
Cryptanalysis of a Universally Verifiable Efficient
Re-encryption Mixnet

Shahram Khazaei, khazaei@kth.se
Björn Terelius, terelius@kth.se

Douglas Wikström, dog@csc.kth.se

February 24, 2012

Abstract

We study the heuristically secure mix-net proposed by Puiggalı́ and Guasch (EVOTE
2010). We present practical attacks on both correctness and privacy for some sets of pa-
rameters of the scheme. Although our attacks only allow us to replace a few inputs, or to
break the privacy of a few voters, this shows that the scheme can not be proven secure.

1 Introduction

A fundamental problem in implementing electronic elections is how to guarantee the anonymity
of the voters. Chaum [3] studied the similar problem of how to allow people to send anonymous
e-mail, and introduced mix-nets as a solution to this problem.

In Chaum’s mix-net, k mix-serversM1, . . . ,Mk are arranged in sequence. Each mix-server
Mj generates a public/private key pair and publishes his public key pk j . To anonymously send a
messagemi, the ith sender encrypts the message with all public keys and publishes the resulting
ciphertext Encpk1

(Encpk2
(· · ·Encpkk

(mi) · · ·)) on a bulletin board. Then L0 is defined to be
the list of all submitted ciphertexts. For j = 1, . . . , k, the jth mix-serverMj then takes Lj−1
as input, removes the outermost layer of encryption using his private key, and permutes the
resulting ciphertexts to form its output Lj . Once the last mix-server Mk has decrypted and
shuffled the list, he can publish the plaintext messages. One can easily see that Chaum’s mix-net
prevents linking the plaintext messages published by the last mix-server to the original senders
as long as at least one of the servers is honest. On the other hand, any mix-server can replace
any ciphertext with a ciphertext of his choice. This is clearly unacceptable in a voting context.

Another disadvantage of Chaum’s mix-net is that the ciphertexts grow with each added mix-
server. Park et al. [17] introduced re-encryption mix-nets, where the mix-servers use the ho-
momorphic property of the cryptosystem to re-randomize the ciphertexts instead of decrypting.
Sako and Kilian [21] introduced the first universally verifiable mix-net based on the protocol of
Park et al. Their mix-net allows each mix-server to prove in zero-knowledge that its output is a
re-encryption and permutation of its input. Sako and Kilian’s proof was a cut-and-choose pro-
tocol, but more efficient proofs of shuffles were given by Neff [16] and Furukawa and Sako [7].

1

Many other works in the field aim to improve the efficiency of mix-nets, e.g., [11, 10, 8,
12, 13], but vulnerabilities have been found in most mix-nets not based on proofs of shuffles
[18, 15, 4, 22, 14].

Puiggalı́ and Guasch [20] proposed a heuristically secure mix-net at EVOTE 2010 (called
the Scytl mix-net in the rest of the paper) which combines ideas of Golle et al. [8] and Jakobsson
et al. [13]. To verify that a mix-server correctly re-encrypts and permutes the votes in Scytl’s
mix-net, a verifier partitions the server’s input into blocks and the server reveals the correspond-
ing output blocks. Furthermore, the server proves that the product of the votes in each output
block is a re-encryption of the product of the votes in the corresponding input block. This ap-
proach is significantly faster than even the most efficient proofs of shuffles [9, 6], but the security
is not as well understood.

A version of Scytl’s mix-net was implemented and used with four mix-servers in the Nor-
wegian electronic trial elections [1], but all four mix-servers were run by the same semi-trusted
party and there was an additional “ballot box”. Privacy was ensured under the assumption that
either the “ballot box” or the semi-trusted party remained honest. The mix-net was merely used
as a way to allow the semi-trusted party to convince auditors that it performed the shuffling
correctly, but as far as we know the original plan was to distribute trust on multiple parties by
letting different parties run the mix-servers as proposed in [20].

1.1 Motivation and Contribution

We think it is important to study the Scytl mix-net, since it has already been used in real elections
to ensure correctness, and may be used to provide privacy in future elections.

In this paper we demonstrate attacks against both the correctness and the privacy of the
proposed mix-net. The attacks are based on a recent attack [14] on mix-nets with randomized
partial checking [13] and the observation that votes can be modified without detection if the
modified elements end up in the same block in the verification.

Our first attack lets the first mix-server break the privacy of any chosen voter or small group
of voters, assuming that the server can corrupt O(

√
b) voters, where b denotes the number of

blocks in the verification step. The second attack is similar to the first, but reduces the number
of voters that have to be corrupted if the two first mix-servers collude. Our third attack uses
the particular way the lists are partitioned to allow any mix-server except the first to replace a
relatively small number of votes and remain undetected as long as the number of replaced votes
is O(

√
b). The last attack can be used to violate the privacy of O(

√
b) voters.

1.2 Summary of the Attacks

In the following table, which summarizes our results, b denotes the number of blocks in the
verification and ` = N/b denotes the block size, where N is the number of voters.

2

Our Attacks
claimed Sect. 5.1 Sect. 5.2 Sect. 5.3 Sect. 5.3

condition – – – ` ≥ b ` ≥ b
corrupted servers 1 1 2 1 1
corrupted voters b+ 1 O(

√
b) O(

√
b/`) – –

attack on privacy privacy privacy correctness privacy
targeted ciphertexts O(1) O(1) O(1) O(

√
b) O(

√
b)

2 Notation

We consider a mix-net with k mix-servers M1, . . . ,Mk that provides anonymity for a group
of N voters. We denote a cryptosystem by CS = (Gen,Enc,Dec), where Gen, Enc, and Dec
denote the key generation algorithm, the encryption algorithm, and the decryption algorithm
respectively. The key generation algorithm Gen outputs a pair (pk , sk) consisting of a public
key and a private key. We let Mpk , Cpk , and Rpk be the sets of plaintexts, ciphertexts, and
randomizers, respectively, associated with the public key pk . We write c = Encpk (m, r) for
the encryption of a plaintext m using randomness r, and Decsk (c) = m for the decryption of a
ciphertext c. We sometimes view Enc as a probabilistic algorithm and drop r from our notation.
Recall that a cryptosystem is called homomorphic if for every public key pk : Mpk , Cpk , and
Rpk are groups and for every m0,m1 ∈Mpk and r0, r1 ∈ Rpk we have

Encpk (m0, r0)Encpk (m1, r1) = Encpk (m0m1, r0 + r1) .

Homomorphic cryptosystems allow ciphertexts to be re-encrypted. This means that anybody
with access to the public key can take a ciphertext c and form c · Encpk (1, r), for a randomly
chosen r ∈ Rpk , and the resulting ciphertext is identically, but independently, distributed to the
original ciphertext.

Throughout the paper we employ the estimate of collision probabilities used to prove the
birthday bound. More precisely, we use the fact that if we pick s elements from a large set
of size b with repetition, then some element in the set is picked at least twice with probability
roughly 1− e−λ2/2, where λ = s/

√
b.

3 Description of the Mix-Net

Puiggalı́ and Guasch [20] propose a homomorphic mix-net that combines ideas of Golle et al. [8]
and Jakobsson et al. [13] for the verification. On a high level, the mix-net works as follows. The
voters submit their inputs encrypted with a homomorphic cryptosystem, e.g., ElGamal, to the
mix-net. Starting from the first mix-server, in turn, each mix-server re-encrypts and permutes
the list of the ciphertexts before passing the list on to the next mix-server in the chain. Once the
last mix-server has published his output list on the bulletin board, the verification phase starts.
A verifier partitions the input to each mix-server into a number of blocks. The mix-server then
reveals the output block corresponding to each input block without revealing how the individual
ciphertexts are shuffled. Then the server proves that the product of all the ciphertexts in each
output block is a re-encryption of the product of the ciphertexts in the corresponding input block.

3

If the verification is passed, then the mix-servers jointly decrypt the final list of ciphertexts and
otherwise the mixing restarts. Below we give more details on the scheme. The reader is referred
to [20] for the original description.

3.1 Setup

The mix-net uses a homomorphic cryptosystem, e.g. ElGamal. The public key pk and the
corresponding secret key sk are generated during a setup phase and the secret key is verifiably
secret shared among the servers [5]. To ensure that the result can be decrypted even if some
servers refuse to cooperate there is typically some threshold λ such that any set of λ servers can
decrypt the results, but smaller subsets gain no information about the secret key. The details of
how this is done is not important for our attacks.

There is also a parameter b for the mix-net. The input ciphertext list of each mix-server, of
size N , will be divided into b blocks of (almost) equal size `. To simplify the exposition we
assume that N = `b. Our results are easily generalized to the case where b does not divide N ,
e.g., by allowing N mod b blocks to have size `+ 1 and the remaining blocks to have size `.

3.2 Ballot Preparation and Encryption

The ith voter computes an encryption c0,i = Encpk (mi) of its vote mi, and posts the ciphertext
on the bulletin board. To prevent voters from performing Pfitzmann’s attack [19, 18] directly,
each ciphertext is also augmented with a non-interactive zero-knowledge proof of knowledge of
the plaintext.

3.3 Initial Ballot Checking

When all voters have submitted their ciphertexts, the mix-servers agree on an initial list L0 =
(c0,1, . . . , c0,N) of submitted ciphertexts. Without loss of generality, we assume that this list
containsN distinct well-formed ciphertexts. That is, duplicates are removed and the ciphertexts
with invalid proofs are eliminated.

3.4 Mixing Phase

For j = 1, . . . , k, the jth mix-serverMj reads the list of ciphertextsLj−1 = (cj−1,1, . . . , cj−1,N)
from the bulletin board, chooses a permutation πj and re-encryption factors rj,1, . . . , rj,N ran-
domly, computes

cj,i = Encpk (1, rj,πj(i)) · cj−1,πj(i) ,

and writes Lj = (cj,1, . . . , cj,N) on the bulletin board.

3.5 Verification Phase

The verification is performed in a challenge-response manner, with the challenge being a parti-
tioning of the mix-server’s input list. The parameters b and ` denote the number of blocks in the
partitioning and the size of each block respectively.

4

Challenge-Response. Each mix-serverMj , receives a partitioning of its input list Lj−1 into
b blocks as a challenge. More precisely,Mj receives a partitioning Ij−1,1, . . . , Ij−1,b of the set
[1, N] where the tth block of ciphertexts are those in Lj−1 whose indices are in Ij−1,t. For each
Ij−1,t, the server reveals the corresponding block of re-encrypted votes. In other words, Mj

defines
Oj,t =

{
π−1j (i)

∣∣∣ i ∈ Ij−1,t}
and publishesOj,1, . . . , Oj,b along with a proof that the product of the ciphertexts in each output
block is a re-encryption of the ciphertexts in the corresponding input block, i.e., a proof of
knowledge of an Rj,t such that∏

i∈Oj,t

cj,i = Encpk (1, Rj,t) ·
∏

i∈Ij−1,t

cj−1,i .

ClearlyMj knows Rj,t =
∑

i∈Ij−1,t
rj,i since he picked the re-encryption factors himself.

Note that the mix-servers do not prove that each output block is a permutation and re-encryption
of the input block.

Input Partitioning. The partitioning of the input of the first mix-server is generated randomly
by a trusted party, jointly by the mix-servers themselves, or using a random oracle. For every
other mix-server the partitioning of the input is determined by the partitioning of the output of
the preceding mix-server.

More precisely, to form the input partitioning of Mj , the indices of each output block
Oj−1,1, . . . , Oj−1,b are first sorted by numerical value. Then the first input block Ij−1,1 of
mix-serverMj is defined by choosing the first element of Oj−1,1, the first element of Oj−1,2,
the first element ofOj−1,3 and so on until the block is full; once the first elements of every block
Oj−1,1, . . . , Oj−1,b has been used, the process is continued with the second element from each
of those blocks in the same order. This process is continued until all output blocks are full.

Puiggalı́ and Guasch have considered other ways of generating the challenge partition-
ings [2], e.g., a random partitioning could be chosen independently for each mix-server. When
we present our attacks we also discuss the impact of changing the partitioning scheme.

3.6 Ballot Decryption

If the mixing operation completes without detecting any cheating mix-server, then the holders of
the secret key sk jointly decrypt all output ciphertexts, yielding the full list of plaintext ballots.
Otherwise, the mixing starts from the beginning after eliminating the mix-server that failed to
respond to its challenge partitioning.

4 Pfitzmann’s Attack

A modified variant of the attack of Pfitzmann [19, 18] and its generalization [14] can be adopted
to break the privacy of any given group of voters (of constant size) with probability roughly 1/b,
where b is the number of blocks. Since this forms the basis of our attacks on privacy, we detail
it below.

5

The attacker knows the correspondence between voters and initial ciphertexts and targets a
group of s voters with submitted ciphertexts c1, . . . , cs ∈ L0. It corrupts the first mix-server
and selects two additional ciphertexts c0,1, c0,2 ∈ L0. Then he chooses exponents δ1, . . . , δs
randomly and forms a modified list L′0 by replacing c0,1 and c0,2 by

u1 =

s∏
i=1

cδii and u2 =
c0,1c0,2
u1

.

Finally, he re-encrypts the ciphertexts in L′0 and permutes them to form L1 and publishes L1 on
the bulletin board like an honest mix-server.

If the mix-net produces an output, then the attacker searches for s+1 plaintextsm1, . . . ,ms

and m in the final list of plaintext ballots that satisfy m =
∏s
i=1m

δi
i . This lets the attacker

conclude that with overwhelming probability the ith targeted ciphertext is an encryption of mi.
We must show thatM1 passes the verification step with probability 1/b.

By construction u1u2 = c0,1c0,2 so if 1, 2 ∈ I0,t for some t, then∏
i∈O1,t

c1,i = Encpk (1, R1,t) ·
∏
i∈I0,t

c0,i ,

where R1,t =
∑

i∈I0,t r1,i. That is, the proof that the first mix-server provides for the modified
list L′0 is also a valid proof for the original list L0. Thus, the attack succeeds with probability 1/b
and breaks the privacy of a constant number of voters. More voters can not be attacked, since
the complexity of identifying the desired s+ 1 plaintexts in the output list grows exponentially
with the number of attacked voters s.

We remark that the attack may be detected at the end of the mixing if the modified ciphertexts
u1 and u2 do not decrypt to valid votes.

5 Attacks

The basic attack of Section 4 only requires corrupting the first mix-server without corrupting
any voter, but it is only successful with low probability. In this section, we first show how
an attacker can perform Pfitzmann’s attack without detection by corrupting a small number of
voters in addition to the first mix-server. Then we describe an attack on privacy which reduces
the required number of corrupted voters further, but needs two mix-servers to be corrupted.
Finally, we present an attack on the correctness of the mix-net which can also be turned into an
attack on privacy. We detail our attacks below.

5.1 Attack on Privacy Without Detection

The key idea stems from a recent attack [14] on mix-nets with randomized partial checking [13]
and can be explained as follows. If several corrupted voters submit re-encryptions of the same
ciphertext, then a corrupted mix-server has the freedom to match them arbitrarily to their re-
encryptions in his output list during the verification. Thus, if any two ciphertexts submitted
by corrupted voters belong to the same block of the input partitioning, we may map them to

6

ciphertexts u1 and u2 defined as in Section 4. This happens with high probability by the birthday
bound if the attacker corrupts enough voters. We now detail the attack.

Without loss of generality we assume that the corrupted voters submit ciphertexts c0,1, . . . , c0,B
that are constructed to be re-encryptions of one another. It is not essential that the adversary cor-
rupts the first B voters; the attack works the same with any B corrupted voters as long as the
attacker knows how to re-encrypt one vote to any other. To simplify the exposition we assume
that c0,i = Encpk (1, ri) for these ciphertexts. The first mix-server is corrupted and forms a mod-
ified list L′0 by replacing c0,1 and c0,2 by u1 and u2, which are computed as in Section 4. That is,
the attacker chooses random exponents δ1, . . . , δs and sets u1 =

∏s
i=1 c

δi
i and u2 = c0,1c0,2/u1,

where the ci’s are the ciphertexts submitted by the targeted voters. All the remaining N − 2 ci-
phertexts are left unchanged. Then the first mix-server re-encrypts each ciphertext in L′0 and
permutes them to form L1 as an honest mix-server.

If any two ciphertexts submitted by corrupted voters end up in the same input block to the
first mix-server, we say that a collision has occurred. More precisely, we have a collision if there
are two ciphertexts c0,i1 and c0,i2 submitted by corrupted voters and an input block I0,t such that
i1, i2 ∈ I0,t. Let c1,i′1 and c1,i′2 be the re-encryptions of u1 and u2 respectively. Then we have
π1(i

′
1) = 1 and π1(i′2) = 2. Define

l′1 = π−11 (i1) and l′2 = π−11 (i2) .

To answer the challenge partitioning, the first mix-server re-defines π1 such that

π−11 (i1) = i′1 π−11 (i2) = i′2

π−11 (1) = l′1 π−11 (2) = l′2 .

π−1
1

i2 l′2

i1 l′1

2 i′2

1 i′1

Figure 1: Modification for re-definition of π1.

In other words, the first mix-server chooses to view it as if it replaced c1,i1 and c1,i2 by u1
and u2 to form L′0, see Figure 1. To see that the first mix-server can pass the verification test,
note that

c1,i′1c1,i′2 = u1u2 · Encpk (1, r1,1 + r1,2)

= c1,i1c1,i2 · Encpk (1, (r1 − ri1 + r1,1) + (r2 − ri2 + r1,2))

c1,l′1 = c1,1 · Encpk (1, ri1 − r1 + r1,i1)

c1,l′2 = c1,2 · Encpk (1, ri2 − r2 + r1,i2) ,

7

i.e., it can: replace r1,i1 by r1 − ri1 + r1,1, replace r1,i2 by r2 − ri2 + r1,2, replace r1,1 by ri1 −
r1+r1,i1 , and replace r1,2 by ri2−r2+r1,i2 and then compute the response withR1,1, . . . , R1,b

to the challenge partitionings as an honest mix-server.
Due to the pigeonhole principle, if the attacker corrupts B = b + 1 voters, he will get a

collision with probability one. However, thanks to the birthday paradox, the success probability
is already significant if about

√
b voters are corrupted. In particular, if b is large and we set

B = 3
√
b, then we get a collision with probability 1− e−32/2 ≈ 0.98.

It is natural to assume that the adversary can choose the indices of his ciphertexts in L0 or
at least influence the order enough to get a random partition to the first mix-server. When this is
the case, the attack above applies regardless of how the challenge partitioning is defined. Thus,
this is a fundamental flaw of the verification scheme.

5.2 Additional Attack on Privacy

Suppose that the following modified way to define a challenge partitioning for the first mix-
server is used instead. A random partitioning O0,1, . . . , O0,b of [1, N] is chosen and then the
challenge partitioning I0,1, . . . , I0,b is derived from this exactly as Ij−1,1, . . . , Ij−1,b is derived
from Oj−1,1, . . . , Oj−1,b when forming the challenge partitioning to Mj for j > 1 (see Sec-
tion 3.5). We now consider the problem of attacking the mix-net with this modified challenge
scheme by corrupting the first mix-server and the first B voters. The attack proceeds exactly as
the previous attack. The only difference is that the probability of a collision is much larger here.

Let O0,i1 , . . . , O0,iB′ , B
′ ≤ B, be the blocks that contain at least one of the integers

1, . . . , B. Then within each such block the smallest integer is one of 1, . . . , B. Let S be
the set of such smallest integers. Then by construction, the integers in S are contained in
I0,1 ∪ · · · ∪ I0,db/`e. We say that we get a collision if at least two integers of S appear in
some I0,t.

For any db/`e, it suffices that |S| > db/`e to ensure that there is a collision due to the
pigeonhole principle. When db/`e is large, then it suffices that |S| > 3

√
b/` to get a collision

with probability at least 0.98 by the birthday bound. The success probability of the attack drops
slightly due to the event |S| < B. Suppose that ` ≥ 36 and b is large. If we set B = 3

√
b/`,

then we get λ = 3/
√
` in the approximation of the collision probability, so we can conclude

that |S| = B with probability roughly e−λ
2/2 ≥ e−1/8 ≈ 0.88 (and this probability increases

rapidly with increasing `). Thus, the probability that the attacker is not detected is roughly
0.98e−λ

2/2 ≥ 0.86.
Finally, we note that we can transform the attack on the mix-net with the modified way to

generate the challenge partitioning ofM1 into an attack on the real mix-net by corrupting both
M1 and M2. The first mix-server follows the protocol except that it does not re-encrypt its
input ciphertexts and it chooses the permutation such that the inputs of corrupted voters appear
at the top of L1. ThenM2 plays the role ofM1 in the attack on the modified mix-net.

It is easy to see that the attack can be adapted to the case where the permutation π1 used by
M1 is determined by sorting L1. To see this, note thatM1 can re-encrypt its input ciphertexts
in such a way that the re-encryptions of the input ciphertexts of corrupted voters still appear at
the top of L1 and the attack can be employed by taking the re-encryption exponents ofM1 into
consideration.

8

When one of the mix-servers can influence the challenge partitioning of the input to the
following mix-server, then we expect to find similar vulnerabilities, but our attack fails if the
challenge partitioning is chosen randomly and independently for each mix-server.

5.3 Attack on Correctness

This attack requires only one corrupted mix-server and shows that if ` ≥ b, then the correctness
can be attacked by replacing R = 1

3

√
b− 1 votes with small probability of detection.

The attacker corrupts a mix-server Mj other than the first one. The mix-server replaces
cj−1,1, . . . , cj−1,R by its own ciphertexts u1, . . . , uR and it replaces cj−1,R+1 by

uR+1 =
R+1∏
i=1

cj−1,i

/ R∏
i=1

ui

to form a modified list L′j−1. Note that the products of the respective ciphertexts are equal,
i.e.,

∏R+1
i=1 ui =

∏R+1
i=1 cj−1,i. Then it re-encrypts and permutes L′j−1 to form Lj following the

protocol.
The challenge partitioningOj−1,1, . . . , Oj−1,b is randomly chosen. ModifyingR+1 = 1

3

√
b

votes gives λ = 1/3 in the birthday bound, so we may conclude that the probability that two
integers in [1, R + 1] belong to the same block is roughly 1− e−λ2/2 ≈ 0.05. When this is the
case, the integers 1, . . . , R + 1 all belong to Ij−1,1. To see that this implies that the attack goes
undetected it suffices to note that

∏
i∈Oj,1

cj,i = Encpk (1, Rj,1)
R+1∏
i=1

ui
∏

i∈Ij−1,1\[1,R+1]

cj−1,i

= Encpk (1, Rj,1)
∏

i∈Ij−1,1

cj−1,i ,

i.e., the revealed randomness is valid for both L′j−1 and Lj−1.
The mix-server can double the number of replacements by doing the same trick for the

ciphertexts that appear at the end of Lj−1 at the cost of squaring the probability of executing the
attack without detection. This is far better than simply increasing R by a factor of two.

It is straightforward to turn this attack on correctness into an attack on privacy by using the
ciphertexts u1, . . . , uR to employ Pfitzmann’s attack.

6 Conclusion

Our first attack shows that by corrupting O(
√
b) voters and the first mix-server, the privacy

of any targeted voter can be broken without detection. This attack is applicable regardless
how the challenge partitioning of the first mix-server is chosen. Thus, this attack illustrates a
fundamental shortcoming of the construction unless b is very large.

Our second attack shows that if a mix-server can influence the challenge partitioning of the
the next mix-server, then by corrupting both servers and O(

√
b/`) voters, the privacy of any

9

targeted voter can be violated. Thus, b must be much larger than `. On the other hand, if ` is
very small, then the overall privacy of the mix-net starts to deteriorate, since much more infor-
mation about the permutations are revealed. The complexity of the construction also increases
drastically. One way to reduce the second attack to the first attack is to choose the challenge
partitioning randomly and independently for each mix-server, but this also reduces the overall
privacy of the mix-net compared to the proposed scheme.

The third attack shows that if ` ≥ b, then no matter how big b is, an adversary that cor-
rupts a single mix-server can replace O(

√
b) ciphertexts, or violate the privacy of up to O(

√
b)

arbitrarily targeted voters, without detection. Thus, the mix-net must not be used with ` ≥ b.
Our attacks do not apply directly to the implementation used in the recent electronic elec-

tions in Norway due to a small value of ` and additional components in the overall protocol
that help to ensure the privacy of the voters. However, there is no guarantee that more serious
vulnerabilities cannot be found and our attacks precludes a proof of security for the mix-net.

Acknowledgments

We are grateful to Jordi Puiggalı́ for clarifying some details of their mix-net. We thank Kristian
Gjøsteen for answering questions about his analysis of the voting system used in Norway.

References

[1] Norwegian e-vote 2011 project. http://www.regjeringen.no/en/dep/krd/
prosjekter/e-vote-2011-project.html?id=597658, 17 February, 2012.

[2] Private communication. Jordi Puiggalı́, January, 2012.

[3] D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
mun. ACM, 24(2):84–88, 1981.

[4] Y. Desmedt and K. Kurosawa. How to break a practical mix and design a new one. In
B. Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 557–572. Springer, 2000.

[5] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS,
pages 427–437. IEEE Computer Society, 1987.

[6] J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Transactions,
88-A(1):172–188, 2005.

[7] J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In J. Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 368–387. Springer,
2001.

[8] P. Golle, S. Zhong, D. Boneh, M. Jakobsson, and A. Juels. Optimistic mixing for exit-polls.
In Y. Zheng, editor, ASIACRYPT, volume 2501 of Lecture Notes in Computer Science,
pages 451–465. Springer, 2002.

10

http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658
http://www.regjeringen.no/en/dep/krd/prosjekter/e-vote-2011-project.html?id=597658

[9] J. Groth. A verifiable secret shuffle of homomorphic encryptions. In PKC ’03: Proc. of
the 6th International Workshop on Theory and Practice in Public Key Cryptography, pages
145–160, London, UK, 2003. Springer-Verlag.

[10] M. Jakobsson. A practical mix. In EUROCRYPT, pages 448–461, 1998.

[11] M. Jakobsson. Flash mixing. In PODC, pages 83–89, 1999.

[12] M. Jakobsson and A. Juels. An optimally robust hybrid mix network. In PODC, pages
284–292, New York, NY, USA, 2001. ACM Press.

[13] M. Jakobsson, A. Juels, and R. L. Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In D. Boneh, editor, USENIX Security Symposium, pages
339–353. USENIX, 2002.

[14] S. Khazaei and D. Wikström. Randomized partial checking revisited. Cryptology ePrint
Archive, Report 2012/063, 2012. http://eprint.iacr.org/.

[15] M. Mitomo and K. Kurosawa. Attack for flash mix. In T. Okamoto, editor, ASIACRYPT,
volume 1976 of Lecture Notes in Computer Science, pages 192–204. Springer, 2000.

[16] C. A. Neff. A verifiable secret shuffle and its application to e-voting. In CCS ’01: Proc.
of the 8th ACM conference on Computer and Communications Security, pages 116–125,
New York, NY, USA, 2001. ACM.

[17] C. Park, K. Itoh, and K. Kurosawa. Efficient anonymous channel and all/nothing election
scheme. In EUROCRYPT, pages 248–259, 1993.

[18] B. Pfitzmann. Breaking efficient anonymous channel. In EUROCRYPT, pages 332–340,
1994.

[19] B. Pfitzmann and A. Pfitzmann. How to break the direct rsa-implementation of mixes. In
EUROCRYPT, pages 373–381, 1989.

[20] J. Puiggalı́ Allepuz and S. Guasch Castelló. Universally verifiable efficient re-encryption
mixnet. In R. Krimmer and R. Grimm, editors, Electronic Voting, volume 167 of LNI,
pages 241–254. GI, 2010.

[21] K. Sako and J. Kilian. Receipt-free mix-type voting scheme — a practical solution to the
implementation of a voting booth. In EUROCRYPT, pages 393–403, 1995.

[22] D. Wikström. Five practical attacks for “optimistic mixing for exit-polls”. In M. Matsui
and R. J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of Lecture
Notes in Computer Science, pages 160–175. Springer, 2004.

11

http://eprint.iacr.org/

	Introduction
	Motivation and Contribution
	Summary of the Attacks

	Notation
	Description of the Mix-Net
	Setup
	Ballot Preparation and Encryption
	Initial Ballot Checking
	Mixing Phase
	Verification Phase
	Ballot Decryption

	Pfitzmann's Attack
	Attacks
	Attack on Privacy Without Detection
	Additional Attack on Privacy
	Attack on Correctness

	Conclusion

