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Abstract

In this paper, it is shown that an n-variable rotation symmetric Boolean function
f with n even but not a power of 2 admits a rotation symmetric function g of degree
at most e ≤ n/3 such that the product gf has degree at most n− e− 1.
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1 Introduction

Boolean functions are frequently used in the design of stream ciphers, block ciphers and hash
functions. One of the most vital roles in cryptography of Boolean functions is to be used as
filter and combination generators of stream ciphers based on linear feedback shift registers
(LFSR). The study of the cryptographic criteria of Boolean functions is important because
of the connections between known cryptanalytic attacks and these criteria. The class of
rotation symmetric Boolean functions have been proven to be very useful in cryptography
[19, 6]. This has led to many papers studying different cryptographic properties of rotation
symmetric functions, e.g., [22, 12].

In recent years, algebraic and fast algebraic attacks [1, 4, 5] have been regarded as a great
threat against LFSR-based stream ciphers. These attacks cleverly use over-defined systems
of multi-variable nonlinear equations to recover the secret key. Algebraic attacks lower the
degree of the equations by multiplying a nonzero function while fast algebraic attacks obtain
equations of small degree by linear combination. Thus algebraic immunity, the minimum
algebraic degree of annihilators of f or f + 1, was introduced in [18] to measure the ability
of Boolean functions to resist algebraic attacks; while the notion of (e, d)-resistance against
fast algebraic attacks of Boolean functions was proposed in [10]. It is well known that dn
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is maximum algebraic immunity of n-variable Boolean functions. The identification and
construction of Boolean functions with maximum algebraic immunity are researched in a
large number of papers, e.g., [7, 8, 13, 14, 3, 15, 17]. However, it is still open what is
maximum immunity to fast algebraic attacks.

It has been demonstrated that the resistance of Boolean functions against fast algebraic
attacks is not fully covered by algebraic immunity [2, 16]. A preprocessing of fast algebraic
attacks on LFSR-based stream ciphers, which use a Boolean function f as the filter or
combination generator, is to find a function g of small degree such that the multiple gf has
degree not too large. For any pair of integers (e, d) such that e + d ≥ n, there is a nonzero
function g of degree at most e such that gf has degree at most d [5]. Thus f has optimal
possible resistance against fast algebraic attacks, if for any pair of integers (e, d) such that
e+ d < n and e < n/2, there is no nonzero function g of degree at most e such that gf has
degree at most d. Note that one can use the fast general attack by splitting the function
into two f = h+ l with l being the linear part of f [5]. In this case, e = 1 and d equals the
degree of the function f .

For determining the immunity against fast algebraic attacks, F. Armknecht et al. [2]
introduced an effective algorithm and showed that a class of symmetric Boolean functions
have poor resistance against fast algebraic attacks despite their resistance against algebraic
attacks. Later M. Liu et al. [16] stated that almost all the symmetric Boolean functions be-
havior badly against fast algebraic attacks. Y. Du et al. [9] improved Armknecht’s algorithm
and got better computation complexity when deciding optimal possible resistance against
fast algebraic attacks of Boolean functions. Based on univariate polynomial representation,
C. Carlet and K. Feng [3] constructed a class of Boolean functions with maximum AI, and
observed through computer experiments by Armknecht’s algorithm that their functions also
have good behavior against fast algebraic attacks. P. Rizomiliotis [20, 21] introduced a
method to evaluate the behavior of Boolean functions against fast algebraic attacks using
univariate polynomial representation.

Yet we still have very little knowledge about the resistance of Boolean functions to fast
algebraic attacks. In this paper, we study rotation symmetric Boolean functions in terms
of the immunity against fast algebraic attacks. We develop the techniques used in [2, 9] for
computing the immunity against fast algebraic attacks from Boolean functions into rotation
symmetric Boolean functions. It is shown that for a rotation symmetric function f , there
exists a function g of degree at most e such that gf has degree at most d, if a correlative
matrix, denoted by S(f ; e, d), has not full column rank. The size of S(f ; e, d) is much
smaller than those of [2, 9]. Further, some properties of such matrices are presented for
e = 2m with 2m dividing n. A large number of singular matrices are then found, such as
S(f ; 2m, n − 2m − 1). Consequently, for even integer n (excluding a power of 2), rotation
symmetric functions on n variables always admit e+ d < n for some e ≤ n/3. It states that
such functions do not achieve optimal possible resistance against fast algebraic attacks.

2 Preliminary

Let Fn2 be the n-th dimensional vector space over the binary field F2 and Bn be the set
of all n-variable Boolean functions mapping from Fn2 into F2. For convenience, we denote
(1, 1, . . . , 1) ∈ Fn2 by 1n and (0, 0, . . . , 0) ∈ Fn2 by 0n. An n-variable Boolean function f can
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be uniquely represented as a truth table of length 2n,

f = [f(0n), f(1, 0, · · · , 0), · · · , f(1n)].

The support of f is defined as supp(f) = {x | f(x) = 1} and the number of ones in the
truth table of f is called the Hamming weight of f , denoted by wt(f). We say f is balanced
if wt(f) = 2n−1.

An n-variable Boolean function can also be uniquely represented as a multivariate poly-
nomial over F2:

f(x) =
∑
c∈Fn

2

fcx
c, xc = xc11 x

c2
2 · · ·xcnn , fc ∈ F2,

called algebraic normal form (ANF). The algebraic degree of f , denoted by deg(f), is defined
as max{wt(c) | fc 6= 0}.

For x = (x1, x2, . . . , xn) ∈ Fn2 , let

ρ(x) = (x2, . . . , xn, x1),

and
ρk(x) = ρ(ρk−1(x)).

Definition 1. An n-variable Boolean function is called rotation symmetric if for any x ∈ Fn2 ,
f(ρ(x)) = f(x).

The set of all n-variable rotation symmetric Boolean functions (RSBF) is denoted by
RSBn. The ANF of a rotation symmetric function is unchanged by any cyclic permutation
ρk of the variables x1, x2, · · · , xn.

For c ∈ Fn2 , we define
Gn(c) = {ρk(c) : 0 ≤ k ≤ n− 1}.

Denoted by ν(c) the number of elements in Gn(c), that is, ν(c) = |Gn(c)|. We select the
representative element of Gn(c) as the lexicographically first element. Denoted by Γ(n) the
set of all the representative elements ofGn(c) (c ∈ Fn2 ). Then the existence of a representative
term xc implies the existence of all the terms xu (u ∈ Gn(c)) in the ANF of an n-variable
rotation symmetric Boolean function, which means that f ∈ RSBn can be written as

f(x) =
∑
c∈Γ(n)

fc
∑

u∈Gn(c)

xu, xu = xu11 x
u2
2 · · · xunn , fc ∈ F2.

3 The immunity of Boolean functions against fast al-

gebraic attacks

Denoted byWe the set {x ∈ Fn2 |wt(x) ≤ e} and byWd the set {x ∈ Fn2 |wt(x) ≥ d+1}. For
y, z ∈ Fn2 , let z ⊂ y be an abbreviation for supp(z) ⊂ supp(y), where supp(x) = {i|xi = 1},
and let y ∪ z = (y1 ∨ z1, . . . , yn ∨ zn) where ∨ is the OR operation. Let g of algebraic degree
at most e satisfy that h = gf has algebraic degree at most d. Let

f(x) =
∑
c∈Fn

2

fcx
c, fc ∈ F2,

3



g(x) =
∑
z∈We

gzx
z, gz ∈ F2,

and
h(x) =

∑
y∈Wd

hyx
y, hy ∈ F2.

We have hy = 0 for y ∈ Wd. Then

0 = hy =
∑
z∈We

∑
c∪z=y

fcgz =
∑
z∈We

gz
∑
c∪z=y

fc, for y ∈ Wd. (1)

The above equations on gz’s are homogeneous linear. Denote the coefficient matrix of the
equations by M(f ; e, d), which is a

∑n−d
i=0

(
n
i

)
×
∑e

i=0

(
n
i

)
matrix. Then f admits no function

g of algebraic degree at most e such that h = gf has algebraic degree at most d if and
only if the rank of the matrix M(f ; e, d) equals the number of gz’s which is

∑e
i=0

(
n
i

)
, i.e.,

M(f ; e, d) has full column rank (see also [2, 9]).

Theorem 1. [2, 9] Let f ∈ Bn. Then there exists no function g of degree at most e such
that the product gf has degree at most d if and only if the matrix M(f ; e, d) has full column
rank.

4 The immunity of rotation symmetric Boolean func-

tions against fast algebraic attacks

Denoted by Γe(n) the set {y ∈ Γ(n)|wt(y) ≤ e} ordered by increasing weight and by γd(n)
the set {y ∈ Γ(n)|wt(y) ≥ d + 1} in reverse order as Γe(n). Then |γd(n)| ≈

∑n−d
i=0

(
n
i

)
/n

and |Γe(n)| ≈
∑e

i=0

(
n
i

)
/n. We refer to [22] for the exact values of |γd(n)| and |Γe(n)|. For

f ∈ RSBn, let g ∈ RSBn of algebraic degree at most e satisfy that h = gf has algebraic
degree at most d. Then h is also a rotation symmetric Boolean function. Let

f(x) =
∑
c∈Γ(n)

fc
∑

u∈Gn(c)

xu, fc ∈ F2,

g(x) =
∑

z∈Γe(n)

gz
∑

u∈Gn(z)

xu, gz ∈ F2, (2)

and
h(x) =

∑
y∈Γ(n)

hy
∑

u∈Gn(y)

xu, hy ∈ F2.

Then for y ∈ γd(n) it is derived from (1) and (2) that

0 = hy =
∑

z∈Γe(n)

∑
u∈Gn(z)

∑
c∪u=y

gzfc =
∑

z∈Γe(n)

gz
∑

u∈Gn(z)

∑
c∪u=y

fc. (3)

Then the above equations on gz’s are homogeneous linear. Denote the coefficient matrix of
the equations by S(f ; e, d), which is a |γd(n)| × |Γe(n)| matrix with the ij-th element equal
to

sy,z =
∑

u∈Gn(z)

∑
c∪u=y

fc, (4)
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where y is the i-th element in γd(n) and z is the j-th element in Γe(n). The above equations
have nonzero solution if and only if the matrix S(f ; e, d) does not have full column rank.
Therefore we obtain the following result.

Theorem 2. Let f ∈ RSBn. Then there exists a nonzero rotation symmetric function g
of degree at most e such that the product gf has degree at most d if and only if the matrix
S(f ; e, d) does not have full column rank.

4.1 Properties of matrix S(f ; e, d)

In this section, we present some properties of the matrix S(f ; e, d) for n = 2mt and e = 2m.

Proposition 3. For y ∈ Γ(n), sy,0n = fy.

Proof. According to (4), we have

sy,0n =
∑

u∈Gn(0n)

∑
c∪u=y

fc =
∑

c∪0n=y

fc = fy.

Before stating other properties of the matrix S(f ; e, d), we list some useful lemmas.
Lemma 4 is used to prove Lemma 5, Lemma 6 and Lemma 7, which lead to Proposition 8
and Proposition 9.

Lemma 4 was implied in [22]. Here we give a proof for self-completeness.

Lemma 4. Let c ∈ Fn2 . Then
1) ν(c)|n.
2) n

gcd(n,wt(c))
|ν(c).

Proof. 1) Recall that ν(c) is the order of Gn(c), i.e., ν(c) equals the minimum integer t such
that ρt(c) = c. Then the fact that ρn(c) = c shows ν(c)|n.

2) Let k = n/ν(c). Then c can be represented as

c = (b, b, . . . , b︸ ︷︷ ︸
k

), b ∈ Fν(c)
2 .

Therefore wt(b) = wt(c)/k, which means that k|wt(c) and then n|ν(c) · wt(c). Hence the
lemma is confirmed.

Hereinafter, for t|n, we define

ηt = (1, 1, . . . , 1, 0︸ ︷︷ ︸
t

, 1, 1, . . . , 1, 0︸ ︷︷ ︸
t

, . . . , 1, 1, . . . , 1, 0︸ ︷︷ ︸
t

),

and
η̃t = (1, 0, 0, . . . , 0︸ ︷︷ ︸

t

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
t

, . . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
t

).

It is clear that wt(ηt) = n−n/t, wt(η̃t) = n/t and ν(ηt) = ν(η̃t) = t. For c ∈ Fn2 and t|n, let

Gt
n(c) = {c, ρt(c), . . . , ρ(νt(c)−1)t(c)},
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where νt(c) is the smallest integer that satisfies

ρνt(c)t(c) = c.

By the definitions of ν(c) and νt(c) we know that

νt(c) =
ν(c)

gcd(ν(c), t)
. (5)

Lemma 5. Let n = 2mt and n − 2m ≤ wt(c) ≤ n − 1. If c ∈ Gn(ηt), then ν(c) = t and
νt(c) = 1; otherwise, both ν(c) and νt(c) are even.

Proof. For c ∈ Gn(ηt) it holds that ν(c) = t and therefore νt(c) = 1 according to (5). Next
we check the second half part of the lemma.

For c /∈ Gn(ηt) with wt(c) = n − 2m, it holds that ν(c) > t. By Lemma 4(1) we
have ν(c)|n = 2mt and by Lemma 4(2) we have t|ν(c). Therefore 2t|ν(c). Then ν(c) and
νt(c) = ν(c)/ gcd(ν(c), t) = ν(c)/t are both even.

For n− 2m + 1 ≤ wt(c) ≤ n− 1, it follows that gcd(n,wt(c)) < 2m. From (5) we know
ν(c)|νt(c) · t, then by Lemma 4(2) we have

2mt

gcd(2mt,wt(c))
|νt(c) · t,

and νt(c) is therefore even, which means that ν(c) is also even since νt(c)|ν(c).

The similar proof of Lemma 5 also applies to Lemma 6.

Lemma 6. Let n = 2mt and 1 ≤ wt(c) ≤ 2m. If c ∈ Gn(η̃t), then ν(c) = t and νt(c) = 1;
otherwise, both ν(c) and νt(c) are even.

Lemma 7. Let n = 2mt and n−2m+1 ≤ wt(c) ≤ n−2m. If c ∈ Gn(ηt) or c ∈ Gn(ηt+ρ
k(η̃t))

with 2 ≤ k ≤ n, then νt(c) = 1; otherwise, νt(c) is even.

Proof. The case for wt(c) = n− 2m was proved in Lemma 5.
For c ∈ Gn(ηt + ρk(η̃t)) with 2 ≤ k ≤ n, we have ρt(c) = c and therefore νt(c) = 1.
For c /∈ Gn(ηt + ρk(η̃t)) with wt(c) = n − 2m+1, it holds that ν(c) > t. By Lemma 4(1)

we have ν(c)|n = 2mt and by Lemma 4(2) we have

2mt

gcd(2mt,wt(c))
=

t

gcd(t, 2)
|ν(c).

Therefore 2t|ν(c). Then νt(c) = ν(c)/t is even according to (5).
For n− 2m+1 + 1 ≤ wt(c) ≤ n− 2m − 1, it follows that gcd(n,wt(c)) < 2m. From (5) we

know ν(c)|νt(c) · t, then by Lemma 4(2) we have

2mt

gcd(2mt,wt(c))
|νt(c) · t,

and νt(c) is therefore even.
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Proposition 8. Let n = 2mt. Then

s1n,z =


f1n for z = 0n,
t(f1n + fηt) for z = η̃t,
0 for z ∈ Γ2m(n) \ {0n, η̃t}.

Proof. By Proposition 3, s1n,0n = f1n . According to (4), we have

s1n,z =
∑

u∈Gn(z)

∑
c∪u=1n

fc

=

ν(z)−1∑
k=0

∑
c∪ρk(z)=1n

fc

=

ν(z)−1∑
k=0

∑
ρk(c)∪ρk(z)=1n

fρk(c).

Since ρk(c) ∪ ρk(u) = 1n if and only if c ∪ u = 1n, and fρk(c) = fc for f ∈ RSBn, we have

s1n,z = ν(z)
∑

c∪z=1n

fc.

From Lemma 6, it holds that

s1n,z = 0, for z ∈ Γ2m(n) \ {0n, η̃t},

and for z = η̃t,

s1n,η̃t = t
∑

c∪η̃t=1n

fc.

Let C be the set of all the lexicographically first elements in the sets Gt
n(c) where wt(c) ≥

n− wt(η̃t) = n− 2m. Then

s1n,η̃t = t
∑
c∈C

∑
0≤k≤νt(c)−1

ρkt(c)∪η̃t=1n

fρkt(c).

Since ρt(η̃t) = η̃t, it follows that ρt(c) ∪ η̃t = 1n if and only if c ∪ η̃t = 1n. Then

s1n,η̃t = t
∑
c∈C

c∪η̃t=1n

νt(c)fc

= t(f1n + fηt) + t
∑

c∈C\{1n,ηt}
c∪η̃t=1n

νt(c)fc

= t(f1n + fηt) (by Lemma 5).
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Proposition 9. Let n = 2mt. Then

sηt,z =

{
fηt for z = 0n,
0 for z ∈ Γ2m(n) \ {0n, η̃t},

and

sηt,η̃t =

{
0 for odd t,
fηt + fη t

2

for even t.

Proof. By Proposition 3, sηt,0n = fηt . According to (4), we have

sηt,z =
∑

u∈Gn(z)

∑
c∪u=ηt

fc.

Let U be the set of all the lexicographically first elements in the sets Gt
n(u) where u ∈ Gn(z).

The fact that ρkt(c) ∪ ρkt(u) = ηt if and only if c ∪ u = ηt gives

sηt,z =
∑
u∈U

νt(u)−1∑
k=0

∑
c∪ρkt(u)=ηt

fc

=
∑
u∈U

νt(u)−1∑
k=0

∑
ρkt(c)∪ρkt(u)=ηt

fρkt(c)

=
∑
u∈U

νt(u)−1∑
k=0

∑
c∪u=ηt

fc

=
∑
u∈U

νt(u)
∑

c∪u=ηt

fc.

For z ∈ Γ2m(n) \ {0n, η̃t}, by Lemma 6 it follows that νt(u) with u ∈ Gn(z) is even and
therefore sr,z = 0.

For z = η̃t, we have

sηt,η̃t =
∑

u∈Gn(η̃t)
u6=ρ(η̃t)

∑
c∪u=ηt

fc

=
t∑

k=2

∑
c∪ρk(η̃t)=ηt

fc.

Let C be the set of the lexicographically first elements in the sets Gt
n(c) where n− 2m+1 ≤

wt(c) ≤ n− 2m. Since ρt(ηt) = ηt and ρt(ρk(η̃t)) = ρk(η̃t), it follows that ρit(c) ∪ ρk(η̃t) = ηt
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if and only if c ∪ ρk(η̃t) = ηt. Hence

sηt,η̃t =
t∑

k=2

∑
c∈C

∑
u∈Gt

n(c)

u∪ρk(η̃t)=ηt

fu

=
t∑

k=2

∑
c∈C

∑
0≤i≤νt(c)−1

ρit(c)∪ρk(η̃t)=ηt

fρit(c)

=
t∑

k=2

∑
c∈C

c∪ρk(η̃t)=ηt

νt(c)fc

=
t∑

k=2

(fηt + fηt+ρk(η̃t)) (by Lemma 7).

Note that for 2 ≤ k ≤ t,

ηt + ρk(η̃t) = ρk−1(ηt) + ρ(η̃t) = ρk−1(ηt + ρt+2−k(η̃t)).

Then fηt+ρk(η̃t) = fηt+ρt+2−k(η̃t) and hence for odd t,

sηt,η̃t = 2

t+1
2∑

k=2

(fηt + fηt+ρk(η̃t)) = 0.

and for even t,

sηt,η̃t = fηt + f
ηt+ρ

t
2+1(η̃t)

+ 2

t
2∑

k=2

(fηt + fηt+ρk(η̃t))

= fηt + fη t
2

.

For e = 1 and d = n− 2, the matrix S(f ; e, d) is

S(f ; 1, n− 2) =

(
s1n,0n s1n,η̃n

sηn,0n sηn,η̃n

)
.

Taking m = 0 and t = n in Proposition 8 and Proposition 9, it follows that

S(f ; 1, n− 2) =

(
f1n 0
fηn fηn + fηn

2

)
, for even n,

and

S(f ; 1, n− 2) =

(
f1n f1n + fηn
fηn 0

)
, for odd n.
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4.2 Singularity of matrix S(f ; e, n− e− 1)

If d = n − e − 1, then |γd(n)| = |Γe(n)| and therefore S(f ; e, d) is a square matrix. The
problem of determining the existence of a rotation symmetric function g of degree at most
e such that deg(fg) ≤ n − e − 1 is converted into the problem of determining whether
S(f ; e, n−e−1) is invertible. In this section, we concentrate on the matrix S(f ; e, n−e−1)
for n = 2mt and e = 2m. For the case that t is an odd number, from Proposition 8, the first
row of the matrix is

(f1n , 0, . . . , 0, f1n + fηt , 0, . . . , 0),

and by Proposition 9 there is a row equal to

(fηt , 0, . . . , 0).

If f1n = 1 or fηt = 0, then the two rows are linearly dependent and the matrix is singular.
Similarly, for even number t, the first row of S(f ; 2m, n− 2m − 1) is

(f1n , 0, . . . , 0),

and there is a row equal to

(fηt , 0, . . . , 0, fηt + fη t
2

, 0, . . . , 0).

if f1n = 0 or fηt = fη t
2

, then the matrix is singular.

Then the theorems below follow from Theorem 2.

Theorem 10. Let n = 2mt with t odd, and f ∈ RSBn. If f1n = 1 or fηt = 0, then there
exists a nonzero rotation symmetric function g of degree at most 2m such that the product
gf has degree at most n− 2m − 1.

Theorem 11. Let n = 2mt with t even, and f ∈ RSBn. If f1n = 0 or fηt = fη t
2

, then there

exists a nonzero rotation symmetric function g of degree at most 2m such that the product
gf has degree at most n− 2m − 1.

Corollary 12. Let n be odd and f ∈ RSBn. If deg(f) 6= n− 1, then there exists a nonzero
affine function g such that the product gf has degree at most n− 2.

Proof. It is obtained from Theorem 10.

Corollary 13. Let n be even and f ∈ RSBn. If deg(f) ≤ n − 1 or fηn = fηn
2

, then there

exists a nonzero affine function g such that the product gf has degree at most n− 2.

Proof. It is derived from Theorem 11.

Theorem 14. Let n = 2mt with m ≥ 1 and t odd, and f ∈ RSBn. Then there exists a
positive integer e ≤ 2m and a nonzero rotation symmetric function g of degree at most e
such that the product gf has degree at most n− e− 1.

Proof. If f1n = 1, the result is then confirmed by Theorem 10; otherwise, the result is
demonstrated by Theorem 11.

Theorem 14 states that any rotation symmetric Boolean function f on even number (but
not a power of 2) of variables always admits a rotation symmetric function g of degree at
most e for some e ≤ n/3 such that d = deg(gf) satisfies e+ d < n.
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5 Conclusion

This paper uses smaller matrices to identify the immunity of rotation symmetric Boolean
functions against fast algebraic attacks due to the special structure of such functions, and
shows that about half of rotation symmetric Boolean functions can not achieve optimal pos-
sible resistance. The results of this paper are also useful for constructing rotation symmetric
Boolean functions with good immunity against fast algebraic attacks since some necessary
conditions to achieve good immunity are implied. But the sufficient conditions for rotation
symmetric Boolean functions to achieve good immunity against fast algebraic attacks need
further research.
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