),z) = z if and only

if z is correct w.r.t. to the verifier of the proof system.

22) If z € {0,1}* is not of type zero-knowledge, then
verify, (crsof(z), z) = L.

23) For all p,q,r,s € {0,1}* we have thatz =
Azx(p,q,7,8) # L implies Acsof(2) = p.

24) For all z € {0,1}* holds: If z is not of type zero-
knowledge proof them st (2) = L.

25) If 2 := Azx (’ﬁ’L) # 1 then AverifyZK (Acrsof(z), Z) = 1.

26) If (z,w) & Rioo® then for allc,r € {0,1}*, it holds
Azx(c,x,w,r) = L.

27) Lete,z,w,n € {0,1}* such thatc is of type crs and
let z = Azk (¢, z,w,n). If z# L then holds that: =
AgetPub(z)-

28) We require that the relationg, ">  R.o P are an
implementation ofR>""" with usage restrictio®”" .
in the sense of Definitiop] 2.

29) Ford € {0,1}* of type decryption key there is a

efficiently computable functiop : {0,1}* — {0,1}*

such that for allm,n € {0,1}*, n of type nonce, it

holds Agec(d, Aenc(p(d), m,n)) = m, i.e. p computes
the encryption key corresponding tb The analogous
statement has to holds for signing keys and verification
keys.

C. Consistent environments andg,,

Definition 4: Let £ be the set of all partial functiorns :

T — {0,1}*. We will call such anp an environment.



Let an implementation for the symbolic model by given.
Define the partial functionmg, : T — {0,1}* forn € £
by taking the first matching rule:

e For a nonceVN defineimg, (N) := n(N)

e For a termt = crs(N) defineimg, (crs(NV)) := n(t)

e Foratermt = ZK(crs(N), z, w, M) defineimg, (t) :=

n(t)

e Let C be a constructor frorfek, dk, vk, sk, enc, sig,

crs, garbageZK, garbageSig, garbageEnc, garbage}.

Fort = C(t1,...,tn—1,N) with N € Npg define
img,, () == n(t).

e For a term Ctr,...,tn) define
imgn(c(tla ER atn)) = AC(imgn(tl)a s almgn(tn)) '

if for all < we haveimg, (¢;) # L, and L otherwise.

An environment; is consistent if the following conditions

are satisfiedd

e 7 is injective.

e For each constructo€ we require that the bitstring
img, (C(t1,...,t,)) has the type as follows: The con-
structorsenc, garbageEnc are mapped to type cipher-
text, sig, garbageSig to signaturesZK, garbageZK to
ZK proofs, ek, dk, vk,sk to encryption, decryption,
verification, signing key, respectivelyrs to common
reference stringpair to pair, stringg, string;, empty
to payload-string N to nonce,garbage has none of
these types.

o Ackot(img, (enc(ek(N),t, M))) = img, (ek(N)) for
all NyM € Np, t e T.

e For all t = sig(sk(N),u, M) w
T it holds: verifyg, (vkof(t),t) # L implies that
Averiy,,, (img, (vkof(t)), img, (¢)) img,, (u).

e Fort =ZK(crs(N),z,,w, M) with M € N holds:

)

1) Averity,, (img, (crs(V)), n(t)) = n(t)

ith NNM € N,u €

2) Agetpun(n(t)) = img, ()
3) Acrsot (n(t)) = img, (crs(N))

e For all t,t € T it holds that
Avcrifysig (img77 (garbageSig(t1,t2))) = L

e For al NNM € N, t € T it holds that
Adec(img, (dk(N)), img, (enc(ek(N),t, M))) =
img, () andimg,, (t) # L.

e For all enc(ek(N),t,M) € T it holds: If
img, (enc(ek(N),t, M)) =: ¢ # L, then it follows
Ackot(¢) = img, (ek(NV)).

e For all enc(ek(N),t,M) € T it holds: If
img, (enc(ek(N),t, M)) # L andd € {0,1}* such

that img, (ek(NV)) p(d)ff, then it follows that
Agec(d, imgn(enc(ek(N), t,M))) = imgn(t).
As long as then used in the proof of lemmia1l1 stays

consistent, it is possible to add many more properties to the
list. In fact, not all of them are used in the soundness result

8We consider a condition in which a tertroccurs such thaitmg, (t) =
1 as satisfied.
SWherep is the function defined in implementation condition 29.
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itself, but to prove that the example relations given satisf
definition[2.

D. CoSP Review

We start with the definitions that capture symbolic notions
of protocols and executions and proceed with their compu-
tational counterpart. After that, we introduce computaio
soundness as well as sufficient conditions for achieving
computational soundness in CoSP.

Symbolic ModelWe first introduce the notion of a symbolic
model, which comprises basic concepts such as constructors
destructors, and deduction relations.

Definition 5 (Symbolic model)A constructor C' is a
symbol with an arity. We writeC'/n € C to say that the
setC contains a constructar’ with arity n. A nonceN is
a symbols with zero arity. Anessage typ&' over C and
N is a set of terms over constructogs and nonceN. A
destructorD of arity n over a message typ¥ is a partial
mapT™ — T. If D is undefined ort, we write D(¢) = L.

A deduction relatiort- over a message typE is a relation

between2T andT.

A symbolic modeM = (C,N, T, D, ) consists of a set
of constructorsC, a set of nonceiN, a message typ&
over C andNN with N C T, a set of destructor® over T,
and a deduction relation overT.

To unify notation, if F' is a constructor or nonce, we write

evalp(t1,...,t,) := F(t) if F(t) € T andevalp(t) := L

otherwise. IfF' is a destructor, we writevalg(t) := F(t)

if F(t) # L andevalp(t) := L otherwise.

Protocols in CoSP essentially constitute a tree with distin
guished nodes for computations, input, output and branches

Definition 6 (CoSP protocol)A CoSP protocolll; is a
tree with a distinguished root and labels on edges and nodes.
Each node has a unique identifi§rand one of the following
types:

e Computation nodes are annotated with a constructor,
nonce, or destructad¥/n together with the identifiers of
n (not necessarily distinct) nodes. Computation nodes
have exactly two successors; the corresponding edges
are labeled with yes and no, respectively.

e Output nodes are annotated with the identifier of one
node. An output node has exactly one successor.

e Input nodes have no further annotation.An input node
has exactly one successor.

e Control nodes are annotated with a bitstring control
node has at least one and up to countably many succes-
sors annotated with distinct bitstringlse {0, 1}*. (We
call I the out-metadata and the in-metadata.)

e Nondeterministic nodes have no further annotation.
Nondeterministic nodes have at least one and at most
finitely many successors; the corresponding edges are
labeled with distinct bitstrings.

Assigning each nondetrerministic node a probability distr

bution over its successors yields the notion gir@babilistic



CoSP protocal A probabilistic CoSP protocol is called
efficientif the lengths of all identifiers iV are polynomially
bounded, and the labels 8f can be computed in polynomial
time.

and that the implementations of symbolic constructors and
destructors are used.

Definition 9 (Computational execution):et a symbolic
modelM = (C,N, T, D, }), a computational implementa-

The symbolic execution of a CoSP protocol for a givention A of M, and a probabilistic CoSP protodd), be given.

symbolic model consists of a sequence of trip(&sv, f)
where S represents the knowledge of the adversary,

represents the current node identifier in the protocol, andlefine a probability d|str|but|onNodesM AT

Let a probabilistic polynomial-time interactive machiie
(the adversary) be given, and Iptbe a polynomial. We
g(k), the

f represents a partial function mapping already processecbmputational node trace, on (finite) lists of node iderrsfie

node identifiers to messages.

Definition 7 (Symbolic execution):et a symbolic model
(C,N, T,D,F) and a CoSP protocdll, be given. A full
trace is a (finite) list of tupleqsS;,v;, f;) such that the
following conditions hold:

e Correct start:S; =, 4 is the root ofIl,, f; is a totally

undefined partial function mapping node identifiers to

terms.

Valid transition: For every two consecutive tuples
(S,v, f) and (57,7, ') in the list, letz be the node
identifiers in the annotation aof and definef through

t; = f(7;). We have:

— If v is a computation node with constructor, destruc-

tor or nonceF, thenS’ = S. If m = evalg(f) # L,
V' is the yes-successor ofin Il;, and ' = f(v ==
m). If m = L, thenv/’ is the no-successor of and
fr=1r

— If v is an input node, thers’ = S and v/’ is the
successor ol in II; and there exists am: with
Stmandf = f(m:=m).

— If v is an output node, thef’ =
successor of in II, and f/ = f.

SuU{t}, visthe

— If v is a control node or a nondeterministic node,

theny' is a successor of and f' = f and S’ = S.

(v;) according to the following probabilistic algorithm (both
the algorithm and the adversary run on ingit

e Initial state: v v is the root ofll,. Let f be
the empty partial function from node identifiers to bit-
strings, and let: be an initially empty patrial function
from N to bitstrings.

e Fori=23,... do:
— Let 7 be the node identifiers in the annotationzof
mj = f(7;).

— Proceed according to the type of nodeAll cases
are similar to the ones of the symbolic execution,
but here we use the computational implementation
instead of the symbols (constructors and destructors
are executed, nonces are sampled once and their
result is cached). A list of the full detailed cases can
be found in [4].

— Lety; == v.

— Let len be the number of nodes from the rootito
plus the total length of all bitstrings in the range of
f. If len > p(k), stop.

Computational soundnesdNe finally introduce trace prop-
erties and computational soundness in CoSP.

Definition 10 (Trace property)A trace propertyP is an
efficiently decidable and prefix-closed set of (finite) lisfs

A list of node identifiers(v;) is a node trace if there is a pode identifiers.

full node trace with these node identifiers. Let M = (C,N, T,D, ) be a symbolic model antl,
Computational Model.To define the corresponding compu-a CoSP protocol. Thedl, symbolically satisfies a trace
tational execution of a CoSP protocol, we have to introduceroperty P in M iff every node trace ofll; is contained

computational implementations for a symbolic model.
Definition 8 (Computational implementationlet a sym-
bolic modelM = (C,N,T,D,t) be given. A compu-
tational implementatiord is a family of functionsA =
(A.)zecupun such thatAp for F/n € CUD is a partial
deterministic functiolN x ({0,1}*)™ — {0,1}*, and Ay for
N € N is a total probabilistic function with domalN and

in P. Let A be a computational implementation &I
and letII, be a probabilistic CoSP protocol. ThéH,,, A)
computationally satisfies a trace propefyin M iff for
all probabilistic polynomial-time interactive machinds
and all polynomialg, the probability is overwhelming that
Nodes§A7A7HP,E(k) cP.

Definition 11 (Computational soundness\:

range{0,1}* (i.e. it specifies a probability distribution on computational implementatiomd of a symbolic model
bitstrings that depends on its argument). The first argumerM = (C,N, T, D, F) is computationally sound for a class
of Ar and Ay represents the security parameter. All func-P of CoSP protocols iff for every trace properfy and
tions Ar have to be computable in deterministic polynomial-for every efficient probabilistic CoSP protocdl,, we
time, and allAx have to be computable in probabilistic have that(II,, A) computationally satisfies® whenever
polynomial-time. the corresponding CoSP protocHl; of II, symbolically
The computational execution essentially follows the samesatisfiesP andlIl; € P.

rules as the symbolic one, except that the functfostores In the remainder of this section, we introduce the concept
bitstrings corresponding to nodes in the computationad,casof a simulator. Simulators with specific properties have
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been shown to constitute a sufficient condition for achigvin should not be able to distinguish a hybrid execution (which

computational soundness. We will exploit this in our maininvolves the simulator and the symbolic protocol) from an

soundness theorem. computational execution. We speak ofjaod simulator if
Definition 12 (Simulator):A simulator is an interactive both properties are fulfilled.

machineSim that satisfies the following syntactic require- Definition 14 (Good simulator)A simulator Sim is

ments: Dolev-Yao style(short: DY) for M and II,, if with over-

e When activated without input, it replies with a term Whelming probability the following holds: In an execution
m e T. of Sim +11¢, for eachl, let m; € T be thel-th term sent

e When activated with some € T, it replies with an  (during processing of one dfi®’s input nodes) fromSim
empty output. to I1¢ in that execution. Lefl; ¢ T be the set of all terms

e When activated with a bitstring labélit answers with  thatSim has received fronil® (during processing of output
some bitstring. nodes) prior to sendingy;. Then we havel; - m;.

e When activated with(info, ,t) wherev is a node A simulator Sim is indistinguishablefor M, II,, an
identifier andt € T, it replies with (proceed). implementationA, ancadversaryE, and a polynomialp,

e At any point (especially instead of replying), it may if NOdeSﬁa,A,np,E(’f) ~ H-Nodesm 1, sim(k), i.€., if the
terminate. computational node trace and the hybrid node trace are

The simulator thus constitutes a technique to map synsomputational indistinguishable.
bolic executions onto computational executions by transla A simulator isgoodif it is Dolev-Yao style and indistin-
ing the symbols to bitstrings and vice versa. This is redlize guishable.
by an hybrid execution as follows. Theorem 3 (Good simulator implies soundness [4]gt

Definition 13 (Hybrid execution)Let II, be a probabilis- M = (C,N,T,D,I) be a symbolic model, leP be a
tic CoSP protocol, and lefim be a simulator. We define a class of CoSP protocols, and let be a computational
probability distributionH-Tracens, i, sim(k) On (finite) lists ~ implementation of M. Assume that for every efficient
of tuples (S;, v, f;) called the full hybrid trace according probabilistic CoSP protocolll, (whose corresponding
to the following probabilistic algorithnbI®, run on inputk, =~ CoSP protocol is inP), every probabilistic polynomial-
that interacts wittSim. (II¢ is called t he hybrid protocol time adversaryE, and every polynomiap, there exists
machine associated witfi, and internally runs a symbolic a good simulator forM,II,, A, E, and p. Then A is
simulation ofII, as follows:) computationally sound for protocols iR.

e Start: 5; == S = 0,1, = v is the root ofIl,, and

f1 = f is a totally undefined partial function mapping E- Detailed Soundness Proof

node identifiers tdl'. RunIl, on v. In this section, we give the complete soundness proof. We
e Transition: Fori = 2,3, ... do the following: enumerated the lemmas as in the body of the paper. The goal
— Let 7 be the node identifiers in the label of Define IS to prove the following Theorem:
t throught; := f(7;). Theorem[1l (Computational soundness of ZK proofs):

— Proceed depending on the typeofThe computation Every good implementation is a computationally sound
nodes are treated as in the symbolic execution anémplementation of the symbolic mod& (defined in the
for the input, output and control nodes we useappendi{A) for the class of safe protocols. o
the simulator. Nondeterministic nodes are sampled To prove the Theorem, we will use Theorgi 3. Thus it is
according to the annotated probability distribution & simulator based proof. We first define the simulator in a

(Full details of the cases can be found[in [4]). generic way, such that it is easier to prove that the simulato
— Send(info, v, t) to Sim. When receiving an answer is indistinguishable from a computational execution. Then

(proceed) from Sim, continue. we change this simulator leading to other simulators which
—If Sim has terminated, stop. Otherwise let are all indistinguishable. The last simulator in the chdin o

(Si,vi, fi) = (S, v, f). modified ones can then easily shown to be DY-style. Finally,

The probability distribution of the (finite) list:,... pro- combining these properties, we can apply Thedrem 3 which
duced by this algorithm we denote ByNodesnt 11, sim (k). then proves the Theorem.
We call this distribution the hybrid node trace. Definition of the Simulator. Given an adversar§ and a
The existence of a simulator that fulfills two distinguished polynomialp we construct a simulatd$im with respect to
properties, DY-style and indistinguishable, has been showFE andp. We assume that for each € {0,1}* there is an
sufficient for needs to fulfill to establish computational N € Ng. For a fixed execution, we may assume without
soundness. DY-style means that the adversary should not b@ss of generality that the s@&ip is split into two disjoint
able to sent terms which cannot be deduced from the advesetsA/ andR. Our protocol conditions enforce that nonces
sary’s knowledge. Indistinguishable means that an admersaused for algorithmic randomness are not used somewhere
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else in the protocol. These will be considered to be in the e 7(r) := N if r = ry for someN € A/ and N occurred
setR. in a term sent fron1¢

If the simulator receives a labél from a control node e 7(r) := N if r is of type nonce
it forwards it to the adversary, waits for an answer, and e 7(c) := enc(ek(M),t, N) if ¢ has earlier been output
forwards the answer to the protocol. For the other queries by S(enc(ek(M),t, N)) for someM € N, N € Np

we will use three functiond : T — N, §: T — {0,1}* e 7(c) = enc(ek(M),7(m), N¢) if ¢ is of type cipher-
andr : {0,1}* — T which are defined below. The simulator text andr(Aekor(¢)) = ek(M) for someM € Np and
chooses for eaclv € Np anry € {0,1}* (Sim samples m = Adec(Aak(rn),c) # L
according toAy on the fly and caches the result). Upon e 7(c) := garbageEnc(7(Aekot(c)), N°) if ¢ is of type
receiving at € T from the protocol, the simulator computes ciphertext
B(t) and forwards it to the adversady. When it receives o 7(c) = ek(N) if ¢ = Ac(rn) for some N that
am € {0,1}* from the adversary it computegm) and occurred in a subterm of the formk(N) or dk(V)
forwards the result to the protocol. Finally, when it reesiv before
(info, v,t) from the protocol it add<(t) to len and if e 7(c) == ek(N°) if ¢ is of type encryption key
len > p(k) the simulator terminates, otherwise it answers e 7(c) = dk(N) if ¢ = Ag(ry) for some N that
(proceed). Initially len is set to0. occurred in a subterm of the formk(N) or dk(N)
Remember, for a construct@i<, we denote its computa- before
tional implementation byd;k. e 7(c) :=dk(N°) if cis of type decryption key and is
The partial functions? : T — {0,1}* and ¢: the encryption key corresponding to
B(N) = rN if NeNp o 7(s) == sig(sk(M),t,N) if s has earlier been output
B(N™) = by B(sig(sk(M),t, N)) for someM,N € Np
B(enc(ek(N ) t,M)) = Aenc(Aek(rn),B8(t),rar) if o 7(s) :=sig(sk(M),7(m), N*) if s is of type signature
M € Np and7(Aykor(s)) = vk(M) for someM € N andm =
e B(enc(ek(M),t, N™)) :=m if M € Np Averity (Ayvkof (8), 8) # L
o [(ek(N)) := Aek(rn) if N € Np o 7(s) := garbageSig(T(Avkor(s)), N*¥) if s is of type
o B(ek(N™)) :=m signature
o B(dk(N)) = Agx(rn) if N € Np o 7(s) = vk(N) if s = Ay(ry) for some N that
e B(dk(N™)) = d such thatr(d) = dk(N™) was occurred in a subterm of the formk(N) or sk(V)
computed earlier before
o B(sig(sk(N), ¢, M)) = Asg(Ax(rn),B),rar) if o 7(s) = vk(N?) if s is of type verification key
N,M € Np o 7(s) = sk(N) if s = Ay(ry) for some N that
o [(sig(sk(M),t,N*®)) =s occurred in a subterm of the formk(N) or sk(V)
o B(vk(N)) = Aw(rn) iIf N € Np before
e B(VK(N™)) :==m o 7(s) :==sk(N°) if s is of type signing key and is the
e B(sk(N)) = A (rn) if N € Np signing key corresponding te
e B(sk(N™)) = s such thatr(s) = sk(N™) was o 7(z) == crs(N) if 2z = Acs(ry) for some N that
computed earlier occurred in a subterm of the fornrs(N') before
o [(crs(N)) = Acrs(mv) if N e Np e 7(z) = crs(N?) if z is of type common reference
e [(crs(N°)) = string
o B(ZK(crs(Ny), tl,tg, N2)) = o 7(2) = ZK(crs(Ny),t1,t2,No) if 2 has earlier
Azk (Acrs(rny ), B(t1), B(t2), er) if N1, N, € Np been output byS(ZK(crs(N1),t1,t2, N2)) for some
(] ﬂ(ZK(CI‘b(to),tl,tQ, )) = Ny, N, € Np
o [(pair(t1,t2)) == Apair(B(t1 ) B(t2)) o 7(z) = ZK(crs(N),z,w, N?) if z is of type zero-
e [B(stringy(t)) := smng (B(t)) knowledge proof and-(z) was computed earlier and
o [(string:(t)) == Asring, (B(t)) has outpuZK(crs(N), z, w, N*)
o S(empty) == Aempty () o 7(z) = ZK(crs(N),z,w, N?) if z is of type zero-
o [(garbage(N°)) = c knowledge proof,7(Acrsof(2)) = crs(N) for some
e [(garbageEnc(t, NC)) =c N € Np, Aveity,, (Acsot(2),2) = 2z, my =
e [(garbageSig(t, N®)) :=s Agetpun(2) # L, ¢ = 7(my) # L andw :=
o [(garbageZK(t1,t2, N?)) =z SymbExtr(S, z) where S is the set of terms sent to
B(t) .= L if no case matches the adversary so far.
The function? is defined by¢(t) := |5(¢)|. If w= 1, we say arextraction-failureon (N, z,m,,)
The functiont : {0,1}* — T: (by taking the first occurred, see below for the behavior 8fm in this
matching rule) case.
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e 7(2) = garbageZK(c,z, N?) if z is of type zero-

knowledge proof,c¢ = 7(Ausof(2)) and z :=
T(Agetpun(2))-

o 7(m) := pair(7(Ass(m)), 7(Asna(m))) if m is of type
pair

e 7(m) = stringo(7(m’)) if m is of type payload-string
andm’ :== Aynstring, (M) # L
e 7(m) := string; ((m’)) if m is of type payload-string
andm’ := Aynstring, (M) # L
e 7(m) = empty if m is of type payload-string and
m = Acmpty ()
e 7(m) := garbage(IN™) otherwise
When an extraction-failure oN, z, m,) occurs (i.e.,
when in the computation of, SymbExtr(S,z) returns
w = 1), the simulator computescrs, simtd, extd) +«+
K(17;rx) to get the extraction trapdoextd corresponding
to crs = Ags(ry). Then the simulator invokesn,, :=

E(m., z,extd) and computest := 7(m,) as well as
w = 7(my). If (z,w) ¢ R, we say aZK-break

occurred. Then (no matter whether a ZK-break occurred or
not), the simulator aborts.

We definer* by the same case distinction asut remove
the case in which an extraction failure may occur (i.e., the
case where we invok8ymbExtr(S,z)). Consequently,
every adversary generated ZK-proof is parsegaabageZK
by 7*. Thus, by definition, there is no extraction failure
during a computation of*.

Soundness Proof.The previously defined simulator is in-
distinguishable from a computational execution and DY. To
prove this we start by constructing a faking simulator in
several steps. The construction is split in steps because
it is easier to prove some properties for the intermediate
simulators and show that they carry over to the final one
than showing them for the final simulator directly. Thus, in
the following subsection, we define the faking simulator in
detail.

1) The faking simulator.:

e We defineSim; like Sim but we changes to use
zero-knowledge oracles instead of computidg,
and Azx. More precisely, assume an oract@;k
that internally picks(crs, simtd, extd) + K(1") and
that responds to three kinds of queries: Upon a
(crs)-query, it returnscrs, and upon &prove, z, w)-
query, it returnsP(z,w,crs) if (z,w) € Rpoow.

and | otherwise. Upon a(extd)-query, it returns
extd. For eachN € Np, Sim; maintains an in-
stanceO of Ozk. ThenSim; computes3(crs(N))
with N € Np as Bers(N)) = Oh(crs),
and Sim; computesg(ZK(crs(Ny),t1,t2, N2)) with
Niy,N, € Np as B(ZK(CI‘S(Nl),tl,tQ,Ng)) =
ON(prove, 5(t1), B(t2)). In case of an extraction-
failure, Sim; performs a(ext d)-query to getextd.
(Here and in the descriptions Sfmo, . . ., Sims, Sim,
we implicitly require thatS(t) caches the results of
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the oracle queries and does not repeat the oracle query
when S is applied to thesameterm¢ again.)

In the definition ofr(z) = crs(/V) for N € Np, instead
of checkingz = A.s(rn), Sim; checks whethee is
equal to the(crs)-query outcomes for all oracle8,
which have been used so far.

We defineSim; like Sim;, except that we replace the
oracleOzxk by an oracle);,,,. That oracle behaves like
Ozxk, except that upon éprove, z, w)-query, it returns
S(z, crs,simtd) if (z,w) € Ryo'> and L otherwise.
We defineSims like Sim,, except that we replace the
oracleOgy, by an oracle)., . That oracle behaves like
Osim, €Xcept that upon gprove, x, w)-query, it returns
S(x, crs,simtd) (even if (z,w) ¢ Ry ). Therefore
the simulator only queriegprove,z) and does not
computew any more.

We defineSim, like Sims, but we change3 and

to use encryption oracles instead of computitg,.,
Adec, Aex, Agx. More precisely, assume an oracle
Oenc that internally picks(ek, dk) + KeyGen,,,.(17)
and that responds to three kinds of queries: Upon
an (ek)-query, it returnsek. Upon a(enc,m)-query,

it returns ENC(ek,m). Upon a(dec,c)-query, it re-
turns DEC(dk, ¢). Sim, maintains an instanc®/ .
for eachN € Np. Then Simy computesj(ek(V))
with N € Np as B(ek(N)) := ON (ek). And
it computesS(enc(ek(N), ¢, M)) with N, M € Np
as B(enc(ek(N),t,M)) := OX (enc,B(t)). And it
computesg(dk(N)) := L. And in the computation
of 7(¢) for ¢ of type ciphertext, the computation of
Adec(Aax(rn), c) is replaced byOX (dec,c).

In the definition ofr(c¢) = ek(N) and7(c) = dk(N)
for N € Np, instead of checking = A.x(ry) and

¢ = Agx(ry), Simy checks whethere is equal to
the corresponding query outcomes for all oracl®y.
which have been used so far.

We defineSims; like Sim,, except that we replace the
oracle O, by an oracleOy,y.. That oracle behaves
like Oy, €XCEpt that upon afenc, x)-query, it returns
ENC(ek, 0l#1).

We defineSimy like Sims, but we changes to use
signing oracles instead of computind,i, Agk, Asig.
More precisely, we assume an oradlg;, that in-
ternally picks (vk,sk) <« KeyGeng,(17) and that
responds to two kinds of queries: Upon (ak)-
request, it returns’k, and upon a(sig, m)-request,
it returns SIG(sk,m). Sim; maintains an instance
Oé}fg for each N € Np. Then Simy computes
B(vk(N)) with N € Np as f(vk(N)) := OF,(vk).
And B(sk(N)) with N € Np as B(sk(N)) :=
L. And S(sig(sk(N),t, M)) with N,M € Np as
B(sig(sk(N), 1, M)) := O (sig, B(1)).

In the definition ofr(c) = vk(IN) and7(c) = sk(NV)



for N € Np, instead of checking = A« (rn) and Then the claim is fulfilled withD := O andtp,q =

¢ = Ax(rn), Simy; checks whether is equal to .
the corresponding query outcomes for all oraa‘lﬁi Case 3:"u = garbage(u)”
which have been used so far. By protocol conditior 2 no garbage term is gen-
2) Dolev-YaonessThe next steps towards the soundness erated by the protocol. Therefore there is: &
proof are the following. First, we analyze the underivable {0,1}* such thatr(c) = garbage(/N°) = u. But
terms structure. Doing so, we exclude cases in the proof of this means that + u, contradicting the premise
DY-ness using structural arguments. Thus, when showing of the lemma.
DY-style, we only need to consider the cases involvingCase 4: "« = garbageEnc(ui,us) oOr wu =
cryptographic arguments. garbageSig(u1, us)”
Lemma 8:For any invocation ofr or 7* in the hybrid By protocol conditior 2 no garbage term is gen-
execution ofSimy, let m denote the input ta- or 7, let erated by the protocol. So there existscac
v’ denote the output of or 7*, and letS be the set of all {0,1}* with 7(¢) = garbageEnc(ui, N¢) or
messages sent frofd“ to Sim; up to that invocation of 7(c) = garbageSig(ui, N¢). Since S + N¢ it
or 7*. follows that S t/ u,, becauseS t# u. Applying

Let C' be a context and: € T such thatu’ = C[u] and the induction hypothesis om; leads to a con-
S i u. text D’ and a termiy,q. Using this termiy.g
Then there is a term,,q and a contextD such thatD and the contexgarbageEnc(D’, N°¢), respectively
can be obtained by the following grammar: garbageSig(D’, N°), shows the claim.
D =0 | pair(t, D) | pair(D, t) | enc(ek(N), D, M) Case 5:"u = garbageZK(u1, uz, us)” _
) , As in the previous case followsa; = N°¢ with
| enc(D,t, M) | sig(sk(M), D, M’) c € {0,1}*, 505 I/ uy or S I uq. For the first case
| ZK(t, D, t', M) | ZK(D,t,t', M) we can apply the induction hypothesistpleading
| garbageEnc(D, M) | garbageSig(D, M) to tpeq and contextD’. Then we use context
| garbageZK(D,t,M) | garbageZK(t,D,M) garbageZK(D’,ug,ug) to Sa_tisfy the lemma. In
. , , the other case we apply the induction hypothesis to
with M, M’ € Ng,t,¢' € T us leading to contexgarbageZK(u1, D', u3) and
with u = Dltp.q] such thatS I/ t,,4 and such that one of thad-
the following holds: Case 6:”"u = pair(uq, uz)”
1) tpaa €N Since S I/ u there is ani € {1,2} such thatS t/
2) tpaa = enc(p,m, N) with N € Np u;. Let D be the context and,,; the term given
3) tpaa = sig(k, m, N) with N € Np by applying the induction hypothesis tg. Then
4) tpeq = ZK(crs(M),z,w, N) with M, N € Np Dy = pair(D, M) or Dy = pair(M, D) is the
5) tpaa = sig(sk(N),m, M) with N € Np, M € Ng context for the termu depending on: with the
6) tpeqa = crs(N) with N € Np same term,g.
7) tyaq = ek(N) with N € Np Case 7:"u = empty”
8) thaa = vk(N) with N € Np This case cannot happen becagsé empty, So
9) tpea = sk(N) with N € Np the premise of the lemma is not fulfilled.
10) tpeq = dk(N) with N € Np Case 8:"u = stringg(uy) Or u = stringy (u1)”

Proof: We prove the lemma by structural induction Again the premise is not fulfilled since inductively
on u. We formulate the proof for an invocation af for S+ u; with base case:; = empty and therefore
an invocation ofr* the proof is identical. There are the S F string;(uq) for i € {0,1}.
following cases: Case 9:"u = N with N € Np\N”

Case 1:" u € {ek(N),vk(N),crs(N),dk(N),sk(N)} This case is impossible sineeis not in the range
with N ¢ Np” of 7.
Let u = C(N) for C € {ek, vk, crs,dk,sk}. By Case 10:"u = N with N € N
protocol conditiong]1 anfl] 8 eadfi-node has as The contextD := [ and termt,,, := u satisfy the
annotation a nonce froN p. Thereforeu cannot lemma in this case.
be honestly generated, that means there is sorGase 11:"u = N with N € Ng”
e € {0,1}* such thatr(e) = v andu has the form In this caseS F u by definition and therefore the
C(N¢). But thenS - « contradicting the premise lemma’s premise does not hold.
of the lemma. Case 12:"u = enc(u1, u2, N) with N € Np”

Case 2:" u € {ek(N),vk(N),crs(N),dk(N),sk(N)} The lemma is satisfied b, = v and D = [I.
with N € Np” Case 13:"u = enc(u1, ug, ug) With us ¢ Np and S t/ uy”
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Since us ¢ Np it follows that « cannot be satisfies the lemma.
honestly generated because of protocol conditianase 20: "4, = ZK (crs(M), u1, up, N) with M ¢ Np”

B Therefore there is a € {0,1}* with 7(c) = This case cannot occur becausis not in the range
enc(ek(M),uz, N¢) = u for some M € Np. of 7.
Apply the induction hypothesis ta; gettingty.q -

and contextD we can defind’ := enc(D, ua, N€)

- ) : In any hybrid execution, terms are generated via the
fulfilling the claim of the lemma witht;. 4.

i : ) functionsT and 7*. In their definition, the case distinction

Case 14:"u = enc(u1, uz, us) With uz ¢ Np and S+ u; whether outputted the input bitstring or not is done very
Since uz ¢ Np it follows that u cannot be_ often. Thus, in the following lemma, we show thats only
honestly generated because of protocol conditiofgjieq on derivable terms in the executionSifu .
8. Therefore there is an c {0,1}" with 7(c) = Lemma 9:For any (direct or recursive) call of the func-
enc(ek(M), up, N) = u for some M € Np.  ion 5(4) performed bySim, it holds thatS I ¢ where S
Since§ - uy, S N*, and S 7 u, it follows that s the set of all terms sent BYC to Sim; up to that point.
St 2. LetD bg the context and’ad_ be th? term Proof: Prove it by induction on the recursion depth of
resulting by the induction hypothesis app_lledutp the s-function. The base case is tha) is directly invoked.
ThenD’ := enc(ek(M), D, N°) together withisaa Byt thent itself was received by the protocol, i.e..c S
satisfies the lemma. and therefores - +.

Case 15:"u = sig(u1, uz, N) with N € Np” So let 5(t) be called as subroutine of somé By
Use cqntextD =0 andt‘{ad =u induction hypothesis we hav8 ~ ¢'. We need to show

Case 16:"u = sig(sk(N), u1, us) with u3 ¢ Np andN € 1hat g - 4. According to the definition of3 there are the

N_P” following possibilities fort’:
Sinceu € T andug ¢ Np follows thatus € Ng. 1) ¢ = sig(sk(N), £, M) with N, M € Np
Therefore the contexb := [0 andty.q = u proves e 1 ’

@ 2) t = palr(tl,tg) with ¢t € {tl, tg}

the claim. , . , .
Case 17:"u = sig(u1,us,us) andus ¢ Np anduy is not 3) t, strlngo(t)eort string: (t)
. . 4) ' = enc(ek(N¢),t, M) with M € Np
of the formsk(V) with N € Np , .
. . 5) ¢/ = ZK(crs(M),t,t2, N) with N, M € Np
Sinceus ¢ Np we get by protocol condition 3 that ) _
u is not honestly generated, i.e., there isa  NOte that the case’ = enc(ek(N),t, M) with N, M €

{0,1}* such thatr(s) = sig(sk(M), us, N*) = u Np does not occur because - in contrastSimn — the
with M € N. Because; has not the formsk(IV) simulator Sim; does not recursively invokg? on ¢ but
for any N € Np follows that M € Nj, so§ -  Uses an oracle and proc_iucEE\IC(ek]_V,O"(“.). The case
M and thereforeS + sk(M). In total we have t = _ZK(crs(M),tl,t,N) is n_ot po_SS|bIe, either, because
S+ w1, S F uz but S i u which implies that the simulatorSim calls the simulation oracle to construct

S I us. Applying the induction hypothesis ta, the proof and thereforg(-) is not called on the witness

leads to a contexD and a termty,q. Defining ~Case 1.5+ sig(sk(N),t,M) = . Using
D' = sig(sk(M), D, N*) completes the claim. verify (vkof(t'), ') = t we gets - t.

Case 18:"u = ZK(crs(M),u1,uz, N) with N, M € Np” Case 2: 5| pair(t1, t2) = t'. With fst(t') = ¢1, snd(t') =
Defining ty,q = « and D := O suffices. ty, andt € {t1,t2} we getS k.

Case 19:"u = ZK(crs(M), u1,us, N) with N ¢ Np, M €  Case 3:The casest’ = stringo(t) and ¢’ = string: ()
Np” work as the two preceding usingnstring, and
Consider the following cases: unstring;.

o S crs(M) Case 4:S + enc(ek(N°),t,M). BecauseS F N°¢ it
Define tpa = cs(M) and D = follows that S F dk(N€¢), so decryption can be
ZK (O, u1,uz, N) to satisfy the lemma. applied resulting ir.

o St us Case 5: S F ZK(crs(M),t,t2, N) = t’. The lemma fol-
Since N ¢ Np the termu was not honestly lows by applying the destructeetPub.
generated. That means thaf was constructed u
using theSymbExtr and therefores - u,. So We combine the preceding lemmas to achieve DY-style
this case cannot happen. of Simy. The lemma is generalized to not only show DY-

o SHu style of Simy, but also that each output of and7* in an

In this case we use the induction hypothesis onéXxecution is derivable. Doing so, we are able to reuse the

u; to get the termi,,q and a contextD. Then  l1emma when proving the absence of extraction failures.

using tpeq and D’ = ZK(crs(M), D, uy, N) Lemma 10 §im/ is Dolev-Yao):For any invocation
7(m) of 7 or 7*(m) of 7* in the hybrid execution ofim ¢,
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the following holds with overwhelming probability: Lef

be the set of terms that the protocol sent to the adversary
up to the invocationr(m) or 7*(m). ThenS + 7(m) or
S+ 7*(m), respectively.

In particular,Sim¢ is DY for M andII.

Proof: Assume there occurs an as input ofr or 7*
such thatS t# 7(m) or S / 7*(m), respectively. Consider

the first

such inputn.

Now we can use lemnid 8 with conte&t= 1 andv’ =
u = t leading to a term,,q and a contextD such that
tpaq is Of the form[AEID given by the lemma. Let,.q be
the corresponding bitstring, i.e(mp.q) = tpeq. FOr each
of these cases we will derive that it can only happen with
negligible probability. Note that* only differs from 7 in
the case a ZK-prooZK(crs(N),z,w, M) is output with
M € Ng. We formulate the proof for an invocation of
the case ofr* is identical.

Case 1:

Case 2:

Case 3:

Case 4:

Case 5:

Case 6:

"thad = N € N

By construction ofg andSimy follows thatSim
has only access tay if 3(NV) is computed directly
or in 7. BecauseS I/ N we get by Lemmal9 that
was never invoked oV, i.e. Sim; has only access
to ry via 7. Considering the definition af, we see
that ry is used for comparisons. In particular, if
7(r) is called for anr having type nonce then the
simulator checks for allv € Np that occurred in

a term sent by the protocol, whethee= . This
check does not help guessing because it only
succeeds if-y was guessed correctly and therefore
the probability thatm,q, = rn as input ofr is
negligible.

"thad = enc(p, m, N) with N € Np".

By definition 7 only returnsty.q if B(tpaq) was
called earlier. But sinceés' t/ t;,4 and Lemmd19
this case cannot occur.

"thad = sig(k, m, N) with N € Np".

This case is completely analogue to the case that
thad = enc(p,m, N) with N € Np.

"thad = ZK(crs(M), z,w, N) with N, M € Np”".
By definition of 7, t;44 is only returned if it was a
result of 5(ts.q) earlier. But becauss t ¢4 and
Lemmal® this can not be the case.

"thad = CI‘S(N) with N € Np".

By definition of 7, the oracleO%} constructed
the bitstring my.q. Thus 5 was either called
on crs(N) or on some ZK-proof of the form
ZK(crs(N),-, -, ). In the first case, by Lemmnid 9
it follows S I ¢p.4. In the latter case, by the same
lemma, it followsS - ZK(crs(N), -, -,-) and thus
S+ crs(N) using destructogetPub.

"thaa = sig(sk(N),m’, M) with N € Np, M €
Ng"

BecauseS t/ ty.q follows that 5 was not invoked

Case 7:

Case 8:

Case 9:

Case 10:

not produced by the signing oracle, but it is valid
with respect to verification keyk,. Because of
the strong existential unforgeability this can only
be the case with negligible probabili@

"toad = ek(N) with N € Np".

By definition of 7 and sincer(mpqaq) = ek(N),

it follows that the oracle®X . produced this key
in an earlier call of3. Thus one of the following
terms have been called lyearlier:ek(N), dk(V),

or enc(ek(N), -, ). The casalk(NV) is impossible
becausedk is only allowed to be part of the
witness inZK proofs and in decryptions (protocol
conditiong4). Since the witnesses are not computed
using 8 in Simy, it follows thatdk(IV) can not be
input to 5 at all.

Considering the remaining cases, it follows by
Lemma[® that eitherS + ek(N) or S F
enc(ek(N), -, ). In the latter casé& F ek(N) using
destructorekof. S0 S t/ ty4q IS impossible.

"toad = Vk(N) with N € Np".

This case is analogue to the caggy = ek(N)
with the possible oracle queries in while comput-
ing 8 on vk(N), sk(N), or sig(sk(N),-,-). The
case sk(N) corresponds todk(N) and thus it

is impossible. In the remaining cases, it follows
that S = vk(N) (using vkof constructor on the
signature). S t/ 4 is impossible.

"thad = sk(N) with N € Np”".

If tpaa = sk(N) then myqq is the bitstringsky.
Thus the simulator was able to computey with
access only to signatures. By the strong existential
unforgeability of the signature scheme, this can
only happen with negligible probability.

"thaqa = dk(IN) with N € Np".

If thad = dk(N) then Mpad is dky. So the
simulator was able to computéky with only
access to an decryption oracle and the public key.
By the CCA property, this can only occur with
negligible probability.

In total, we get thatS t/ t;,4 can only be the case with
negligible probability.
Hence,S ¥ 7(m) happens only with negligible probabil-

3) Indistinguishability: The next goal is to exclude ex-
' traction failures. First, we take a closer look at the reladi
and connect them to the functiorts and 7. We defined
the cryptographic conditions usirigng, . In the following
lemma we will see how this definition allies to the simula-
tors’ executions.

10Note that an adversary against this property is allowed ® the

on tp.q. Thereforemy,q is a signature that was extraction trapdoor. The same holds the property of CCA.
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comp
adv

Lemma 11 (Relating the relations)et R,o'" R e Type decryption key. For the same reasons as in the case

be relations implementingR.’ with usage restriction of type nonce we only consider the cagelk(N)) =
Ry - n(dk(M)) for N € Np,M € Ng. By protocol
1) In the hybrid execution dim andSimj it holds with condition’2, it follows thaidk(M) = dk(N?) for some
overwhelming probability: I{z,w) € RY™  andz, w d € {0,1}*, dk(N?) was subterm of an output of,
occur as node annotation of a ZK node in the execution, ~andd was not output of3 earlier (otherwisel/ would
then it holds(3(x), B(w)) € RE™, . have been parsed tdk(N)). So the adversary used
2) In the hybrid execution ofim, it holds with over- either no input or only encryptions plus the encryption
whelming probability: If (m,, m,,) € RISFP for some key to computelk(NN). By the CCA property, this can
bitstrings m., m.,, then it holds(r(mg), 7*(mw)) € only be the case with negligible probability.
RSYm e Type signing key. This case is completely analogue to

adv *

the decryption key type using the strongly existentially
unforgeability instead of the CCA property.

e Type encryption key. As in the previous cases we can
only need to considef(ek(N)) = n(ek(M)) for N €
Np, M € Ng. By protocol conditioh 2, it follows that
ek(M) = ek(N¢) for somee € {0,1}*. But thent
parsede to ek(N¢), so neitherek(N) nor dk(N) was
used. This means the adversary guessed an encryption
key without having any information about it. This can
only happen with negligible probability.

e Type verification key and common reference string.
Analogue to the case of encryption key.

e Type zero-knowledge proof. Becauseis determin-
istic, the adversary can not generate two different
zero-knowledge proofs which are mapped to the same
bistring. So if there is a collision, then between a
protocol generated proof and a adversary generated one.

e Type ciphertext and signature. Analogue to the case of
zero-knowledge proofs.

e Type pair. If there is a collision of two pairs, then there
is a collision in the first argument and in the second. So
by induction hypothesis this case occurs with negligible
probability.

e Type payload-string. This type does not contain any
nonces. So applying to a term of this type leads to a
unique bitstring which cannot be hit by any other term
of this type (by implementation conditidn]17).

e No type. The only term which has no typegisrbage(t)

: ) \ . for t € T. By protocol conditioh 2 and construction of
a # b is even impossible. So consider the caé®’) = . o .
n(M) for N € Np, M € Np. 7, it has to hold that = N™ for somem € {0,1}".

By protocol conditiori 2, it follows thafi/ was output ~_ Proof of partl of the lemma. _

of r, i.e. M = N™ for somen € {0,1}*. First, let By Definition [, it suffices to show that if(z,w) €

N be a nonce occurred insides(N). Then it holds ~ Rnones; then there is a consisteny € & such that
n(N) =L #n=nN"). (img, (), img, (w)) = (B(z),B(w)) since f(x) # L #
Otherwise, if N was used before: was received by B(_w)._ We show that then defined above satisfies this
the simulator, them would have been parsed ty  Criterium. Here, we prove the case f8ims. The proof for

by construction ofr. So the first occurrence ol Sim is analoguous with the only difference in the cases of
has to be after. was received. But then the adversary ZK andcrs. Here, the definition ofj is done as foenc and
guessed a nonce. This can only happen with negligibl€k and the proof, as well.

Proof: We first define an environmentmapping terms
to bitstrings.ny depends on the current state of the execution.
We will usen in both parts of the lemma. So let, ..., ¢,
be the terms sent by the protocol to the simulator so far.

For any term or subterm that occurs as argument 1o
or output ofr, we definen as follows:

e Fort = N™ definen(t) := m.

e Fort =C(t1,...,tn, N™) definen(t) :==m for all C

as stated in definitionl

e Fort = crs(IV) with N € Np definer(t) to be the crs
produced by the oracl®l..

e Fort = ZK(crs(N), z,w, M) with N, M € Np define
n(t) to be proof produced b2y in the computation
of B(t).

e Fort = N with N € Np we distinguish 2 cases. if
does neither occur in a term of the forers(¢) nor in
ZK(¢, z,w,t) for somec, z, w then definen(t) := ry.
Otherwise let;(t) be undefined, i.en(t) := L.

Note thatn is a consistent environment with overwhelm-

ing probability.

Most properties of consistency are satisfied by construc-
tion. The ZK case holds because of the indistinguishability
of true proofs and their simulations. The only property that
needs to be proven is the injectivity of We distinguish by
the type ofy’s output.

e Type nonce. FoV, M € Np, a collision occurs with

negligible probability, becausey = rj; occurs with
negligible probability. The casg(N?) = n(N?) for

probability.
UThey are{ek, dk, vk, sk, enc, sig, crs, garbageZK, garbageSig, 12The part we will use here says,w) € sz);:est and imgn(:c) #
garbageEnc, garbage} 1 # img, (w) implies (img, (z), img, (w)) € R onest-
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For any term¢ that can occur in the execution 8ims it holds B(pair(ui,u2)) = Apair(B(u1),B(u2)) =
as annotation of a ZK node’s statement or witness, we A (img, (u1),img, (u2)) = img, (pair(u1, u2)).
show thatimg, (t) = 3(t). This will be done by structural o "t € {stringo(u), string; (u), empty} with v € T".
induction on the ternt: These cases are analogue to the aasepair(u1, u2).

e "t = N with N € Np”. In this caseS(N) = ry.
The nonceN may not occur as last argument BK
or crs and insidex or w (protocol condition§13 and
[8). So N did not occur as last argument @K nor as
argument otrs. Thus, it holddmg, (N) = n(N) =ry
by definition of .

e "t = N with N € Ng". In this caseN = N for some
n € {0,1}*. Thusnp(N™) =n = B(N").

o "t € {ek(u), dk(u), vk(u),sk(u)} with v € T". In this
case, it holds that € N. If u € Ng, i.e.u = N°¢ for
somec € {0,1}*, then3(t) = ¢ = n(t) = img,(t)
by construction. So, considei € Np. Let C €
{ek, dk, vk, sk} be the constructor such that C(u).
Thenimg, (t) = Ac(img,(u)) = Ac(B(u)) = B(t).
Sinceu € Np and occurs inC(u), it follows that
u does neither occur irrs(u) nor in ZK(c, z, w,u)
for c,z,w € T (protocol conditions forbid that these
nonces are used more than once). Thug, (u) =
r, = B(u). Hence equalityx) holds.

e "t = crs(N) with N € Np”. By definition 5(t)
produces thecrs using O and img, (crs(N)) =
n(crs(N)) which was defined ag(t). Thus, it holds
img, () = B(1).

e "t = crs(IN) with N € Ng”. This case is analogue to
the casek(N) with N € Ng.

e "t = enc(uy,us,us)”. If us € Ng, then this case
is analogue to the case = ek(u). So let N :=
uz € Np. Then 5(t) = Aecnc(B(ur),B(uz),7n) =
Aenc(img, (u1),img, (uz),7n) by induction hypothe-
sis. The noncév may only occur inside this encryption

and as witness of the ZK-proof (protocol conditidn 3).

Thus, byry = n(N) = img, (N), it follows 3(t) =
ACHC(imgn (ul)v lmgn (UQ)’ lmgn (N)) = lmgn (t)

o "t = sig(uy,us,u3)” If uz € N, then this case is
analogue to the cage= ek(u). So letN := uz € Np.
By definition of 7, it follows that ¢t was honestly
generated. This means there wassig-computation
node that produced. By protocol condition[17 this
node is annotated by ask-node. Since the protocol

only uses its randomness (protocol conditidn 1), it

follows thatu; = sk(M) for someM € Np. Then,
it holds 8(t) = Asig(As(rar), B(u2),rn). Again,
ry = img,(N); the same holds forM. Since
B(sk(M)) = A k(M), it follows by induction hypoth-
esis thatAx (ry) = img, (sk(M)). In total, it holds
B() = Asglimg, (sk(M)), img, (uz),img, (N)) =
img,, (t).

e "t = pair(ui,uz) where u;,us € T". By induc-
tion hypothesis, it follows3(u;) = img, (u;). Thus,
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o "t € {garbage(u1), garbageSig(u1,us,us),
garbageEnc(u1, us), garbageZK(u1, ug, us, uq) }
wherew; € T”. By protocol conditior 2 follows that
was generated by, i.e. the last argument afhas the
form N™ for somem € {0, 1}*. By definition of 3, it
holds that3(¢t) = m. On the other hand, by definition
of img,, it holdsimg, (t) = n(t) = m, as well.

Proof of part2 of the lemma.

It suffices to show that for eacm € {0,1}*, that oc-
curs with non-negligible probability in a hybrid execution
of Simy, there is somey such thatm = img,(7(m))
holds. Then it follows by definitior 3 (Mg, my) €
R, = (img,(7(mg)),img, (1(mw))) € RT =
(7(ma), 7 (mw)) € Ryly-

Take the same definition of as in the case before. Note
that this definition is canonical for an execution and does
not depend on the term(m).

We will prove m = img, (7(m)) by structural induction.
Note that this suffices for*, as well, since all cases fat*
occur in.

e 7(m) = N for someN € Np

By construction ofr, it follows that N € N. Thus
N was not argument of ars or the last argument
of a ZK node, by protocol conditiorls 1 amd 3. Then
img, (7(m)) = ry = m where the last equality holds
because of the definition of.

e 7(m)=N™
Then by construction of) holds thatimg, (7(m)) =
img, (N™) = n(N™) = m

o 7(m) = enc(ek(M),t, N) for someM € N, N € Np
By definition of n holds that
img, (7(m)) = img, (enc(ek(M),t, N))
= Aenc(Aex(n(M)),img, (t),n(N)). By definition of
7 follows that m was earlier output by and thus
evaluatingt again usingmg, gives the same bitstring
my, ry iS the same argument as in the earlier call
and ek(M) is the same, too. By determinism of the
implementations (implementation conditibh 1) follows
that the output isn.

o 7(s) = sig(sk(M),t,N) for someM,N € Np
This case is analogue to the oneefc(ek(M),t, N)
for someM € N, N € Np.

e 7(m) = ek(N) for someN € Np
By definition of 7, it follows m = A (rx). On the
other hand, it holds thatng, (ek(N)) = Aex(n(N)) =
Aqk(rn) = m by construction.

o 7(m) € { vk(N),sk(N),dk(N)} for someN € Np

3At this point we usgimg, (z), img, (w)) € Riqw" implies (z, w) €
RSYm
adv



The same as the case @f(N). game which can only happen with negligible probability.

e 7(m) = crs(N) for someN € Np Thus the casém,,m,) & R.q.," occurs with negligible
By definition of = follows that m was output after probability. Therefore, in this case, it does not matter if
a call of 8 on crs(V). Thusm was output by the (z,w) € R or not.

adv

oracle andp(N) is by definition the randomness used Now, consider the case thétn,, m,) € R.q." holds.

by the oracle to construei. Thusimg, (crs(N)) = By [emmal, it follows that(T(mI),T*(mwjlsiVG R
Acs(n(N)) = m where the last equality holds becausewith overwhelming probability. Since = 7(m,) andw =
of the definition ofy(V). 7*(my,), it follows that (z,w) ¢ R}, can only occur with
e 7(m) = ZK(crs(Ny),t1,ta, No) for some Ny, Ny € negligible probability.
Np Therefore a ZK-break in the execution 8fim, can only
By definition of n follows that  occur with negligible probability. ]
img, (ZK(crs(N1),t1,t2, N2)) = Before we transfer the results $om, we prove a technical
n(ZK (crs(Ny), t1, ta, Na)) = m. lemma that helps connectingim, and Simsz. Especially,
e 7(m) = pair(ty, t2) this lemma shows how it is possible to prove that protocol
This case follows by the induction hypothesis and theconditions, which are formulated for the symbolic executio
determinism of the implementations. hold for the hybrid execution of some simulator, as well.
o 7(m) € {stringo(¢1), string; (¢1), empty } LemmdB (No invalid symbolic withesseskssume that

The case obmpty is trivial, since the implementation Simg is DY. Then, in the hybrid execution &img, for each

is deterministic. For the other cases holds that - byZK node with arguments, to, t3, t4, it holds that(to, t3) €

definition of 7 - t1 = 7(m’) havingm’ = Aunstring, (M)  Rpomes; With overwhelming probability.

wherei € {0,1} and 7(m) = string;(¢1). Applying The same holds fogim if Sim is DY. o

the induction hypothesis te, leads toimg, (1) = Proof: If Simg is DY, then the hybrid execution &im;

m’ and thusimg, (7(m)) = Astring (img,(7(m')))  corresponds to a symbolic execution with overwhelming

= Astring; (M) = Astring; (Aunstring; (M)) = m. Here  probability.

the last equality holds by implementation conditiont 17. By definition of the hybrid execution, any hybrid execu-
o 7(m) € {enc(ek(M),t,N™), ek(N™), tion is a valid symbolic execution, as long as the simulator

dk(N™), garbageEnc(t, N™), sig(sk(M),¢t, N™), does not send a term in the adversary’s knowledge. Since
garbageSig(t, N™), vk(N™), sk(N™), crs(N™),  Simg is DY, this occurs only with negligible probability.
)

ZK(crs(M), z,w, N™), garbageZK(c, z, N™), In the symbolic execution, the proper(ss, t3) € Ry .
garbage(N™)} for someM € Np holds by protocol conditioh 10. Thus in the case that the
All of these cases follow immediately by definition of hybrid execution corresponds to a symbolic one, it follows
n and definitior{ 4. that (t,t3) € Ry With overwhelming probability.
The proof forSim, is the same. Remind, the only differ- The same proof shows the statement $omn. ]
ence betweeSims and Sim, is that Sims does not check Now, we will formalize the connection of the simulators
if (z,w) € Ryont any more. and transfer the results we have proven before. Thus, we

B  achieve the following results: First, we show that ZK-break
In the next step, we will show that ZK-breaks almost nevertransfer toSim;. Second, we show that all simulators are
occur in the execution of the simulat®im,. It is more  DY-style. Thus, we may use all protocol conditions in all
convenient to show this fatim and transfer it t&im instead  simulators, as we have shown in Leminia 3. Finally, we show
of showing it forSim directly. that the node traces of all simulators are indistinguishabl
Lemmalb (No ZK-breaks):In the hybrid execution of Lemmd2 (Preservation of simulator-properties):
the simulatorSim,, ZK-breaks occur only with negligible

probability. o (i) Let P and Py denote the probability of a ZK-break in
Proof: We have to show that the cage,w) ¢ R\ the hybrid execution of the simulat8im,; andSimy,

occurs with negligible probability. We do this by a case respectively. ThenP, — Py| is negligible.

distinction on(my, mq,) & Reqe" - (i) Let P and P; denote the probability of extraction
First, consider that it holdg§m,,m.) ¢ R...". The failures in the hybrid execution of the simulatéim

hybrid execution oBims, is a valid adversary for the honest andSimy, respectively. ThefP — Py| is negligible.

simulation-sound extractability game, becausien, only (iii) The simulatorSim is Dolev-Yao style if and only if

sends & prove, z, w) query 0Oy, if (z,w) € Ryon? . In the simulatorSimy is.

this case, the protocol sends a preafuch that an extraction- o

failure happens and the extraction extracts.@ such that Proof:

(Mg, my) € Roqu® (Wherem, = Agetpun(2)). Thus the Forz € {1,...,5,f} or = being the empty word, let

adversary wins the honest simulation-sound extractgbilit ZKBreak, denote the event that in the hybrid execution
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of the simulatorSim,, a ZK-break occurs. The same way,
we denote the event that a simula$im, is DY in that
execution byDY .. We abbreviatél-Nodesn 11,,,5im, (k) as
H-Nodes,,.
To show the lemma, we will show that
C

(DY, H-Nodes) ~ (DY, H-Nodes; ) 1)
(DY1, H-Nodes;) < (DYs, H-Nodess)  (2)

(ZKBreaks, DY 5, H-Nodess) £ (ZKBreaks, DY 3, H-Nodess)
©)

(ZKBreaks, DY 3, H-Nodess) £ (ZKBreaky, DY 4, H-Nodes,)
(4)

(ZKBreaky, DY 4, H-Nodes,) £ (ZKBreaks, DY 5, H-Nodess)
(5)

(ZKBreaks, DY 5, H-Nodess) S (ZKBreak¢, DY, H-Nodesy)
(6)

This will then imply statementg](i)=(ii) from the lemma. It

is obvious that Dolev-Yao-ness and ZK-breaks transfer as

stated in the lemma by transitivity. But the extractiondegls
transfer because the in the presence of an extractiondailur
each simulator immediately stops. Thus if the extraction
failures would not transfer as stated above, it would be
possible to differentiate the node traces by their length.

We will show (ZKBreaks, DY, H-Nodess) — ~
(ZKBreaks, DY 3, H-Nodess)

at the end, because we need the intermediate result to prove(ZKBreak,, DY 4, H-Nodes,)

it.

o (DY, H-Nodes) ~ (DY, H-Nodes; )
TransformingSim to Sim; is done by replacing invoca-
tions of the ZK algorithms by oracle-queries. We can
replace A..s(rn) by a (crs)-query to (’)Q’K becauseN
is only used inside thigrs (protocol condition[B) and
the distributions of the implementation and the oracle
are the same. Since(c) in Sim; not checks whether
¢ = Aes(ry) but whethere is the result of somécrs)-
query, the node traces have the same distribution.
The same holds for the replacement dfx by the
(prove, z, w) oracle query tad2.. The randomness — the
fourth argument of the ZK proof — only occurs inside this
proof and nowhere else (protocol condit[dn 3), so we can
replace it by the oracle’s randomness as in dfecase.
By implementation condition 26, it holds that(if, w) ¢
Rpowb  the implementation, as well as the oracle, output
1. So Azx and the (prove,z,w)-query return_L in
the same cases. In the case thatw) .
compute a proof ofr using witnessw. Thus, it holds

(DY, H-Nodes) ~ (DY, H-Nodes, ).

e (DY;,H-Nodes,) ~ (DY, H-Nodess)
In this step we replac®zk by Os;, which returns a
simulated proof forx if for the input (z, w) it holds that

27

€ R2TP both o

(. w) € REMD,.

If we change both simulators to not extract the proof
in case of an extraction failure, then tlieNodes does
not change. The simulator stops after handling extraction
failures in any case. By definition of zero-knowledge these
two modified cases are indistinguishable (using the fact
that the simulator and prover are only invokedaf w) €
RpomP ). Thus (DY, H-Nodes;) and (DY 2, H-Nodes,)

are indistinguishable, too.

(ZKBreaks, DY 3, H-Nodess)
(ZKBreaky, DY 4, H-Nodes,)
In this step we replace encryptions, decryptions and key-
generation by an encryption-oracle as we did for the zero-
knowledge proofs in the step frofim to Sim;. Because
Simz does not compute witnesses of zero-knowledge
proofs anymore, nonces of encryptions are only used once
(by protocol conditior B). Nonces of keys were already
only used once (by protocol conditibh 1). So replacing the
implementation of encryptions, decryptions and the public
key does not change the distribution of the node trace
or ZK-Breaks (since we adapted accordingly, cf. the
replacement ofd..; in Sim;). In addition we can define
B(dk(N)) := L because decryption keys are not used
as input to3 (by protocol conditiodl ¥ and the use of an
oracle for decrypting).

We did neither change the bitstrings that are sent to the
adversary nor the way they are parsed. So the property of
DY did not change, either.

QQ

QQ

(ZKBreaks, DY 5, H-Nodess)

In the step fromSim, to Sims, the only change that is
done is the replacement of the encryption oracle by a
fake oracle that always encrypt™! instead ofm. By
construction ofr the protocol execution asks only for
decryptions of ciphertexts which were not generated by
the encryption oracle (since onBiyinvokes the encryption
oracle). So a run of the protocol is a valid adversary for
the CCA property where the challenger is the encryption
oracle. To get indistinguishability the adversary has to be
able to use ZK-breaks, DYness and node traces to dis-
tinguish both executions. Obviously, it is possible to use
DYness and the node traces. For the case of ZK-breaks,
we have to require thak.”" is efficiently decidable.

Thus replacingi NC by Oy, leads to an indistinguish-
able execution and hend@KBreaky, DY 4, H-Nodes,)
and(ZKBreaks, DY5, H-Nodess ) are computationally in-
distinguishable.

(ZKBreaks, DY 5, H-Nodess)
(ZKBreaky, DY ¢, H-Nodesy)
As in the case fofim3; and Sim,4, we have the case that
after removing the witnesses fims the nonces, used
as randomness for signatures, are only used (by protocol
condition[3) once for signing a message.
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The same holds for verification and signing keys (by 3) (z,w) € R\ andS I w and SymbExtr(S,z) = L
protocol condition[]l). Thus we can replace signing we prove for each case that it occurs with negligible
and computation of verification/signing keys by invo- probability leading to a contradiction to the assumpticat th

cations of Oy, without changing the distribution of an extraction-failure occurs with non-negligible probipi
(ZKBreak, DY, H-Nodes) (since we adopted accord- Casel: "(x,w) ¢ R¥™

ingly, cf. the re_placement OACYS in Simy). In a run of This Woulda(tiave a ZK-break. Thus, this case only
the dpr.otoglﬁ 'j nhever app?ed tcsk(]Y) f(by prot.occ))l occurs with negligible probability because of
condition[% and the use of an oracle for signing), so L 5 and [ | 21 i
we can definef(sk(N)) := L without changing the emma$ and Lemmal 21 ()-

o Case2: "S Hw”
distribution of (ZKBreak, DY, H-Nodes). By LemmalID and sinces — *(m.,), this case

e (ZKBreaks, DY, H-Nodess) ~ can only occur with negligible probability.
(ZKBreaks, DY3, H-Nodess) Case3: "(zr,w) € RYY and S + w and
We have already proven thaDYy) £ (DY3). To- SymbExtr(S,z) = L”
gether with the fact thaSim; is DY (Lemmal[lD), By definition, SymbExtr returns only L if there
it follows that Sim;z is DY. By Lemmal[3, it follows is now such that(z,w) € R.J\"" and S - w. So
that (t2,t3) € Ry for all ZK-nodes with argu- this case cannot occur.
mentsty,...,ty in a hybrid execution ofSimgz (with m

overwhelming probability). Applying Lemm&_IL1 leads  The only thing, that is missing to apply Theoréin 3 is to
to (B(t2), B(t3)) € Rponew, fOr @ hybrid execution of show thatSim is indistinguishable from an computational
Simg with overwhelming probability. The only difference execution.

betweenSim, and Simg is that Simp checks whether | emma 12:Sim is indistinguishable foiM, IT, A, E and
(B(t2),B(ts)) € Ryoner- Because this check would suc- for every polynomialp.

honest"

ceed with overwhelming probability i8ims, it actually Proof:

succeeds irbims. _ We will first show that when fixing the random-
Thus the distribution ofZKBreak, DY, H-Nodes) is the  ness of the adversary and the protocol, the node trace
same inSimy as inSims. Nodesyy 4 11, In the computational execution and the node

] trace H-Tracenm, 1, ,sim IN the hybrid execution are equal.
Using the preceding lemma together with the generalizegience, fix the variablesy for all N € Np, fix a random
DY lemma, it is easy to prove that extraction failures duringtape for the adversary, and for each non-deterministic node
Simj's execution occur with negligible probability. Thus by v fix a choicee, of an outgoing edge.
the preceding lemma, it follows that the same holdsSfo. We assume that the randomness is chosen such
Lemmel¥ (No extraction failures)in a hybrid execution that all bitstrings ry, Ae(rn), Aac(rn), Aw(ry),
of the simulatorSim holds: An extraction failure can only = Ay (ry), Aenc(e,m,rn), Asig(s,m,7n) , Aas(ry), and
occur with negligible probability. o Azk(c,z,w,ry) are all pairwise distinct for allv. € R
Proof: Assume an extraction-failure occurs with non-jf they are well-formedd
negligible probability. Therr(z) is called for a bitstring: of Note that this is the case with overwhelming probability:
type zero-knowledge proof such that the symbolic extractio For terms of different types this follows from implementa-
fails. tion condition[2. For keys, this follows from the fact that
So z was not generated by the protocol, i.e. it was notif two randomly chosen keys would be equal with non-
output of the simulation oracle, and the corresponding negligible probability, the adversary could guess secegtk
was generated by the protocol (otherwiseould notinvoke  and thus break the IND-CCA property or the strong exis-
the symbolic extraction). LetV € Np be defined by tential unforgeability (implementation conditioh 8 dn 9
crs(N) = 7(Aas(2)). Let my := Agetpun(2), 1= 7(ma),  For nonces, if two random nonces;, 7y, would be equal
My = B(mg, 2, extdy)) M w := 7(m,,). Let S denote the  with non-negligible probability, so would encryption keys
set of T that the protocol already sent to the simulator in Acc(rn) and A (rar). For encryptions, by implementa-
this execution. tion condition[®, the probability that.,.(e,m,ry) for

~ We haveSymbExtr (S, z) = L by definition of extrac- random ry of type nonce matches any given string is
tion failures. Thus one of the following cases occurs withpegligible. Lete, ¢/, m,m’,r, ' be bitstrings. Fore # ¢,

non-negligible probability. it holds that Acpe(e,m,rn) # Aenc(e/,m’,7), because
1) (z,w) & R Aexor returns in one case and in the othere’. So if
2) SHw

15That means that is of type encryption keys of type signing keyc
14Here,extd y is the extraction trapdoor that the simulator receives from of type common reference string angw, m € {0, 1}* result from some
the orat:le(?é\’K by querying(extd). evaluation ofg in the execution.

28



Aenc(e,m,rn) = Aenc(e’,m/,7y), it holdse = ¢’. Addi-  v¢, f€ be the ones in the hybrid trace. Létbe the state of
tionally, m = m’ because decryption, usingas argument, the adversary before execution of th¢h node ands{ the
deterministically computesn. So the only case that can corresponding state of the adversary in the hybrid exegutio
occur is Aenc(e,m,rN) = Aenc(e, m,ry-. Since by proto- We will now show that Nodesﬁ/I_A_prE =
col condition’8, eachenc(e,m, ) computed by3 uses a  H-Nodeswm, i1, sim (k). -

fresh noncey, this case occurs with negligible probability.  To prove this we show the following invariant, = 3 o
Analogously for signatures (implementation conditioh 7 ¢ andy, = v¢ ands) = s¢ for all i > 0 by induction on
protocol condition§13 arld 5). and for zero-knowledge proofs;

(implementation condition 20, protocol conditidds 3 &md 8) Base casei = 0. The adversaryF is in its starting
Additionally, we assume that there is no extraction failureconfiguration,i.e.s) = s§, the node mapping functiorf
in the hybrid execution oBim. By LemmalY extraction is totally undefinedf, = f& = and the current node is the
failures do not occur in the hybrid execution 8fm;. root of the protocoly), = v§, so the invariant is satisfied

Since the probability of an extraction failure in the hybrid for s = 0.

execution of Sim and Simy differ only by a negligible Induction hypothesis: For all < i holdsv; = ,/ [ =
function (Lemmad R[{li)), extraction failures only occur tit 3o f€ ands; = s¢.

negligible probability inSim. This is the only case in which Induction stepi — i + 1:

the simulator aborts early. We make a case distinction by the type of the nodes:
In the following, we designate the valugs and »; in 1) If v/ = v¢ is a computation node annotated
the computatlonal execution bff andv/, and in the hybrid with constructor or destructor F, we have
execution by f¢ and v“. Let s denote the state of the P _ P P -
Lt ! - that fi () = Ap(fi(n),.... fimm)) =
adversaryE in the computational model, andf’ the state Ar(BUE ), -, BUE () for some
of the simulated adversary in the hybrid model. nodes 7,. And fﬁl(’/ﬂ _ < WO =
Claim 1: In the hybrid execution, for anym € {0,1}* : evalp(f€ (1), ..., f€ (7). From Claim[% it follows
B(t(m)) = m. that 5( H—l( vi)) = fi(v)) Where the lhs is defined
This claim follows by induction over the length of iff the rhs is. Hences o fZ+1 1
m and by distinguishing the cases in the definition By Claim [2, 8(f&,(vC)) is defined if f&,(v)
of 7. A detailed proof is in the sectidn F. is. Hence l+1(y6j—) is deﬁned iff fl (v ’) =
Claim 2: In the hybrid execution, for any termstored at LABUSLwE)) is. If fS(vC) is defined, then
a nodev, B(t) # L. Vicﬂ is the yes-successor of and the no-successor
By Definition of 3, any term¢ with 3(¢) = L otherwise. If f/ (v ) is defined, then/{ , is the yes-
has a subterm of the forK(t1, t2, t3, t4) with successor of/, = v and the no-successor otherwise.
ts € N, t; not of the formers(N) with N € N, Thusvg | = vl ;.
or (B(t2), B(t3)) & Roqy® or a subterm with a The adversary is not invoked, hence] ; = s, . So
similar form of encryption-, signature- or garbage- the invariant holds foi + 1 if v/ is a computation node
terms. These are never generatedrhyor by the with a constructor or destructor.
protocol. 2) If v/ = v¢ is a computation node annotated with nonce
Claim 3: For all termst ¢ R that occur in the hybrid N € Np, we have thatf’ ( ) =rny = B(N) =
execution,7(5(t)) = t. [3( Sr1( 7). HenceBo &, = f/,,. By Definition[d,
By induction on the structure e¢fand using the as- Vi, , is the yes-successor of. SinceN € T, v7,, is
sumption that'y, Aek(rn), Aax(rn), Avk(ry), the yes-successor of’ = v/. Thusv,,; = v5 ;. The
A (rn), as well as all occuring encryptions and adversaryE is not invoked, hence}, , = s{,,. So the
signatures are pairwise distinct for @\l € R. invariant holds fori + 1 if v is a computation node
Claim 4: In the hybrid execution, at any computation node with a nonce.
v = v; with constructor or destructof’ and 3) If v/ = v is an input node, the adversafy in the
argumentsr, . .., v, the following holds: Let; computational execution and the simulator in the hybrid
be the term stored at node (i.e., t; = f/(7;)). execution is asked for a bitstring’ or bitstringt©, re-
ThenB(evalp(t)) = Ar(B(t1), ..., B(tn)). Here spectively. The simulator produces this string by asking
the left hand side is defined iff the right hand side the simulated adversarE for a bitstringm and set-
is. ting t¢ := 7(m%). Sinces, = s¢, we havem’ = m°.
The proof for this claim is lengthy and thus Then by definition of the computat|0nal and hybrid
postponed to the sectidd F. executionsf!  (v}) =m/ and fS, (v}) =t = r(m/).
For given fixed randomness (see above), dgtf/ be Thus fi ,(vj) = m' @ B(r(m)) = B(fE1 (V)

the nodes and functions as in the computational trace and  where (x) follows from Claim[1. Sincef/, ; = f; and
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., = f¢ everywhere else, we hayg, ,

:ﬁofi(f;l-

We want to show that - in the hybrid execution $iin -

Furthermore since input nodes have only one successdmwldsVm € {0,1}* : 8(7(m)) = m.

z+1 = z+1
the execut|on the adversaries stateslrs— s¢, and

sincem’ = m©, it follows thats,, = s ,. Thus the
invariant holds fori + 1 in the case of an input node.
4) If v/ = v is an output node, the adversafy
in the computational execution gets’ := f/(in)
where the node; depends on the label of. In the
hybrid execution, the simulator getS := £ (7;) and
sendsm® := 3(t“) to the simulated adversary. By
induction hypothesis we then have’ = m®, so the

adversary gets the same input in both executions. Thus
Si1 = Sic+1- Furthermore, since output nodes have only

one successor, we havé, , = v . And fl | = f/

and f<, = f¢, so fl,, = Bo f&,. Thus the invariant
holds fori + 1 in the case of an output node.

5) If v/ = v is a control node, the adversafy in

3

the computational execution and the simulator in the

hybrid execution get the out-metaddtaof the node
vl or v, respectively. The simulator passESJn to
the simulated adversary. Thus, singe= s¢, we have

that s/, = s& ,, and in the computatronal and the
hybrid executionF answers with the same in-metadata
I'. Thusv/,, = v5,. Since a control node does not

modify f we havef/ , = f/ = Bo f€ = Bo f5,.
Hence the invariant holds far+ 1 if v} is a control
node.

6) If v/ = v is a nondeterministic nodey,,, = v<,
is determlned bya,/ =e,c. Since a nondeterministic
node does not modlfyf and the adversary is not
activated, fJrl = fl = Boff = Bof5, and
siy1 = 8;,,. Hence the invariant holds far+ 1 if
v} is a nondeterministic node.

From the invariant it follows that the node trace is the

same in both executions.

Since random choices with all nonces, keys, encryptions,

and signatures being pairwise distinct occur with overwhel

ing probability (as discussed above), the node traces of the

real and the hybrid execution are indistinguishable. m

Final Soundness ProofHaving the preceding lemmas, we

prove the computational soundness (Theorém 1).

Proof of Theoreni]1:By lemmaIP we get theim is
indistinguishable folM, IT, A, E and for every polynomial
p. By Lemma[10,Sim is DY which transfers tdSim by
lemmal2 [(iil). SoSim is a good simulator. By Theoref 3
we finally conclude that the implementatiohis sound for
every protocol as specified in the Theorem. ]

F. Proof of Claims

Proof of Claim[1: In this section we present a proof of
claim[I] of the claims used in the indistinguishability proof.
The proofs of all other claims are similar done by structural

induction.
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Since we fixed the random choices of

Proof: By structural induction orr(c).

7(m) = N for someN € Np

Thenm =ry andB(r(m)) = B(N) = ry = m.

T(m)=N™

Thenj(7(m)) = B(N™) = m

7(c) = enc(ek(M),t,N) and ¢ was output by
)

Blenc(M),t, N
Then f(r(c) = = Blenc(ek(M),t,N)) =
Aenc(B(ek(M)), 8(t),rar). This is equal to ¢

since the arguments are equal (randomnessnofis
the third argument) and by implementation condition
we know thatA.,. is deterministic.

7(c) = enc(ek(M),t, N€)

Theng(7(c)) = B(enc(ek(M),t, N¢) = c.

7(c) = garbageEnc(t, N¢)

Theng(r(c)) = B(garbageEnc(t, N¢) = c.

7(c) = ek(N) for someN € Np.

Then by definition ofr, it holds ¢ = A (ry) =
B(ek(N)) = B(r(c)).

7(c) = ek(N°).

ThenB(7(c)) = B(ek(N°)) = c.

7(c) = dk(V) for someN € Np.

Then by definition ofr, it holds ¢ = Ag(ry) =
B(AK(N)) = B(r(c)).

7(c) = dk(N°).

Then A(r(c)) = A(dk(N)) = c.

7(c) = sig(sk(M),t,N) with N,M € Np, earlier
output by S(sig(sk(M),t, N)).

Then holdsg(7(c)) = ﬂ(sig(sk(M),t,N)) =c As in

the case of encryption we have the same arguments and
the a deterministic function, so the result has tocbe
again.

7(c) = sig(sk(M), t, N¢)

Then holdsB(7(c)) = B(sig(sk(M
7(c) = garbageSig(sk(M), N°)
Then holdsj3(7(c)) = B(garbageSig(sk(M), N¢)) =
C.

7(c) = vk(N)

Then by definition ofr, it holds ¢ = A (ry) =
BIVE(N)) = B(r(c)).

7(c) = vk(N€)
Then holdsB(7(c)) = B(vk(N°¢)) = c.

7(c) = sk(N)

Then by definition ofr, it holds ¢ = Ag(ry) =
B(sk(N)) = B(r(c)).

7(c) = sk(N°)
Then holds8(7(c)) = B(sk(N°)) = c.

7(c) = ZK(crs(t1),te,t3, N) with N € Np, earlier
output byﬁ(ZK(CI‘S(tl)7 to, 13, N))

This case holds because of the determinism of the
implementationAzk.

),t, N°)) = c.



Proof of Claim[4:
induction on the trace length with a case distinction on all
constructors and destructoFs

1) "F = crs”

T(C) = ZK(CI‘S(tl), t2,t3, NC)

Then holds3(7(c)) = B(ZK(crs(t1),te,t3, N)) = ¢
by definition of 3.

7(c) = crs(N) for N € Np, earlier been output by
B(crs(N)

Then holds by determinism ofi.,s that 5(7(c)) =
Blers(N)) = Aas(ry) = c.

7(c) = crs(N°)

Then holds3(7(c)) = B(crs(N°)) = c.

7(c) = garbageZK(t1,t2, N¢)

Then holds5(7(c)) = B(garbageZK(t1,ta, N€)) = ¢
7(c) = pair(ty, t2)

By construction ofr follows that ;1 = 7(Ast(c))
and t2 = 7(Asma(e)). By induction hypothesis
follows for ¢; = Agi(c) that B(r(c1)) = .
The same holds forca := Aga(c). Therefore
we get S(pair(ty,t2)) = Apair(B(t1),B(t2)) =
Apair (B(7(Agst (¢))), B(T(Asna (¢)))) =
Apair(Agsi (), Asna(c)) = ¢ where the last equality
holds because of implementation conditibn$ 11 [and 1.
7(c) = stringo(t)

By definition of 7 follows that ¢ = 7(¢) with
¢ = Aunswing,(¢) and ¢ # 1. The induc-
tion hypothesis implies that(r(¢’)) = ¢. So

T(StringO(t)) = Astringo (ﬁ(t)) = Astringo (Cl) =
Astringy (Aunstring, (¢)) = ¢ The last equality holds
because of implementation conditidnd 17 and 1.
7(c) = string; (¢)

Analogue to the case of(c) = string(t).

7(c) = empty

Thenc = Aempty() = Blempty) = B(7(c)).

7(c) = garbage(N°¢)

Then g(garbage(N¢)) = c.

[ |
Proof: The proof is done by

By protocol conditio 1L the first argument of this node
is a nonce computation node, itg.= N for someN €
Np. Therefore holds3(evale,s(t1)) = Blers(ty)) =
Acrs(TN) - Acrs(ﬂ(N))

2) "F € {ek, dk, vk, sk}”

Analogous to the casé' = crs.

3) "F =Z7ZK"

A node annotated wittYK has ast; = crs(Vy) for
someN; € Np andty = N, for No € Np (protocol
conditiond 8 andl3). Thus, we have:
AZK(B(tl)vﬁ(tZ)vﬁ(t3)7ﬁ(t4)) =
AZK(Acrs(TNl)aﬁ(t2)7ﬁ(t3)7TN2) =
ﬁ(evalz}((tl,tg,tg,m)).

4) "F = getPub”

If the argument is neither of the fornZK (¢4, ta, t3, t4)
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nor garbageZK(t1,to,t3) then S(getPub(t)) = L
and Agetpub(B8(t)) = L, too. So first considet =
ZK(t1,t2,t3,t4). Then, by protocol conditioris 3 ahdl 8
and by definition ofr, it follows thatt; has the form
crs(uq) with w3 € N and¢y € N.
Thus we haves(evalgeipub (ZK(crs(ur), to, t3, t4))) =
B(ta).
Case 1ty = N € Np
Then it holds that
Agetpub(ﬁ(ZK(CI‘S(ul),tg,tg,N))) =
Agetpub(Azk (Acrs(11,), B(t2), B(ts),mn)) =
B(t2) where the last equality holds because
of implementation conditioh 27.
Case 2ty = N™ e Ng

Then we have
Agetpub(ﬁ(ZK(CI‘S(tl),tg,t3,Nm))) =
Agetpun(m) where 7(m) =
ZK(CI‘S(tl), to, ts, Nm) and
T(Agetpub(m)) = to by definition of 7.

By applying 8 on both sides, it follows that
B(t2) = ﬁ(T(AgetPub(m))) = AgetPub(m)
where the last equality holds because of
Claim[1.
Now, consider the case that= garbageZK(t1, t2, t3).
By protocol conditior( PR, it follows that was gener-
ated viar. Thus, there is & € {0,1}* such that
ts = N* andty = 7(Agetpub(z)). Therefore, it holds
that Agetpun(B(garbageZK(t1,t2,1t3))) = Agetpub(2)
2 B(r(Agetpun(2))) = B(t2). Here, the equality(x)
holds because of Claifd 1.

5) ”F = VerifyZK"

If 5(t2) has not the type zero-knowledge proof, then
the left hand side is. by definition of 3, and the right
hand side isL by implementation conditioh 22.

Therefore consider t;, to be of the form
ZK (u1,u2,us, uq) or garbageZK (u1, uz, ug).
Additionally has to hold thatt; = w; and that

by protocol conditiod ¥, is of the formcrs(Ny) for

someN; € Np. Consider the following subcases:

a) to = ZK(CI‘S(Nl),UQ,Ug,U4) with uy € Np.
Thenwu, has the formV, for Ny € Np by protocol
conditiond 8 and13. Bff Lemmd 3 and the fact that
Sim is DY (LemmalID andl2[(i)), it holds that the
proof is, valid, more preciselyus, us) € Ry ..
Therefore, it follows evalyerity,, (t1,t2)

to. Thus, it holds  S(t2) =
Az (Acrs(rnvy ), B(u2), B(uz), TN, )-
By follows (B(uz), f(uz)) € Riomp,
therefore — by completeness of the zero-knowledge
proof system — this gives a correct proof. Thus ver-
ification succeeds, and therefore by implementation
condition[21 Aerity,, (B(t1), B(t2)) = B(t2).

b) to = ZK(CI‘S(Nl),UQ,Ug,U4) with uy € Ng.



6)

7

8)

Thenwuy = N? with 7(2) = t2 and by definition
of 7 holds z = Ayerity,, (Acrsot(2), 2) =
Averity e (BT (Acrsot (2))), B(7(2))) =
Averity . (B(crs(N1)), B(t2)) =
Averity,, (B(t1)), B(t2)), on the other hand
Blevalverity,, (t1,t2)) = Blt2) = B(1(2)) = =,
where in both case$x) hold because of clairh] 1.
The equality («*) requires that(us,u3z) € R
This holds becauseé, was constructed by- and
thereforeu, was constructed by symbolic extraction
(if an extraction failure has occurred, we would
already have stopped earlier) Sz, u3) € R
C) to = garbageZK(crs(Ny), us, us).
By protocol condition[R holds that, was pro-
duced by 7. Thus u3 = N# with 7(2) =
to. Becauseu; = t; = crs(Ny) for Ny €
Np follows by definition of 7 that I =
AverifyZK (Acrsof(z)a Z) = AverifyZK (B(tl )a B(tZ))
(by implementation conditioh21). By definition of
verify, follows that evalyerify,, (t1,t2) = L and
therefores(evalyerity,,, (t1,%2)) = L, too.
"F = iszk”
If t; is not of the form ZK(crs(Ny),u1,us, No)
or garbageZK(ui,u2, N1) with N3, No € N then
B(t1) is not of type zero-knowledge proof. Therefore
Aiszx(8(t1)) = L by implementation condition 18. On
the other hand holds§(evalis,i(¢1)) = B(L) = L.
So let t; be of the form ZK(crs(Ny),us, us, Na)
or garbageZK(ui,us, N1) with N7, Ny € N. Then
Bleval(isx(t1))) = B(t1) and Az (B(t1)) = B(t1) by
implementation conditiof 18 becaugkt;) has type
zero-knowledge proof.

"F € {isenc, issig, isek, isvk, iscrs}”

Analogue to the casé = iszk.

"F = crsof”

If ¢ is not of the form ZK(u1,us,us, N) or
garbageZK(u1,uz, N) with N € N. Then
evalgsof(t1) = L and S(t1) is not of type zero-
knowledge proof, therefore by implementation

condition[24 holdsA,sof(B(t1)) = L.

In the other both cases holdgevale,so(t1)) = B(u1).

Consider the following subcases:

a) t, = ZK(ul,UQ,UgJ,,N) with NV e Np.
So the term was generated by the protocol, therefore
- by protocol conditioi B - holds that; = crs(M)
for some M € Np. Thus holdsA..sf(S8(t1)) =
Acrsof(AZK (Acrs (7”]\4), ﬁ(’U/Q), ﬁ(u3)a TN)) =
Acrs(rar) = Blers(M)) = Blevalesot(t1)) where
(*) holds by implementation conditidn 23.

b) t; = garbageZK(u1, ua, N).
By protocol condition[P2 follows that; was con-
structed by, i.e. t; = garbageZK(ui,us, N?)
for some z € {0,1}* of type zero-knowledge
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and u; = 7(Awsot(2)). Thus we haveB(u,) =
ﬁ(T(Acrsof(z))) = Acrsof(z) = Acrsof(ﬁ(tl)) where
the last equality holds by definition gfand (*) holds
by claim[1.

C) t1 = ZK(Ul,Ug,Ug,NZ) with N* € Ng.
This case is analogue to the cdse= garbageZK.

9) "F € {ekof, vkof}"

Analogue to the casé’ = crsof.

10) "F = enc”

By protocol conditiof B holds that = N for N € Np.
If ¢; is of the formek(u), then B(enc(t1,t2,t3)) =
Aenc(B(t1), B(t2),7n) = Aenc(B(t1), B(t2), B(ts)),
because3(N) = ry.

So let t; be not of the form ek(u). Thus
Blenc(tr,ta,t3)) = L and Aenc(8(t1), B(t2), B(ts)) =
1, becauses(t;) is not of type encryption key and
implementation condition 19.

11) "F = dec”

By protocol conditiof b, = dk(N) with N € Np.
We distinguish the following cases fos:

a) to = enc(ek(N),uq, M) with M € Np

Then Adec(B(11), B(t2)) =
Adec(Adak(rn)s Aenc(Aek (N), Bluz), ) = B(uz)
by implementation condition[12. Furthermore
B(dec(t1,t2)) = B(uz) by definition ofdec.

to = enc(ek(N), ug, N°)

Thent, was produced by and hence: is of type
ciphertext andr(Agec(Aax(rn),c)) = wue. Then
by Claim[d, Agec(Aax(rn), c) = B(uz) and hence
Adec(B(t1), B(t2)) = Adec(Aax(rn), ) = B(uz) =
ﬁ(dec(tl,tg)).

C) ta = enc(uq, uz, us) With uy # ek(N)

As shown above (case F =
ekof), Ackot (B(enc(ug, uz, us)) =
B(ekof (enc(u1,u2,u3)) = B(u1). Moreover,
from Claim 3, Ackor(B(enc(uy,us, us)) =
B(ur) # B(ek(N)) = Ae(ry). Thus by
implementation conditioml4Aqec(8(t1), B(t2)) =
Adec(Aax(rn), B(enc(u1, ug, us))) = L.
Furthermore, dec(t1,t2) = 1 and thus
ﬁ(dec(tl,tg)) =1.

to = garbageEnc(u, N€)

Assume that m =  Age(B(t1),8(t2)) =
Agec(Aax(rn),c) # L. By implementation condi-
tion [I3 this impliesAqkor(c) = Aek(ry) and thus
T(Aekot(¢)) = 7(Aek(rn)) = ek(N). By protocol
condition[2,¢, has been produced by, i.e., to =
7(c). Hencec is of type ciphertext. Then, however,
we would haver(c) = enc(ek(N),7(m), N¢) #

b)

d)

to. This is a contradiction tot, = 7(c), SO
the assumption thatlge.(5(t1), 8(t2)) # L was
false. S0 Agec(B(t1),B(t2)) = L = /(L) =

B(dec(t1, garbageEnc(ui, N¢))).



e) All other cases

Then B(t2) is not of type ciphertext. By im-
plementation condition13,Ack0(8(t2)) = L.
Hence Ackot(B(t2)) # Aex(rny) and by im-
plementation condition]4,440..(5(t1), B(t2)) =
Adec(Aar(rn), B(t2)) = L = B(dec(ty,12)).

12) "F = sig”

By protocol conditions[13 and]7 we have th
t1 = sk(N) andts = M for N,M € Np. Then
Bsig(t, t2,3)) Asig (Ask (), B(t2),rar)
Asig(B(sk(N)), B(tz2), B(M))
Asig(ﬂ(tl)vﬂ(tQ)vﬂ(t3))'

13) "F = verify,”

We distinguish the following subcases:
a) "t = Vk(N) and to Sig(Sk(N),UQ,
N,M € Np”

Then Averifysig (ﬁ(tl)v ﬁ(tZ))
Averifysig (Avk (TN), Asig (Ask (TN), B(UZ)a TM))
B(uz) B(verifyg,(t)) where (%)
implementation condition15.

"ty = Sig(Sk(N),’U,Q,M) and tq }é Vk(N
N,M € Np”

By Clam [&, B(t) # B(k® )
thermore  Aveity,, (B(Vk(N)), B(t2))
Averifysig (ﬁ(tl)7 Asig (Ask (TN), B(UQ)a TM))
B(uz) # L. Hence with
condition [186, Averifysig(ﬁ(tl),ﬁ(tg)) = 1
B(L) = verify, (t1,t2).

"t = Vk(N) and to = Slg(Sk(N), U2, MS)”
Then t, was produced byr and hences is
of type signature with7(Aykot(s)) vk(N)
and m Avenfys‘g(Avkof( s),s) # L1 and

U2

M) with

(1= 1l

uses

b) ) with

Fur-

[E

B(uz) and B(t1) =
BOK(N)) = B(r(Avior(s)) = Avkot(s). Thus
Averlfysig(ﬁ(tl)aﬁ(tQ)) - Averlfy ( Vk()f() )
m B(uz). And B(Vemfymg(tl,tg))
B(verify, i, (vK(N), sig(sk(N), up, M*))) = B(uz).
"ty = Sig(Sk(N),UQ, Ms) andt1 7§ Vk(N)”
As in the previous caseé,l\,crifysig (Avkor(8),8) # L
and B(vk(N)) Avkot(s). Sincet; # vk(N),
by Claim [3, 8(t1) # B(k(N)) = Avkot(s).
From implementation  condition []6
Avcrifysig (Avkot(8), 8) #+ 1, we have
Avcrifysig (ﬂ(tl)v B(tQ)) = Avcrifysig (ﬂ(t1)7 5) =
L = B(L) = Blverifyg, (t1,t2)).
e) "ty = garbageSig(uy, N*)”
Thenty, was produced by and hences is of type
signature and eitherAvcrifysig(Avkof(s),s) = 1
or 7(Avkor(s)) is not of the form vk(...).
The latter case only occurs ifd kor(s) 1
as otherwise A,¢(s) is of type verification
key and hencer(Akot(s)) vk(...). Hence

d

~

at

implementation

Hence with Claim[ll we have

and
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If

in both casesAvcrifysig (Avkot(5), 8) 1.
ﬁ(tl) = Avkof(s) then Averifysig(ﬁ(tl)7ﬁ(t2))
Averifysig (Avkof(s)7 S) =1 ﬁ(verifYSig (t17 t2))'

If B(t1) # Aukot(s) then by implementation

condition  [16, Avmfysig (B(t1), B(t2)) =

Avcrifysig (B(t1),s) 1. Thus in both

cases, with verifyg, (t1,2) 1 we have

Averity,, (B(t1), B(t2)) = L = B(verifyg, (t1, t2)).

All other cases

Then S(t2) is not of type signature, hence by im-

plementation conditiohl54,.t(8(t2)) = L, hence

B(t1) # Awkor(B(t2)), and by implementation con-

dition [18 we haveAverifysig(ﬁ(tl) Btz)) = L =

B(verifyg, (t1,12)).

14) "F € {pair, fst, snd, stringp, unstringp, string,
unstring;, empty}” The claim follows directly from
the definition off.

15) "F = equals”

If t1 = 1o then holdsﬂ(equals(tl,tg)) = ﬂ(tl)
Aequals(ﬁ(tl)uﬁ(tl)) = Aequals(ﬁ(t1)7ﬁ(t2))- So let
t1 # to. By Claim[3 holdst; = 7(8(t;)), so B(t1) #

f)

B(t2), because otherwis¢; = t¢o. But then holds
Acquals (tla t2) =1= ﬂ(equals(tla tQ))
16) "F € {garbage, garbageEnc, garbageSig,

garbageZK} UNg”
By protocol condition 2, the constructdr does not
occur in the protocol.

[ |

G. Generic Construction of WSSZK-Proof Systems

The construction in[[39] yields weakly symbolically-
sound zero-knowledge proofs given any non-interactive-zer
knowledge proof which is length-regular and extractable.

This is summarized in the following theorem:

Theorem 4:Let m be a length regular, extractable non-
interactive zero-knowledge proof system and assume that
one way functions exist. Then the construction in]|[39]
leads to a weakly symbolically-sound zero-knowledge proof
systemlIl.

In paper [39], they proved that the construction satisfies
all properties listed in definition] 1 except honest simoladi
extractability and length-regularity. However, we showatth
it also satisfies these properties.

The construction basically uses polynomially many zero-
knowledge proofs to construct a single one, but the number
of proofs used in the combined proof is always the same.
So length-regular follows immediately. They show unpre-
dictability and simulation-soundness. Simulation-sawess
is shown by a reduction to the soundness property of the
underlying zero-knowledge proof system. The same way
one can reduce the simulation-extractability property to
extractability.

The construction in[[39] uses a strong one-time signa-
ture schemg(K, sig, verify,) which is strong existential



unforgeable when it is used only once and length regular.

Denoteq(k) the length of the verification key.

In addition there is assumed to be an efficiently com-
{0,1}9%) — 2¢'(®) that maps veri-
fication keys to subsets ofl,...,¢'(k)}. Let t(k) be a
polynomial upper bound of the proof occurring in a protocol
q(k) - t(k), and ¢’(k) = I(k)%. Then

putable functiong :

execution, (k)
holds for any setm!,...,m!®*) different from m that

t(k) ) l(k)
lg(m)\ _glg(mﬂ z 5
such functions can be found in [39].

We show that the construction given in_[39] satisfies the

properties. The construction is the following:

. Details on the construction of

Reference String Let o be a reference string of the proof

systemn. Then the reference string @f is ¥ = o9 o

o10...004 (). The same way is the simulation trapdoor

the concatenation of the simulation trapdoorsrpfind

the extraction trapdoor the concatenation of extraction

trapdoors ofr.
Prover Py (z, wX):

(1) RunK(1¥) to obtain a key pai(vk, sk) for the one-

time signature scheme.
(2) For eachi in the setg(vk) provep; = P.(z,w, ;).

Fori ¢ g(vk), definep; := ¢, i.e. the empty string.

(3) LetP:=pio...0py (k-
(4) Output(vk, z, P, sigy (z, P).
Verifier V(z,p = (vk, 2/, P, 2),X):
(1) Checkr = 2', andverify, ((z, P),z) = 1.
(2) DecomposeP into thep; for i € g(vk).
(3) Returnl if V(z,p;,0;) =1 for all ¢ € g(vk), and
0 otherwise.
Simulator Syi(x, ¥, simtd):
1) Generatevk, sk as the prover does.
2) Fori € g(vk) constructp; = S, («,0;,simtd;) and
otherwisep; = e.
3) Let P:=pio...0pyp-
4) Output(vk, z, P, sigy (z, P)).
Extractor E(p = (vk, 2/, P, ), X, extd):
1) CheckVy)(z/,p,X). If the outcome id) return L.
2) For eachi € g(vk) run E(p;, 0y, extd;) = w;. If w;

is a witness forr’ then returnw;, otherwise go on.

3) If no witness was found returm.
Proof:
1) Completeness, Zero-knowledge,

These properties were already shownlin| [39].
2) Simulation-Extractability:

to show. The case thatk; = vk; for two different
simulated proofsS;, # S; occurs with negligible
probability, so we can exclude this case. Consider the
following two cases:

Case (i): vk = vk; for somel < i < n. Then one of

x, P, z is different from the corresponding
one inS; = (vk;, z;, Py, 2;). If @ # x; or

P # P, thenz # z; or the verification fails.
Thus w.l.o.gz # z;. But this means that the
adversary was able to forge a signature for
the one-time signature scheme which can
only happen with negligible probability.

vk # vk; for all 7. In this case holds
that g(vk)\ U g(vk;) # 0. This means

1<i<n
there is someg € {1,...,4¢'(k)} such that

Jj € g(vk) butj ¢ |J g(vks). If the
1<i<n
extraction fails, then the extraction for;

fails, too, by construction. But then, this is
a successful adversary for the extractability
of 7. Thus this case can only occur with
negligible probability, too.
Together this means that an adversary for the
simulation-extractability property ofl can only suc-
ceed with negligible probability, what we wanted to
show.
Length-regularity:
The functiong always selects the same numberof
from vk. So the number of proofs which are done is
always the same, independentdf. Since the proof
systemm is length regular, each proof has the same
length. For a security parameteithe verification keys
vk have the same length Becauseand P have are
length-regular we can conclude that,, (z, P) has the
same length for allz, too. Thus the overall proof is
length-regular.

Case (ii):

3)

|
Taking a closer look at the proof one can see that almost
all propertiesP of the form "P has to holds even when the
adversary gets access to a simulation oracle” can be derived
this way when the origin proof system has the propétty

H. Example relations
In this section we prove that the relations shown in

Unpredictability:seCtionml satisfy definitiori ]2, i.e. that the computatibna

relations actually implement the symbolic ones. In both
examples, we make use of the fact that the all symbolic

Let Sy, ..., S, be the simulated proofs that the adver-relations are implicitly restricted t@, and all computational
sary has queried ang = (vk,z, P, z) the outputted
proof. If the adversaries output has not this form, theValid ciphertexts

verification would not succeed and there is nothing to First, we consider the example of proving that a ciphertext

show. In addition we may assume that~ S; for all

ones to nont.

is valid using the randomness as witness. The relations are

1 < i < n, because otherwise there is again nothingdefined as follows:

34



RY™ = {((enc(k,m,r),k,m),r) : k,m € T,r € Np}
R:’;) — {((enc(k7m,7°),/€,m),r*) ck,m,r*eT,re N}

Rionin = {((Aenc(k,m. 7). k), r) - kom.r € {0,1}7)

RZZI\IIIP = {((Ach(kymvr)vkam)ar*) : k,m,r, T* € {07 1}*}

Acne IS injective in its first two arguments (follows
by the assumption[{1) of the lemma), we have that
img, (k1) = img,(k), img,(m1) = (m). Thus
(z,w) = ((enc(k,m,r1),k,m),w) €
Now consider the casg € Ng. SinceACkof(imgn(c)) =
img, (k1) by consistency ofj, it follows thatimg, (k1) =
img, (k). Additionally, img, (k1) is of type encryption key.
By assumption[{2) there is a corresponding decryption key

For the proof, we need two additional requirements orfl € {0;1}". By consistency it follows thatmg, (m1) =

the implementation. First, we need that,. in injective

in the first two arguments. For the first argument, thelenc
encryption key, this can be achieved by concatenating it

/

dec(d,img, (enc(ky,m1,7m1))) = m' = img,(m). Thus
(k,m,rl),k,m),w) € R:i?/l

to the encryption. The second one is only implied by theAbility of decryption.

IND-CCA property if the first argument is indeed of type
encryption key, but we need it for all bitstrings. Finallyew

In the remaining section we consider the relation used
in the pi-calculus example. Basically, we use the system to

require that the encoding of encryption keys is dense, i.@rove that a party is able to decrypt a given message. The

that for every bitstring of type encryption key, there is a
corresponding decryption key. Summarized, this leadseo th
following lemma.

Lemma 13:If, in addition to the implementation condi-

tions, it holds:

1) For all k,k',m,m',r € {0,1}* Aenc(k,m,r)
Aenc(k,m’,r) implies m = m’ and Aepc(k, m, )
Aenc(k',m, r) implies k = £/

2) Forallk € {0, 1}* of type encryption key, there iscac
{0,1}* such thap(d) = k according to implementation
condition[29.

Then follows thatR; 07>
usage restrictiodz;” ™
Proof: Fix a consistent environmentand termse, w €

comp
Radv

S with

adv

implement R

honest"

T

We first show that if (z,w) € R . and

img, (z) # L # img,(w), then (img, (z),img,(w)) €
Rpovb . Thus, fix = = (enc(k,m,7), k,m)
and w = r € Np. Then img,(enc(k,m,r))

= Aenc(img, (k),img, (m),img, (r)) =: Aenc(k’,m’, ")
Here it is crucial thatimg,(r) # L and hence
Aenc(img, (k),img, (m),img, (r)) # L. So, it follows

(i (2) g (0)] = (A ), 17).) €
Rhoncst'
Now we show that if (img, (z),img, (w)) € Ryq,",

then (z,w) € R
(img, (v),img, (w)) € e
(¢ k' m) (img, (c),img, (k),img, (m)) with ¢’ =
Aenc(k',m’,r") for somec, k,m € T,r" € {0,1}*. Since
img, (z) = (¢, k', m’), we haver = (c, k,m) by definition
of img, and injectivity of Ap.;;. By implementation condi-
tion2, ¢’ = img, (c) has type ciphertext. Thus, by definition
of consistent environments, = enc(ky,my,r1) for some
ki,mq1,m € T. Sincece T, r; € N.

First, consider the casey € Np. Then ¢

img, (c) = Aenc(img, (k1),img, (m1),img(r1)). Since

oy - FiX some z,w € T with
R.yP. Then img, (x)
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additionalm’ is only used for freshness.

R;}cl)lrjllcst = {((m/aml)vd) : ml’ml’d €T
such thatdec(d, m;) # L}
R = R, U ('), d):

my = garbageEnc(¢, M),t € T, M € N}
= {((m',m1),d) : m’';my,d € {0,1}*
such thatAgec(d, m1) # L}

comp ., pcomp
Radv T Rhonest

Additional to the implementation conditions, we require
that for each encryption key, there is exactly one decryptio
key accepted by the decryption algorithm.

Lemma 14:If, in addition to the implementation con-
ditions, it holds: For alld,d’,¢ € {0,1}* it holds: If
Adec(d,c) # L # Agec(d’,c) thend = d. Then follows
that R;°™P  RO™P implement B> with usage restriction

honest’ ~ “adv adv
Ri};r:cst'

Proof: First, we observe that by implementation condi-
tions[4 andIB, it follows that it € {0,1}* is not of type
ciphertext, then for alll € {0, 1}* it holds Agec(d, m) = L.

Fix a consistent environmentand termse, w € T.

We start showing that ifz, w) € Ry, ., andimg, (z) #
1L # img,(w), then (img, (z),img, (w)) € Ry e . By
definition it follows thatz = (m/,m,) andw = d. Since
dec(d,m1) # L it follows thatd = dk(N) andm; =
enc(ek(N),t, M) for someN, M € N. By consistency of;
it follows Agec(img, (dk(N)),img, (m1)) = img, (t) # L.
Thus (img, (), img, (w))) € Ryone.

honest"

Now we show that if(img, (), img, (w)) € Rig,", then

(z,w) € R By definition img, (x) (m’?%’l) and
img, (w) = d’ such thatdgec(d', m}) # L. Thusz is of the
form (m, m;) andw somed. As mentioned above, it follows
that m} is of type ciphertext, sincedqo.(d’,m}) # L.
Hence, by consistency of it follows thatm, has the form

enc(ek(N),t, M) for someNNp,M € N, t € T or it has



the formgarbageEnc(t, N) for t € T, N € N. In the latter
case(zr,w) € R} Inthe first case, by consistencympfol-

lows that Agec(img,, (dk(NV)), img, (enc(ek(N),t, M))) =

img, (t) # L. Thusimg, (w) = d' = img, (dk(N)) and
hencew = dk(IN) by assumption. S¢z, w) € R
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