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Abstract. In this paper we investigate the invariant property of PRINTcipher first discovered
by Leander et al. in their CRYPTO 2011 paper. We provide a thorough study and show that
there exist 64 families of weak keys for PRINTcipher–48 and many more for PRINTcipher–96.
Moreover, we show that searching the weak key space may be substantially sped up by splitting
the search into two consecutive steps. We show that for many classes of weak keys key recovery
can be done in a matter of minutes in the chosen/known plaintext scenario. In fact, at least 245

weak keys can be recovered in less than 20 minutes on a single PC using only a few chosen and
one known plaintext(s). We provide detailed treatment of the methods and put them in a more
general context that opens new interesting directions of research for PRESENT-like ciphers.
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1 Introduction

Lightweight cryptography gained its importance due to emergence of many applications that
involve using small and resource constraint devices like RFID tags, smart cards, and sensors.
Conventional cryptographic algorithms turned out to be too massive to be implemented on
such devices. Therefore the need for new cryptographic primitives arose in the community.
In particular, the whole arsenal of lightweight block ciphers has been developed in recent
years to satisfy the needs for secure usage of small devices. The block cipher PRESENT is
one outstanding example that gained popularity [1]. Other block ciphers, such as KATAN
and KTANTAN family [2], LED block cipher [3] and many others were presented recently.
Following the design principle of PRESENT, several block ciphers with even more lightweight
structure have been proposed. PRINTcipher [4] and EPCBC [5] are immediate examples, as
well as SPONGENT hash family [6].
PRINTcipher is a block cipher proposed at CHES 2010 [4] and is really pushing the design
solutions for lightweight ciphers to their limits. It has been designed with the technology of
integrated circuit (IC) printing in mind that provides an opportunity to print cryptographic
circuitry on different surfaces, such as thin films, that can be attached to a product to give it
cryptographic protection. PRINTcipher has been an object of numerous attacks since then.
Methods of linear and differential cryptanalysis [7,8,9] as well as algebraic cryptanalysis [10]
have been proposed to analyze PRINTcipher. Also certain results on side channel analysis
of PRINTcipher appeared [10,11]. Notably, cryptanalytic methods proposed so far were not
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able to break more than 2
3 of PRINTcipher’s rounds1.

At CRYPTO 2011 Leander et al. proposed a very powerful attack, which they called the
invariant coset attack [12]. Using this attack it is possible to break the full PRINTcipher
(both the 48- and the 96-bit versions) for a large portion of weak keys using only a few chosen
plaintexts. Note, however, that despite the fact that distinguishing a weak key can be done in
unit time, the complete key recovery still is a challenging task in practice (see specific figures
in Section 3.4). The authors of [12] presented two families of weak keys for PRINTcipher–48,
each having 251 keys as well as two families for PRINTcipher–96.
This paper has initially been motivated by the problem of finding optimal propagations of
known bits to facilitate algebraic attacks using e.g. SAT-solvers following the ideas of [10].
With the methods employed, however, we ended up providing a thorough study of the in-
variant coset attack. In particular, we were able to recover all 64 families of weak keys for
PRINTcipher–48. The same method can be applied to PRINTcipher–96 as well. We observed
that among the found 64 families, many families are composed of weak keys that can be
recovered in a matter of minutes on a single PC. Thus we provide a key recovery for many
weak keys that can be done very efficiently for a cipher that is otherwise quite secure. Follow-
ing [12] we analyze protecting techniques against the attack and show that the situation for
PRINTcipher–96 is not obvious. Nevertheless, it is still possible to counter the attacks quite
easily. Summing up, in this paper we provide a complete study of the invariant coset attack
of [12] with methods that have value on their own and potentially can be employed to obtain
interesting results on other similar ciphers.
The outline of the paper is as follows. In Section 2 we briefly recall the definition of PRINTci-
pher and outline its properties that are relevant for the further exposition; we also recall the
attack of [12]. Section 3 presents methods of obtaining and using invariant cosets (or invari-
ant projected subsets as we call them). Section 3.1 presents the general background, as well
as the first methods to find invariant projected subsets. Section 3.2 develops the idea further
and proposes an alternative method based on Mixed Integer Linear Programming that turns
out to be highly efficient in practice. Section 3.3 summarizes the results for PRINTcipher–48
obtained by our methods, listing all invariant projected subsets (their defining sets to be pre-
cise), computing the number of the corresponding weak keys in each class and complexity of
key recovery, protecting measures, and outlining results for PRINTcipher–96. Section 3.4 is
explicitly considering the situation when the weak key recovery is particularly fast, providing
specific figures that estimate practical key recovery using only very moderate computational
resources. Finally, Section 4 presents a retrospective of the proposed methods and puts them
in a more general context providing possible further directions for research.

2 The block cipher PRINTcipher

2.1 Description of the cipher

PRINTcipher [4] is a substitution-permutation network, which design is largely inspired by
the block cipher PRESENT [1]. The main differences to PRESENT is the absence of the key
schedule (all round keys are the same and are equal to the master key) and key-dependent
S-Boxes. PRINTcipher comes in two variations: PRINTcipher-48 encrypts 48-bits blocks with
an 80-bit key and has 48 rounds, PRINTcipher-96 encrypts 96-bit blocks with a 160-bit key

1 The best attack of [9] can break 31 out of 48 rounds of PRINTcipher–48 for the fraction of 0.036% of keys
using almost the entire code book.
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and has 96 rounds. Here we present a short overview of the cipher, referring the reader to [4]
for a more detailed description and analysis.

The encryption process of PRINTcipher–n for n = 48, 96 is organized as in Algorithm 1.

Algorithm 1 Encryption function of PRINTcipher–n
Require:

- n-bit plaintext p
- 5

3
n-bit key k = (sk1, sk2), where sk1 is n bits and sk2 is 2

3
n bits

Ensure: n-bit ciphertext c
Begin
state := p
for i = 1, . . . , n do
state := state⊕ sk1
state := Perm(state)
state := state⊕RCi

state := SBOX(state, sk2)
end for
c := state
return c
End

Some comments to Algorithm 1 follow. The linear diffusion layer Perm implements a bit
permutation similar to PRESENT and is given by the map P :

P (i) =

{
3i mod n− 1 for 0 ≤ i ≤ n− 2,
n− 1 for i = n− 1,

(1)

so that the i−th bit of the state is moved to the position P (i). The round counter RCi for
i = 1, . . . , n is a 6-bit binary representation of i that is placed in the last two triplets. The
S-Box layer SBOX is a layer of n/3 3-bit S-Boxes, where each S-Box is chosen according to
the value of the two corresponding bits of the subkey sk2. Therewith, there are 4 possible
S-Boxes at each position called V0, V1, V2, V3 in [4]. One may also consider such an S-Box as
a composition of a key dependent bit permutation that acts on groups of three bits and then
followed by the layer of fixed S-Boxes, each one being a 3-bit S-Box with the truth table as in
Table 1. This S-Box, called V0 in [4], is preceded by a key-dependent permutation defined by
Table 2. In Table 2 the three input bits are permuted according to the two consecutive key
bits from the subkey sk2 called a0 and a1. Figure 1 provides an illustration for one encryption
round of PRINTcipher-48.

Table 1. Truth table for the S-Box V0.

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

We need properties of 1-masks that exist for keyed S-Boxes of PRINTcipher. Table 3
shows that each possible 1-mask on the input bits (i.e. when two input bits are known at
some positions) has a corresponding 1-mask for output bits (i.e. two output bits are known).
In this table +/− notation shows which bits of the mask are known (+) and ones which are
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Table 2. Key depended permutation

a1 a0 Permutation

0 0 (0,1,2)

0 1 (0,2,1)

1 0 (1,0,2)

1 1 (2,1,0)

xor sk1

xor rci

S S S S S S S S S S S S S S S S
p p p p p p p p p p p p p p p p

Fig. 1. Round function of PRINTcipher-48, cf. Figure 1 of [4].

not (−). For example, the first row says that if we have a mask where the first two bits of
both input and output to a keyed S-Box are known, then both S-Boxes with a0 = 0 satisfy
the mask. Moreover, the two known output bits of the mask, as well as the two input bits,
must be 0. Table 3 plays an important role in studying the invariant coset attack of [12].

Table 3. 1-masks for PRINTcipher S-Boxes

Input mask Output mask Values of (a0, a1) log(# valid a-pairs) input values output values

+ +− + +− 0* 1 00* 00*

+ +− +−+ 10 0 10* 1*1

+ +− −+ + 11 0 11* *10

+−+ + +− 10 0 0*0 00*

+−+ +−+ a0 = a1 1 0*1 or 1*0 1*1

+−+ −+ + 01 0 1*1 *10

−+ + + +− 11 0 *00 00*

−+ + +−+ 01 0 *10 1*1

−+ + −+ + *0 1 *11 *10

2.2 Invariant coset attack of Leander et al.

In their work [12] Leander et al. showed that for PRINTcipher there exist subsets of plaintexts
which, when encrypted with keys from certain other subsets, end up in the same subset. Thus
they showed an invariant property for PRINTcipher under certain weak keys. The subsets
they presented are of quite special form: they are linear cosets. The invariant coset for the
plaintexts is of the form U + d for some linear subspace U ≤ Fn2 and some vector d ∈ Fn2 ;
the weak keys are from the coset U + c + d for some other vector c ∈ Fn2 . Notably, the U ’s
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are linear subspaces of a special kind. Namely, they are linear subspaces where all vectors
have the value 0 at certain positions. The vectors c and d then “adjust” the zeros, so that
the invariant property holds. The authors of [12] show that distinguishing the weak keys so
obtained can be done using only a few chosen plaintexts, thus presenting a powerful attack.
In the invariant coset attack they heavily use the property of 1-masks presented in Table 3.
In [12] two families of weak keys for PRINTcipher–48 are presented, both having 251 weak
keys. In this paper we study the invariant coset attack further exploiting many more new
families of weak keys.

3 Obtaining and using invariant projected subsets

In this section we describe methods of obtaining all invariant cosets for both versions of
PRINTcipher. These invariant cosets are of the same type as in [12], i.e. we only consider
cosets that are described by the “projection” equations specifying values of vectors at certain
positions. In Section 3.1 we present the first method based on orbits of ℤn under the permuta-
tion �sk2 = P ∘�sk2 for some permutation key sk2. In Section 3.2 we suggest another method
that is based on describing invariant cosets via polytopes in ℤn and show its connection to
the previous method. In Section 3.3 we provide specific results, presenting all defining sets of
invariant projected subsets and the corresponding weak key classes for PRINTcipher–48 and
outlining results for PRINTcipher–96. We provide the number of elements in each class, thus
providing an estimate on the overall number of weak keys. We also provide complexity of the
key recovery for each class. In Section 3.4 we show that for a considerable number of keys, the
key recovery can be done in practical time using only very modest computational resources.

3.1 Invariant projected sets via orbits

In this subsection we investigate the structure of invariant cosets of PRINTcipher from the
point of view of orbits under the action of the augmented permutation layer �sk2 .
Let n ∈ {48, 96} be the block size and l ∈ {80, 160} be the key size of PRINTcipher-n.
Next, let P be the bit permutation defined by (1) and let �sk2 be a permutation defined as
a concatenation of permutations of bit triplets according to the permutation key sk2 ∈ Fl−n2 .
Then �sk2 = P ∘ �sk2 is the augmented permutation. So now the S-Box layer S does not
depend on the key. Note that we will often be interested in the augmented permutation �sk2

rather than the augmented linear map P ∘RCi ∘ �sk2 , since the round counter will not affect
positions our subsets are projected on. We do a distinction, though, when the role of RCi is
important.
Now, let Sn be the symmetric group defined on n elements. Obviously �sk2 ∈ Sn, i.e. �sk2 is
a permutation of the n positions in a block. It is a well-known fact that each element of Sn
is a product of disjoint cycles and such a product is unique up to permutation of its factors.
Recall that a cycle is a permutation of the form (i1 . . . it) for some 0 ≤ i1 < ⋅ ⋅ ⋅ < it ≤ n− 1,
i.e. i1 gets permuted to i2, i2 to i3 and so on, and it permutes to i1; other elements stay intact.

Definition 1. Let sk2 ∈ Fl−n2 and a ∈ ℤn, then an orbit of a w.r.t sk2 is a subset Osk2a :=

{i ∈ ℤn∣∃j ≥ 0 : i = �
(j)
sk2

(a)} ⊂ ℤn. Here �
(j)
sk2

(a) := �sk2(. . . �sk2(a) . . . ) is the composition
of �sk2 j times.

We have a natural correspondence between the cycles in the representation of �sk2 and
orbits w.r.t sk2. Indeed, if (i1 . . . it) is a cycle in the representation of �sk2 , then Osk2i1

= ⋅ ⋅ ⋅ =
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Osk2it
is the orbit of i1 (as well as of i2, . . . , it) w.r.t sk2.

Next we define the type of subsets we will be dealing with.

Definition 2. A projected subset U ⊂ Fn2 is defined as

U := {u = (u0, . . . , un−1) ∈ Fn2 ∣ui1 = a1, . . . , uit = at for some t ≥ 0 and
0 ≤ i1 < ⋅ ⋅ ⋅ < it ≤ n− 1 and some a = (a1, . . . , at) ∈ Ft2}.

We define defU to be the subset of indexes i1, . . . , it with the above property and for such
a subset we define a vector valU ∈ (F2 ∪ {′∗′})n as follows: valU [ij ] = aj , 1 ≤ j ≤ t and
valU [i] =′ ∗′, i ∈ ℤn ∖ defU . We call defU the defining set of U .

Definition 3. Let V ⊂ ℤn with n divisible by 3, then V is a 1̄−subset iff ∀ 0 ≤ j < n/3 :
∣{3j, 3j + 1, 3j + 2} ∩ V ∣ ∕= 1.

The above definition calls a subset of positions a 1̄−subset iff in each consecutive triplet of
positions there are 0, 2, or 3 elements from that subset.

Definition 4. Let U be a projected subset with the defining set defU . For s ∈ {2, 3} define

Us :=
∪

0≤j<n/3
∣{3j,3j+1,3j+2}∩defU ∣=s

[
{3j, 3j + 1, 3j + 2} ∩ defU

]
.

Now let Esk1,sk2,i = XORsk1 ∘P ∘RCi ∘ �sk2 ∘S be the round function of PRINTcipher-n for
the round 1 ≤ i ≤ n.
The next proposition collects properties of projected subsets, in case they define invariant
cosets for PRINTcipher.

Theorem 1. If Esk1,sk2,i(U) = U for all 1 ≤ i ≤ n for some sk1 ∈ Fn2 , sk2 ∈ Fl−n2 and some
projected subset U ⊂ Fn2 , then:

a. �sk2(defU ) = defU ;
b. defU ∩ {n− 6, n− 5, . . . , n− 1} = ⊘;
c. defU is a union of orbits w.r.t sk2;
d. Both defU and P (defU ) are 1̄-subsets such that ∀ 0 ≤ j < n/3 : ∣{3j, 3j+1, 3j+2}∩defU ∣ =
∣{3j, 3j + 1, 3j + 2} ∩ P (defU )∣.

Proof. a. We have XORsk1(U) = V , where V is also a projected subset with def (V ) = defU .
Next, (P ∘RCi ∘ �sk2)(V ) = W , where W is again projected with def (W ) = �sk2(def (V )) =
�sk2(defU ). Finally, we have at the end of the round i that U ′ = S(W ), which can be written
as

(U ′0, . . . , U
′
n/3−1) = (S(W0), . . . , S(Wn/3−1)),

by dividing the state into groups of three bits and applying the S-Box S (= V0, see Section 2)
to each triplet. Now note that since W is projected, so is Wi ⊂ F3

2 for each i. Also we know
that we must have U ′ = U and so U ′ as well as all U ′i are projected. So the question is now,
under which conditions does the S-Box S map a projected subset of F3

2 to a projected subset.
Note that S is now the “keyless” S-Box V0 with the truth table as in Table 1 that is defined
by a0 = a1 = 0. Moreover, observe that for S only the 1-masks

+ +− → + +−, +−+→ +−+, −+ +→ −+ +
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are possible, see rows 1, 5, 9 of Table 3. Now, obviously, F3
2 is mapped to F3

2 and it is projected.
Since there are no other 1-masks for S and no 2-masks, we conclude that def (U ′i) = def (Wi)
for all i. Therewith, defU = def (U ′) = def (W ) = �sk2(defU ) as claimed.
b. Assume there exists j ∈ {n− 6, . . . , n− 1} ∩ defU . So j is an output position to one of the
last two S-Boxes. Note that the value valU [j] is fixed due to the invariant property. Next, j
belongs to some def (U ′ℎ) for ℎ either n/3− 2 or n/3− 1. In case ∣def (U ′ℎ)∣ = 2 we know that
the input of a 1-mask is defined by the output. This is impossible, since the action of RCi
for i such that +1 is added to an input of the S-Box ℎ produces a different input value than
the one where addition +0 at that input position. The case ∣def (U ′ℎ)∣ = 3 is obvious: we then
have two different inputs to S that should yield the same output, which is impossible.
c. Assume there exists an orbit O w.r.t. sk2 such that there exist i ∈ O∩defU and j ∈ O∖defU .

By the definition of O we have that there exists � : j = �
(�)
sk2

(i) ∈ �(�)
sk2

(defU ) = defU , where
the last equality is due to (a.). We have that j ∈ defU , which is a contradiction. So we proved
that is no orbit such that it has elements in defU and also elements not in defU . Two things
are possible now: either an orbit is entirely in defU , or this orbit is entirely not in defU .
Therefore, defU is a union of some orbits w.r.t sk2.
d. Follows from the proof of [a.], the part discussing the subsets U ′i .

Note that in the case Theorem 1 holds, we have Esk1,sk2,i(V + d) = V + d for a certain
linear subspace V ≤ Fn2 and d ∈ Fn2 . We see now that V + d is an invariant coset as per [12].
In order to follow our terminology, we prefer the term invariant projected subset.
Now we go in the opposite direction and answer the question, when a certain subset of Fn2 is
a defining set for an invariant projected subset.

Theorem 2. Let T ⊂ ℤn with n divisible by 3 and

1. T ∩ {n− 6, . . . , n− 1} = ⊘;
2. T is a 1̄−subset of ℤn.
3. ∀ 0 ≤ j < n/3 : ∣{3j, 3j + 1, 3j + 2} ∩ T ∣ = ∣{3j, 3j + 1, 3j + 2} ∩ P (T )∣.

Then there exists an invariant projected subset U ⊂ Fn2 with defU = T . Moreover, {valU [i] :
i ∈ U2} are uniquely determined.

Proof. We want to show that there exist sk1 ∈ Fn2 and sk2 ∈ Fl−n2 such that Esk1,sk2,i(U) = U
for all 1 ≤ i ≤ n for some projected subset U with defU = T .
First, define U as a projected subset with defU = T . We will specify valU later. For the
construction, we browse through triplets corresponding to inputs of S-Boxes. Note that due
to properties (2.) and (4.), the subset P (T ) is also a 1̄−subset of ℤn. Therefore we are
guaranteed that for each keyed S-Box we have 0, 2, or 3 active bits in both input (positions
from P (T )) and output (positions from T ) and the numbers of active bits in input and
output to a given S-Box are the same (property (3.)). Now let us look closely at the case
∣{3j, 3j+ 1, 3j+ 2}∩T ∣ = ∣{3j, 3j+ 1, 3j+ 2}∩P (T )∣ = 2 for some 0 ≤ j < n/3. This exactly
corresponds to a 1-mask situation. Here Table 3 comes in hand. From this table we see that
each possible combination of two active input/output bits for an S-Box is satisfied for some
values of sk2[2j] and sk2[2j+ 1]. Moreover, output values for active bits are now fixed. These
fixed values are assigned to corresponding bits of valU (recall that defU = T for the subset U
we want to construct). For input values there exists ambiguity in the case of +−+→ +−+
mask. In this case take sk2[2j] = sk2[2j + 1] = 0 and therewith the input mask will be 1 ∗ 0.
The positions of T just considered correspond to U2 of defU = T .
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In the case ∣{3j, 3j+1, 3j+2}∩T ∣ = ∣{3j, 3j+1, 3j+2}∩P (T )∣ = 3 we assign corresponding
3 bits of valU arbitrary values, assign arbitrary values to sk2[2j] and sk2[2j + 1]. Therewith,
we obtain input values of the j-th S-Box that correspond to the three active bits of P (T ).
The positions of T just considered correspond to U3 of defU . From the proof of Theorem 1,
(a.) we have that defU = U2 ∪ U3. At this point valU is completely defined and so is U .
In the case ∣{3j, 3j+ 1, 3j+ 2}∩T ∣ = ∣{3j, 3j+ 1, 3j+ 2}∩P (T )∣ = 0 we just assign arbitrary
values to sk2[2j] and sk2[2j + 1].
We observe that input bits to keyed S-Boxes (corresponding to P (T )) match active bits of
T and thus output bits of the S-Boxes. Note that all these active bits are assigned specific
values at this point. Therewith we can uniquely determine values of sk1 at positions given by
T = defU . Other values of sk1 can be assigned arbitrarily.
Now it is clear that we have Esk1,sk2,1(U) = U for so constructed U, sk1, sk2. Property (1.)
guarantees then that Esk1,sk2,i(U) = U for all i.

Remark 1. Note that for a subset T ⊂ ℤn that satisfy (1.)–(3.) from Theorem 2 it holds that
T is a union of orbits w.r.t sk2 for some sk2 ∈ Fl−n2 or, equivalently, T = �sk2(T ) for some
sk2.

As a result we have the following one-to-one correspondence shown in Figure 2.

Defining sets of
invariant projected subsets
of PRINTcipher-n

⇐⇒ Subsets of ℤn

that satisfy (1.)–(3.) of Theorem 2

Fig. 2. One-to-one correspondence between defining sets of invariant projected subsets and subsets from The-
orem 2.

Now that we have the correspondence in Figure 2 and Remark 1, we may identify two
possible ways of finding defining sets for invariant projected subsets and therewith families of
weak keys.

1. Start with an sk2-candidate and look for orbits w.r.t. this sk2 that are not active in the
last 6 bits and then check conditions (2.)–(3.) for each such orbit.

2. Start with a candidate 1̄−subset T and check if conditions (1.)–(3.) hold.

We present the solution from (1.) in Algorithm 2. The algorithm uses a subroutine Inv sk2
that is described in Algorithm 3. Algorithm 3 uses the function cℎeck 1̄ property that checks
properties (2.)–(3.) from Theorem 2. Regarding the complexity of the algorithm, note that we
need to search through Fl−n−42 for the part of the subkey sk2 that defines all S-Boxes except
for the last two. Now in the for-loop of Algorithm 2 the defining factor of complexity is calling
Inv sk2, see Algorithm 3. In its turn, the complexity of Algorithm 3 is defined by the average
number of orbits in ℤn w.r.t. a candidate sk2. For n = 48, l = 80, we have that l−n− 4 = 28
and the algorithm terminates in a reasonable time. However, for n = 96, l = 160, we have
l − n− 4 = 60 and it is infeasible to get all possible defU in a reasonable time.

Solution (2.) from the above list obviously admits a brute force approach that has complex-
ity similar to the one of Algorithm 2. We develop this approach further in the next subsection
showing an existence of a more elegant solution.
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Algorithm 2 Algorithm for finding defining sets of invariant projected subsets via orbits
Require:

- Block length n of PRINTcipher-n
Ensure: List of defining sets of invariant projected subsets of PRINTcipher-n

Begin
l := 5/3 ⋅ n
inv sets := []
for sk2 ∈ {0, 1}l−n−4 do

Append sk2 with random values to a vector in {0, 1}l−n

Construct �sk2 = P ∘ �sk2

Add Inv sk2(n,�sk2) to inv sets
end for
return inv sets
End

Algorithm 3 Subroutine Inv sk2
Require:

- Block length n
- Permutation �

Ensure: List of subsets that are unions of orbits under � and satisfy (1.)–(4.) of Theorem 2.
Begin
orbits := []
result := []
work set := {0, 1, . . . , n− 1}
while work set ∕= ⊘ do

Take a ∈ work set
orbita :=the orbit of a w.r.t � as a subset of ℤn

Add orbita to orbits
work set := work set ∖ orbita

end while
for candidate ∈ 2orbits do

Concatenate elements in candidate to form a subset of indexes =: c
if cℎeck 1̄ property(c) and c ∩ {n− 6, . . . , n− 1} = ⊘ then

Append c to result
end if

end for
return result
End
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3.2 Defining sets via polytopes in ℤn

In this subsection we provide an alternative method of finding invariant projected subsets.
The method is based on providing a one-to-one correspondence between defining sets of the
invariant projective subsets of PRINTcipher–n and points of a certain polytope in ℤn. One can
then efficiently find these points by applying techniques of Mixed Integer Linear Programming
(MILP).

Theorem 3. Let IPn be a subset in {0, 1}n ⊂ ℤn, 3∣n, defined as a subset of those x =
(x0, . . . , xn−1) ∈ {0, 1}n that satisfy2

xn−6 = ⋅ ⋅ ⋅ = xn−1 = 0,

for all 0 ≤ j < n/3 :

x3j + x3j+1 + x3j+2 = xP−1(3j) + xP−1(3j+1) + xP−1(3j+2)

x3j + x3j+1 ≥ x3j+2 (2)

x3j + x3j+2 ≥ x3j+1

x3j+1 + x3j+2 ≥ x3j
n−1∑
i=0

xi > 0

For each v ∈ IPn define Tv := {i∣vi = 1} ⊂ ℤn. Then for every v ∈ IPn the set Tv satisfies:

1. Tv ∩ {n− 6, . . . , n− 1} = ⊘;
2. Tv is a 1̄−subset of ℤn.
3. ∀ 0 ≤ j < n/3 : ∣{3j, 3j + 1, 3j + 2} ∩ Tv∣ = ∣{3j, 3j + 1, 3j + 2} ∩ P (Tv)∣.

Proof. For the proof we need the following lemma

Lemma 1. For a pair of vectors a = (a0, a1, a2) and b = (b0, b1, b2) from ℤ3 ∩ {0, 1}3 that
satisfy

b0 + b1 + b2 = a0 + a1 + a2, b0 + b1 ≥ b2, b0 + b2 ≥ b1, b1 + b2 ≥ b0,

only the following cases for Hamming weights of a and b are possible: wt(a) = wt(b) = i for
i = 0, 2, 3.

Proof. The claim follows by direct inspection.

Now property (1.) follows directly from the condition in the first line of (2). It is not hard to
see that the above Lemma easily yields claimed properties (2.)–(3.).

Now combining Theorem 2 and Theorem 3 we obtain the one-to-one correspondence as
in Figure 3.

So now the question is how to compute all elements of IPn for n = 48, 96. One possible
solution is to use the MILP. Recall that the problem of the MILP is to optimize (i.e. either
maximize or minimize) a linear objective function under linear constraints with solutions lying
in ℤp ×ℝn−p. In our case the feasible solutions are all in {0, 1}n as per (2) and we thus have

2 Note that the arithmetic is integer.
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Defining sets of
invariant projected subsets
of PRINTcipher-n

⇐⇒ Elements of IPn ⊂ ℤn ∩ {0, 1}n

Fig. 3. One-to-one correspondence between defining sets of the invariant projected subsets and elements of
IPn

a binary integer program – a certain kind of MILP. Therefore, we can use an MILP solver
with the additional requirement that the solutions should lie in {0, 1}n. Also, in our case we
do not actually have an optimization problem, but rather an enumeration problem. However,
we can utilize the MILP by using an objective function that is constant on the subset defined
by (2) and then solve this “optimization” problem with the constraints defined by (2) for
all “optimal” solutions, i.e. find IPn as the feasible set for this optimization problem. In our
specific case, we may set as an objective function F (x0, . . . , xn−1) ≡ 0 The last line of the
conditions (2) makes sure that we do not include the trivial all-zero solution. See the next
subsection for specific results of applying this technique.

3.3 Obtaining the weak key classes

In this subsection we provide detailed results for PRINTcipher–48 that can be obtained
by the methods from Sections 3.1 and 3.2. We also provide brief overview of the results
for PRINTcipher–96. To implement the search algorithms from Section 3.1 we used SAGE
computer algebra system [13]. For the method from Section 3.2 we use the MILP solver
CPLEX3 through the SAGE interface.

Table 4, presents the results. Overall, for PRINTcipher–48 we have 64 different defining
sets for invariant projected sets each giving rise to a family of weak keys. each family is
composed of potentially several classes of weak keys. By a class we understand a set of weak
keys that ensure the invariant property for certain sets plaintexts, see more on that below.
that were presented in [12] are marked in bold. In the course of this subsection we will explain
how we obtained the numbers in the last two columns of Table 4: the number of weak keys
in all classes corresponding to a given defining set and the work factor of the key recovery.

Description of weak key classes From Theorem 2 we know that once we have a subset
of positions T ⊂ ℤn that satisfies conditions (1.)–(3.) there exists a key k = (sk1, sk2) and a
projected subset U with defU = T such that Esk1,sk2,r(U) = U for all r ≥ 1. Moreover, the
set of projected values {valU [i] : i ∈ U2} is uniquely determined by T . Now we would like to
have more: we want to have a description of all classes of weak keys (i.e. those that preserve
the invariant property) that correspond to T = defU .
For this we first need to fix values for all elements in {valU [i] : i ∈ defU}. Values {valU [i] : i ∈
U2} are uniquely determined as per Theorem 2. Then choose a vector v3 ∈ F∣U3∣

2 and assign
valU [ij ] = v3[j], 1 ≤ j ≤ ∣U3∣, where U3 = {i1, . . . , i∣U3∣} with i1 < ⋅ ⋅ ⋅ < i∣U3∣. So now the
invariant projected subset U is fully defined. Let us show that there exists a class of weak
keys WK(defU , v3) such that for any (sk1, sk2) = k ∈ WK(defU , v3) : Esk1,sk2,r(U) = U for

3 IBM ILOG CPLEX 12.1 under the academic license.
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Table 4. Defining sets of invariant projected subsets of PRINTcipher–48

No. defU #k logWF Gain

1 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 36⊥ 25 11

2 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 42 26 10

3 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 37 27 7

4 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 37, 39, 41] 41 25 10

5 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 37 27 7

6 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41] 36 27 6

7 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

8 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 39, 41] 37 27 7

9 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 34⊥ 24 10

10 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 24 9

11 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 44 25 10

12 [0, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 33⊥ 24 9

13 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

14 [0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 40 25 9

15 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 39 26 7

16 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41] 35 24 8

17 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

18 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 38 26 6

19 [0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

20 [0, 2, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 26 5

21 [0, 2, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 35 27 5

22 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 39, 41] 34 27 4

23 [6, 8, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 50 38 6

24 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 40 26 8

25 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 39 26 7

26 [0, 1, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 26 7

27 [0, 1, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 35 26 6

28 [0, 1, 3, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 36 27 6

29 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 39, 41] 34 27 4

30 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 30⊥ 25 11

31 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 41 24 11

32 [0, 1, 3, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 45 25 11

33 [0, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 35⊥ 24 11

34 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

35 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 39, 41] 37 24 10

36 [0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

37 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 40 26 8

38 [0, 2, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 36 26 7

39 [0, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 39, 41] 37 27 7

40 [0, 1, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 40 26 8

41 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 43 26 11

42 [0, 1, 3, 4, 7, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 26 10

43 [0, 1, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 39, 41] 39 27 9

44 [0, 1, 4, 5, 12, 13, 16, 17, 24, 25, 28, 29, 36, 37, 40, 41] 51 48 3

45 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 40 26 8

46 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 37, 40, 41] 34 27 4

47 [0, 1, 3, 4, 5, 9, 11, 12, 13, 16, 17, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 51 38 7

48 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 36 27 6

49 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 40, 41] 35 27 5

50 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

51 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 37, 40, 41] 35 27 5

52 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 38 26 6

53 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 40, 41] 33 27 3

54 [0, 2, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 35 27 5

55 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 33, 35, 36, 38, 40, 41] 34 27 4

56 [0, 1, 3, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 35 27 5

57 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 33 27 3

58 [6, 7, 9, 11, 12, 13, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 36, 38, 40, 41] 48 38 4

59 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 35 27 5

60 [0, 1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 34, 37, 38, 40, 41] 43 25 9

61 [0, 2, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 37 27 7

62 [0, 2, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 33, 35, 37, 38, 40, 41] 39 26 7

63 [0, 1, 3, 4, 6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 27 8

64 [0, 1, 4, 5, 6, 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 34, 35, 37, 38, 40, 41] 38 26 6
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all r ≥ 1.
Let us describe separately the two parts sk1 and sk2 of a key k = (sk1, sk2) ∈WK(defU , v3).
We start with sk2. Define for 0 ≤ j ≤ 3

Sj := {0 ≤ i < n/3 : ∣{3i, 3i+ 1, 3i+ 2} ∩ defU ∣ = j}.

So Sj collects numbers of those S-Boxes that have j bits both in input and output masks (a
j–j mask). We construct the sk2-part of k as follows.

- Bits sk2[2i] and sk2[2i + 1] for i ∈ S3 can attain arbitrary values. There are 2
3 ∣U3∣ such

bits.

- For i ∈ S2, the bits sk2[2i] and sk2[2i+ 1] get their values according to column 3 of Table
3 by examining the corresponding parts of U2 and P (defU )2 to get +/− masks. The star
sign ’*’ means that the corresponding bit of sk2 can attain arbitrary value. Denote by
∗(defU ) ⊂ ℤ2n/3 the set of positions of sk2 that correspond to ’*’s. In the case of the
+−+→ +−+ mask assign arbitrary values sk2[2i] = sk2[2i+ 1]. Let us denote the set
of positions of S-Boxes yielding the +−+→ +−+ mask by ≡ (defU ) ⊂ ℤn/3.

- Bits sk2[2i] and sk2[2i+1] for i ∈ S0 can attain arbitrary values. There are 2
3n−

2
3 ∣U3∣−∣U2∣

such bits. Indeed, from the length of sk2, which is 2
3n, we subtract positions from S3

(= 2
3 ∣U3∣) and S2 (= ∣U2∣).

Now determine the sk1 part. Let the choice of sk2 be done as above and fixed.

- Denote Y = XORsk1(X). Note that {valU [i] : i ∈ defU} are fixed, therefore Xi, i ∈ defU
have fixed values. Now, since the choice of sk2 bits for active S-Boxes (i.e. those with
i ∈ S2 ∪ S3) has been fixed, we have that inputs to S-Boxes at positions P (defU ) have
fixed values. Therefore Yi,∈ P−1(P (defU )) = defU are fixed as well. As a result sk1[i] =
Xi ⊕ Yi, i ∈ defU are now determined.

- Bits sk1[i], i ∈ ℤn ∖ defU can attain arbitrary values. There are n− ∣defU ∣ such bits.

Summing up we have the following

Proposition 1. Let T ⊂ ℤn satisfy (1.)–(3.) of Theorem 2. Let v3 ∈ F∣T3∣2 and U ⊂ Fn2 be
a projected subset with defU = T and valU composed of unique values for {valU : i ∈ U2}
and {valU (U3[i]) = v3[i] : 1 ≤ i ≤ ∣U3∣}. Then for the set WK(defU , v3) constructed as above
holds

Esk1,sk2,r(U) = U, r ≥ 1,

for any (sk1, sk2) ∈WK(defU , v3).

The following observation is very important for reducing the work factor of the key recovery
in the text below. It can be shown that if p ∈ U is fixed and c = Esk1,sk2,r(p) for some
r ≥ 1 and (sk1, sk2) = k ∈ WK(defU , v3), then the bits sk2[2i], sk2[2i + 1], i ∈ S3∪ ≡
(defU ) and sk2[i] for i ∈ ∗(defU ) may attain arbitrary values still encrypting p to c. An
arbitrary assignment of the key bits sk2[2i], sk2[2i + 1], i ∈ S3 is “adjusted” by the bits
sk1[P

−1(3i)], sk1[P
−1(3i + 1)], sk1[P

−1(3i + 2)] that are now uniquely determined. For the
S-Boxes described by the key bits sk2[2i], sk2[2i + 1], i ∈≡ (defU ) and sk2[i] for i ∈ ∗(defU )
it holds that values of ’*’s in inputs and outputs (columns 5 and 6 of Table 3) attain their
values independently of the choice of sk2-bits as per column 3.
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How to distinguish the weak keys? Now let us detail how to distinguish in the chosen
plaintext scenario the weak keys belonging to WK(defU , v3) for some defining set defU from
Table 4 that gives rise to an invariant projected set U with a fixed choice of bits {valU [i] :
i ∈ U2} and {valU [U3[i]] = v3[i] : 1 ≤ i ≤ ∣U3∣}. Now the attacker chooses an arbitrary p ∈ U
and encrypts p with a key k ∈ Fl2 obtaining c = Ek(p). If c[i] = p[i] for all i ∈ defU , i.e. c ∈ U
then k is a candidate element of WK(defU , v3). To be sure we need several chosen plaintexts,
since with probability 2−∣defU ∣ one has p[i] = c[i], i ∈ defU , where the key k can be any key. So
in order to distinguish we need #CP = ⌈l/∣defU ∣⌉ plaintexts from U and their corresponding
encryptions. For l = 80 it is at most 5 chosen plaintexts, see also [12].

How many weak keys are there for each defU? For a given defU there are 2∣U3∣

possibilities to assign values for the vector v3. Therefore, each family of weak keys has 2∣U3∣

classes. We want to determine ∣∣∣ ∪
v3∈F

∣U3∣
2

WK(defU , v3)
∣∣∣.

The following bounds for the figure above hold:

2∣U3∣∣WK(defU , 0)∣ ≥
∣∣∪

v3∈F
∣U3∣
2

WK(defU , v3)
∣∣ ≥

≥ ∣WK(defU , 0)∣.
(3)

Indeed, if we fix vector v3 = 0, then the number of elements in all classes is at least the
number of elements in one class and is at most 2∣U3∣ times the number of elements in that
class, since

∣WK(defU , a)∣ = ∣WK(defU , b)∣ ∀a, b ∈ F∣U3∣
2 .

We cannot simply say that ∣∪
v3∈F

∣U3∣
2

WK(defU , v3)∣ is equal to the upper bound, since it may

happen that two different vectors v
(1)
3 , v

(2)
3 ∈ F∣U3∣

2 , equal assignment of sk2[2i], sk2[2i+ 1], i ∈
S3 yields equal values for {sk1[i] : i ∈ P−1(U3)}. Note, however, that for many defU ’s the
value ∣ ∪

v3∈F
∣U3∣
2

WK(defU , v3)∣ does attain the upper bound. To see this, we need to take a

look at the intersection U3 ∩ P−1(U3). Suppose that this intersection is empty. Then from

the equation Y = XORsk1(X) = sk1 ⊕ X, we have that for different vectors v
(1)
3 and v

(2)
3

yield different values for {sk1[i] : i ∈ P−1(U3)}, since the values {valU [i] : i ∈ P−1(U3)} are
now fixed and {valU [i] : i ∈ U3} are different. The latter yields different values for Y and the
former the fixed value for X, so the argument holds. Moreover, even if ∣U3∩P−1(U3)∣ = 1 the
same argument can be applied. Indeed, we want to show that once sk2[2i], sk2[2i+ 1], i ∈ S3
are fixed, different vectors v

(1)
3 and v

(2)
3 will yield different values for {sk1[i] : i ∈ P−1(U3)}

for at least one i. Since v
(1)
3 ∕= v

(2)
3 , there exists j : v

(1)
3 [j] ∕= v

(2)
3 [j]. Then there exists

i ∈ U3 : val
(1)
U [P−1(i)] ∕= val

(2)
U [P−1(i)]. If i /∈ U3 ∩ P−1(U3), the same argument as for the

empty intersection works. Let us take a look st the case when i ∈ U3 ∩ P−1(U3) (and is

the only element in the intersection). We have then that val
(1)
U [P−1(j)] = val

(2)
U [P−1(j)] and

sk
(1)
1 [P−1(j)] = sk

(2)
1 [P−1(j)] for j /∈ U3 ∩ P−1(U3) as well as val

(1)
U [P−1(i)] ∕= val

(2)
U [P−1(i)].

Now the equation Y = sk1 ⊕ X yields sk
(m)
1 [P−1(j)] = val

(m)
U [P−1(i)] ⊕ In(m)[i],m = 1, 2.

The values In(m)[P (i)] depend on some three values val
(m)
U [�] with � belonging to a triplet
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from U3 ∖ {i}. These values were assumed to be equal and so In(1)[P (i)] = In(2)[P (i)] (recall

that the corresponding sk2 bits are also equal). Therefore, sk
(1)
1 [P−1(j)] ∕= sk

(2)
1 [P−1(j)]. So

we actually have two different keys.
For 59 out of 64 defU ’s in Table 4 we have that ∣U3 ∩ P−1(U3)∣ ≤ 1 and the upper bound
in (3) is tight. def ′U s no. 1, 12, and 33 have ∣U3 ∩ P−1(U3)∣ = 2 and no. 9 and 30 have
∣U3 ∩ P−1(U3)∣ = 5. So for these cases we have only the lower bound from (3). Nevertheless,
we believe that the actual value of ∣∪

v3∈F
∣U3∣
2

WK(defU , v3)∣ should be quite close to the upper

bound as well.
Now as to the computation of ∣WK(defU , 0)∣ (or, equivalently ∣WK(defU , a)∣ for any other

a ∈ F∣U3∣
2 ), we just follow the lines of the argument preceding Proposition 1. Namely, if we

compute the number of free key bits, we need to add the numbers of free bits from sk1[i], i ∈
ℤn ∖ defU (= n− ∣defU ∣), from sk2[2i], sk2[2i+ 1] for i ∈ S0 and i ∈ S3 (= 2

3n−
2
3 ∣U3∣ − ∣U2∣

and = 2
3 ∣U3∣ resp.), as well as bits from ∗(defU ) ⊂ ℤ2n/3 (= ∣ ∗ (defU )∣) and one bit per

≡ (defU ) ⊂ ℤn/3 (= ∣ ≡ (defU )∣). Summing up, we obtain

log2 ∣WK(defU , 0)∣ = n− ∣defU ∣+
2

3
n− 2

3
∣U3∣ − ∣U2∣+

2

3
∣U3∣+ ∣ ∗ (defU )∣+ ∣ ≡ (defU )∣ =

5

3
n− ∣defU ∣ − ∣U2∣+ ∣ ∗ (defU )∣+ ∣ ≡ (defU )∣. (4)

Therewith the upper bound (and often the actual value) is

log2

∣∣∣ ∪
v3∈F

∣U3∣
2

WK(defU , v3)
∣∣∣ ≥ ∣U3∣+

5

3
n− ∣defU ∣ − ∣U2∣+ ∣ ∗ (defU )∣+ ∣ ≡ (defU )∣ =

5

3
n− 2∣U2∣+ ∣ ∗ (defU )∣+ ∣ ≡ (defU )∣. (5)

Column 3 of Table 4 is filled with values obtained via (5) except for the cases where the
upper bound is not known to be tight (5 cases). There we use lower bound from (3) and the
corresponding value is marked with ⊥.

Remark 2. Interestingly enough, the classes of weak keys in Table 4 may very well intersect.
For example, the two classes no. 44 and no. 47 from [12] have a non-trivial intersection. It has
245 elements. Therewith, the actual number of weak keys found in [12] is 252 − 245 ≈ 251.989.

Due to Remark 2 we cannot claim that the overall number of weak keys is simply the sum of
the numbers ∣ ∪

v3∈F
∣U3∣
2

WK(defU , v3)∣. Still if we sum up these numbers over all defu (and

upper bounds thereof for those cases when the bound is not known to be tight) we have an
upper bound on the overall number of weak keys, which is 252.51. As we can see, this upper
bound does not differ significantly from the number of keys found in [12], since Leander et al.
recovered the two largest classes out of possible 64.

What is the complexity of the weak key recovery? Once a weak key is distinguished,
the attacker wants to recover the remaining key bits that do not follow immediately from the
distinguishing phase. Of course we may simply use several known plaintexts and brute force
the keys in WK(defU , v3), but we can actually do better: we can separate the key recovery
process in two consecutive steps, as discussion after Proposition 1 suggests.
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Step 1. Using chosen plaintexts from the distinguishing phase brute force inactive key bits,
i.e. sk1[i], i ∈ ℤn ∖ defU and sk2[2i], sk2[2i+ 1], i ∈ S0. For the actual implementation of this
step we assign arbitrary values to sk2[2i], sk2[2i+1], i ∈ S3, sk2[2i] = sk2[2i+1], i ∈≡ (defU ),
sk2[i], i ∈ ∗(defU ) and compute the corresponding sk1 bits to get candidate keys for testing.
Note that after assigning arbitrary values to certain key bits, we rely on the assumption that
the remaining “cipher” behaves as a random function mapping plaintext bits at positions
ℤn ∖ defU under the action of remaining key bits. Since the the number of plaintext bits
in several pairs exceeds the number of key bits we brute force here we expect, as usual,
that we have a unique solution for these key bits. Due to certain degeneration properties of
PRINTcipher it is not always true, however.
Let us consider a specific example. Take the defining set no. 10 from Table 4.

defU = {0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 33, 34, 36, 38, 39, 41}.

We see that 6, 18 ∈ ℤ48 ∖ defU . Observe that P (6) = 18, P (18) = 7 and 7 ∈ ℤ48 ∖ defU . Note
that bits 6 and 7 belong to the S-Box number 2 and bit 18 to S-Box number 6. S-Boxes no.
2 and 6 have masks + − + → − + + and − + + → − + + resp., see Table 3. Consider the
S-Box number 2. Its mask is provided by (a0, a1) = (0, 1) and the full mask is 1 ∗ 1→ ∗10. In
the case (a0, a1) = (0, 1) the algebraic expression for the first output bit y0 is y0 = x0x2 + x1,
where (x0, x1, x2) is the input. Provided that x0 = x2 = 1, we have y0 = x1 + 1. Similarly, for
the S-Box number 6 we have (a0, a1) = (∗, 1) and the full mask ∗11→ ∗10. So the expression
y0 = x1x2 +x0 yields y1 = x0 + 1. So we have a kind of local invariant property as we will see
below. Let p = (p0, . . . , p47) ∈ U , where U is an invariant projected subset with the defining
set defU and some values for v3. Let (sk1, sk2) ∈WK(defU , v3). Denote Xi the output after
round i, i ≥ 1 with X0 = p and Yi−1 be the output of the XOR layer in round i. It is easy to
see that the computation in the following table takes place:

Variable Position 6 Position 18

X0 p6 p18
Y0 sk1,6 ⊕ p6 sk1,18 ⊕ p18
X1 sk1,18 ⊕ p18 ⊕ 1 sk1,6 ⊕ p6 ⊕ 1

Y1 sk1,6 ⊕ sk1,18 ⊕ p18 ⊕ 1 sk1,6 ⊕ sk1,18 ⊕ p6 ⊕ 1

X2 sk1,6 ⊕ sk1,18 ⊕ p6 sk1,6 ⊕ sk1,18 ⊕ p18
Y2 sk1,18 ⊕ p6 sk1,6 ⊕ p18
X3 sk1,6 ⊕ p18 ⊕ 1 sk1,18 ⊕ p6 ⊕ 1

Y3 p18 ⊕ 1 p6 ⊕ 1

X4 p6 p18

Since 4 divides 48, we have that for c = Esk1,sk2,48(p) ∈ U holds c6 = p6 and c18 = p18 which
is not what one should expect from the ciphertext bits in ℤ48 ∖defU . So actually the invariant
property extends to these two additional bit positions. Note that c6 and c18 do not depend on
any key bits and moreover, the key bits sk1,6 and sk1,18 do not influence any of the ciphertext
bits and therefore they may attain arbitrary values in the chosen plaintext scenario.
So there exist a certain amount of positions at which bits of sk1 may attain arbitrary values
in the chosen plaintext scenario. Therefore we assign in this step some arbitrary values to
these bits, call then weird bits, and brute force them in the next step. Denote the number
of such weird bits w. For PRINTcipher–48 this number is non-zero for 16 out of 64 defining
sets, and where it is non-zero it is always ≤3. So impact of this effect is rather small.
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Now the computation of the work factor is similar to the one for the number of weak keys as
above. We have the work factor of the first step:

log2WF1 = n− ∣defU ∣+
2

3
n− 2

3
∣U3∣ − ∣U2∣ − w =

5

3
(n− ∣defU ∣)−

1

3
∣U2∣ − w. (6)

Note that the number of chosen plaintexts from the distinguishing phase is indeed enough,
since the remaining “block length” n−∣defU ∣ times #CP exceeds log2WF1 for all defU from
Table 4.
Step 2. This is as far as we can go with chosen plaintexts. We cannot distinguish bits
sk2[2i], sk2[2i + 1], i ∈ S3∪ ≡ (defU ) and sk2[i] for i ∈ ∗(defU ) having only them. There-
fore, for the second phase we take another known plaintext (i.e. arbitrary plaintext4) and
brute force these bits. Note, however, that now the sk1-bits sk1[P

−1(3i)], sk1[P
−1(3i +

1)], sk1[P
−1(3i + 2)] corresponding to i ∈ S3 cannot be determined from one round as in

the case of chosen plaintexts where the invariant property holds. Similar situation is with the
bits sk1[P

−1(3i)], sk1[P
−1(3i+ 2)] with i ∈≡ (defU ). So we have to brute force these bits as

well. We also brute force the weird bits in this step. We have

log2WF2 =
5

3
∣U3∣+ ∣ ∗ (defU )∣+ 3 ⋅ ∣ ≡ (defU )∣+ w. (7)

Combining (6) and (7) we have that the overall work factor for the key recovery is

log2WF ≈ max{log2WF1, log2WF2} =

max
{5

3
(n− ∣defU ∣)−

1

3
∣U2∣ − w,

5

3
∣U3∣+ ∣ ∗ (defU )∣+ 3 ⋅ ∣ ≡ (defU )∣+ w

}
. (8)

Column 4 of Table 4 is filled up with the values obtained via (8). Remarkably, for PRINTcipher–
48 we always have log2WF1 > log2WF2 with the exception of the defining set no. 30, where
equality takes place. Therefore, Step 1 dominates the complexity of the attack.

Remark 3. Note that in Table 4 for each defU we have several possible U in the third column
we provide (a lower bound for) ∣ ∪

v3∈F
∣U3∣
2

WK(defU , v3)
∣∣. Whereas for the attack we consider

specific WK(defU , v3) for some concrete v3. The overall number of weak key classes is 306.

In Table 4, the last column, we provide figures for the gain we obtain using the mixed cho-
sen/known plaintext scenario with two consecutive steps as above with the plain brute force
method that just searches through a weak key class WK(defU , v3). The gain is computed by
subtracting the value in (8) from the value in (4). As we see we sometimes obtain a speed up
factor of 211 = 2048 and always have a speed up of at least factor 8.
The attack is implemented and tested for the weak key classes that have practical complexity.
Results of our experiments confirm theoretical reasoning of this section.

Example 1. In this example we would like to provide a detailed workout of the computations
discussed in Section 3.3. For this example let us take class no. 5 from Table 4:

defU = {0, 2, 4, 5, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 25, 27, 28, 29, 33, 35, 36, 37, 39, 41}.

In the table below, we provide input/output masks, input/output values, and the value
∣ ∗ (defU )∣ for each S-Box; the corresponding values of key bits in sk2 are given as well:

4 We need to make sure that this plaintext is not in U , which is true with overwhelming probability.
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S-Box in mask out mask star (a0, a1) in vals out vals

0 + +− +−+ 0 (1,0) 10* 1*1

1 −+ + −+ + 1 (∀,0) *11 *10

2 + +− +−+ 0 (1,0) 10* 1*1

3 −+ + +−+ 0 (0,1) *01 1*1

4 +−+ + +− 0 (1,0) 0*0 00*

5 +−+ −+ + 0 (0,1) 1*1 *10

6 + +− + +− 1 (0,∀) 00* 00*

7 −+ + −+ + 1 (∀,0) *11 *10

8 + +− + +− 1 (0,*) 00* 00*

9 + + + + + + 0 (E,F) ABC XYZ

10 −−− −−− 0 (*,*) *** ***

11 + +− +−+ 0 (1,0) 10* 1*1

12 + +− + +− 1 (0,∀) 00* 00*

13 + +− +−+ 0 (1,0) 10* 1*1

14 −−− −−− 0 (*,*) *** ***

15 −−− −−− 0 (*,*) *** ***

Sum 5

In this table the symbol ∀ means that any value of the corresponding sk2-bit works for the
invariant property; for “ABC” and “XYZ” it holds that SBOXEF (ABC) = XY Z. Note that
“XYZ” itself can attain arbitrary values and “ABC” is determined by these and “EF”. The
values we have no control over are denoted with “*” and can be arbitrary. We also have
∣U2∣ = 24, ∣U3∣ = 3, ∣ ∗ (defU )∣ = 5, ∣ ≡ (defU )∣ = 0, w = 0.
Next, let us see how the values from the table above are distributed in one round:

in = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***

sk1 = 0*0 *11 1*1 K*0 01* *11 00* *11 0B* XYZ *** 0*0 01* 0*L *** ***

XOR = 1*1 *01 0*0 A*1 01* *01 00* *01 0B* 000 *** 1*1 01* 1*C *** ***
P = 10* *11 10* *01 0*0 1*1 00* *11 00* ABC *** 10* 00* 10* *** ***

sk2 = 10 ∀0 10 01 10 01 0∀ ∀0 0∀ EF ** 10 0∀ 10 ** **

out = 1*1 *10 1*1 1*1 00* *10 00* *10 00* XYZ *** 1*1 00* 1*1 *** ***

In this table the values in out and in are the same and are taken from the out vals column of
the first table. Then, the values in P correspond to the inputs to the S-Boxes (or, equivalently,
to the outputs of the layer P ) and are taken from the column in vals of the first table. We
then permute the values in P with the map P−1 to get the output of the XORsk1 operation.
Having that we may compute many values of sk1 right away. Note that K = 1 +A,L = 1 +C
and are determined by the values of “XYZ” and “EF”.
For a specific example, let us take XY Z = 000 so that v3 = (0, 0, 0). So we are working now
with

U = 1 ∗ 1 ∗ 10 1 ∗ 1 1 ∗ 1 00 ∗ ∗10 00 ∗ ∗10 00 ∗ 000 ∗ ∗ ∗ 1 ∗ 1 00 ∗ 1 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗,

Note that independent on the values of EF we have SBOX−1EF (000) = 000 = ABC and so
K = L = 1. The weak keys from WK(defU , v3) are of the form (sk1, sk2), where

sk1 = 0 ∗ 0 ∗ 11 1 ∗ 1 1 ∗ 0 01 ∗ ∗11 00 ∗ ∗11 00 ∗ 000 ∗ ∗ ∗ 0 ∗ 0 01 ∗ 0 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗,
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sk2 = 10 ∗ 0 10 01 10 01 0 ∗ ∗0 0 ∗ ∗ ∗ ∗ ∗ 10 0 ∗ 10 ∗ ∗ ∗ ∗

Now let us compute the number of elements in WK(defU , 0). Using (4) we have

∣WK(defU , 0)∣ = 280−27−24+5 = 234.

Since in this case we have U3 ∩ P−1(U3) = ⊘, the upper bound provided by (3) is tight and∣∣ ∪
v3∈F3

2

WK(defU , v3)
∣∣ = 23 ⋅ 234 = 237.

Now as to complexity of the key recovery. We have

log2WF = max
{5

3
⋅ 21− 1

3
⋅ 24,

5

3
⋅ 3 + 5

}
= max{27, 10} = 27.

So for the key recovery it takes around 227 encryptions having 3 chosen and 1 known plaintext.
We have a gain of 34− 27 = 7 bits compared to the plain brute force attack.
It is not hard to see that the set of weak keys WK(defU , 0) is different from the ones presented
in [12]. Indeed, for example the keys with

sk1 = 000 ∗ 11 1 ∗ 1 1 ∗ 0 01 ∗ ∗11 00 ∗ ∗11 00 ∗ 000 ∗ ∗ ∗ 0 ∗ 0 01 ∗ 0 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗

do not belong to the class defined by defU no. 44, since there sk1[1] = 1 and the keys with

sk1 = 0 ∗ 0 ∗ 11 1 ∗ 1 1 ∗ 0 01 ∗ ∗11 00 ∗ ∗11 00 ∗ 000 ∗ ∗ ∗ 0 ∗ 0 01 ∗ 001 ∗ ∗ ∗ ∗ ∗ ∗

do not belong to the class defined by defU no. 47, since there sk1[40] = 1, see [12].

Protecting against the attack Note that due to existence of the round counter RCi in
the last 6 bits (corresponding to the S-Boxes 14 and 15), our invariant projected subsets are
not active in the last two S-Boxes. As can be seen from Table 4 there exist no defU that
avoids the last three S-Boxes. So, as has already been pointed out in [12], spreading out the
round counter over the last three S-Boxes (two bits of the counter per S-Box) protects against
the attack. Note, however, that this choice is not as obvious as it may seem. For example,
a SPONGENT-like solution [6], where S-Boxes 0,1 and 14,15 are used for the round counter
(or any three of them) does not provide a secure solution, since classes no. 23 and 58 avoid
them, providing at least 250 weak keys. Still, the “SPONGENT” solution obviously defeats
the classes no. 44 and 47 of [12].

Results for PRINTcipher–96 In order to get all invariant projected subsets for PRINTcipher–
96, the method of Section 3.2 has to be used, since the one of Section 3.1 is not feasible any
more (see the end of that subsection).
It turns out that PRINTcipher–96 has as many as 115,669 different defining sets of invari-
ant projected subsets. We could obtain these after around 10 seconds of computations using
CPLEX for solving the MILP problem as per Section 3.2.
The largest family of weak keys has 2102 keys, whereas overall number of weak keys is at most
2117.7. A class with the fastest key recovery has key recovery complexity of 230. The largest
gain over the plain brute force method is a factor of 227.
Note that in the case of PRINTcipher–96 there exist invariant projected subsets that avoid
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the last three S-Boxes. In fact, there are 28 such classes. So the countermeasure suggested in
[12] does not work. Still, there is a collection of combinations of three S-Boxes that cannot be
avoided by any invariant projected subset. The S-Boxes 0,1,23 is one possible solution among
many others. So, in order to counter the attack, one has to spread out the round counter over
these S-Boxes. These results are obtained by replacing the condition on the last two S-Boxes
in the first line of (2) with the 0-conditions on the variables xi that correspond to a choice of
three S-Boxes in question.

3.4 Fast key recovery for many weak keys of PRINTcipher–48

As we may see from Table 4, column 4, the work factor for the key recovery of many classes
is very low. Therewith, weak key recovery for these classes may be done very fast in the
chosen/known plaintext scenario. We can estimate practical time for the key recovery using
figures for a software implementation of PRINTcipher–48 reported in [4]. There the authors
claim 72–95 CPU cycles per byte for PRINTcipher–48. For our estimates we take 95 cycles per
byte as a pessimistic figure. Now let us assume doing key recovery using a 64-bit processor
with 2.4 GHz frequency, e.g. AMD Athlon 64 4000+, whereby only one core is doing the
computation. We may estimate that 1 CPU cycle takes 1/(2.4)⋅10−9 seconds. In our estimates
we only compute the time needed to do the necessary number of trial encryptions, not counting
overhead that appears in actually implementing the brute force attack. Still, it is quite clear
that such an overhead is negligible compared to the time needed for the trial encryptions. So
now we have

Tkey recovery = WFkey recovery ⋅ 95 ⋅ 1

2.4 ⋅ 109
⋅ 6 sec,

where the “6” is the number of bytes in 48 bits. Table 5 shows the results obtained using the
above formula. The table lists the time to do the brute force search assuming the worst case
where an attacker has to look through the entire search space. In the table we also indicate
the number of different defU ’s, i.e. families of weak keys for which corresponding timings for
the key recovery are obtained, as well as the lower and upper bounds on the number of weak
keys with the corresponding time recovery. For the lower bound we took the number of keys
in the largest family and as an upper bound the sum of keys in all families with the same
key recovery complexity. As we may see the bounds are not far from each other, so we have
a pretty good idea about the actual number of weak keys in each case.

Table 5. Expected timings for weak key recovery for PRINTcipher–48

log(Tkey recovery, sec) # classes log(#lower) log(#upper)

2 9 41 46.4

3 7 45 48.4

4 20 43 44.3

5 24 39 41.0

16 3 51 51.7

26 1 51 51

As a result of Table 5 we see that at least 245 weak keys can be recovered in less than
20 minutes and at least 241 weak keys can be recovered in about 4 seconds or less using just
one core of a “usual” PC. Note that recovering keys from the class no. 44, which is the main
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example in [12], would take about 2 years and the one from Appendix A in [12] about a
day with our two-step recovery procedure and around half a year with the plaint brute force.
Therewith, along with known classes we showed existence of classes that allow very fast key
recovery.

4 Related and future work

Finally, in this section we would like to briefly discuss the initial motivation of this work and
show its relation to the material of the paper.
Initially we were interested in the question of how to maximize the number of internal bits
known when describing the encryption function algebraically given a plaintext and a part of
a key. That is, having a plaintext and knowing (or guessing) certain key bits, which (and how
many) internal bits can we learn from that.
Let us consider a PRESENT-like primitive interleaving a permutation layer P and a substi-
tution layer, in this order. Note that constant additions can be ignored here, since constants
are publicly known and do not constrain information flow. Observe that the value of a bit
of the state is known if it is either known initially (or guessed) or if it is learned through
propagation from known values in the previous round. Our goal is to maximize the number of
known values using a Mixed Integer (or, strictly speaking, Binary Integer) Linear Program.
For this we can introduce two variables for each bit i in each round j: xi,j = 1 iff the j-th
bit is known after round i, and gi,j = 1 iff it is initially known (or guessed). The objective
function is simply the sum of all xi,j . Restricting the number of the initially known bits to a
certain threshold is similarly straightforward and can be done by introducing a constraint re-
quiring the sum of all gi,j to be smaller than this threshold. The non-trivial part of the model
is including the propagation and relating x- and g-variables. For this, let us assume a very
strong S-Box, where the outputs of an S-Box are only known if the full input is known (for
PRINTcipher that would be the 3 – 3 case). So, let {xi,P−1(j0), xi,P−1(j1), ⋅ ⋅ ⋅ , xi,P−1(jl−1)} be
the set of variables of the input bits of a certain S-Box in round i, where l is the block length
of an S-Box. Then {xi+1,j0 , xi+1,j1 , ⋅ ⋅ ⋅ , xi+1,jl−1

} is the set of variables of the output bits of
that S-Box. The model can now be completed by introducing the following set of constraints
for every S-Box:

xi+1,jt ≤ xi,P−1(js) + gi+1,jt for all t, s ∈ {0, 1, ⋅ ⋅ ⋅ , l − 1}.

If other masks are to be considered, these constraints need to be adjusted accordingly. One
approach to do this is to consider each possible mask as a vertex of a high dimensional 0-1
polyhedron (the dimension depending on l, e.g. for PRINTcipher this would be 2⋅l = 2⋅3 = 6).
The polyhedron so constructed can be converted to its half-space representation, which can
then be used to model the information flow.
Applying this approach to PRINTcipher (incorporating constraints accommodating the key
addition), surprisingly or may be not really, ended up producing invariant projected subsets
as results, in particular also those that were known from [12]. Refinement of the approach led
to the results of Section 3.2 and to the overall study undertaken in Section 3. We would like
to mention the paper [14] where techniques of MILP were used to facilitate differential and
linear cryptanalysis.
As a result, the methods presented in this paper, especially the ones of Section 3.2, should be
seen in a broader context of obtaining desirable cryptanalytic properties. The method turned
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out to be extremely useful in the question of the complete study of the invariant coset attack
from [12]. Still, the optimization method outlined here may be used with its initial purpose
in mind. Note that having more bits known internally in the course of the encryption process
facilitates other cryptanalytic methods, such as algebraic cryptanalysis [15,16]. Basically, one
has more variables resolved “for free” in an algebraic system describing a primitive in question.
Especially PRESENT-like ciphers seem to be good targets for this method: PRESENT itself
[1], SPONGENT hash family [6], EPCBC block cipher [5]. SP-network LBlock [17] also has
all properties in its description to apply the technique. It would be interesting to see how the
proposed optimization technique works in this context. This is a research in progress and is
an interesting research direction combining techniques like algebraic system solving (Gröbner
bases, SAT-solvers) and optimization techniques (e.g. MILP).
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