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Abstract

In this paper we prove all balanced symmetric Boolean functions of fixed algebraic degree are trivial when the

number of variables grows large enough. We also present the nonexistence of trivial balanced elementary symmetric

Boolean function except for n = 2t+1l − 1 and d = 2t, where t and l are any nonnegative integers, which shows

Cusick’s conjecture for balanced elementary symmetric Boolean function is exactly the conjecture that all balanced

elementary symmetric Boolean functions are trivial. In additional, we obtain a bound n0, which depends only on the

algebraic degree, such that Cusick’s conjecture holds for any n > n0.
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I. INTRODUCTION

Boolean functions play an important role in the design of symmetric cryptographic systems. They are used for

S-Box design in block cipher and utilized as nonlinear filters and combiners in stream ciphers. Symmetric Boolean

functions, which have the property that their outputs only depend on the Hamming weight of their inputs, are an

interesting subclass of Boolean functions for their advantage in both implementation complexity and storage space.

In [1], Canteaut and Videau studied in detail symmetric Boolean functions. They established a link between the

periodicity of simplified value vector of a symmetric function and its algebraic degree. Cai et al. computed a closed

formula for the correlation between any two symmetric Boolean functions in terms of their periods [5]. Castro et

al. improved the formula for computing the exponential sums of symmetric Boolean functions [2](also see, Lemma

1).

Balancedness is a primary requirement to resist the attacks on each cryptosystem. In [8], Gathen and Rouche found

all the balanced symmetric boolean functions up to 128 variables. Canteaut et al. proved that balanced symmetric

functions of degree less than or equal to 7(excluding the trivial cases) only exist for eight variables [1]. Since the

number of nontrivial balanced functions seems to be very small, they conjectured that balanced symmetric functions
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of fixed degree do not exist when the number of variables grows. For elementary symmetric Boolean functions,

Cusick et al. proposed a conjecture in [3] about the nonexistence of nonlinear balanced elementary symmetric

Boolean functions σn,d except for n = l · 2t+1 − 1 and d = 2t, where t and l are any positive integers. They also

obtained many results towards the conjecture in [4]. Later in [6] Gao et al. proved that when n = 3 mod 4, the

function is balanced if and only if d = 2k, 1 ≤ k ≤ t. It was proved in [4] that Cusick’s conjecture [3] [4] holds

for sufficient large number of variables, but a certain bound had not been obtained.

The paper is organized as follows. Some basics on Boolean functions are introduced in Section II. We discuss

the asymptotic behavior of symmetric Boolean functions in Section III. We present the equivalence of Cusick’s

conjecture and some other results on balanced symmetric Boolean functions in Section IV. We end in Section V

with a conclusion.

II. PRELIMINARIES

Let Fn2 be the vector space of n-tuples over the Field F2 = {1, 0} of two elements. We denote by ⊕ the sum over

F2. A Boolean function of n variables is a mapping from Fn2 into F2. A Boolean function is said to be symmetric

if its output is invariant under any permutation of its input bits. We denote by Bn (resp. SBn) the set of all Boolean

functions (resp. symmetric Boolean functions) of n variables. If f : Fn2 → F2, then f can be uniquely represented

as a multivariate polynomial over F2, called algebraic normal form (ANF):

f(x1, · · · , xn) =
⊕
µ∈Fn

2

λµ

(
n∏
i=1

xµi

i

)
, with λµ =

⊕
x�µ

f(x)

Where (x1, · · · , xn) � (µ1, · · · , µn) if and only if ∀i, xi ≤ µi. The addition and multiplication operations are

in F2. The number of variables in the highest order product term with nonzero coefficient is called its algebraic

degree (denoted by deg(f) ).

Definition 1: For integers n and d, the elementary symmetric Boolean function with n variables σn,d is defined

as the sum of all terms of degree d, that is

σn,d =
⊕

1≤i1≤···≤id≤n

xi1 · · ·xid .

If f(x) = σn,d, then vf (i) =
(
i
d

)
mod 2.

A Boolean function of n variables is symmetric if and only if its algebraic normal form can be written as follows:

f(x1, · · · , xn) =

n⊕
i=0

λf (i)

 ⊕
µ∈Fn

2 wH(µ)=i

n∏
j=1

x
µj

j


=

n⊕
i=0

λµσn,i,

Where σn,i is the elementary symmetric polynomial of degree i in n variables.

A Boolean function is said to be affine if its algebraic degree does not exceed 1. The set of all n-variable

affine functions is denoted by A(n). The Hamming weight wH(x) of a binary vector x ∈ Fn2 is the number of

its nonzero coordinates, and the Hamming weight wH(f) of a Boolean function f is the size of its support{x ∈
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Fn2 | f(x) = 1}. If wH(x) = 2n−1, we call f(x) balanced. The Hamming distance between two functions

f, g ∈ Bn, denoted by d(f, g) is defined as d(f, g) = wt(f ⊕ g). A symmetric function can be represented by a

vector vf = (vf (0), · · · , vf (n)), where vf (i) = f(x) for x ∈ Fn2 with Hamming weight wH(x) = i. It was proved

that for any f ∈ SBn, vf is periodic with period 2t, 2t < n, if and only if deg(f) ≤ 2t − 1; deg(f) = 2t if and

only if vf is periodic with period 2t+1 and is a part of (vf (0), · · · , vf (2t − 1), vf (0) ⊕ 1, · · · , vf (2t − 1) ⊕ 1)∞

[1].

Definition 2: For any f ∈ Bn, we denote by F(f) the following value related to the Fourier transform of f

F(f) =
∑
x∈Fn

2

(−1)f(x) = 2n − 2wH(f).

Definition 3: [1] Let n be an odd integer and f ∈ SBn. We say that f is a trivial balanced function if

vf (i) = vf (n− i) + 1, 0 ≤ i ≤ n.

The even case corresponds to affine functions.

For an arbitrary positive integer n, we denote its 2-adic expression by n =
∑l
i=0 ni2

i. Let a, b be positive

integers, we denote a � b if for all i(0 ≤ k ≤ l), ai ≤ bi and otherwise a 6� b. The Lucas formula says [7, p. 79],(
n
k

)
=
(
n0

k0

)(
n1

k1

)
· · ·
(
nl

kl

)
mod 2. Let f(x) = σn,d, by Lucas formula, vf (i) = 1 if and only if d � i.

It was proved that if σn,d is balanced, then d ≤ dn2 e [3].

III. ASYMPTOTIC BEHAVIOR OF SYMMETRIC BOOLEAN FUNCTIONS

In this section, we characterize the behavior of symmetric Boolean functions with large number of variables. As

a consequence of our discussion using the technique for the correlation of symmetric functions in [5], we prove

the following conjecture.

Conjecture 1: [1, VIII] Excluding the trivial cases, balanced symmetric functions of fixed degree do not exist

when the number of variables grows.

To prove Conjecture 1, we introduce the following lemma.

Lemma 1: [2] Let f(x) = σn,ks + · · ·+ σn,k1 , 1 ≤ k1 ≤ · · · ≤ ks and let r = blog2 ksc+ 1. F(f) is given by

F(f) =
n∑
i=0

(−1)vf (i)
(
n

i

)
=

1

2r

2r−1∑
j=0

sjλ
n
j , (1)

where ξj = exp
(
π
√
−1j

2r−1

)
, λj = 1 + ξ−1j , and1

sj =

2r−1∑
i=0

(−1)vf (i)ξij .

1Here we correct typos of the paper [2], where λj = 1 + ξj should be λj = 1 + ξ−1
j and sj =

∑2r−1
i=0 (−1)vf (i)ξ−i

j should be

sj =
∑2r−1

i=0 (−1)vf (i)ξij .
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If f is not affine, then r ≥ 2. Note that ξ2r−j = ξj , s2r−j = sj , λ2r−j = λj and λ2r−1 = 0. We have the

following observation on Lemma 1:

2r−1F(f) =
1

2

2r−1∑
j=0

sjλ
n
j

=
1

2
s0λ

n
0 +

2r−1−1∑
j=1

Re
(
sjλ

n
j

)
(2)

where the second equality holds because the second half of the j-sum (2r−1 ≤ j ≤ 2r−1)is the complex conjugate

of the first half. Let us define

tj(n) =
1

2r−1
Re
(
sjλ

n
j

)
, 0 ≤ j ≤ 2r−1 − 1.

Thus

F(f) = 1

2
t0(n) +

2r−1−1∑
j=1

tj(n). (3)

If F(f) = 0, there are potentially two reasons for this: either all the tj(n) are zero or several nonzero tj(n)

( 12 tj(n) for j = 0) can cancel each other. The next lemma states that the latter cannot happen for large enough n.

However, we should point out that the following lemma, although having a different tj(n), contributes to Cai et

al. [5].

Lemma 2: Let f ∈ SBn, and f is not affine. There exists an integer n0 such that for any n > n0,

F(f) = 0⇔ tj(n) = 0, 0 ≤ j ≤ 2r−1 − 1. (4)

Proof: Suppose F(f) = 0. We can express tj(n) as 2

tj(n) =
1

2r−1
|sj |

∣∣∣∣2 cos(πj2r
)∣∣∣∣n cos(arg(sj)− πnj

2r

)
. (5)

Clearly, we have

tj(n) ≤
1

2r−1
|sj |

∣∣∣∣2 cos(πj2r
)∣∣∣∣n .

On the other hand, if tj(n) 6= 0, since the cosine is periodic in n, for any j there exists a constant cj > 0 (cj does

not depend on n) such that

tj(n) ≥ cj
∣∣∣∣2 cos(πj2r

)∣∣∣∣n .
Hence, each |tj(n)| is either zero or in a constant range of

∣∣2 cos (πj2r )∣∣n.

Since when n is large enough,
∣∣2 cos (πj2r )∣∣n dominates

∣∣∣2 cos(π(j+1)
2r

)∣∣∣n for any j < 2r − 1, any tj(n) 6= 0

dominates all the tj′(n) for j < j′ < 2r−1. Thus if j0 is the least j such that tj(n) 6= 0, then the subsequent terms

cannot cancel tj0(n) ( 1
2 tj0(n) for j0 = 0), and hence, F(f) 6= 0. Therefore, tj(n) = 0, for all 0 ≤ j ≤ 2r−1−1.

2Any complex number z 6= 0 can uniquely be written as z = |z|(cosϕ+ i sinϕ) = |z|eiϕ. where 0 ≤ ϕ ≤ 2π. ϕ is called the argument

of z, ϕ = arg z. Hence Re(z) = |z| cos arg(z)
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If sj 6= 0, then for any j, 0 ≤ j ≤ 2r−1 − 1, we have

tj(n) = 0

⇔ cos

(
arg(sj)−

πnj

2r

)
= 0

⇔ ∃l arg(sj)−
πnj

2r
=
π

2
+ lπ

⇔ ∃l exp (2i arg(sj)) = exp

(
2i

(
πnj

2r
+
π

2
+ lπ

))
⇔ |sj | exp (i arg(sj))=−|sj | exp (−i arg(sj)) exp

(
πi

2r
nj

)
⇔ sj = −ξnj sj (6)

Note that if sj = 0, we get tj(n) = 0, sj = −ξnj sj = 0. Thus

tj(n) = 0⇔ sj = −ξnj sj , 0 ≤ j ≤ 2r−1 − 1. (7)

holds no matter whether sj is zero.

Next, we have the following lemma.

Lemma 3: Let f ∈ SBn and f is not affine. The following properties are equivalent.

(i) sj = −ξnj sj , 0 ≤ j ≤ 2r − 1,

(ii) vf (i) = 1⊕ vf (n− i) , 0 ≤ i ≤ 2r − 1.

Proof: If property (ii) is true, then it is clear that

sj =

2r−1∑
i=0

(−1)vf (n−i)+1ξij , (8)

Since (−1)vf (i)ξij has period 2r, 0 ≤ j ≤ 2r − 1, thus

−ξnj sj = −ξnj
2r−1∑
i=0

(−1)vf (i)ξ−ij

= −ξnj
n+2r−1∑
i=n

(−1)vf (i)ξ−ij

= −
n+2r−1∑
i=n

(−1)vf (i)ξn−ij

=

2r−1∑
i=0

(−1)vf (n−i)+1ξij = sj (9)

If property (i) is true, then for any 0 ≤ j ≤ 2r − 1,
2r−1∑
i=0

(−1)vf (i)ξij =
2r−1∑
i=0

(−1)vf (n−i)+1ξij (10)

Note that these sums are the Fourier transforms of the functions f(i) and f(n− i), respectively. We can perform

an inverse Fourier transform by using the relation

2r−1∑
j=0,j 6=2r−1

ξi−i
′

j =

 2r − 1 , i = i′

(−1)i−i′+1 , i 6= i′
(11)
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Now multiply the left and right hand sides of equation (10) by ξ−i
′

j and sum over j from 0 to 2r − 1. Then we

have

2r(−1)vf (i
′) −

2r−1∑
i=0

(−1)vf (i) = 2r(−1)vf (n−i
′)+1 −

2r−1∑
i=0

(−1)vf (n−i)+1

Since
∑2r−1
i=0 (−1)vf (n−i)+1 = −

∑2r−1
i=0 (−1)vf (i), thus

(−1)vf (i
′) + (−1)vf (n−i

′) =
1

2r−1

2r−1∑
i=0

(−1)vf (i) (12)

The left hand side can be ±2 or 0. If it is ±2, then f is constant, which contradicts to the hypothesis. Hence, the

left hand side is 0 and we conclude (−1)vf (i′) = (−1)1+vf (n−i′). The property (ii) follows.

Now we prove Conjecture1.

Theorem 1: For large enough n, balanced symmetric functions of fixed degree are trivial.

Proof: The case that f ∈ SBn being affine is clear, we now assume that f is a non-affine function.

Let f be a non-affine function with period 2r. Following Lemma 1 to Lemma 3, there exists an integer n0

such that for any n > n0,

F(f) = 0⇔ vf (i) = 1⊕ vf (n− i), i = 0, · · · , 2r − 1.

Note that when n is even, we get vf (n2 ) = 1 + vf (
n
2 ), which is a contradiction. That is, for sufficient large n,

non-affine balanced symmetric functions are trivial for odd n and do not exist for even n. Therefore, Theorem 1

is proved.

IV. THE EQUIVALENCE OF CUSICK’S CONJECTURE

In this section, we show the conjecture for elementary symmetric Boolean functions is equal to the conjecture

that all balanced elementary symmetric Boolean functions are trivial balanced. Associating with the theorem in last

section, we present the conjecture is validated with sufficient large number of variables.

Conjecture 2: [3] There are no nonlinear balanced elementary symmetric Boolean functions except for σl·2t+1−1,2t ,

where t and l are any positive integers.

As mentioned in the proof of Theorem 3 in [3], f(x) = σl·2t+1−1,2t(x) is trivial balanced. In the following

theorem we prove that all trivial balanced elementary symmetric Boolean functions are of the form σl·2t+1−1,2t .

Theorem 2: There are no trivial balanced elementary symmetric Boolean functions except for σl·2t+1−1,2t , where

t and l are any nonnegative integers.

Proof: Supposed f(x) = σn,d(x) is trivial balanced. If d = 1, the conclusion follows regardless of the parity

of n. Let d > 1, than n must be odd, and vf (i) = vf (n− i), 0 ≤ i ≤ n. Since vf (i) =
(
i
d

)
mod 2 and vf (i) = 1

if and only if d � i, we get either d � i or d � (n− i).

Let the 2-adic expressions of d, n be d =
∑t
i=0 di2

i, n =
∑k
i=0 ni2

i, k > t and d = dt · · · d0, n = nk · · ·n0.

We argue that d = 2t. Otherwise, suppose dt, dj are ones(i.e. d = 1t · · · 1j · · · ). On the one hand, let i =
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0t · · · 1j 0j−1 · · · 00︸ ︷︷ ︸
0

. Since d � i, we get d � (n − i), which implies nj = 0. On the other hand, let i′ =

1t · · · 0j · · · 00︸ ︷︷ ︸
0

. Since d � i′,we get d � (n− i′), which implies nj = 1. It is a contradiction.

Furthermore, we claim that n = l · 2t+1 − 1 (i.e. n = nk · · ·nt+1 1t · · · 10︸ ︷︷ ︸
1

). Otherwise, suppose nj is the first

zero from the t-th bit to the last bit(i.e. n = nk · · ·nt+1 1t · · · 1j+1︸ ︷︷ ︸
1

0jnj−1 · · ·n0). Let i = 0t 1t−1 · · · 1j︸ ︷︷ ︸
1

0j−1 · · · 00︸ ︷︷ ︸
0

,

then we get n− i = nk · · ·nt+10t 1t−1 · · · 1j+11j︸ ︷︷ ︸
1

nj−1 · · ·n0, so both d � i and d � n − i are false, which is a

contradiction.

Hence, we conclude that all trivial balanced elementary symmetric Boolean functions are of the form σl·2t+1−1,2t .

Remark 1: By Theorem 2, Conjure 2 shows in essence that all balanced elementary symmetric Boolean

functions are trivial balanced. According to Theorem 1 and Theorem 2, we conclude that there exists an integer

n0 such that Conjure 2 holds for any n > n0.

At the end of the section, we give an estimation for n0. Let f(x) = σl·2t+1−1,2t(x). By the equation (2) in [1],

we get

F(f)

=

2r−1∑
i=0

(−1)vf (i)
2n−r + 21−r

2r−1−1∑
j=1

(2cj)
n
c′j


= 2n−r

2r−1∑
i=0

(−1)vf (i) + 2

2r−1−1∑
j=1

2r−1∑
i=0

(−1)vf (i)cnj c′j


where cj = cos

(
j π2r
)
, c′j = cos

(
j(n− 2i) π2r

)
. It is exactly the equation (3), where for 0 ≤ j ≤ 2r−1 − 1, Aj =

jπ
2r (n− 2i),

tj(n) = 2n−r+1 cosn
(
j
π

2r

) 2r−1∑
i=0

(−1)(
i
d) cosAj . (13)

If t0(n) ≥ 2j+1|tj(n)|, it is obvious that F(f) = 0 if and only if t0(n) = tj(n) = 0, 1 ≤ j ≤ 2r−1 − 1. Thus

we have the following result.

Theorem 3: Let r = blog2 dc+ 1. All these nonlinear balanced elementary symmetric Boolean functions are of

the form σl·2t+1−1,2t , where t and l are any positive integers for any n > −2
(
log2 cos

(
π
2r

))−1
.

Proof: Consider tj(n), 1 ≤ j ≤ 2r−1 − 1,

(1) If
∑2r−1
i=0 (−1)(

i
d) cosAj ≥ 0, then

2r−1∑
i=0

(−1)(
i
d) −

2r−1∑
i=0

(−1)(
i
d) cosAj

= 2

2r−1∑
i=0

(−1)(
i
d) sin2

(
Aj
2

)
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≥ 2

2r−1−1∑
i=0

(−1)(
i
d)
(
sin2

(
Aj
2

)
+ cos2

(
Aj
2

))
= 0 (14)

(2) If
∑2r−1
i=0 (−1)(

i
d) cosAj < 0, then

2r−1∑
i=0

(−1)(
i
d) +

2r−1∑
i=0

(−1)(
i
d) cos

(
Aj
2

)

= 2

2r−1∑
i=0

(−1)(
i
d) cos2

(
Aj
2

)

≥ 2

2r−1−1∑
i=0

(−1)(
i
d)
(
cos2

(
Aj
2

)
+ sin2

(
Aj
2

))
= 0 (15)

These two equalities hold if and only if d = 2r−1. Therefore t0(n) ≥ |tj(n)| for 1 ≤ j ≤ 2r−1 − 1.

When n > −2/
(
log2 cos

(
π
2r

))
, we have cosn

(
π
2r

)
< 1

4 , and hence t0(n) > |4t1(n)|. In additional, since for

any j, 1 ≤ j ≤ 2r−1 − 1,

cos
(
j
2r π
)

cos
(
j+1
2r π

) =
cos
(
j
2r π
)

cos
(
π
2r

)
cos
(
j
2r π
)
− sin

(
π
2r

)
sin
(
j
2r π
)

>
1

cos
(
π
2r

) > 4, (16)

t0(n) > 2j+1|tj(n)| holds for any j, 1 ≤ j ≤ 2r−1 − 1.

Hence F(f) = 0 if and only if t0(n) = tj(n) = 0. From the discussion in Section III, if f is balanced, then f

is trivial. Therefore, Conjecture 2 is validated for all n > −2
(
log2 cos

(
π
2r

))−1
, where 2r−1 ≤ d < 2r.

V. CONCLUSION

In this paper, we study the balancedness of symmetric Boolean functions. We prove the conjecture that all

balanced symmetric Boolean functions of fixed degree are trivial when the number n of variables is sufficient large.

We also present the form of trivial balanced elementary symmetric Boolean functions. In addition, we estimate the

lower bound of n with which Cusick’s conjecture for elementary symmetric Boolean functions is validated. But

the bound is rough. We show some properties of the balancedness of a symmetric Boolean function in the view

of the distance from a balanced one, which can be a new and clear way to proof some former results. Although

an equivalence of Cusick’s conjecture is established, it is till an open problem. It would be helpful to remove the

dependence on the degree from the bound, since then the complete proof of the conjecture would be reduced to a

finite computation.
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