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Abstract. The traditional approach to formalizing ideal-model based definitions of security for multi-party
protocols models adversaries (both real and ideal) as centralized entities that control all parties that deviate from
the protocol. While this centralized-adversary modeling suffices for capturing basic security properties such as
secrecy of local inputs and correctness of outputs against coordinated attacks, it turns out to be inadequate for
capturing security properties that involve restricting the sharing of information between separate adversarial
entities. Indeed, to capture collusion-freeness and and game-theoretic solution concepts, Alwen et.al. [Crypto,
2012] propose a new ideal-model based definitional framework that involves a de-centralized adversary.
We propose an alternative framework to that of Alwen et. al. We then observe that our framework allows
capturing not only collusion-freeness and game-theoretic solution concepts, but also several other properties
that involve the restriction of information flow among adversarial entities. These include some natural flavors
of anonymity, deniability, timing separation, and information confinement. We also demonstrate the inability
of existing formalisms to capture these properties.
We then prove strong composition properties for the proposed framework, and use these properties to demon-
strate the security, within the new framework, of two very different protocols for securely evaluating any
function of the parties’ inputs.
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1 Introduction

Rigorously capturing the security properties of cryptographic protocols has proven to be a tricky en-
deavor. Over the years, the trusted party (or, simulation) paradigm has emerged as a useful and general
definitional methodology. The basic idea, first coined in [GM84,GMR85,GMW87], is to say that a proto-
col "securely realizes" a given computational task if participating in the protocol ”emulates” the process
of interacting with an imaginary "trusted party" that securely receives parties’ inputs and locally com-
putes their outputs. Intuitively, this paradigm allows expressing and capturing many security properties.
Moreover, it has an attractive potential "composability" property: any system using a trusted party F
should behave the same way when we replace the trusted party with the realizing protocol.

Over the years, many security definitions were based on this intuitive idea, e.g.,
[GL90,MR91,Can00,DM00,PW00,Can01,PS04,CDPW07]. First, these definitions formulate an execu-
tion model; then they formalize the notion of emulating an ideal task with an "ideal world" attacker,
called simulator. The security requirement is based on the inability of an external observer to distinguish
an “ideal world” execution from a real one.

These formalisms differ in many ways; however, they have one major thing in common: they all
model the attacker as a centralized entity, who can corrupt parties, coordinate their behavior and, in-
tuitively, constitute an "evil coalition" against the protocol being executed. This seems to be an over-
simplification of real life situations. Indeed, in real life, parties are often individuals who are not neces-
sary controlled by the same entity or have anything in common. It would seem that letting the malicious
parties coordinate their attacks should be a strengthening of the model; however, when this power is
also given to the adversary in the ideal model (aka the simulator), the security guarantee can potentially
be weakened. Therefore, a natural question to ask is whether it is justified to model the attacker as a
centralized entity or does this modeling unduly limit its expressiveness?

Indeed, the existing formalisms do capture basic properties such as privacy of inputs, and correctness
of outputs against coordinated attack. However, as has been observed in the past, there exist security
concerns that are not naturally captured using the centralized adversary approach. Consider for instance
the collusion- freeness concern: a protocol is collusion-free if even misbehaving protocol participants
cannot use the protocol to exchange "disallowed" information without being detected. As pointed out by
[ILM05], "centralized simulator" formalisms do not capture the inability of parties to collude. That is,
with a centralized adversary, a protocol might allow collusions between corrupted parties even when it
realizes an ideal task that is collusion-free.

An additional known limitation of standard security notions is cryptographic implementations of
game-theoretic mechanisms. In contrast to cryptography, game theory considers rational players that
behave according to their individual goals. In many realistic settings, the incentive structure depends
on whom players can collaborate with and the cost of this collaboration. Security with a centralized
adversary does not guarantee that the incentive structure with respect to collaboration is preserved when
moving from the ideal protocol to the one that realizes it. Consequently, it does not correctly capture the
incentive structure and does not suffice for preserving game-theoretic solution concepts that restrict the
formation of coalitions.

A natural way to handle those concerns would be to strengthen the model by requiring that the sim-
ulation be “local” in some sense; that is, shattering the centralized simulator to many simulators, where
each simulator has only some “local’’ information and is responsible to simulate adversarial behavior in
only a “local’’ sense. However requiring local simulators while allowing the adversary to be centralized
results in an unrealistically strong security requirement that fails to admit many useful schemes that have
practical security guarantees. Therefore, the next promising idea would be to restrict also the adversary to
be local. This approach indeed appears in the works of [LMS05,ASV08,AKL+09,ILM11,MR11,AKMZ12].
In particular, [AKMZ12] gives general model with a composition theorem and application to game-
theory. These works give different and incomparable definitions of collusion-freeness; a common aspect
is that they all postulate an adversary/simulator for each participant, where a participant represents an
entity that is identified via its party identifier and treated as a “single domain” (i.e., it is corrupt as a unit,
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either wholly or none at all). However, as we demonstrate below, there are a number of security concerns
that cannot be naturally captured even by the above formalizations of local simulation.

Our contributions. We provide an alternative formalization of the local simulators approach in a way
that preserves its intuitive appeal and captures reality more tightly. In particular, we establish a general
security notion that allows capturing the requirements of arbitrary tasks while preserving the local view
of each individual component and each communication link between components in the system. This
notion enables expressing variety of partitions of the system. Specifically, our first contribution is to
refine the UC framework to deal with the locality of information available to clusters of components.
The new formalism, called local UC (LUC), assigns a different adversary/simulator to each ordered
pair of participants. Intuitively, the adversaries/simulators assigned to a pair of parties handle all the
communication between the two parties. Informally,

If π is an LUC-secure protocol that implements a trusted party F , then each individual compo-
nent participating in π affects each other entity in the system no more than it does so in the
ideal execution with F .

Note that this is conceptually different from the guarantees provided by the UC framework of [Can01]
and the CP framework of [AKMZ12]. In the UC framework, protocols that implement a trusted party
are guaranteed to have similar effect on the external environment as in the ideal execution with F . In
the CP framework, the protocol is guaranteed to have the same effect as the trusted party individually on
each entity. In the LUC framework, it is guaranteed that each entity affects each other entity in the same
way as in the ideal execution.

This refined granularity allows LUC to capture various concerns that cannot be captured by previous
frameworks. We show how LUC captures some actual security concerns and demonstrate the inabil-
ity of existing notions to capture these concerns. Specifically, we address some flavors of anonymity,
deniability, collusion-freeness, information confinement, and preservation of incentive structure.

We also extend the UC composition theorem and the dummy adversary theorem to the new framework.
We obtain strong composition result that enables "game theoretic composition", i.e., composition that
preserves the power of coalitions (whatever they may be). Moreover, our strong composition also pre-
serves deniability and confinement.

Next we present two protocols for secure function evaluation with LUC security. The protocols, called
the Physical GMW and the Mediated SFE protocols, satisfy the new security definition. The protocols
are very different from each other: The Physical GMW protocol, which is strongly inspired by [ILM05],
models players sitting in a room equipped with machines and jointly computing a function. The Me-
diated SFE protocol is a simplified version of [AKL+09]. Like there, we use a semi-trusted mediator.
That is, if the mediator is honest then the protocol is LUC secure. It is also UC secure in the standard
sense even if the mediator is corrupted. It is interesting to note that although these two protocols have
significantly different nature, they are both analyzable within our framework.

1.1 Our contributions in more details

The new formalism. In a nutshell, the new modeling proceeds as follows. Recall that in the UC frame-
work, the adversary is a centralized entity that not only controls the communication in the network, but
also coordinates the corrupted parties’ behavior. This centralization is also inherited by the simulator. As
mentioned above, while this modeling captures privacy and correctness, which are “global’’ properties
of the execution, it certainly does not capture rationality or locality of information. This implicitly means
that only the situations where corrupted parties enjoy global view of the system are being fully captured.
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A first attempt to bridge this gap would be to follow the formalisms of [ASV08,AKMZ12,MR11] and
consider one adversary per party. However, this modeling does not completely capture reality either.
Consider for instance the following scenario: one of two parties A and B is having a conversation
with a third party C. Later C is instructed to transfer this information to some potentially misbehaved
fourth party D without revealing whether the source was A or B. Clearly for the protocol to make
intuitive sense, A and B need to assume that C is trusted, or “incorruptible’’. However, going back to
the suggested model we notice that the adversary associated with C participates in both conversations
and can thus correlate the communication without corrupting C at all, thereby harming the anonymity in
a way that is not intended by the protocol. In other words, the suggested modeling does not distinguish
between the “obviously insecure” protocol that allows C to be corrupted, and the “obviously secure”
protocol that uses an incorruptible C. We conclude that having a single adversary per party does not
faithfully model honest parties. This motivates us to look for a more refined model.

To adequately capture locality, we extend the UC model as follows: For each party identity (denoted
PID) we consider an adversary for any PID it might communicate with. In other words, each pair of
PIDs has a pair of adversaries, where each adversary is in a different side of the "potential communica-
tion line". Each local adversary is in charge of a specific communication line and is aware only of the
communication via this line.

We also let the environment directly control the communication, by letting the local adversaries com-
municate with each other only through the environment. This is an important definitional choice that is
different from [AKMZ12]. In particular, this means that the centralized simulator no longer exists and,
each local adversary is replaced with a local simulator in the ideal process, where the protocol is re-
placed by the trusted party. The trusted party may allow different subsets of simulators to communicate
by forwarding messages between them. Therefore, the communication interface provided by the trusted
party to the simulators represents partition of the system to clusters. The effect of this modeling is that
the simulator for an entity can no longer rely on other parties’ internal information or communication
in which it was not present. This way, a proof of security relies only on each entity’s local information,
and potentially, represents independence of clusters defined by the trusted party.

To preserve meaningfulness, we allow the local adversaries to communicate across party identities only
via the environment or with ideal functionalities. Aside from these modifications in the adversarial in-
terface, the model is identical to the UC model.

Capturing concerns. We discuss variety of security concerns that are captured by LUC security but not
in other security notions:

Collusion-freeness. To provide initial evidence for the expressiveness of LUC, we consider any UC-
secure protocol for multi-party secure computation (e.g. the [CLOS02] protocol). While this pro-
tocol UC realizes any ideal functionality (even ones that guarantee collusion freeness) in the pres-
ence of malicious adversaries, it allows individually corrupted parties to collude quite freely, even
when the environment does not pass any information among parties. Indeed, this protocol does not
LUC-realize any ideal functionality that guarantees collusion-freeness. This is so even in the pres-
ence of only semi-honest adversaries. The reason for the failure in the LUC model is the inabil-
ity of the separate simulators to produce consistent views on adversaries’ shared information (i.e.,
scheduling, committed values etc.) We note that this concern is also captured by the definitions of
[LMS05,ASV08,AKL+09,AKMZ12].

Anonymity. We consider several flavors of anonymity such as existence-anonymity, timing-anonymity,
and sender-anonymity. Specifically, we show UC and Collusion-Preserving (CP) realizations of ideal
functionalities that have these anonymity requirements by a protocol that does not have these prop-
erties. We’ll then show that this realization is not LUC secure. Let us informally present the above
flavors of anonymity: The first anonymity concern we present is existence-anonymity. Intuitively,
we would like to have a “dropbox’’ that does not let the recipient know whether a new message was
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received, and thus hides information regarding the existence of the sender.
Consider the following one-time-dropbox functionality. The dropbox is a virtual box initialized with
some random file. People can put files into ones dropbox. In addition, the owner can one time query
the dropbox if any new file has been received; if there are any incoming files in the box, they would
be delivered to the owner; else the default file would be delivered.
Indeed, whenever receiving a file from this dropbox, there is no certainty regarding the existence
of a sender. Correspondingly, any protocol that LUC-realizes the dropbox functionality is guaran-
teed to provide anonymity regarding the existence of a sender. This is not so for standard UC security.

An additional anonymity concern that we consider is timing-anonymity. Timing-anonymity means
hiding the time in which an action took place. For example consider the
following email feature: whenever sending an email, the sender can delay the sending of the email
by some amount of time (say, randomly chosen from some domain).
Indeed, upon receiving an email, the receiver does not know when this email was sent. This property
can be captured via an ideal functionality in a straightforward way. Again, any protocol that LUC-
realizes this functionality will provide anonymity regarding the time of sending. This is not so for
standard UC security.

An additional anonymity property already mentioned here is sender-anonymity. The common way
to achieve this anonymity property in practice is onion routing. In the work of [CL05] the onion-
routing problem is defined in the UC framework; however, they only address a potential solution to
the sender-anonymity concern rather than the concern itself. In contrast, we formalize the sender-
anonymity property. We also show how UC security (and even CP security) fail to capture this prop-
erty. Specifically, we define an ideal functionality and show a protocol that is clearly non-anonymous
but still CP-realizes the functionality according to the definition of [AKMZ12]. This protocol is not
LUC secure.

Deniability. It was pointed out in [CDPW07,DKSW09] that UC security does not guarantee deniability
due to issues with modeling of the PKI. While these issues were resolved in the context of global
setup and deniable authentication in the generalized UC framework, it turns out that the UC for-
malism does not capture another deniability flavor, called Bi-deniability (the name is taken from
[OPW11]): A protocol is Bi-deniable if the protocol participants can "deny" before a judge having
participated in the protocol by arguing that any "evidence" of their participation in the protocol could
have been fabricated without their involvement, even if there exists an external entity that has an ac-
cess to parties’ log files of the communication. In the context of authentication, the judge is provided
with “evidences” of sender’s participation not only by the receiver but also by this external entity.
Specifically, the sender can argue that any “evidence” of participation was fabricated by this exter-
nal entity, even though this external entity cannot communicate with the receiver and only has an
access to the communication log files of the sender. This notion is stronger than standard deniability,
in which sender’s log files are ideally hidden from the judge. To motivate bi-deniability consider a
corporation that is obligated to store its communication log files. The log files are collected by an
external law enforcement agency. Clearly, it would be desirable to ensure that even if these files are
disclosed, the corporation can always deny their authenticity.

In this work, we give a simulation-based definition of Bi-deniable authentication and prove its equiv-
alence to LUC secure authentication. Moreover, due to the strong connection between Bi-deniability
and LUC security, we obtain that Bi-deniability is preserved under composition. In addition, we
show that UC framework fails to capture this flavor of deniability.

Confinement. Another important concern that seems hard to capture by the standard notions is the in-
formation confinement property, defined by [Lam73]. A protocol is said to enforce confinement if
even misbehaving participants cannot leak secret information that they possess across predefined
boundaries. [HKN05] presents a game based definition of confinement. Their definition introduces
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changes in the basic UC model, but still considers a centralized adversary. We show that the defini-
tion of [HKN05] is excessively strong and protocols that clearly enforce confinement fail to admit it.
The root of the problem is the centralized adversary that enables information flow to unauthorized
entities.

Intuitively, separate adversaries controlling different parts of the network or different groups of par-
ties would indeed capture this requirement more tightly. We present a formal definition of confine-
ment and show that LUC security implies it. Similarly to Bi-deniability, we obtain composability
with respect to confinement. In addition, we show the inability of UC to capture confinement. More
specifically, we show that any UC functionality that enforces confinement is super-ideal in some
well defined sense. As before, this is not so for LUC functionalities.

Game-theoretic implications. As pointed out in [ILM05] standard security does not suffice for imple-
mentation of general equilibria due to collusion. In order to overcome this problem, new notions
were defined in [ILM05,ILM08,ILM11,AKMZ12]. Specifically, [ILM05,ILM08,ILM11] define no-
tions of mechanism implementation; however, these notions are specific to the problem at hand
and are not suitable for reasoning about standard security. [AKMZ12] translate their security no-
tion to the game-theoretic setting and define a corresponding model of mediated games. In addition,
they show that their constructed compiler achieves preservation of incentive-structure (more details
appears in Section 2). In this work, we show how protocols modeled in the LUC framework can
be viewed as games. Moreover, we show that any protocol that LUC-securely realizes some ideal
functionality preserves the incentive structure of the realized functionality. More concretely, for any
LUC-secure protocol π there exists an efficient mapping between real world strategies and ideal
world strategies that can be computed by each player in a local manner and achieves indistinguish-
able payoffs. This implies that any Nash Equilibrium (NE) in the ideal-world game is mapped to a
computational NE in the real-world game and no new equilibria are introduced.

Composition and dummy adversary. We demonstrate that LUC-security is preserved under composi-
tion. Due to the local nature of the model, this preservation applies not only to basic security concerns
under composition, but rather to much more general concerns such as deniability, confinement, and
game-theoretic solution concepts. The obtained game-theoretic composition implies that Nash equilib-
rium is preserved under non-concurrent composition.

We also extend the dummy adversary notion to the local UC framework, and show its equivalence to the
general LUC-security notion.

An interesting line for future research is to try to cast the LUC framework within the Abstract Cryptog-
raphy framework [MR11]. In particular, such a work might provide a unified basis for the LUC, CP and
UC frameworks.

1.1.1 LUC secure protocols
We sketch the two general multiparty computation protocols that we analyze in this work.

The physical GMW protocol. The GMW version we use is the protocol from [Gol04]. Still, our con-
struction is strongly inspired by [ILM05]. We cast the protocol in the physical world by considering a
set of players sitting in a room and jointly computing a function by evaluation the gates of its circuit. In
order to properly compute the function, the players use the following physical machinery: boxes with
serial number, and machines for addition, multiplication, duplication, and shuffle of boxed values. In
more details, Let P1, ..., Pn be a set of parties in the room and let f be the function of interest. Next:

1. Sharing the inputs: Each player partitions its input to random shares, one share for each player and
then, it publically sends those shares, in opaque boxes, to the players.

2. Circuit emulation: Proceeding by the order of wires, all players jointly and publically evaluate the
circuit gates.
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3. Output reconstruction: Each player publically hands the Boxes of the output shares to the appropriate
parties. Lastly, each party privately opens the boxes and computes its output.

Theorem 1 (Informal statement). Let f be a PPT function. Then, there exists a protocol that information-
theoretically LUC-realizes the SFE functionality with respect to adaptive adversaries.

Throughout the process, everyone sees which operations are performed by each player. Still, the actual
values inside the boxes remain secret.

In contrast with classic GMW protocol, here the byzantine case is not done by introducing ZK proofs;
rather the primitives themselves are robust.

We achieve LUC-security for any number of corrupted parties. While the work of [ILM05] requires
at least one honest party for the collusion-freeness to hold, we achieve LUC security (which implies
collusion-freeness) even when all the parties are corrupted. In addition, this protocol meets the strong
notion of perfect implementation defined by [ILM11], and therefore achieves privacy, strategy, and com-
plexity equivalence.

The Mediated-SFE protocol. We present here a high-level description of the mediated protocol, fol-
lowing [AKL+09].

Let P1, ..., Pn, and mediator M be a set of parties and let π be a k-round protocol that UC-securely
computes function F . (Inspired by [AKMZ12], we think of the protocol as running directly over unau-
thenticated communication channels.) The protocol π is compiled to a new LUC-secure protocol for
computing F with a semi-trusted mediator, where all the communication is done through the mediator.
Specifically, for each round of the protocol π does:

1. Each party andM runs two-party secure computation, which outputs toM the next round messages
of this party in π.

2. M sends a commitment to the relevant messages to each party Pi.
3. In the last round of π, the mediatorM and each party run secure two-party computation, where each

party obtain its output.

Theorem 2 (Informal statement). Given a (poly-time) function f = (f1, ..., fn) and a protocol π that
UC-realizes the SFE functionality. Then there exists a protocol Π that LUC-realizes the SFE function-
ality with respect to adaptive adversaries.

WhenM is honest it separates the parties of π and makes them be independent of each other. WhenM
is corrupted, the independence disappears. Still, we obtain standard UC security.

We strengthen the protocol to be immune to powerful adversaries that control the scheduling, gain infor-
mation via leakage in the protocol, and are able to adaptively corrupt players. In contrast to [AKMZ12],
we do not assume ideally secure channels between parties and the mediator.

Organization. Section 2 presents the main differences between the CP results and this paper. Section 3
presents the LUC-security framework in details. Section 4 proves the composition theorem. Section 5
shows how LUC relates to previous security notions. Section 6 presents the game-theoretic implications
and the insufficiency of standard notions to capture interesting flavors of anonymity, deniability and
confinement. Sections 7 and 8 present our protocols for secure function evaluation.
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2 Collusion-preserving Computation

For clarity, we briefly review the work of [AKMZ12], since it is the most related work to ours. This work
defines a security model which we denote by the CP model (for Collusion Preserving computation).

The CP model is a special case of LUC and is similar to the GUC model of [CDPW07]. The differ-
ences between CP and GUC are the following: Instead of centralized adversary, the CP model considers
an adversary for each party, and each adversary can corrupt only the party associated with its identity.
In addition, the adversaries communicate neither with the honest parties nor with each other. In the CP
model, all communication is done via functionalities called resources. The CP security definition is an
extension of the GUC definition to the multiple adversary setting. Let R and F be n-party resources.
Let π and φ be n-party protocols using resources R and F respectively. Then, we say that a protocol π
CP-realizes φ if for any set of n adversaries {Ai}i∈[n] there exists a set of n simulators {Si}i∈[n] such
that no environment can distinguish between an execution of π running with {Ai}i∈[n] and φ running
with {Si}i∈[n].

The main results presented in the [AKMZ12] paper are the following:

– A composition theorem with respect to the same resource within the CP model. That is, protocols
using different resources cannot be composed.

– A compiler for Secure Function Evaluation with a semi-trusted mediator as a resource. [AKMZ12]
models the communication links between parties and the mediator as ideal channels, where abso-
lutely no information regarding communication is seen by the environment (and the adversaries). In
addition to the ideally secure channels, the analysis of the CP compiler heavily relies on the fact that
the mediator is modeled as a resource as opposed to a party with its own adversary. This does not
allow the environment to witness any communication, and therefore enables simulation in the CP
model.

– A proof that the above compiler preserves the incentive-structure. That is, they translate their security
notion to the game-theoretic setting and define a corresponding model of mediated games. Then they
show that their security notion implies that any strategy in the ideal-world game (with ideal SFE
resource) can be mapped to a strategy in the game defined by the CP compiler and vice versa.

Summary of the main differences between our modeling and results from that of [AKMZ12]:

– The LUC execution model requires all the communication to go via the environment. This gives
a less idealized and more realistic modeling of communication. In our constructed compiler, the
mediator is modeled as a party and all the communication in the protocol is done via the environment.
We remark that this more realistic modeling would not allow the CP compiler to achieve CP security.

– The LUC composition theorem is with respect to any protocol. That is, LUC securely holds even if
protocols use different functionalities.

– The LUC model can capture additional concerns (e.g., flavors of anonymity, deniability, confine-
ment).

– The LUC model provides more general implication and composition for game theoretic modeling
(i.e., any LUC secure realization preserves structure-incentive as opposed to a specific construction
of CP).

3 Defining security of protocols

In this section we introduce our new Local UC (LUC) framework and discuss its relationship to basic
UC security. Many of the low-level technical details, especially those that are essentially identical to
those of the basic UC framework, are omitted. A full treatment of these details can be found in [Can01].
We begin with a brief review of the basic UC framework of [Can01].
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3.1 Basic UC security

We first briefly review the basic computational model, using interactive Turing machines (ITMs). Al-
though we do not modify the underlying computational model, familiarity with it is important for un-
derstanding our model.

Systems of ITMs. To capture the mechanics of computation and communication in computer net-
works, the UC framework employs an extension of the Interactive Turing Machine (ITM) model. A
computer program (such as for a protocol, or perhaps program of the adversary) is modeled as an ITM.
An execution experiment consists of a system of ITMs which are instantiated and executed, with mul-
tiple instances possibly sharing the same ITM code. (More formally, a system of ITMs is governed by
a control function which enforces the rules of interaction among ITMs as required by the protocol exe-
cution experiment. Here we will omit the full formalisms of the control function, which can be found in
[Can01].)

A particular executing ITM instance running in the network is referred to as an ITI, and we must have
a means to distinguish individual ITIs from one another even if they happen to be running identical
ITM code. Therefore, in addition to the program code of the ITM they instantiate, individual ITIs are
parametrized by a party ID (pid) and a session ID (sid). We require that each ITI can be uniquely iden-
tified by the identity pair id = (pid, sid), irrespective of the code it may be running. All ITIs running
with the same code and session ID are said to be a part of the same protocol session, and the party IDs
are used to distinguish among the various ITIs participating in a particular protocol session. The sids
are unique. We also refer to a protocol session running with ITM code as an instance of protocol. ITMs
are allowed to communicate with each other via the use of three kinds of I/O tapes: local input tapes,
local subroutine output tapes, and communication tapes. Writes to the local input tapes of a particular
ITI must include both the identity and the code of the intended target ITI, and the ITI running with
the specified identity must also be running the specified code, or else an error condition occurs. If a
target ITI with the specified identity does not exist, it is created (“invoked”), and given the specified
code. We also require that when an ITI writes to the local subroutine output tape of another ITI, it must
provide its own code. Finally, all “external” communications are passed via the communication tapes,
which disclose to the recipient neither the code of the intended recipient ITI, nor the code of the sending
ITI (but merely their identities). The control function determines which external-write instructions are
“allowed”; “un-allowed” instructions are ignored.

The UC Protocol Execution Experiment. The UC protocol execution experiment is defined as
a system of ITMs that’s parametrized by three ITMs. An ITM π specifies the code of the challenge
protocol for the experiment, an ITM A specifies the code of the adversary, and an ITM Z provides the
code of the environment. The protocol execution experiment defines precise restrictions on the order
in which ITIs are activated, and which ITIs are allowed to invoke or communicate with each other.
Formally, the restrictions are enforced via the control function. The formal details of the control function
can be found in [Can01], but we informally describe some of the relevant details. The experiment initially
launches only an ITI running Z . In turn, Z is permitted to invoke only a single ITI running A, followed
by (multiple) ITIs running the “challenge protocol” provided that these ITIs running π all share the
same sid. This sid, along with the PIDs of all the ITIs running, may be chosen arbitrarily by Z . In
summary, the environment can communicate only with the ITI running the code of the adversaryA, and
ITIs participating in a single session of protocol π (in a limited way). The output of the environment Z
in this basic UC protocol execution experiment is denoted by EXECπ,A,Z .

Ideal Functionalities. An ideal functionality F is an ITM whose code represents a desired (inter-
active) function to be computed by parties or other protocols which may invoke it as a subroutine (and
thus, in a perfectly secure way). The pid of any ITI running F is set to the special value ⊥, indicating
that the ITI is an ideal functionality. F accepts input from other ITIs that have the same sid as F , and
may write outputs to multiple ITIs as well. Every ideal functionality F also induces an ideal protocol
IDEALF . Parties running IDEALF with the session ID sid act as dummy parties, simply forwarding
their inputs to the input tape of an ITI running F with the same sid, and copying any subroutine out-

8



put received from F to the subroutine output tape of the ITI which instructed by F . The definition of
dummy adversary presented here is different from the standard definition of [Can01] and allow the ideal
functionality to choose the output destination.

UC Emulation and Realizations. In the basic UC framework, a protocol π is said to UC-emulate
another protocol φ if, for any adversary A, there exists a simulator S such that for all environments Z it
holds that EXECφ,S,Z ≈ EXECπ,A,Z . That is, no environment behaves significantly differently in the
protocol execution experiment when interacting with the challenge protocol π, under any given attack,
than it does when interacting with the emulated protocol φ, under a simulation of that same attack. We
say that a protocol π UC-realizes ideal functionality F if it is UC-emulates IDEALF .

3.2 The Local UC model of protocol execution

The model of protocol execution is defined in terms of a system of ITMs as in [Can01]. At first, a
set of party IDs is chosen. Then, we consider a pair of adversaries for all potentially communicating
ITIs based on the chosen party IDs. In addition, jointly with the environment, these adversaries has a
complete control over the communication between ITIs which under their custody, as opposed to the
UC framework, where a centralized adversary controls all the communication in the system. Formally,
all the technical difference from the UC framework is concentrated in the control function, presented
below. The underlying computational model remains unchanged.

Execution of protocol π with environment Z and adversary A
An execution of protocol π with an adversary A and environment Z is a run of an extended,

parametrized system of ITMs as, with initial ITM Z , and the following control function:

1. Z may only pass inputs to parties. At first, Z chooses a set of party IDs P and SID s. The first ITIs
that Z passes input to is set to be the adversaries. That is, the identities of these ITIs are required to
have a special value id = ((i, j) ,⊥) where i, j ∈ P . The code of these ITIs is set (by the control
function) to be A. Besides the adversaries, all the ITIs that Z passes input to are required to have
the same SID, s, and party identity PID ∈ P . The code of all these ITIs is set (again, by the control
function) to be π. Call this instance the main instance of π.

2. An adversary A(i,j) (that is, an adversary with code A and id ((i, j) ,⊥)) can either pass output
to Z , or deliver messages to the incoming communication tape of any party (ITI) in the system
with PID=i where the sender identity of delivered messages must be PID=j. There are no restric-
tions on the contents of delivered messages with the following exception: Messages of the form
(Corrupt, id, p) can be delivered only once A(i,j) receives an input (Corrupt, id, p) from
Z . Here id = (PID,SID) is the identity of the recipient party, PID = i, and p denotes potential
additional parameters. These messages are used to model party corruption; see discussion in the text.

3. ITIs other than Z or the adversaries can send messages to an appropriate A(i,j) according to their
PID and the PID of the recipient, and also pass inputs and outputs to any other ITI other than Z
and the adversaries as long as the designated party PID is the same as of the sender. In addition, the
outputs of the main parties of π (namely, the parties with code π and with SID = s) may be channeled
to Z; see discussion in the text.

The responses to (Corrupt) messages are assumed to be specified within π and may vary according
to the specific corruption model and the parameters included in the message.

Fig. 1: A summary of the model for protocol execution.

Let π be a protocol over a fixed set of parties. The model is parametrized by three ITMs: the protocol
π to be executed, an environment Z and an adversary A. That is, given π, Z , A, the model for
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executing π is the following extended, parametrized system of PPT ITMs (Z, Cπ,ALEXEC) (as defined
in the UC model). The initial ITM in the system is the environment Z . The control function Cπ,ALEXEC
is defined in the paragraphs below. Figure 1 presents a summary of the model. A graphical depiction
appears in Figure 2

The input of the initial ITM Z represents some initial state of the environment in which the protocol
execution takes place. In particular, it represents all the external inputs to the system, including the local
inputs of all parties. As a first step,Z choose a set P of party IDs and SID s1. The first ITIs to be invoked
by Z is set by the control function to be the adversaries. See discussion regarding static invocation in
3.2. An adversary with identity id = ((i, j) ,⊥) where i, j ∈ P , denoted A(i,j), is invoke for each
ordered pair i, j ∈ P . The adversaries code is set to be A. In addition, as the computation proceeds, Z
can invoke any ITI, by passing inputs to it, subject to the restriction that all these ITIs have SID s and
PID ∈ P . The code of these ITIs is set by the control function to be π, regardless of the code specified
by Z . Consequently, all the ITIs invoked by Z , except for the adversaries, are parties in a single instance
of π. We call this instance the main instance of π in this execution. In addition, each time Z passes
input to main parties, it may choose identity id which will appear as the identity of the sender (this id
should be unique and no other party can use this SID). The control function remembers all Z’s “fake”
identities. All input (as well output) requests, made by the main parties, to one of these fake destinations
are written on Z’s output tape (as presented before, input and output requests to non-existing ITIs will
invoke a new ITI).2 Other than that, Z may not communicate with any other ITIs. That is, Z cannot pass
inputs to any ITI other than the adversaries or the main parties of the main instance of π, nor can any
ITI other than these pass outputs to Z .

Each adversary A(i,j) is allowed to send messages to any ITI in the system with PID= i where the
sender identity of delivered messages must be PID=j. There need not be any correspondence between
the messages sent by the parties and the messages delivered by the adversaries. The adversaries may not
pass input to any party, nor can it pass output to any party other than Z . It is important to notice that
there is no direct communication between the adversaries and all their communication must go through
the environment.

Adversaries may also corrupt parties. Corruption of a party (ITI) with identity id is modeled via a
special (Corrupt, id, p) message delivered by A(i,j) to that ITI, where p denotes potential additional
parameters. The control function allows delivery of that message only if A(i,j) previously received a
special (Corrupt, id, p) from the environment Z and party ID is i.

Any ITI other than Z and the adversaries, namely the parties and sub-parties of the main instance of
π, as well as the ITIs invoked by the adversaries, are allowed to pass inputs and outputs to any other ITI
other than Z and the adversaries subject to the restriction that the recipient have the same PID as the
sender (except when the recipient is an ideal functionality). In addition, they can send messages to the
adversaries where adversary’s PID(i,j) requires sender’s PID i and recipient’s PID j. (These messages
may indicate an identity of an intended recipient ITI; but the adversaries is not obliged to respect these
indications.)

For all input and output requests the control function will omit the code of the sender (except when
the sender is a dummy party or the recipient is Z).

The response of the party or sub-party to a (Corrupt) message is not defined in the general
model; rather, it is left to the protocol. Here we specify one corruption model, namely that of Byzantine
party corruption. We extend the known definition to fit multiple adversaries. Here, once a party or a
sub-party receives a (Corrupt) message, it sends to that adversary its entire current local state. Also,
in all future activations, a corrupted ITI merely forwards the incoming information to that adversary and
follows instructions of all PID related adversaries.

1 This is different from the UC model where the party IDs can be chosen during protocol execution and may depend on any
information available.

2 The aliasing is necessary to make sure that a protocol would not be able to distinguish whether it is being executed directly
by the environment or as a subroutine of another protocol. The UC framework do not address this issue and as a result
composability problems arise. Nonetheless, this can be resolved by applying our aliasing in the UC framework.
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Let LEXECπ,A,Z (k, z) denote the random variable describing the output of the execution of the
system (Z, Cπ,ALEXEC), where Z’s input is z and k is the security parameter in use.

π π1 n

Z

A (1,n)A (1,2) (n,1) (n,n-1)AA

....    ....    .... ....    ....    ....

....    ....    .... ....    ....    ....

....    ....    ....

Fig. 2: The model of protocol execution. The environment Z writes the inputs and reads the subrou-
tine outputs of the main parties running the protocol, while the adversaries, jointly with Z control the
communication. In addition, Z may interact freely with all adversaries. The parties of π may have sub-
routines, to which Z has no direct access.

On the use of static invocation and predefined PIDs. Recall the order of activations of ITMs in
an execution of a protocol: Once Z activated it chooses a set of PIDs and invokes all the adversaries
attacking the protocol. For technical reasons, we restrict ourselves to protocols over a predefined set
of PIDs in order to make the above mechanism meaningful. We remark that it is possible to formulate
alternative mechanism that invokes the adversaries during the execution of the protocol and not prior
to it. Such a more general mechanism do not require the PIDs of the participants to be determined in
advance. Also, the results presented in this work hold with the more general formalism. However, such
formalism would further complicate the model, and the extra generality does not seem essential in many
cases.

3.3 Protocol emulation

This section formalizes the general notion of emulating one protocol via another protocol. In preparation
for the formal definition, we first recall the notions of probability ensembles and indistinguishability, and
extend the definition of balanced environments presented in [Can01]. We then define LUC-emulation in
its general form.

Distribution ensembles and indistinguishability. A probability distribution ensemble
X = {X (k, z)}k∈N, z∈{0,1}? is an infinite set of probability distributions, where a distribution X(k, z)

is associated with each k ∈ N and z ∈ {0, 1}?. The ensembles considered in this work describe outputs
of computations where the parameter z represents input, and the parameter k represents the security
parameter.

Definition 1. Two binary probability distribution ensembles X and Y are indistinguishable (written
X ≈ Y ) if for any c, d ∈ N there exists k0 ∈ N such that for all k > k0 and all we have:

Pr [X (k, z) = 1]− Pr [Y (k, z) = 1] < k−c

.

As in [Can01], the probability distribution ensembles considered in this work represent outputs of
systems of ITMs, namely outputs of environments. More precisely, we consider ensembles of the form
LEXECπ,A,Z =

{
LEXECπ,A,Z (k, z)k∈N, z∈{0,1}?

}
. It is stressed that definition 1 considers the
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distributions X(k, z) and Y (k, z) only when the length of z is polynomial in k. This essentially means
that we consider only environments that set the security parameter to be some polynomial fraction of the
length of their input.

Balanced environments. In order to keep the notion of protocol emulation from being unnecessarily
restrictive as discussed in [Can01], we extend the definition of Balanced environments and consider
only environments where the amount of resources given to each adversary (namely, the length of the
adversary’s input) is at least some fixed polynomial fraction of the amount of resources given to the pro-
tocol. To be concrete, we consider only environments where, at any point in time during the execution,
the overall length of the inputs given by Z to the parties of the main instance of π is at most k times the
the length of input to each adversary.

The UC framework formalizes the general notion of emulating one protocol via another protocol.
We extend their definition to LUC-emulation in its general form.

Definition 2. [LUC-emulation]Let π and φ be PPT protocols. We say that π LUC-emulates φ if for any
PPT adversary A there exists an PPT adversary S such that for any balanced PPT environment Z we
have: LEXECπ,A,Z ≈ LEXECφ,S,Z

3.4 Realizing ideal functionalities; Hybrid protocols

Ideal functionalities. defined in the UC framework. See Section 3.1 for details.
Ideal protocols. The definition is similar to the UC framework with a difference in the input/output

interface of the dummy parties. More formally, let F be an ideal functionality and sid be the session
ID. Whenever a dummy party is activated with input v, it writes v onto the input tape of the ideal func-
tionality F(sid,⊥) ( recall that this message includes the code of the dummy party). Messages delivered
by the adversaries, including corruption messages, are ignored. Whenever a dummy party receives a
value v from F on its subroutine output tape, it writes this value on the subroutine output tape of an ITI
instructed by F . In contrast, in the UC framework, dummy parties are obligated to forward any received
output to the invoking ITI. This restriction is problematic since dummy parties can also be invoked by an
ideal functionality, and therefore the destination of the output is undefined. Our approach can be applied
in the UC framework to overcome this problem.

Let LIDEALF ,A,Z(k, z) denote the random variable LEXECLIDEALF,A,Z(k,z).
Let LIDEALF ,A,Z denote the ensemble {LIDEALF ,A,Z(k, z)}k∈N, z∈{0,1}? .
Realizing an ideal functionality. Protocols that realize an ideal functionality are defined as proto-

cols that emulate the ideal protocol for this ideal functionality:

Definition 3. Let F be an ideal functionality and let π be a protocol. We say that π LUC-realizes F if
π LUC-emulates the ideal protocol for F .

Hybrid protocols. As in the UC framework, we define hybrid protocols to be protocols where, in
addition to communicating via the adversary in the usual way, the parties also make calls to instances of
ideal functionalities. In other words, an F-hybrid protocol π, denoted by πF , is a protocol that includes
subroutine calls to LIDEALF , the ideal protocol for F .

Recall that running LIDEALF means invoking “dummy parties” for F , which in turn invoke an
instance of F . This somewhat “indirect” access to F permit the calling parties to specify the SIDs
and PIDs of the dummy parties of F . This modeling allows the adversaries to communicate freely
through hybrid functionalities. This freedom makes the model to fallback to the UC model as in the
input/output between adversaries scenario. Therefore, we consider only adversaries that invoke only the
ideal functionalities specified by the protocol. More formally, a party controlled by an adversary invokes
only the functionalities F that the executed protocol instructs, and specify the PIDs of the participating
parties in LIDEALF as instructed by the calling protocol.
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3.5 Emulation with respect to the dummy adversary

Informally, the dummy adversary, denoted D, only delivers to parties messages that were generated
by the environment, and delivers to the environment all messages generated by the parties. The formal
definition can be found in [Can01].

Let π, φ be protocols. We say that protocol π LUC-emulates protocol φ with respect to the dummy
adversary D if there exists an adversary SD such that for any environment Z we have LEXECφ,SD,Z ≈
LEXECπ,D,Z .

Claim. Let π, φ be protocols. Then π LUC-emulates φ according to the standard definition if and only
if it LUC-emulates φ with respect to the dummy adversary.

Proof. The proof is similar to the proof presented in [Can01]. The construction of the adversary is iden-
tical to the construction in [Can01] and the construction of the distinguishing environment is straight-
forwardly extended to communicate with multiple adversaries. For completeness we present the proof
below.

If π LUC-emulates φ according to definition 2 then it LUC-emulates φ with respect to dummy
adversary. Let π, φ be protocols and let SD be the adversary guaranteed by the definition of emulation
with respect to dummy adversary. We show that π LUC-emulates φ according to the standard definition.
Given an adversary A we construct an adversary S as follows. Simulator S interacting with parties
running φ with appropriate PID and runs simulated instances of A and SD that are invoked with the
same identity as of S. In addition:

1. S forwards any input from the environment to the simulated A, and forwards any output of A to the
environment.

2. When the simulated A delivers a message m to an ITI with identity id and code c, S activates SD
with input (m, id, c). Similarly, any output generated by SD is copied to the incoming communica-
tion tape of A.

3. Whenever SD writes a message m on some tape of some ITI, S writes m to that tape of that ITI.
Finally, when S obtains a message m on its incoming communication tape, it proceeds as follows:
It first writes 1m on the input tape of SD; in the next activation it writes m on the incoming commu-
nication tape of SD.

Validity of S . Analysis of the running time of S can be found in [Can01].
Next we assert the validity of S. Assume for contradiction that there is an adversary A and environ-

ment Z such that LEXECφ,S,Z 6≈LEXECπ,A,Z . We construct an environment ZD such that
LEXECφ,SD,ZD 6≈LEXECπ,D,ZD . Environment ZD runs an interaction between simulated instances of
Z and A. Let P be the PID set chosen by Z . Next, ZD declare the same set P (this invokes all the
adversaries according to P) In addition:

1. All the inputs generated by Z to the adversaries are forwarded to the internal adversaries, and all of
adversaries’ outputs are forwarded to Z .

2. Whenever ZD receives an output value v from adversary with identity ((i, j) ,⊥), ZD passes v to
the simulated A with the same identity. Similarly, whenever a simulated A with identity ((i, j) ,⊥)
delivers a message m to some ITI, ZD instructs the external adversary with the same identity to
deliver message m to that ITI.

3. All inputs from Z to the parties of π are forwarded to the external parties, and all the outputs coming
from the external parties are forwarded to Z as coming from the parties of π.

4. In addition, whenever ZD passes input of length m to some party, it first passes input 1p(m) to all
external adversaries, where p() is the maximum between the polynomials bounding the run times of
φ and π.

5. Finally, ZD outputs whatever the simulated Z outputs.

It can be readily verified that the ensembles LEXECφ,S,Z and LEXECφ,SD,ZD are identical. Similarly,
ensembles LEXECπ,A,Z and LEXECπ,D,ZD are identical as well.
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4 Local Universal composition

This section extends the universal composition theorem to LUC framework. First we recall the compo-
sition operation as defined in [Can01] and states the extended composition theorem. Later, we present
the proof.

4.1 The universal composition operation and theorem

Universal composition. We recall the composition operator of the UC framework, called the universal
composition operator uc(), is defined as follows. Given a protocol φ, a protocol π (that presumably
makes subroutine calls to φ), and a protocol ρ (that presumably LUC-emulates φ), the composed protocol
πρ/φ = UC (π, ρ, φ) is identical to protocol π, with the following modifications.

1. Wherever π contains an instruction to pass input x to an ITI running φ with identity (sid, pid), then
πρ/φ contains instead an instruction to pass input x to an ITI running ρ with identity (sid, pid).

2. Whenever πρ/φ receives an output passed from ρ(sid, pid´) (i.e., from an ITI running ρwith identity
(sid, pid´)), it proceeds as π proceeds when it receives an output passed from φ(sid, pid´).

When φ is understood from the context we use the shorthand π instead for πρ/φ. Note that the definition
presented above is the definition in [Can01].

Subroutine Respecting protocols. We recall the definition presented in [Can01]. An instance of a
protocol ρ in an execution of πρ is subroutine respecting if no sub-party of this instance passes inputs or
outputs to or from an ITI which is not a party or sub-party of this instance. Furthermore, all sub-parties of
this instance ignore all inputs and outputs received from parties other than the parties and sub-parties of
ρ. Protocol ρ is subroutine respecting if any instance of ρ in any execution of πρ, for any π, is subroutine
respecting.

Theorem 3 (Universal composition). Let π, ρ, φ be PPT protocols. In addition, ρ LUC-emulates φ and
ρ, φ are subroutine respecting. Then protocol πρ/φ LUC-emulates protocol π.

4.2 A proof

The proof uses the equivalent formulation of emulation with respect to dummy adversary and is a
straightforward extension of the proof presented in [Can01].

Construction of Aπ. Let π, φ, ρ be PID respecting PPT protocols, where ρ LUC-emulates φ, and
and let πρ = πρ/φ be the composed protocol. We wish to construct an adversary Aπ so that no Z will
be able to tell whether it is interacting with πρ and the dummy adversary or with π and Aπ. That is, for
any Z , Aπ should satisfy LEXECπρ,D,Z ≈ LEXECπ,Aπ ,Z .

The fact that ρ LUC-emulates φ guarantees that there exists an adversary S such that for any envi-
ronment Zρ we have: LEXECρ,D,Zρ ≈ LEXECφ,S,Zρ .

The adversary Aπ is constructed out of S and presented in Figure 3. The construction is identical to
[Can01].

Validity of Aπ. First, note that Aπ is PPT . In fact, the polynomial p(·) bounding the running time
of Aπ can be set to be the polynomial bounding the running time of Z .

Next, assume that there exists an environment Z that violates the validity of adversary Aπ. We
construct an environment Zρ that violates the validity of the adversary S with respect to a single run of
ρ. More specifically, fix some input value z and a value k of the security parameter, and assume that

LEXECπρ,D,Z (k, z)− LEXECπ,Aπ ,Z (k, z) ≥ ε (1)

We show that
LEXECρ,D,Zρ (k, z)− LEXECφ,S,Zρ (k, z)≥ ε

t
(2)
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Adversary Aπ
Adversary Aπ proceeds as follows, interacting with parties running protocol π and environment Z .

1. When activated with input (m, id, c), where m is a message, id = (sid, pid) is an identity, and c is
a code for an ITM, do:

(a) If the specified recipient is a party of an instance sid´ of ρ, or a subsidiary thereof, then first
locate the internally running instance S(sid′) that handles the protocol instance with SID = sid.
(That is, either sid´ = sid or sid is the SID of a subsidiary of a party with SID = sid´.) If no
such instance of S is found, then internally invoke a new instance of S with identity (sid). Next,
activate this instance of S with input (m, id, c) and follow its instructions.

(b) Else (i.e., the specified recipient is not a party or sub-party of an instance of ρ), deliver the
message m to the recipient.

2. When activated with an incoming message m from some party, do:

(a) If m was sent by some party φ(sid, pid) of protocol φ, or a subsidiary thereof, then internally
activate the instanceS(sid) of S with incoming message m from φ(sid, pid), and follow its in-
structions. (If no such instance of S exists then invoke it, internally, and label it S(sid).)

(b) If m was sent by another party or sub-party of π, then pass output (m, id) to Z .

3. When an instance of S internally generates a request to deliver a message m to some party, then
deliver m to this party. When an instance of S requests to pass an output v to its environment then
output v to Z , but with the the exception that Aπ mimics the time bounds of a dummy adversary D.
That is,Aπ stops delivering output to Z as soon as the output length exceeds the overall input length
of Aπ.

Fig. 3: The adversary for protocol π.

where t = t (k, |z|) is a polynomial function.
In preparation to constructingZρ, we define the following distributions, and make some observations

on Aπ. Consider an execution of protocol π with adversary Aπ and environment Z . Let t = t(k, |z|)
be an upper bound on the number of instances of φ within π in this execution. For 0 ≤ l ≤ t, Let the
l-hybrid model for running protocol π denote the extended system of ITMs that is identical to the basic
model of computation, with the exception that the control function is modified as follows. The first l
instances of φ to be invoked are treated as usual. The parties of all other instances of φ are replaced with
the corresponding parties of ρ. Let LEXECl

π,Aπ ,Z (k, z) denote the output of this system of ITMs on
input z and security parameter k for the environment Z .

We also define the following variants of adversary Aπ and environment Z . Let Âπ denote the ad-
versary that is identical to Aπ, with the following exception. Âπ expects to have its input include an
additional flag, a, that determines whether to consider invoking an instance of S in this activation. That
is, if a = 1 then Âπ operates as Aπ. If a = 0 then Âπ skips the condition in Step (1a) in 3; instead it
always runs Step (1b). Let Z(l) denote the environment that is identical to Z , with the following excep-
tions. Whenever Z generates a message (m, id, c) to be delivered to the party running ρ with identity
id, then Z(l) passes input (m, id, c, a) to the adversary, where a is set as follows. Let id = (sid, pid).
If sid is the SID of one of the first l instances of φ, then Z(l) sets a = 1. Otherwise, a = 0.

We observe that, when Âπ interacts with Z(l) and parties running π in the l-hybrid model, then it
internally runs at most l instances of the simulator S . The remaining instances of S are replaced by
interacting with the actual parties or sub-parties of the corresponding instances of ρ. Consequently,
we have that the output of Z(t) from an interaction with π and Âπ in the t-hybrid model is dis-
tributed identically to the output of Z from an interaction with π and Aπ in the basic model, i.e.
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LEXECt
π,Âπ ,Z(t) (k, z) = LEXECπ,Aπ ,Z (k, z). Similarly, the output of Z(0) from an interaction with

π and Âπ in the 0-hybrid model is distributed identically to the output of Z from an interaction with πρ

in the basic model of computation, i.e. LEXEC0
π,Âπ ,Z(0) (k, z) = LEXECπρ,D,Z (k, z). Consequently,

Inequality 1 can be rewritten as:

LEXEC0
π,Âπ ,Z(0) (k, z)− LEXECt

π,Âπ ,Z(t) (k, z) ≥ ε (3)

We turn to constructing and analyzing environmentZρ. The construction ofZρ is presented in Figure
4. We first note that Zρ is PPT. This follows from the fact that the entire execution of the system is
completed in polynomial number of steps.

The rest of the proof analyzes the validity of Zρ. It follows from 3 that there exists a value l ∈
{1, ...,m} such that ∣∣∣LEXECl

π,Âπ ,Z(l) (k, z)− LEXECl−1
π,Âπ ,Z(l)

(k, z)
∣∣∣ ≥ ε

t
(4)

However, for every l ∈ {1, ...,m} we have

LEXECρ,S,Zρ (k, (z, l)) = LEXECl−1
π,Âπ ,Z(l)

(k, z) (5)

and

LEXECφ,D,Zρ (k, (z, l)) = LEXECl
π,Âπ ,Z(l) (k, z) (6)

Equations 5 and 6 follow from inspecting the code of Zρ and Aπ. In particular, if Zρ interacts with
parties running φ then the view of the simulated Z within Zρ is distributed identically to the view of Z
when interacting with π and adversaries running Âπ in the l-hybrid model. Similarly, ifZρ interacts with
parties running ρ then the view of the simulated Z within Zρ is distributed identically to the view of Z
run when interacting with π and adversaries running Âπ in the (l−1)-hybrid model. Here it is important
to note that, since both ρ and φ are subroutine respecting, the only communication between the external
instance of ρ or φ, and the ITIs outside this instance, is the inputs and outputs of the main parties of this
instance. In addition, since ITIs can input and output to ITIs with the same PID, it is ensured that no ITIs
invoked with party ID not in P .

From Equations 4, 5and 6 it follows that:∣∣LEXECρ,D,Zρ (k, (z, l))− LEXECφ,S,Zρ (k, (z, l))
∣∣ ≥ ε

t
(7)

as desired.
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Environment Zρ
Environment Zρ proceeds as follows, given a value k for the security parameter, input zρ, and

expecting to interact with parties running a single instance of ρ. We first present a procedure called
Simulate(). Next we describe the main program of Zρ.

Procedure Simulate(s, l)

1. Expect the parameter s to contain a global state of a system of ITMs representing an execution of
protocol π in the l-hybrid model, with adversary Âπ and environment Z . Continue a simulated exe-
cution from state s (making the necessary random choices along the way), until one of the following
events occurs. Let φl denote the lth instance of φ that is invoked in the simulated execution, and let
sidl denote the SID of φl.

(a) Some simulated party passes input x to a party with identity (sidl, pid). (That is, the recipient
party participates in the lth instance of φ.) In this case, save the current state of the simulated
system in s, pass input x the actual party with identity (sidl, pid), and complete this activation
(use the identity of the simulated party).

(b) The simulated Z passes input (m, id, c, a) to some simulated adversary Âπ with identity
((i, j),⊥), where id = (sidl, pid) or a subroutine thereof for some pid. In this case, save
the current state of the simulated system in s, write the message (m, id, c) to the appropriate
external adversary (with the same identity (i, j),⊥) and complete this activation.

(c) The simulated environment Z halts. In this case, Zρ outputs whatever Z outputs and halts.

Main program for Zρ

1. When activated for the first time, interpret the input zρ as a pair zρ = (z, l) where z is an input for
Z , and l ∈ N. Initialize a variable s to hold the initial global state of a system of ITMs representing
an execution of protocol π in the l-hybrid model, with adversary Âπ and environment Z on input z
and security parameter k. Let P be the PID set chosen by Z . Next, Zρ declare the same set P (this
invokes all the adversaries according to P) and run Simulate(s, l).

2. In any other activation, let x be the new value written on the subroutine-output tape. Next:

(a) Update the state s. That is:
i. If the new value, x, was written by some party P(id) with identity id = (sidl, pid) then write

(x, id) to the subroutine-output tape of the simulated party running π with party ID pid. (we
use the same pid since φ and ρ are PID respecting protocols).

ii. If the new value, x, was written by some adversary with identity ((i, j),⊥), then update the
state of the simulated copy of Âπ with identity ((i, j),⊥) to include an output x generated
by S(sidl).

(b) Simulate an execution of the system from state s. That is, run Simulate(s, l).

Fig. 4: The environment for a single instance of ρ.
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5 Relation to UC framework

In this section we show that the LUC framework is a generalization that enhances expressiveness; it
captures all the old specification, and in addition allow to capture stronger properties that are not cap-
turable in the standard UC model. We define two general transformations between functionalities in
the LUC model and functionalities in the standard UC model. The generality of the transformations is
the key point here. In order for the relations to be well defined we consider protocols over fixed set of
parties and restrict ourselves to a compatible UC analog of the LUC environment, denoted static PIDs
environment.

Static PIDs environment. In order to reason in a meaningful way regarding the relation between
LUC security and UC security we cast the LUC environment into the UC framework. As mentioned be-
fore, the UC environment can choose the PIDs adaptively during an execution of a protocol, as opposed
to the LUC framework where it is obligated to declare all PIDs ahead of time. To bridge this gap we
consider UC environments, called static PIDs environments, which behave as follows: As a first step,
the environment Z chooses a set of party IDs P . Later on, whenA is invoked, it passes P as part of A’s
input.

5.1 LUC security implies UC security

In order to show that LUC is a generalization of the UC model we need as a first step to formally define a
UC analog of each LUC functionality, this we call splitter functionalities. Intuitively, the main difference
between the models is that in UC there is a centralized adversary where in LUC we have an adversary
for each PID pair. Therefore, in LUC the functionality expect to receive messages from adversaries with
different PIDs, where in the UC model the functionality receives messages from only one adversary.
The splitter functionality is essentially a coordinator between the internal LUC functionality and the UC
world outside. As before, we denote by A(i,j) the adversary running code A with identity ((i, j) ,⊥).

Definition 4 (Splitter functionality). Let F be a functionality in the LUC model. The splitter function-
ality, denoted by spF , is the suitable UC analog of F . That is, the functionality spF behaves the same
as F with the following differences in the interface:

1. Upon receiving an input (m,(i,j)) from the external adversary A, spF behaves as F would
upon receiving input m from adversary A(i,j).

2. Whenever F generate output out to adversary A(i,j), then spF gives (out,(i,j)) to the ex-
ternal adversary.

This transformation is extended in the natural way to protocols. Let π be a LUC protocol in the Q-
hybrid model. The analog UC protocol of π, is a protocol in the spQ-hybrid model where all instructions
in π to communication with Q are replaced with instructions to communicate with spQ.

Having defined the splitter functionalities, we are ready to show that LUC security implies UC
security with its analog UC functionality. Moreover, we show that there are functionalities which can be
UC realized but not LUC realized.

Theorem 4. [General statement] Let Q and F be functionalities in the LUC model. Let πQ and φF

be PPT protocols. If πQ LUC-emulates φF then πspQ UC-emulates φspF with respect to static PIDs
environments.

Sketch of Proof The idea of the proof is that LUC realization of a protocol allows the adversaries to
communicate only with the hybrid ideal functionality (if any). Therefore, considering a UC realization
of the analog protocol is essentially splitting the centralized adversary into a set of disjoint adversaries
which we obtained by the LUC realization.

The proof uses the equivalent formulation of emulation with respect to dummy adversary Let φ be
a F-hybrid protocol. Let π be a Q- hybrid protocol that LUC-realizes φF . We wish to construct an
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adversary SD so that no static PIDs Z will be able to tell whether it is interacting with πspQ and the
dummy adversary or with φspF and SD. That is, for any static PIDs Z , SD should satisfy

EXECπspQ,D,Z ≈ EXECφspF ,SD,Z (8)

The general outline of the proof proceeds as follows. The fact that πQ realizes φF guarantees that
there exists an adversary (called a simulator) S, such that for any environment ZF we have:

LEXECπQ,D,ZF ≈ LEXECφF ,S,ZF (9)

Adversary SD is constructed out of S and operates as follows. Recall that Z expects to interact with
parties running πspQ. To mimic the communication in πspQ, SD runs internally all the copies of S
according to the PIDs set P received from Z . That is, SD runs a copy of S for each (i, j) where i 6= j ∈
P . In addition, when output generated by any internal adversary, SD passes this output to Z , together
with the identity of the sender. Any input message given by Z is forwarded to an appropriate internal
adversary according to the PIDs involved. When the simulated copy of S wish to give input m to F
then SD gives (m,(i,j)) to spF . Similarly, any output generated by spF is copied to an appropriate
internal adversary.

The validity of SD can be inferred by the standard technique of assuming an existence of distin-
guishing environment Z and constructing a distinguishing environment ZF as done in 3.5. ut

Corollary 1. [Realizing functionalities] Let F and Q be functionalities in the LUC model and π be
some Q-hybrid protocol. If πQ LUC-realizes F then πspQ UC-realizes spF with respect to static PIDs
environments.

Here we omit the proof since it uses similar proof technique to Theorem 4.
Now we are ready to show that the converse of Theorem 1 does not hold. In fact, we show a stronger

result. Not only that there exist protocols that are UC secure and not LUC secure, but also that there
exist functionalities that are UC realizable and not LUC realizable. In other words:

Lemma 1. There exist functionalities F in the LUC model such that spF is UC-realizable by a plain
protocol, but F cannot be LUC realized by a plain protocol.

Sketch of Proof Recall that the LUC model does not allow the adversaries to coordinate. Intuitively,
any LUC functionality which supplies the adversaries with nontrivial common knowledge among cor-
rupted parties would not be realizable without communication. We formalize this intuition by presenting
such a functionality. Consider the following 2-party functionality F :
F running with parties P1, P2 and adversaries A(1,2),A(2,1). Init I1 = 0

– Upon receiving an input I1 from P1 record I1 and send it to A(1,2).
– Upon receiving an input (change_input, ,I ′1) from A(1,2), if no output was yet given change the

recorded value to I ′1.
– Upon receiving an input (deliver_output) from A(2,1) send (output,I1) to P2

It can be verified that the splitter version of this functionality spF can be securely realized by a plain
protocol (i.e., without any setup) that simply instructs P1 to send I1 to P2.

Now we show that F is not securely realizable in LUC. Assume existence of plain protocol π and
consider the following environment Z: Instead of invoking P1 the environment honestly playing the role
P1 in π.

In the real world the output of P2 is the value used byZ as P1’s input. SinceF do not know the value
used byZ in the communication with P2 the output of P2 in the ideal word will be easily distinguishable.

ut
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5.2 Equivalence and merger functionalities

In order to reason about UC security in the LUC model we need to cast UC functionalities in the LUC
framework. This transformation is done by a wrapper functionality, which we call merger functional-
ity. the merger functionality designed to compensate for the difference between the models and enable
consistency between the local adversaries.

Definition 5. [Merger functionality]Let F be a functionality in the UC model. The merger variant of F ,
denoted by mF , behaves the same as F with the following differences in the interface:

1. Upon receiving an input in from some external adversary A(i,j), mF behaves as F would upon
receiving input in from adversary A.

2. Whenever F generate output out to the adversary, mF gives out to all external adversaries (in
increasing order of PIDs).

3. Upon receiving input (Deliver,m, (`,k)) from some external adversary A(i,j), mF outputs
(Delivered,m, (i,j)) to A(`,k).

This transformation is similarly extended to protocols. Let π be a UC protocol in the Q-hybrid
model. The analog LUC protocol of π, is a protocol in the mQ-hybrid model where all instructions in π
to communication with Q are replaced with instructions to communicate with mQ.

First, we show the following relation between merger and splitter functionalities:

Claim. Let Q be a functionality in the UC model and Q′ be the splitter functionality of mQ. Then Q′
and Q are equivalent with respect to static PIDs environment.

Sketch of Proof Here we need to show thatQ′ UC-realizesQ and vice versa. Let S be an adversary
participating in IDEALQ′ . We construct a simulator S∗ with access to Q such that no environment can
distinguish whether it is communicating with S and IDEALQ′ or with S∗ and IDEALQ. The idea of
the construction is that, given access to Q, the simulator S∗ can run the splitter functionality of mQ by
itself. More formally, upon receiving a set of PIDs P , S∗ runs internally S on input P . In addition:

All inputs from Z are forwarded to S and all outputs of S are forwarded to Z . whenever S gives
input (m,(i,j)) toQ′ then S∗ gives m toQ. any output out received fromQ is transferred to S as
(out,(i,j)) for all ordered pairs of i 6= j such that i, j ∈ P .

We omit the validity proof due to resemblance to previous results. The proof in the other direction is
done similarly. ut

Now we are ready to prove the following equivalence:

Theorem 5. Let F ,Q be functionalities in the UC model and let π be someQ-hybrid protocol. Then πQ

UC-realizes F with respect to static PIDs environments if and only if πmQ LUC-realizes mF .

Sketch of Proof First, we show that UC realization of F implies LUC realization of mF . Let π be a
Q-protocols such that πQ UC-realizes F . We wish to construct an adversary S so that no Z will be able
to tell whether it is interacting with πmQ and the dummy adversary D or with mF and S. That is, for
any Z , S should satisfy

LEXECπmQ,D,Z ≈ LEXECmF ,S,Z (10)

The general outline of the proof is similar to the proof of Theorem 1. The fact that πQ realizes F
guarantees that there exists an adversary SD, such that for any environment ZF we have:

EXECπQ,D,ZF ≈ EXECF ,SD,ZF (11)

The adversary S is constructed out of the adversary SD. The main idea is that the simulator copies are
able to jointly run SD by using the communication service offered by the merger functionality. More
precisely, the simulators mutually run SD in the following way: Let (p1,p2) be some specific ordered
PID pair among the PIDs chosen by Z (for convenience we take the smallest pair).
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The simulator S operates as follows: any (Deliver,m, (`,k)) instruction fromZ is forwarded
to mF and any output (Delivered,m, (i,j)) from mF is outputted to Z . All other messages
are treated as follows. If S identity is not (p1, p2) then it simply forwards any input from the environment
to S(p1,p2) via mF , and pass any message from S(p1,p2) to the environment. Any output from mF is
ignored. The “special” copy of S , denoted S(p1,p2) runs internally SD and give it P; In addition,

1. S(p1,p2) forwards any input from the environment and any message received from other simulators
to the internal SD.

2. Any output of SD is forwarded as a deliver message through mF to the appropriate simulator ac-
cording to the PIDs involved.

3. Whenever the simulated SD wish to give input in to F , S(p1,p2) gives this input to mF . Similarly,
all output of mF are given to SD.

We omit the validity proof due to resemblance with previous results.
For the derivation in the other direction we use Theorem 1 and Claim 5.2 to conclude that πQ UC-

realizes F with respect to static PIDs environments. ut

5.3 Relation among notions in presence of global setup

In this section we present the relations between the LUC framework and the UC framework; however
these results do not consider global setup. In order for this to be applicable in a presence of global func-
tionalities, we extend the Theorem 5 to the global model. However, before presenting the equivalence
theorem, we need to define with respect to what global functionalities the equivalence hold.

Augmented CRS Functionality. The augmented CRS functionality Ḡacrs, presented in [CDPW07],
is a global functionality, and offers a one-time use interactive “key retrieval” service to those who choose
to use it. In particular, the functionality only allows corrupt parties to retrieve their keys. Thus, we
are assured that honest parties need never communicate interactively with Ḡacrs. Here, we extend the
augmented CRS functionality to the LUC framework as follows. The functionality Ḡacrs behaves the
same as Ḡacrs with the following difference in the adversarial interface: any retrieve or CRS request done
by some party is notified to all its adversaries. As in the [CDPW07] formulation, the functionality Ḡacrs

is parametrized by two functions, Setup and Extract. We note that Ḡacrs is not the merger functionality
of Ḡacrs. The functionality ḠSetup,Extract

acrs is formally presented in Figure 5.

FunctionalityḠSetup,Extract
acrs

– Initialization Phase: At the first activation, compute a CRS (PK)← Setup(MSK) for a randomly
chosen λ-bit value MSK, and record the pair (PK,MSK).

– Providing the public value: Whenever activated, by a party with party identity PID requesting the
CRS, return PK to the requesting party and to all PID related adversaries (in increasing order).

– Dormant Phase: Upon receipt of a message (retrieve, sid,PID) from an adversary of corrupt party
identity , return the value SKP ← Extract(PK;P ;MSK) to all PID related adversaries (Receipt
of this message from honest parties is ignored).

Fig. 5: The Identity-Based Augmented CRS Functionality ḠSetup,Extract
acrs

The modification of a protocol interacting with a global UC setup to a protocol interacting with a
global LUC setup is done as in the merger case.
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Theorem 6. LetF be a functionality in the UC model and π be some Ḡacrs-hybrid protocol. Then π UC-
realizesF with respect to static PIDs environments if and only if π̄ LUC-realizes the merger functionality
mF in the Ḡacrs-hybrid model.

Sketch of Proof The proof is similar to the proof presented in 5 with an additional responsibility
of the constructed simulator to handle the input/output interface between the internal simulator and the
global setup. This is done in a straight forward manner by having the simulator to behave as a router
between the internal adversary and the global setup. That is, the simulator in both directions is the same
as in proof 5, and in addition, the simulator forwards externally (to the global setup) any input addressed
to this setup, and forwards to the appropriate internal simulator any output of the global setup. We show
more formally how to simulate the interaction with the global functionalities.

First, we show that UC realization of F implies LUC realization of mF with global setup. Let S
be the LUC simulator constructed in theorem 5 for the dummy adversary, where the minimal identity
copy of S internally run the simulator promised by the UC realization (denoted by SD); we refer this
copy as “master” and all the other instances as “slave”. We add to S the following behavior: the slave
copies forward to the master any output received from the setup, and execute all master’s instructions.
Recall that SD expect to interact with Ḡacrs. The only difference between Ḡacrs and Ḡacrs is that the letter
notifies all party related adversaries upon CRS retrieval. Therefore, upon receiving notification from all
party related simulators, S forward a notification to SD as if it outputted by Ḡacrs. Except the above, any
message of SD is forwarded to the appropriate external simulator by sending a (DELIVER, ...) to mF
and any received messages is forwarded internally to SD.

To show that LUC realization of mF implies UC realization of F with global setup we take the
simulator constructed in 5 and extend it to simulate interaction with global setup. Here, the constructed
simulator runs internally all the copies of the LUC simulator according to the identity set P received
from the static PIDs UC environment. Any output from the setup is forwarded to the appropriate internal
simulator, and any input request to the setup is executed externally. We have the following exception: the
notification upon CRS retrieval, which is internally forwarded to all the adversaries of the party retrieved
the CRS.

The validity of the constructions in both directions can be inferred by the standard technique of
assuming an existence of distinguishing environment Z and constructing a distinguishing environment
ZF that breaks the security of the protocol that guaranteed to be secure. ut

We note that Theorem 6 is general and can be reproved with respect to other global functionalities.
Nonetheless, having the compiler of [CDPW07] in mind, it seems suffices to consider the augmented
CRS functionality.

6 Applicability of LUC security

In this section we present the inability of known frameworks to capture various flavors of anonymity,
deniability, and confinement. Moreover, we show that the LUC framework is not subject to these weak-
nesses. Furthermore, we (a) present a simulation-based notion of Bi-deniability and show it is tightly
captured by LUC, and (b) show how LUC security can be used to capture confinement and rationality in
general.

6.1 Anonymity

The timing, existence and sender anonymity were informally presented in the introduction. recall that
in the introduction, these concerns are presented via devices such as dropbox, email future, and trusted
coordinator; but in fact these are cryptographic channels guaranteeing anonymity in the subject matter.
We present ideal functionalities, which are the formalizations of these channels, and realization by non-
trivial protocols that do not provide anonymity. We remark that in absence of any formal definition, we
can only show that these protocols do not satisfy our intuitive perception of anonymity. Here, we present
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the inability of the UC and Collusion-Preserving notion (referred as CP) to capture the intuitive idea of
anonymity. (For the formal definition of CP we refer the reader to [AKMZ12].)

6.1.1 Existence-anonymity

Here our goal is to model a sender-receiver channel, denoted by existence-anonymous channel, that
has a strong anonymity guarantee regarding the existence of a sender. The existence-channel always
allows the receiver to retrieve a message. However, in absence of a sender this message will be some
randomly chosen message. The LUC existence-anonymous channel FEA is formally presented in Figure
6.

Functionality FD
EA

Functionality FD
EA

runs with parties S, R, adversaries S(S,R), S(R,S) and parametrized on message
distribution D. It proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid = (S,R, sid′), else ig-
nore the input. Next, record m, and send output (Send, sid, m) to S(S,R). Ignore any subsequent
(Send, ...) inputs. Once S(S,R) allows to forward the message mark m as approved.

– Upon receiving an input (Output, sid) from party R do:

1. if there is an approved message m then set OUT = m; else set OUT← D.
2. send output (OUT, sid, m) to S(R,S); Once S(R,S) allows to forward the message output

(OUT, sid, m) to R and halt.

Fig. 6: The existence-anonymous channel functionality FEA

The underlying communication model is a channel called FEB that is similar to authentication chan-
nel with a difference in the message delivery. More specifically, a message is delivered to the recipient
upon recipient’s request and only if there exists a message sent to him. The LUC channelFEB is formally
presented in Figure 7.

Functionality FEB

Functionality FEB runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize OUT = ⊥ and
proceed as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid = (S,R, sid′), else ig-
nore the input. Next, record m, and send output (Send, sid, m) to S(S,R). Ignore any subsequent
(Send, ...) inputs. Once S(S,R) allows to forward the message mark m as approved.

– Upon receiving an input (Output, sid) from party R and there is an approved message m do:

1. set OUT = m , and output (OUT, sid, m) to S(R,S); Once S(R,S) allows to forward the mes-
sage output (OUT, sid, m) to R and halt.

Fig. 7: The basic existence-channel functionality FEB
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In order to reason about UC security we consider the analogous UC functionalities as in section 4,
namely, the splitter functionalities of FEA and FEB (denoted by FEA and FEB). The resulting UC func-
tionality FEA still guarantees existence-anonymity since the splitter transformation does not introduce
any changes in the logic of a functionality and only replaces the multiple adversaries interface with an
equivalent single adversary interface.

Claim. There exists a protocol that UC-realizes FEA and is not a LUC-realization of the analogous
functionality FEA.

Proof. We show that IDEALFEB
UC realizes FEA, where the only important task of the simulator is

to ignore recipient’s output request where there is no message from the sender. More formally, let D be
the dummy adversary that interacts with parties running IDEALFEB

. We construct an adversary S for
the ideal process for FEA such that no environment Z can tell whether it is interacting with D and the
above protocol or with S in the ideal process. Simulator S behaves as D except when Z instructs it to
approve output request where there is no marked message from the sender. In this case, the instruction
is ignored by S. Note that this happens also in the execution of IDEALFEB

, when there is no message
waiting to be approved by D; here FEB ignores all adversarial inputs.

In order to show that LIDEALFEB
is not a LUC realization of FEA we consider two environments

Z1 and Z2 such that for any simulator S one of two environments can distinguish between an execution
of LIDEALFEB

with the dummy adversary and LIDEALFEA
with S . Let Z1 be the environment that

first gives S input (Send, sid, m) and instructs S(S,R) to allows to forward the message to R, and then
gives R input (Output, sid). Let Z2 be an environment that only gives R input (Output, sid).

It can be easily verified that any simulation of output request is distinguishable from the execution
of LIDEALFEB

either by Z1 or by Z2. This is so since the simulator of the recipient S(R,S) does not
have the knowledge of whether the output message sent by the sender or randomly generated by FEA,
and therefore, it cannot correctly decide whether to ignore the (Output, sid) input.

It is important to note that IDEALFEB
does not provide existence-anonymity since the recipient is

guaranteed that any message received was sent by the sender. We remind the reader that there is no
formal definition of existence-anonymity to be found, and therefore, we refer to the intuitive notion of
it.

6.1.2 Timing-anonymity

Here, our goal is to define a channel that guarantees to the sender that no receiver, upon receiving
a message from him, can tell when this message was sent. As mentioned in the introduction, we define
a timing-anonymous channel, denoted by FTA, that randomly delay a message in a way that the amount
of the delay is unknown to the receiver. In particular, the message is delivered only after a certain delay.
The LUC channel FTA is formally presented in Figure 8.

Now we formally define the underlying model. In order to capture time, we introduce a clock func-
tionality Fclock that is observable by all participants. This clock is not directly observed by the envi-
ronment, instead, it is indirectly advanced by the environment, by instructing the sender to advance the
clock; this captures a setting in which the receiver’s future actions are not affected by the amount of
the delay. The formal description of Fclock presented in Figure 9. The second component is the authen-
tication functionality Fauth. The difference between the LUC and the UC authentication functionality
is that the LUC functionality, denoted by Fauth, operates not only when a message is sent. That is, it
allows the adversary associated with the sender to approve delivery even when no message was sent; in
this case Fauth outputs ⊥ to receiver’s adversary and halts. The LUC authentication functionality Fauth

is formally presented in Figure 10.
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Functionality FTA

Functionality FTA runs with parties S, R, and adversaries S(S,R), S(R,S). Let T be some finite set of
natural numbers. The functionality proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid = (S,R, sid′), else ignore
the input. Next, choose uniformly at random N ← T , set k = N , and record (k,m). Ignore any
subsequent (Send, ...) inputs.

– Upon receiving an input (Advance, sid) from party S and k > 0 do:

1. update k = k − 1 and output (Advance, sid) to adversary S(S,R).
2. if k = 0 output m to S(S,R). Once S(S,R) allows to forward the message output m to S(R,S).

Once also S(R,S) allows to forward m output it to R.

1. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m has not been delivered
to S(R,S), then change the recorded message to m′.

Fig. 8: The timing-anonymous channel functionality FTA

Functionality Fclock

Functionality Fclock runs with parties S, R, and adversaries S(S,R), S(R,S). Initialize T = 0. Next:

– Upon receiving an input (Advance, sid) from party S do: in the first activation verify that sid =
(S,R, sid′), else ignore the input. Next, set T = T + 1.

– Upon receiving an input (time, sid) from some party, output (time, sid, T ).

Fig. 9: The clock functionality Fclock

We note that Fauth provides stronger guarantees and it seems as a natural relaxation of the UC
authentication functionality.

Let FTA, Fclock and Fauth be the analogous UC functionalities obtained by the splitter wrapper
as presented in 4. The splitter transformation do not change the guarantees of the timing-anonymous
channel, and the UC functionality FTA still provides timing-anonymity.

Claim. There exists a protocol πTA that UC-realizes FTA in the (Fauth,Fclock)-hybrid model. More-
over, πTA is not a LUC-realization of the analogous functionality FTA.

Proof. The protocol πTA for UC realization of FTA is presented in Figure 11.

First, we show that πTA UC-realizes the timing-anonymous functionalityFTA in the (Fclock,Fauth)-
hybrid model. The main goal of the simulator is to provide, upon a request from the environment, the
current time as provided by Fclock in the execution of πTA. More formally, we construct a simulator S
for simulating the protocol execution with the dummy adversary D and environment Z . The simulator
S behaves as follows. The simulator S counts the (Advance) notifications from FTA, and if instructed
by Z to provide the current time, S outputs this counter. Other that, S behaves as the dummy adversary
D by forwarding any output of FTA to Z and all inputs coming from Z to FTA.

By considering this protocol in LUC, we note that no simulator for the receiver can tell the time pro-
vided by Fclock in the real execution of πTA; this happens since S(R,S) is oblivious to any advancement
of time in FTA. Hence, πTA is not a LUC-realization of FTA in the (Fauth,Fclock)-hybrid model.
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Functionality Fauth

Functionality Fauth runs with parties S, R, and adversaries S(S,R), S(R,S). It proceeds as follows:

1. Upon receiving an input (Send, sid, m) from party S, do: If sid = (S,R, sid′) for some R, then
record m and output (Send, sid, m) to S(S,R).

2. Upon receiving “approve” from S(S,R), if m is recorded provide(Send, sid, m) to S(R,S), and after
S(R,S) approves, output (Send, sid, m) to R and halt. Otherwise, provide(Send, sid, ⊥) to S(R,S)

and halt. (Both adversaries control the channel delay.)
3. Upon receiving (Corruptsend, sid, m′) from S(S,R), if S is corrupt and m was not yet delivered to
S(R,S), then output(Send, sid, m′) to S(R,S), and after S(R,S) approves, output (Send, sid, m′) to
R and halt.

Fig. 10: The message authentication functionality Fauth

Protocl πTA

Let T be some finite set of natural numbers.

– INPUT: Having received input (Send, sid, m), S chooses uniformly at random N ← T , set k =
N , and records (k, m).

– ADVANCE: Having received input (Advance, sid), S forward it to Fclock and updates k = k − 1.
Once k = 0 send m to Fauth and halt.

– OUTPUT: Having received (OUT, sid, m) from Fauth, the receiver R outputs m.

Fig. 11: The protocol πTA

We note that πTA does not provide timing anonymity since all participants in the protocol observe the
clock. In particular, upon receiving a message, the receiver can retrieve the time by sending (time,sid)
to Fclock and knows exactly when the message was sent.

6.1.3 Sender-anonymity

The sender anonymity property is presented in the introduction via a trusted mediator that masks
the identity of the sender. This mediator is similar to the two-anonymous channels of [NMO08]; how-
ever, their formalism is not applicable in our setting. The channel enables two senders and a receiver to
communicate anonymously in the following sense: both senders may send a message to the receiver but
only one message is delivered. This sender-anonymous channel, denoted by FSA, does not disclose the
identity of the actual sender. The LUC formulation of FSA is presented in Figure 12.

The underlying communication channel, denoted by FS1, is a two-sender one receiver channel that
delivers only messages sent by the first sender S1. The formal description of FS1 is presented in Figure
13.

This time too, we transform FSA and FS1 to the UC framework by applying the splitter transfor-
mation, and denote by FSA and FS1 the analogous UC functionalities. Here, the splitter transformation
maintains the anonymity property of FSA for the same reasons as in the previous anonymity concerns.

Claim. There exists a protocol that UC-realizes FSA and is not a LUC-realization of the analogous
functionality FSA.
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Functionality FSA

Functionality FSA running with parties S1, S2R, and adversaries S(S1,R), S(S2,R), S(R,S1), S(R,S2).
At first activation verify that sid = (S1, S2, R, sid

′), else halt. Next, proceed as follows:

– Upon receiving an input (Send, sid, mi) from party Si do: record mi, and send output
(Send, sid, mi) to S(Si,R). Ignore any subsequent (Send, ...) inputs from Si. Once S(Si,R) allows
to forward the message output (Send, sid, mi) to S(R,Si). Once approved, output (Send, sid, mi)
to R and halt.

Fig. 12: The sender-anonymous channel functionality FSA

Functionality FS1

Functionality FS1 running with parties S1, S2R, and adversaries S(S1,R), S(S2,R), S(R,S1), S(R,S2).
Initialize variable BLOCK = 0. At first activation verify that sid = (S1, S2, R, sid

′), else halt. Next,
proceed as follows:

– Upon receiving an input (Send, sid, m1) from party S1 do: record m1, and send output
(Send, sid, m1) to S(S1,R). Ignore any subsequent (Send, ...) inputs from S1. Once S(S1,R) allows
to forward the message output (Send, sid, m1) to S(R,S1). Once approved, if BLOCK = 0 output
(Send, sid, m1) to R and halt; else halt.

– Upon receiving an input (Send, sid, m2) from party S2 do: record m2, and send output
(Send, sid, m2) to S(S2,R). Ignore any subsequent (Send, ...) inputs from S2. Once S(S2,R) allows
to forward the message output (Send, sid, m2) to S(R,S2). Once approved set BLOCK = 1.

Fig. 13: The basic sender-channel functionality FS1

Proof. We show that IDEALFS1
is a UC realization of the sender-anonymous functionality FSA. In

order to prove UC realization by IDEALFS1
we construct a simulator S. LetD be the dummy adversary

that interacts with IDEALFS1
. We construct simulator S for the ideal process for FSA. Recall that the

simulator interacts only with the ideal functionality FSA and with the environment Z . The simulator S
initializes BLOCK = 0. Next, it proceeds as follows:

1. The simulation of the senders is done by simply behaving as a dummy adversary. Moreover, all
outputs from FSA are forwarded to Z .

2. Upon receiving an (Approve, sid,m) instruction from Z , it proceeds as follow: if m was send by
S2 then set BLOCK = 1. if m was send by S1 and BLOCK = 0 forward (Approve, sid,m) to
FSA; else ignore.

The validity of S can be easily verified.
In the context of sender anonymity, the weakness of the centralized adversary modeling is the aware-

ness of the adversary to all the incoming communication of the receiver, and not surprisingly, this is the
key ingredient of the UC simulation above. In the LUC framework, each of the receiver’s adversaries
is exposed only to a partial communication. Indeed, when considering LIDEALFS1

in the LUC setting
we note that it is impossible to come up with a simulator S(R,S1) that induces an indistinguishable view.
In particular, upon receiving an (Approve, sid,m) instruction, S(R,S1) does not know whether to ignore
(in case there was already “approved” message send by S2) or forward to it to FSA (in case it is the first
message to be approved) and any decision will not fool the environment. Therefore LIDEALFS1

do not
LUC-realize FSA.
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We note that the channel FS1 guarantees that any message received via this channel was sent by S1,
and therefore, IDEALFS1

do not provide sender-anonymity.

Sender-anonymity in the CP framework. We note that in the context of sender-anonymity, the
CP model suffers from the same weakness as the UC model. That is, the above non sender-anonymous
protocol is a CP-realization of the sender-anonymous channel FSA.

we show the CP security of the above protocol. As a first step, we map FSA and FS1 to the the CP
framework by applying the splitter transformation only to the adversarial interface of the receiver. As
before, the splitter transformation maintains the anonymity property of FSA. We denote by F

ŜA
and F

Ŝ1
the analogous CP functionalities.

Claim. F
Ŝ1

CP-realizes F
ŜA

.

The construction of the simulators done as in claim 6.1.3, where the simulators associated with
the receivers behave as described in step (1) and the simulator associated with the receiver behaves as
described in step (2).

This weakness pertain to the CP model for the same reasons as in the UC model. Namely, the adver-
sary of the receiver is exposed to all of the receiver’s incoming communication.

Discussion. It seems that the UC framework does not provide enough means of information sep-
aration in the ideal process. In the context of anonymity, where parties have contradictory interests,
the separation is essential even if all the parties are honest. In particular, any sensitive information (for
example, the existence of the sender) should be available only to an entity with the same interests. In-
deed, this information is extensively used by the UC simulator and the absence of it prevents from the
above protocols to LUC-realize the anonymous channels. Moreover, if we wish to adequately capture
anonymity, it seems essential not to grant any adversary in the network with a knowledge that we wish
to withhold from parties it is in charge of their communication. This should hold independently of the
integrity of these parties.

6.2 Bi-Deniability

In the introduction we informally presented Bi-deniability. Here, we formalize this notion and show
that UC security does not capture this flavor of deniability. In fact, this is true also for GUC. Moreover,
we define Bi-deniability separately and show equivalence between Bi-deniable authentication and LUC
secure authentication. We remark that, although we focus on authentication, Bi-deniability is a general
notion that applies to other tasks such as commitments and encryption.

6.2.1 Our definition

Bi-deniability aims to capture the ability of a participant in a two party protocol to deny participation
in a protocol execution even if its communication had been externally exposed. The actual definition has
some similarities to the definition presented in [DKSW09].

The relevant entities are the following: we have a sender S who is potentially communicating with
a receiver R, a judge J who will eventually rule whether or not the transmission was attempted, two
informants IS , IR who witness the communication (represented as log files owned by IS , IR) between
S and R and are trying to convince the judge, and two misinformantsMS ,MR who did not witness
any communication but still want to convince the judge that one occurred.

The idea of the Bi-deniability definition is that no party should be accused of participating in a
protocol, if any evidence presented to the judge (by the informants) based on witnessing the protocol
execution can be also presented (by the misinformants) without any communication whatsoever. This
idea is formalized via indistinguishability of experiments as follows:
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The system in which the experiment takes place may include some trusted incorruptible global setup
(to which the judge has access), some means of communication between the sender and receiver, and
a direct, private channel between the judge and each (mis)informant. The judge cannot directly com-
municate with the sender or the receiver; instead it obtains all its information from the informants (or
misinformants) and any global setup available. It also cannot view the log files but rather it is informed
by the informants (or misinformant) via the direct communication channels.

The means of communication between the sender and receiver determines the communication wit-
nessed by the informants (for example, in the case of ideally secure channels, no communication is
witnessed). More formally, the communication observed by the informants is fully determined via the
adversarial interface of the communication means between S and R. Moreover, this adversarial inter-
face also determines the capabilities of the informants in the network. In particular, it fully determines
the communication interface between the informants. For example, the ideally secure channels do not
enable any communication between the informants.

The informants IS , IR and the misinformants MS ,MR can communicate with S and R respec-
tively and adaptively corrupt it. By corrupting a party the corrupter learns the entire state of the party.
Additionally, once either S or R is corrupt, the judge learns about the corruption. In addition, the cor-
rupter can totally control the actions of this party going forward. Lastly,MS is allowed to send a single
(signal) message toMR.

J

S Observable
Communicat ion

Log File Log File

R S R

J

I S I R
M S M R

Fig. 14: The Bi-deniability experiments. In the informant experiment (left Figure) the parties run π,
while the informants observe this communication. In the misinformant experiment (right Figure) S and
R do not communicate. The sender’s misinformant is allowed to send a signal (only once) to the re-
ceiver’s misinformant. In both experiments the judge with the informants (or misinformants) can com-
municate freely. In addition, the informants (or misinformants) can communicate with the appropriate
party and corrupt it.

Now we are ready to present the definition. Let π be some 2-party protocol.

Informant-Experiment. The inputs to parties are given by the judge, and any output produced by the
parties is given to the judge. S andR run π in the presence of the informants IS , IR. The informants
report to J regarding any observed communication and execute all J ’s instruction. The output
distribution of the judge J in this basic informant-experiment is denoted by EXPπ,IS ,IR,J .

Misinformant-Experiment. The inputs to parties are also given to the misinformants. S and R do not
communicate except withMS ,MR. The misinformantMS can send single (signal) message
to MR; in addition, they can freely communicate with J . Any message received by the parties
from their misinformant is outputted to the judge. The output distribution of the judge J in this
basic misinformant-experiment is denoted by EXPMS ,MR,J .

A graphical depiction appears in Figure 14.
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Definition 6 (Bi-deniability). Let π be some PPT protocol and let the informants IS , IR be as defined
above. We say that π is Bi-deniable if there exist PPT misinformants MR and MS such that for any
PPT judge J we have:

EXPπ,IS ,IR,J ≈ EXPMS ,MR,J

6.2.2 Discussion

We discuss some aspects of Definition 6 and mention some related definitional approaches.
Signaling misinformants. Recall that the authentication functionality (presented in Figure 10) en-

ables one bit of information flow between the adversaries, even when no message was sent. To capture
this guarantee, we allow in the Bi-deniability definition to send one time a signal to the receiver’s mis-
informant. Alternatively, we could consider more ideal formulation of the authentication functionality.
Namely, an authentication functionality that instead of waiting for the adversaries to approve delivery,
it immediately outputs the message. For such a functionality, that do not enable any information flow
between the adversaries, the Bi-deniability definition should change accordingly. That is, any communi-
cation between the misinformants should be disallowed.

Dummy informants. An important observation is that Bi-deniability significantly different from a
general security against any adversary. In opposed to the latter, we do not argue about immunity of a
protocol against arbitrary attackers but rather we wish to argue about the ability to deny participation
when the actual, true communication is exposed. We note that the ability to deny manipulated commu-
nication is a fundamentally different task. Intuitively, it defines the ability to acquit oneself when being
accused of uncommitted crime. Here, our goal is to capture the former ability, and therefore, we consider
“dummy” informants that report the actual communication as being witnessed by them.

6.2.3 Bi-deniable authentication

In this section we show that the ideal message authentication functionality, Fauth that presented in
Figure 10, provides strong deniability guarantees. More formally, we show that the LUC ideal protocol
for authentication is Bi-deniable.

Claim. LetFauth be the LUC authentication functionality. Then the protocol LIDEALFauth
is Bi-deniable.

Proof. In order to show Bi-deniability of LIDEALFauth
we construct the misinformantsMS andMR

such that no J will be able to tell whether it is interacting with π and the dummy informants IS , IR or
withMS andMR. The misinformants construction is presented below:

– having the message m, MS forwards it to the judge as if it was received from Fauth. Once J
approves to forward the message,MS sends (signal) message toMR.

– Upon receiving (signal) message fromMS , the misinformantMR forwards m to the judge as
if it was received from Fauth. Once J approves to forward the message,MS gives m to R.

Clearly, the view of J is identical in both experiments since the communication observed by the infor-
mants in LIDEALFauth

is only the authenticated message m (which the misinformants also receive).
Moreover, using the (signal) message the misinformants perfectly simulate the scheduling done in
LIDEALFauth

.

6.2.4 On LUC security and Bi-deniability

In this section we prove that Bi-deniable authentication is equivalent to LUC realization of the authen-
tication functionality Fauth (presented in Figure 10). Although the informant-experiment is identical to
the examined protocol execution with dummy adversaries, the “ideal-execution” has many differences.
The main difference is the “ideal world experiment” in which the ideal protocol is executed compared to
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the misinformant experiment in which no protocol is executed. Intuitively, producing indistinguishable
transcript when no communication whatsoever is provided is significantly harder than producing this
transcript based on communication of a tightly related protocol. Nonetheless, we show that this gap can
be bridged.

Theorem 7. Let π be some protocol. Then π LUC-realizes Fauth if and only if π is Bi-deniable.

Proof. First, we show that LUC realization of Fauth implies Bi-deniability. Let π be a protocol that
LUC-realizes Fauth. We wish to construct misinformantsMS andMR such that no J will be able to
tell whether it is interacting with π and the dummy informants IS , IR or withMS andMR. That is,
for any J ,MS andMR should satisfy

EXPπ,IS ,IR,J ≈ EXPMS ,MR,J (12)

The general outline of the proof proceeds as follows. The fact that π realizes Fauth guarantees that
there exists an adversary (called a simulator) SD, such that for any environment Z we have:

LEXECπ,D,Z ≈ LEXECFauth,SD,Z (13)

The misinformantsMS ,MR are constructed out of SD. Recall thatJ expects to interact with informants
running π where SD expects to interact with Fauth and environment Z . The main idea in the proof is
that SD will generate all the outgoing communication to J as long as the misinformants will provide the
services given to SD byFauth. More precisely, to mimic the communication in π, each misinformant run
internally a copy of SD. In addition, when output is generated by the internal adversary, the misinformant
passes this output to J . Any input message given by J is forwarded the internal adversary. To mimic
for SD the communication with Fauth, upon receiving a message m, the misinformant forwards it to SD
as if it was given by Fauth. Once the internal adversary of MS wish to approve the message m then
MS sends (signal) messageMR. Similarly, once the internal adversary ofMR wish to approve the
message m thenMR gives m to R.

We note that the view of the internal simulator SD in the misinformant experiment is identical to
its view in the ideal execution with Fauth. This is true since each misinformant provides its internal
adversary with an interface identical to Fauth. In addition, the informant-experiment is identical to the
LUC execution of π and therefore the communication interface of Z is successfully provided by J .
The validity of the misinformants can be inferred by the standard technique of assuming an existence of
distinguishing judge J and constructing a distinguishing environment Z as done in 3.5. In particular, if
Z interacts with parties running π then the view of the simulated J within Z is distributed identically to
the view of J when interacting with π and the informants. Similarly, if Z interacts with parties running
LIDEALFauth

then the view of the simulated J within Z is distributed identically to the view of J run
when interacting with the misinformants.

For the derivation in the other direction we are given a Bi-deniable protocol π. We wish to construct
an adversary S so that no Z will be able to tell whether it is interacting with π and the dummy adversary
D or with Fauth and S. That is, for any Z , S should satisfy

LEXECπ,D,Z ≈ LEXECFauth,S,Z (14)

The fact that π is Bi-deniable guarantees that there exists misinformantsMS andMR, such that for
any judge J we have:

EXPπ,IS ,IR,J ≈ EXPMS ,MR,J (15)

The adversary S is constructed out of the misinformants. For simplicity, we denote by S(S,R) the simula-
tor of the sender and by S(R,S) the simulator of the receiver. The environment Z expects to interact with
parties running π. To mimic the communication in π, the simulators S(S,R) and S(R,S) run internally a
copy ofMS andMR respectively. In addition, when output is generated by the internal misinformant,
the simulator passes this output to Z . Any input message given by Z is forwarded to the internal misin-
formant. When a message m is given by Fauth, the simulator forwards it to the internal misinformant.
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OnceMS wishes to send (signal) message toMR then S(S,R) send (Approve) to Fauth. Similarly,
once the internalMR wishes to give m to R , then S(R,S) send (Approve) to Fauth.

We omit the validity proof due to resemblance with previous results.

We note that the proof above cannot be applied to show that UC security implies Bi-deniability.
That is, we cannot construct uncoordinated misinformants out of a single UC simulator that depends on
communication of both parties. To establish this observation, we show in section 6.2.5 that the UC ideal
authentication functionality Fauth is not Bi-deniable.

From Theorem 6.2.4 and the LUC composability follows that Bi-deniability is a composable notion.
That is:

Corollary 2. Let ρ be some protocol and let πρ be a Bi-deniable protocol. Then, for any protocol φ that
LUC-realizes ρ, πφ is Bi-deniable.

6.2.5 On UC security and Bi-deniability

Here our goal is to emphasize the inability of UC to capture Bi-deniability by showing that Fauth

is not Bi-deniable.

Claim. The protocol IDEALFauth
is not Bi-deniable.

Proof. In order to argue about non Bi-deniability of the GUC ideal authentication protocol IDEALFauth

we consider the equivalent authentication functionality, the merger functionality of Fauth. Recall that
a merger functionality enables the adversaries to communicate freely via (Deliver,...) messages. In or-
der to show that LIDEALFauth

is not Bi-deniable we construct a PPT judge J such that for all PPT
misinformantsMR andMS we have:

EXPLIDEALFauth
,IS ,IR,J 6≈EXPMS ,MR,J

The judge J proceeds as follows: when activated for the first time, J randomly choose r ← {0, 1}λ,
and instructs IR to send (Deliver, sid, r) to IS . Upon receiving output (Deliver, sid, r) from IS , it
outputs 1.

It can be verified that no misinformantMS can make the judge output 1 with probability greater than
negligible in λ. This is so, sinceMS does not know r. However, when J interact with the informants
and LIDEALFauth

, it always outputs 1.

6.3 Confinement

Recall that a protocol is said to enforce confinement if it prevents leakage of secret information to unau-
thorized processes in the network. This guarantee should hold even if all parties are faulty. In this section
we revisit the question of how to capture the classic confinement property in a simulation based, com-
posable framework. We first recall the intuitive notion. Then we show the undesirably strong require-
ments posed by confinement definitions based on centralized adversary. Next, we present a definition
of confinement and prove that any LUC secure realization enforces confinement as long as the realized
task does. Lastly, we show that any UC functionality that enforces confinement is “super-ideal”, in a
well-defined sense, and thus hard to realize.

6.3.1 Confinement with a centralized adversary

In the work of [HKN05] a definition of confinement is presented. Their definition considers the UC
execution model with the following modifications: the UC environment is split into two environments
EH and EL, where EH interacts with the high-level processes and EL with the low-level processes. All
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processes have an I/O interface with the appropriate environment according to their classification. In
addition, the high-level environment EH cannot give inputs either to the adversary or to the low-level
environment EL. [HKN05] define confinement as the following game: a random bit b is chosen by EH,
the parties run the protocol π, and eventually EL outputs its guess for b. We say that π enforce confine-
ment for partition H : L of the parties in π, if for any environments EH, EL and adversary as above, EL
succeeds in the confinement game with probability ≈ 1

2 .
This definition enforces very strong requirements on the examined protocols, and as a consequence,

many protocols that “obviously enforce confinement” do not satisfy this definition. We show an example
for such a protocol, for three parties: Let P1, P2 be authorized processes, and P3 be unauthorized process.
P1 holds a secret bit b and sends it to P2. Whenever P2 receives a message from P1, it sends “hello” to
P3.

This protocol ensures that as long as P2 is honest, the secret will never leak to unauthorized P3, and
therefore, it enforces confinement with respect to honest P2. However, this protocol does not satisfy the
confinement definition of [HKN05]. In particular, consider the case where P1 is corrupted and the bit
b chosen by EH to be P1’s input. In this scenario, b is known to the adversary that will output it to EL.
This results in success probability ’1’, and hence, fails to satisfy this definition. Moreover, no protocol, in
which a party holding some secret information can be corrupted, would satisfy this definition. We remark
that this weakness is not unique to the [HKN05] definition, and any definition based on centralized
adversary is subject to this weakness.

6.3.2 Our definition

Our definition follows the idea of [HKN05]. Like there, we consider split environments. More pre-
cisely, the definition consists of the following entities: two environments EH and EL, where EH knows
some secret that EL is trying to learn, a set of parties P = {P1, .., Pn} and a pair of adversaries A(i,j)

and A(j,i) for each pair of potentially communicating parties Pi and Pj that are helping EH to leak the
secret to EL. We define the identity of adversary A(i,j) to be ((i, j),⊥) and the code to be A.

The experiment executed is the following: Let π be some protocol over a fixed set of parties P and
let H : L be some partition of the parties participating in π. The first ITI to be activated is EH and
it is given a random bit b, which EL is trying to learn. The environments EH and EL control the I/O
interface of the parties inH and L respectively. EH cannot communicate either with adversaries or with
EL; however, any A(i,j) for i ∈ H can give outputs to it. On the other hand, EL is only prohibited from
communicating with adversaries A(i,j) for i ∈ H (i.e., it can send messages to EH).

The system includes some communication means between the parties in π. The parties run π in the
presence of the adversaries. The adversarial interface of this communication means defines the com-
munication capabilities between the adversaries and the communication observed by them. Adversary
A(i,j) can communicate with party Pi and adaptively corrupt it. Upon corruption, the corrupter learns
the entire state of the party. Whenever a party corrupted, the appropriate environment (according to the
identity of the corrupted party) is informed about it. In addition, a corrupted party is fully controlled by
its adversaries. A graphical depiction appears in Figure 15.

Let CEXPH:L
π,A,EH,EL denote the output distribution of EL in the above experiment.

Definition 7 (Confinement). Let π be a PPT protocol and let H : L be some partition of the parties in
π. We say that π enforces (H : L)-confinement if for any PPT adversary A and for any balanced PPT
environments EH and EL we have: CEXPH:L

π,A,EH,EL ≈ U1, where U1 is the uniform distribution over
{0, 1}.

6.3.3 LUC preserves confinement

Here we prove that LUC security preserves confinement. That is, we show that any LUC realization of
a protocol that enforces confinement also enforce confinement.
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Fig. 15: The confinement experiment for partition H : L of the participating parties in π. In the exper-
iment the parties run π, while the adversaries, jointly with EH and EL control the communication. The
environments EH and EL write inputs and read the subroutine outputs of parties under the above con-
strains. EL can also give inputs to EH. In addition, EL can interact freely with all adversaries associated
with L, and all the adversaries associated with H can give outputs to EH. Lastly, the adversaries can
communicate with the appropriate party and corrupt it.

Theorem 8. Let π, φ be protocols such that π LUC emulates φ. Then π enforce (H : L)-confinement
for all partitionsH : L of the parties in π for which φ enforce (H : L)-confinement.

Proof. Intuitively, the difference between confinement and LUC security is that the former considers
split environments which, is a subset of all environments considered in in the security definition. There-
fore, when we consider secure realization of a protocol that enforces confinement, we find that it also
preserves the confinement property. More formally, let H : L be a partition of parties in π such that φ
enforce (H : L)-confinement. We show that π enforce (H : L)-confinement.

Assume for contradiction that there is an adversary A and environments EH and EL such that

CEXPH:L
π,A,EH,EL 6≈U1 (16)

Let S be the adversary guaranteed by the definition of realization with respect to adversary A. We
construct an environment Zπ such that

LEXECφ,S,Zπ 6≈LEXECπ,A,Zπ (17)

Environment Zπ runs an interaction between simulated instances of EH and EL and A. When activated
for the first time, it interprets the input z as a pair z = (z, b) where z is an input for Zπ, and b ∈ {0, 1}.
Next, give EH the bit b as external input. In addition:

1. All the inputs generated by EL to the adversaries are forwarded to the external adversaries. Similarly,
whenever Zπ receives an output value v from adversary with identity id = ((i, j) ,⊥), Zπ passes v
to the simulated environment according toH : L.

2. All inputs from EH and EL to the parties of π are forwarded to the external parties, and all the
outputs coming from the external parties are forwarded to EH and EL as coming from the parties of
π according toH : L.

3. In addition, whenever Zπ passes input of length m to some party, it first passes input 1p(m) to all
external adversaries, where p() is the maximum between the polynomials bounding the run times of
φ and π.

4. Finally, Zπ outputs whatever the simulated EL outputs.
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It can be readily verified, by inspecting the code of Zπ, that the ensembles CEXPH:L
π,A,EH,EL and

LEXECπ,A,Zπ are identical. Similarly, ensembles CEXPH:L
φ,S,EH,EL and LEXECφ,S,Zπ are identical as

well. By the definition of confinement, it guarantees that

CEXPH:L
φ,S,EH,EL ≈ U1 (18)

By equations 16 and 18 follows that

CEXPH:L
φ,S,EH,EL 6≈CEXPH:L

π,A,EH,EL (19)

and therefore it follows that LEXECφ,S,Zπ 6≈LEXECπ,A,Zπ as desired.

We note that this proof technique cannot be applied to show that any UC realization of a UC func-
tionality that enforces confinement will also enforce confinement. That is so, since upon receiving an
output from the external adversary, the constructed environment does not have the knowledge to cor-
rectly determine which internal environment this output should be given.

From Theorem 8 and the LUC composability follows that confinement is preserved under composi-
tion. That is:

Corollary 3. Let ρ be some protocol and let πρ be a protocol that enforces (H : L)-confinement. Then,
for any protocol φ that LUC-realizes ρ, πφ enforces (H : L)-confinement.

6.3.4 Confinement with respect to super-ideal functionalities

Here, we show that any UC functionality that enforces confinement is “super-ideal”. That is, such
functionalities do not provide the adversary with any information, even when a party is corrupted. We
call such functionalities super-ideal since such functionalities essentially mandate communication chan-
nels which offer absolute physical security that hides even whether communication took place at all. We
also show that this is not the case for LUC functionalities that enforce confinement.

Definition 8 (super-ideal functionality). Let F be a UC functionality, mF be the equivalent LUC
functionality, and P be a set of party identities. We say that F is super-ideal with respect to party Pi if
for any PID j, any PPT adversaryA, and for any two input vectors−→x0 and−→x1 that differ only in ith entry
the distributions SIj and U1 are indistinguishable, where U1 is the uniform distribution over {0, 1} and
SIj is the output distribution of the following game:

1. The challenger selects a bit b ∈ {0, 1} uniformly at random, and sets parties inputs according to−→xb.
2. The parties and the adversaries (with code A) execute LIDEALmF .
3. Finally, the adversary with identity ((i, j)⊥) outputs a guess for the value of b.

Claim. Let F be a UC functionality and let H : L be some partition for which F enforces (H : L)-
confinement. Then, F is super-ideal with respect to all parties inH.

We note that Claim 6.3.4 does not hold for general LUC functionalities. In contrast to UC, where
the centralized adversary can pass to low-level process any information available to it, a general LUC
functionality can prevent the high-level adversaries to pass information to low-level adversaries. There-
fore, LUC functionality can enforce confinement, even if the high-level adversaries exposed to the secret
information.

Proof. Let P be a set of party identities and let H : L be some partition of P for which F enforce
(H : L)-confinement. Assume for the sake of contradiction that there exists a party Pi ∈ H for which F
is not super-ideal. Therefore, there exists a PID j, an adversary A and two input vectors −→x0 and −→x1 such
that SIj 6≈ U1. We construct an adversary AF and environments EH,EL such that

CEXPH:L
IDEALF ,AF ,EH,EL 6≈ U1 (20)
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– The environment EH behaves as follows: when activated for the first time with input bit b, if b = 0 it
gives inputs according to −→x0; otherwise according to −→x1.

– The environment EL behaves as follows:

• when activated for the first time it gives inputs according to −→x0 (recall that the vectors are differ
only in entry i ∈ H).
• when it receives from one of the adversaries a bit b′ , it outputs b′ and halts.

– The adversary AF runs A internally and do whatever A does. Whenever A halts and outputs its
decision, AF with identity ((i, j)⊥) does the following: if the output of A indicates that −→x0 was
used, then it sets b′ = 0; otherwise it sets b′ = 1. Next, it sends b′ to EL via the deliver service of
mF .

It can be verified that the success probability of EL is 1
2 + ε for non negligible ε, where ε is the advantage

of A in the above game.

We remark that Claim 6.3.4 does not hold with respect to LUC functionalities. We establish this ob-
servation by presenting a non super-ideal functionality that enforces confinement. LetF be the following
three party functionality:

– on input message m from party P1 the functionality computes c = ENCpk(m, r) and outputs c to
P2.

– on input message c from party P2 the functionality outputs c to P3.
– upon corruption of party Pi, the functionality reveals to all of Pi’s adversaries its inputs.

Let P1 and P3 be high-level processes that can communicate only via the channelF (i.e through the low-
level process P2). The functionality F enforces (H : L)-confinement for H = {P1, P3} and L = {P2}
since it does not allow high-level processes to communicate with low-level process, and it hides the
high-level processes input. Moreover, the functionality F is not super-ideal with respect to H since it
disclose P1’s input message.

6.4 Incentive-structure Preservation

Recall that game-theoretic models propose that all players are motivated by their own individual incen-
tives and usually trying to maximize their payoff. We view protocols as games to be played by rational
players, in a sense that payoffs are now functions of the players’ transcripts. Later in this section, we
discuss how to formally represent protocols as games.

Informally, local adversaries enable cryptographically model rational players that are driven by their
own incentives. In particular, these incentives determine for each player with whom he wishes to co-
operate and in what cost, and this can be modeled using local adversaries. In contrast, the centralized
adversary models, where the centralized adversary controllers the parties all together, cannot be used to
capture players incentives. Indeed, we show that LUC preserves the incentive structure when protocols
are viewed as games played by rational players.

6.4.1 On LUC and preservation of Incentive-structure

First, we need to define how to represent protocols as games. Similar to [GLR10], we consider n-party
protocols as extensive form games of incomplete information. The possible messages of players in a
protocol correspond to the available actions in the game tree, and the prescribed instructions correspond
to a strategy in the game.

The protocol is parametrized by a security parameter k ∈ N. The set of possible messages in the
protocol, as well as its prescribed instructions, typically depend on this k. Assigning for each k and each
party a payoff for every outcome, a protocol naturally induces a sequence Γ (k) = (H(k), P (k), A(k), u(k))
of extensive games, where:
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– H(k) is the set of possible transcripts of the protocol (sequences of messages exchanged between
the parties). A history h ∈ H(k) is terminal if the prescribed instructions of the protocol instruct the
player whose turn it is to play next to halt on input h. The set of terminal histories is denoted Z(k).

– P (k):(H(k)\Z(k)) → {1, 2, ..., n} is a function that assigns a “next” player to every non-terminal
history.

– A(k)is a function that assigns to every non-terminal history h ∈ H(k)\Z(k) a set A(k)(h) = {m :
(h ◦m) ∈ H(k)} of possible protocol messages to player P (k)(h)

– u(k) = (u
(k)
1 , u

(k)
2 , ..., u

(k)
n ) is a vector of payoff functions u(k)

i : Z(k) → R.

A sequence Γ (k) = (H(k), P (k), A(k), u(k))k∈N of games defined as above is referred to as a computa-
tional game. We note that for each protocol and any security parameterH(k), P (k) andA(k) are uniquely
defined.

We extend the above notation to ideal protocols. Let F be an ideal functionality, then the ideal
protocol LIDEALF corresponds to a game with a communication device F as follows:

– players receive their inputs.
– players communicate with F by giving it some input, which are not necessary the inputs received.
– each player receive its personal output from F .

In this section we consider a non-concurrent version of LUC, denoted by (NC)LUC security. That is, we
consider a NC environment as defined in [Can01] and we require the protocols to be LUC-secure in the
Fmt-hybrid model with respect to NC environments. The functionality Fmt presented in figure 16.

Functionality Fmt

Functionality Fmt proceeds as follows:
At the first activation, verify that sid = (P; sid′), where P is an ordered set of m identities; else halt.

Denote the parties identities P1, ..., Pm, adversaries identities
{
S(i,j)

}
i 6=j,i∈P

⋃
{M},j∈P

⋃
{M}.

– Upon receiving an input (Send, sid, m, Pj) from party Pi send a public delayed output
(Send, sid, m, Pi) to Pj.

Fig. 16: The message transmission functionality Fmt.

For simplicity, we consider LUC ideal functionalities (that represent communication device) for
Secure Function Evaluation.

In order to reason about strategies of PPT players in the extensive form game we consider behavioral
strategies. Informally, behavior strategy specifies the probability with which each action would be taken
conditional upon that history happened.

Definition 9 (Behavioral strategy). Behavioral strategies of players in an extensive form game are
collections σi = (σi(h))h:P (h)=i of independent probability measures, where σi(h) is a probability
measure over A(h). Let σ = (σ1, ..., σn) denote a strategy profile.

Now that we defined how to view protocols as games, we translate the emulation of protocols notion
to the game theoretic setting. Let ΓF = (H,P,A, u) be a game with communication device F , and
let π be a protocol that (NC)LUC-realizes F . We define the real-world extensive form game Γπ =
(H ′, P ′, A′, u′), where players execute π instead ofF , as follows: since π uniquely definesH ′, P ′, A′ we
only need to define a payoff function u′. For each terminal history h′ ∈ H’ consider the corresponding
history h ∈ H . That is, h is the history that induces the simulated view h′ in LIDEALF . Moreover,

37



it can be efficiently computed by the simulator guaranteed from the security of π. For each terminal
history h′ ∈ H’, we define u′i(h

′) = ui(h).
We note that the payoff function of a real-world game Γπ is uniquely defined by the simulators

,which guaranteed from the LUC security of π, and the payoff function of ΓF .

Theorem 9. Let ΓF = (H,P,A, u) be an extensive form game, where F is a communication device in
ΓF . Then for any π that is a (NC)LUC-secure realization of F holds:
(1) for any strategy profile σ = (σ1, ..., σn) in the real-world extensive form game Γπ = (H ′, P ′, A′, u′)
there exists a strategy profile σ̄ = (σ̄1, ..., σ̄n) in ΓF that achieves the same expected payoff.
(2) for any strategy profile σ̄ = (σ̄1, ..., σ̄n) in ΓF there exists a strategy profile σ = (σ1, ..., σn) in the
real-world extensive form game Γπ = (H ′, P ′, A′, u′) that achieves the same expected payoff.

Proof. Let ΓF = (H,P,A, u), protocol π ,and Γπ = (H ′, P ′, A′, u′) be as above. The proof of item (1)
is done in a way of contradiction. That is, there exists a strategy profile σ = (σ1, ..., σi, ..., σn) in Γπ such
that for all strategies profiles σ̄ = (σ̄1, ..., σ̄n) in ΓF the expected payoff induced by σ is distinguishable
with probability ε from the expected payoff induced by σ̄. Let A be the distinguisher and let SD be the
simulator guaranteed for the dummy adversary D. Now we construct an environment Zπthat manages
to distinguish between LEXECπ,D,Zπ and LEXECLIDEALF ,SD,Zπ .

The environment Zπ constructed as follows: it instructs the adversaries to corrupt all the parties and
to play according to σ. Let ĥ denote the terminal history as observed by Zπ. Next, Zπ computes the
payoff of each player pi = u′i(ĥ), forward the payoff vector to A and outputs whatever A outputs.

It can be verified that the advantage ofZπ in distinguishing LEXECπ,D,Zπ and LEXECLIDEALF ,SD,Zπ
is the same as the advantage of A in distinguishing payoffs drawn from the payoff distribution induced
by Γπ from ΓF . Therefore, LEXECπ,D,Zπ 6≈ LEXECLIDEALF ,SD,Zπ .

For the proof of item (2) it is enough to show that u′ defines a surjective strategy mapping from Γπ
to ΓF . We note in the non-concurrent model each strategy depend only on the initial input given by the
environment and the output received from the SFE functionality. For each terminal history h of party Pi
in ΓF consider the following terminal h′ history for Pi in Γπ: run the protocol π on input x′ that was
given to F in h. Whenever obtaining an output y of π set the output as described in h as if Pi received
y from F . By definition of u′ we have that u′i(h

′) = ui(h), as desired.

We remark that Theorem 9 implies that any Nash equilibrium (NE) in ΓF is mapped to a com-
putational NE in Γπ and vice versa. In addition, since the non-concurrent model achieves sequential
composition, Theorem 9 implies game-theoretic non-concurrent composition.

7 A solution via physical computation

Informally, our goal here is to construct a LUC secure realization of an arbitrary (poly-time) functionality
F . The idea behind this solution is to implement the GMW protocol using physical implementations of
cryptographic primitives. This approach enables us to eliminate the use of randomness, which can be
used by parties in order to collude. We first introduce the physical components of our protocol, and then
describe the protocol in detail. This solution is strongly inspired by the [ILM05] solution.

7.1 Building blocks

In this section we informally present the communication network in which the physical GMW games
will be played.

Machinery. We have the following physical components:

– boxes
– machine to create boxes with content
– multiplication and addition machines
– duplication machine
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– opening machine
– machine to shuffle boxes in a super-box.

We will represent ′0’ by an empty box and ‘1’ by a box containing a piece of paper. The multiplication,
duplication, and addition machines will receive the boxes and create a new box with the appropriate
content. (If the new box should represent ‘1’, the machine will use a fresh piece of paper.)

Conceptually, we envisage a group of players, seating far apart around a large table in a room
equipped with cameras, communicating via identical boxes (and super-boxes) and addition, multipli-
cation, duplication and shuffle machines. Player can also communicate with entities outside the room
using their cell-phones. Informally, a player can privately or publicly choose a message or privately toss
a coin (all participants can see that he tossed a coin, but nobody can see the result of the toss), and put
a piece of paper according to the outcome into a new, empty box. So long as it is not opened, the box
totally hides and guarantees the integrity of its content. Only the owner of a box can open it using an
opening machine (in which case all the players are aware that he is opening it and he will be the only
one to read its content). An opening of a box can be done only if the opening machine is on. A player
owns a box if it is physically close to him. By definition, the player originally locking a new box owns
it. After that, ownership of a box can be transferred to another player by passing it to him. Furthermore,
each box has a unique serial number, which only its owner can see. Other participants sitting around the
table cannot see the serial number on the box.

A player can perform multiplication and addition of the values inside boxes by inserting two boxes
into an appropriate machine, obtaining a single box containing the product or sum (respectively) of the
values in the inserted boxes. The addition machine may accept either two boxes or m boxes as inputs
(where m is the number of players). In addition, a player can duplicate a value inside a box by inserting
the box into the duplication machine and obtaining an additional new box containing the same value.

Furthermore, a player can also publicly put four of his boxes into a new super-box SB, in which case
none of them can be opened before SB is opened. All super-boxes are again identical to each other, but
are larger than (ordinary) boxes. The rules of ownership for super-box are the same as for boxes. There
is only one possible way for a player i to open a super-box SB of his: all players observe that i has
opened SB, and the player can choose only one sub-box inside which can be manipulated (e.g., opened
or transferred). The remaining sub-boxes stay inside the locked superbox, which is placed in the middle
of the table where none of the players can touch it.

Boxes and super-boxes always stay above the table and their transfers are always tracked by the
players. The players can thus "mentally assign" to each box or super-box an identifier, j, insensitive to
any possible change of ownership. The only exception is when a player i publicly puts his super-box
into a shuffle machine: when it is taken out, the sub-boxes contents will remain unchanged and private,
but their order is randomly permuted, in a way that is unpredictable to all players.

The cameras can identify actions and are in charge of the electricity in the room and can turn on and
off each machine and lights. See motivation in paragraph 7.2.1

Lastly, at each moment a player may leave the room, thereby causing the game to abort.

7.1.1 Committed oblivious transfer

Now we describe how to implement one-out-of-four oblivious transfer in the physical model described
above. It is similar to the committed OT of [CGT95].

Suppose Alice would like Bob to obtain a commitment to one out of four values, in such way that
Bob will not learn anything about the remaining three values and Alice won’t know which value was
chosen by Bob.

In order to achieve these properties, Alice will generate four boxes containing the values for the OT
using the multiplication/addition machines and put those boxes into a new super-box. This super-box is
shuffled using the shuffle machine. Afterwards Alice removes the super-box from the shuffle machine
and passes it to Bob, who in turn opens the super-box and chooses exactly one sub-box. Bob chooses a
box according to the serial number of the sub-boxes and the value in Bob’s input box.
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This procedure is observable by all participants, who can verify that Alice and Bob abide by the
rules of the model: for example, they verify that Bob take exactly one box and places the super-box with
the remaining sub-boxes locked in the middle of the table. However, the participants cannot see neither
the serial number of the chosen sub-box nor the serial number of the remaining sub-boxes.

By the construction, it is clear that Bob learns only one value: if Bob deviates and greedily opens
more than one box, the other participants notice that and abort the protocol. Since the super-box was
shuffled and passed to Bob, Alice and all other participants cannot see the serial number of Bob’s chosen
box, and therefore cannot know which of the four sub-boxes Bob chose.

The committed OT implementation described above will be invoked many times during the function
evaluation.

It is important to note that the use of the shuffle machine in the implementation is vital to guaran-
teeing OT properties: without the shuffling, Alice will know which box Bob chose by the relative order
of the chosen box in the super-box. For instance, if Bob chooses the third box in the super-box, Alice
will know that it’s the third box she inserted. The shuffling permutes the sub-boxes into an unpredictable
order, therefore seeing which box was chosen (by its relative position in the super-box) won’t reveal any
information to Alice.

7.1.2 Ideal functionalities for the physical devices

We present ideal functionalities that capture the physical properties of the devices in this model, as
described above. Note that all actions in the physical world are public, and only the values (inputs and
outputs) are private.

In order to capture the notions of validity (opened/unopened boxes) and ownership (who possesses
a given box) in the physical world, we define the following ideal functionality, Fdb:

Functionality Fdb, described in Figure 17, is a registrar of commitments ownership. It models boxes
with serial numbers containing a value inside and possessed by some parties. Each record in the database
represents an unopened box in the physical world. The existence of access control enables us to model
oblivious transfer.

We would like to capture the situation of players sitting in a room equipped with cameras, where
each player can perform actions at any time (we assume time is discrete). Each action is observed and
examined not only by the players but also by the cameras which controls the electricity in the room. In
order to achieve the desired, we define the following ideal functionality Froom:

Functionality Froom, described in Figure 18, proceeds as follows:

– The ability of players to perform actions at any time instant is modeled by having Froom collect all
the messages that the parties wish to send (recall that according to the model each party can send
only one message in each activation which models the fact that each player can perform for at most
one action in a time instant).

– The ability of players to perform actions concurrently to other players’ actions is modeled by having
Froom send simultaneously all the valid messages collected.

– The ability of leaving the room and turn off the electricity (as long as the opening machine is off) is
modeled by having Froom halt whenever receiving and abort message.

– The cameras which are able to detect inappropriate behavior and turn off the electricity (as long as
the opening machine is off) are modeled by having Froom halt whenever there is illegal action that
performed (delivered to designated functionality).

– The turning on of the opening machine after all players performed some specific action (and the
ability to open boxes only after turning it on) is modeled by having Froom discarding all the opening
messages until all the players perform the (Added_m_values) action and setting the machine_on
variable to ’1’ afterwards.

– The machine_on variable indicates whether the opening machine is on or off.
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Functionality Fdb

Functionality Fdb running with functionalities Fccon, Fadd, Fmult, FCOT, Fduplicate, Flocal_open,
Fvalid and a memory M, proceeds as follows: At the first activation, verify that sid = (T ; sid′), where

T is a set of functionality identities; else halt. Also, initialize variable last_cid = 0

1. upon receiving a tuple (owner, cid, Pi) from another ideal functionality, proceed as follows:

(a) if the tuple (cid, Pi, b) is recorded then send the message (valid„ cid, Pi, b) to that ideal func-
tionality.

(b) otherwise, send (invalid_record).

2. upon receiving a tuple (record, cid, Pi, b) from another ideal functionality, proceed as follows:

(a) if the tuple (cid, Pj , b
′) is recorded for some party Pj then send the message (invalid_cid) to that

ideal functionality.
(b) otherwise, add (cid, Pi, b) to M and send the message (recorded) to that ideal functionality.

3. upon receiving a tuple (delete, cid, Pi) from another ideal functionality, proceed as follows:

(a) if the tuple (cid, Pi, b) is recorded then delete (cid, Pi, b) from M and send the message (deleted)
to that ideal functionality.

(b) otherwise, send the the message (invalid_record) to that ideal functionality

4. upon receiving a tuple (delete_read_only, cid, Pi) from another ideal functionality, proceed as fol-
lows:

(a) if the tuple (read_only, cid, Pi, b) is recorded then delete (read_only, cid, Pi, b) from M and
send the message (deleted) to that ideal functionality.

(b) otherwise, send the the message (invalid_record) to that ideal functionality

5. upon receiving a tuple (change_owner, cid, Pi, Pj) from another ideal functionality, proceed as fol-
lows:

(a) if the tuple (cid, Pi, b) is recorded then change the record in M to (cid, Pj , b) and send the
message (changed) to that ideal functionality.

(b) otherwise, send the the message (invalid_record) to that ideal functionality.

6. upon receiving a tuple (restrict_access, cid, Pi) from another ideal functionality, proceed as fol-
lows:

(a) if the tuple (cid, Pi, b) is recorded then change the record in M to (read_only, cid, Pi, b) and
send the message (changed) to that ideal functionality.

(b) otherwise, send the the message (invalid_record) to that ideal functionality

7. upon receiving a tuple
(

duplicate, cid, ˆcid, Pi

)
from another ideal functionality, proceed as fol-

lows:

(a) if the tuple (cid, Pi, b) is recorded then add
(

ˆcid, Pi, b
)

to M and send the message (duplicated)
to that ideal functionality

(b) otherwise, send the the message (invalid_record) to that ideal functionality

8. upon receiving a message (Generate_ID) from another ideal functionality, proceed as follows:

(a) compute last_cid = last_cid+ 1.
(b) send ID (last_cid) to that ideal functionality.

Fig. 17: The database functionality
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Functionality Froom

Functionality Froom running with functionalities Fccon, Fadd, Fmult, FCOT, Fduplicate, Flocal_open,
Fvalid proceeds as follows. At the first activation, verify that sid = (P, T ; sid′), where P is an ordered

set of m identities , and T is a set of functionality identities; else halt. Denote the parties identities
P1, ..., Pm and the adversaries identities

{
A(i,j)

}
i 6=j,i∈P,j∈P . Also, initialize variable

machine_on = 0 and record P = ∅. Next:

1. For i = 1, ...,m do:

(a) Activate the party Pi and collect the message s (If any) it wish to send.
i. verify that the message has the correct structure and the recipients are the functionalities (in

case s 6= ⊥), otherwise discard the message and goto step (a).
ii. if the message is (Local_open) message and machine_on = 0 then discard this message

and goto step (a) with i++.
iii. if machine_on = 1 and the message is not (Local_open) then discard the message and goto

step (a) with i++.
iv. in case s 6= ⊥ check the validity of the message by sending s to the functionality Fvalid; if

is invalid then discard the message and goto step (a) with i++.
v. If the message is (Added_m_values) then update P to contain {Pi}.

2. Deliver all the non discarded messages (which are not abort messages) collected in the previous step
to their destination.

3. Inform all parties and adversaries on any abort received (include aborting parties identities). also, if
machine_on = 0 and some party aborted then halt.

4. If at least one of the delivered messages (which describes an action that has been executed) is not
according to the publicly observable legal behavior and machine_on = 0 then halt.

5. If P contains all parties identity then set machine_on = 1.
6. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) Record Pi as corrupted party and send (Corrupted, Pi) to Pi.

Fig. 18: The room functionality. (the code above is more high level, and the precise code can be derived.)
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– The turning off all other machines after all players performed some specific action is modeled by
having Froom discarding any message besides opening after setting the machine_on to ’1’.

In order to capture the set of available actions to each player at given time we define the following
ideal functionality, Fvalid:

Functionality Fvalid

Functionality Fvalid running with functionalities Froom, Fdb and proceeds as follows: At the first
activation, verify that sid = (T ; sid′), where T is a set of functionality identities; else halt.

1. upon receiving a message m from Froom proceeds as follows:

(a) if the message is (Pass, cid, Pi, Pj) do:
i. if the tuple (cid, Pi, b) is recorded then send (valid) to Froom.

ii. otherwise, send (invalid) to Froom.
(b) if the message is (Add, Pi, cid, cid′) do:

i. if the tuples (cid, Pi, b) and (cid′, Pi, b
′) are recorded then send (valid) to Froom.

ii. otherwise, send (invalid) to Froom.
(c) if the message is (Add_m_values, cid1, . . . , cidm, Pi) do:

i. if the tuples (cid1, Pi, b1), . . . , (cidm, Pi, bm) are recorded then send (valid) to Froom.
ii. otherwise, send (invalid) to Froom.

(d) if the message is (Multiply,Pi, cid, cid′) do:
i. if the tuples (cid, Pi, b) and (cid′, Pi, b

′) are recorded then send (valid) to Froom.
ii. otherwise, send (invalid) to Froom.

(e) if the message is (Duplicate, Pi, cid) do:
i. if the tuple (cid, Pi, b) is recorded then send (valid) to Froom.

ii. otherwise, send (invalid) to Froom.
(f) if the message is (Shuffle, cid00,cid01, cid10, cid11, Pi, Pj) do:

i. if the tuples (cid00, Pi, b00) , (cid01, Pi, b01),(cid10, Pi, b10), and (cid11, Pi, b11) are
recorded then send (valid) to Froom.

ii. otherwise, send (invalid) to Froom.
(g) if the message is (Choose, cid, cid′, Pj) do:

i. if the tuples (cid, Pj , b) , (cid′, Pj , b
′) and

(
read_only, cidbb′ , Pj , b̂

)
are recorded then send

(valid) to Froom.
ii. otherwise, send (invalid) to Froom.

(h) if the message is (Local_open, cid, Pi) do:
i. if the tuple (cid, Pi, b) is recorded then send (valid) to Froom.

ii. otherwise, send (invalid) to Froom.
(i) otherwise, send (valid) to Froom.

Fig. 19: The functionality for verifying validity of action

Functionality Fvalid, described in Figure 19, is a filter of messages generated by the parties. It is
a utility subroutine of Fdb and models the validity of an action of a player at current time instant and
ensures that all the needed components of the desired action are available; in particular it checks that
all the boxes associated with this action are owned by the applicant. Here, cid is the commitment ID,
used to distinguish among the different commitments that take place within a single instance of protocol.
Presenting Fvalid separately from Fdb is done for the sake of simplicity.
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Additionally, we model the actions available in the physical world. We need to capture the ability to
create boxes with chosen or random content either privately or publicly. Furthermore, we need to capture
the ability to pass a box to another player.

Functionality Fccon

Functionality Fccon running with functionalities Fdb, Froom and proceeds as follows: At the first
activation, verify that sid = (P, T ; sid′), where P is an ordered set of m identities, and T is a set of

functionality identities; else halt. Denote the parties identities P1, ..., Pm and the adversaries identities{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.
(b) send to all Pi related adversaries all inputs given by Pi.

2. Upon receiving a value (Content, Pi, b) from Froom where b ∈ {0, 1} proceed as follows:

(a) generate a unique cid ( for instance cid = last_cid+ 1)
(b) record the tuple (cid, Pi, b) .
(c) send the message (Receipt, cid, Pi) to P1, ..., Pm and all the adversaries.

3. Upon receiving a value (Rand_content, Pi) from Froom, proceed as follows:

(a) generate a unique cid
(b) choose a random bit b ∈ {0, 1}, and record the tuple (cid, Pi, b).
(c) send the message (Receipt_rand, cid, Pi) to P1, ..., Pm and all the adversaries.

4. Upon receiving a value (Public_content, Pi, b) from Froom, proceed as follows:

(a) generate a unique cid
(b) record the tuple (cid, Pi, b).
(c) send the message (Receipt_public, cid, Pi, b) to P1, ..., Pm and all the adversaries.

5. Upon receiving a value (Pass, cid, Pi, Pj) from Froom, proceed as follows:

(a) change record to (cid, Pj , b) where b is the recorded value.
(b) send (Passed, cid, Pi, Pj) to P1, ..., Pm and all the adversaries.

Fig. 20: The functionality for encapsulating chosen or random content

Functionality Fccon, described in Figure 20, proceeds as follows:

– The “commitment to a chosen content” mode is modeled by having Fccon receive a value
(Content,Pi, b) from Froom (which in turn received it from Pi, the committer). Here b ∈ {0, 1} is the
value committed to. In response, Fccon generates an unique commitment ID cid, lets all the parties
know that Pi has committed to some value and that this value is associated with commitment ID cid.
This is done by sending the message (Receipt, cid, Pi) to all the parties.
The “publicly commit to a chosen content ” mode is modeled similarly. This models the ability of
players to choose a private/public value and publicly place it in a box.

– The “commitment to a random content” mode is modeled by having Fccon receive a value
(Rand_content, Pi) from Froom. In response, Fccon generates an unique commitment ID cid, ran-
domly chooses a bit b ∈ {0, 1}, and informs all the parties that Pi has committed to some value.
This is done in the same way as for commitments with chosen content.
This models the ability of players to obtain a private random value using a designated machine and
publicly place it in a box.
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– The “commitment ownership passing” mode is modeled by having Fccon receive a value (Pass, cid,
Pi, Pj) from Froom (which in turn received it from Pi, the current owner). Here, in addition, the
message includes the identity of the receiver. In response, Fccon sends the message (Passed, cid, Pi,
Pj) to all the parties.
This models the ability of players to publicly pass a box to other players.

Next, we model the addition, multiplication and duplication machines. This is done in a straightfor-
ward manner.

Functionality Fadd

Functionality Fadd running functionalities Fdb, Froom proceeds as follows. At the first activation,
verify that sid = (P, T ; sid′), where P is an ordered set of m identities, and T is a set of functionality

identities; else halt. Denote the parties identities P1, ..., Pm and the adversaries identities{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

.

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.

2. Upon receiving a value (Add, Pi, cid, cid′) from Froom, proceed as follows:

(a) generate a unique ˆcid

(b) record the tuple
(

ˆcid, Pi, b+ b′
)

where b,b′ are the values associated with cid, cid′ respectively.

(c) delete the records (cid, Pi, b) and (cid′, Pi, b
′) .

(d) send (Added, cid, cid′, ˆcid, Pi) to P1, ..., Pm and all the adversaries.

3. Upon receiving a value (Add_m_values, cid1, . . . , cidm, Pi) from Froom, proceed as follows:

(a) compute result =

m∑
j=1

bj where bj is the value associated with cidj .

(b) generate a unique ˆcid

(c) record the tuple
(

ˆcid, Pi, result
)

(d) delete the records (cid1, Pi, b1), . . . , (cidm, Pi, bm)
(e) send (Added_m_values, cid1, . . . , cidm, ˆcid, Pi) to P1, . . . , Pm and all the adversaries.

Fig. 21: The functionality computing addition

Functionality Fadd, described in Figure 21, proceeds as follows:

– The “add two committed contexts” mode is modeled by havingFadd receive a message (Add,Pi, cid,
cid′) from Froom. Here cid,cid′ are the commitment ID’s of the addends, and ˆcid is the commitment
ID of the result. In response,Fadd generates an unique ˆcid (commitment ID of the result), records the
result and delete the records that have been used. Then Fadd lets all parties know that Pi has added
two values associated with commitment IDs cid and cid′, and that the resulting value is associated
with commitment ID ˆcid. The “add m committed contexts” mode is similar.

Functionalities Fmult and Fduplicate, described in Figures 22 and 23 proceed in the same way as
Fadd , mutatis mutandis.
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Functionality Fmult

Functionality Fmult running with functionalities Fdb,Froom and proceeds as follows. At the first
activation, At the first activation, verify that sid = (P, T ; sid′), where P is an ordered set of m

identities, and T is a set of functionality identities; else halt. Denote the parties identities P1, ..., Pm
and the adversaries identities

{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

.

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.

2. upon receiving a value (Multiply, Pi, cid, cid′) from Froom, do:

(a) generate a unique ˆcid

(b) record the tuple
(

ˆcid, Pi, b · b′
)

(c) delete the records (cid, Pi, b) and (cid′, Pi, b
′) .

(d) send (Multiplied,cid, cid′, ˆcid, Pi) to P1, ..., Pm and all the adversaries.

Fig. 22: The functionality computing multiplication

Functionality Fduplicate

Functionality Fduplicate running with functionalities Fdb, Froom and proceeds as follows.At the first
activation, At the first activation, verify that sid = (P, T ; sid′), where P is an ordered set of m

identities, and T is a set of functionality identities; else halt. Denote the parties identities P1, ..., Pm
and the adversaries identities

{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

.

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.

2. Upon receiving a value (Duplicate, Pi, cid) from Froom, proceed as follows:

(a) generate a unique ˆcid

(b) record the tuple
(

ˆcid, Pi, b
)

(c) send (Duplicated, cid, ˆcid, Pi) to P1, ..., Pm and all the adversaries.

Fig. 23: The functionality for duplicating records

46



Functionality FCOT

Functionality FCOT running with functionalities Fdb, Froom and proceeds as follows. At the first
activation, At the first activation, verify that sid = (P, T ; sid′), where P is an ordered set of m

identities, and T is a set of functionality identities; else halt. Denote the parties identities P1, ..., Pm
and the adversaries identities

{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

.

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.

2. Upon receiving a value (Shuffle, cid00,cid01, cid10, cid11, Pi, Pj) from Froom, proceed as follows:

(a) change records to (read_only,cid00, Pj , b00) , (read_only, cid01, Pj , b01),
(read_only, cid10, Pj , b10), and (read_only, cid11, Pj , b11).

(b) send (Passed_read_only, cid00, cid01, cid10, cid11, Pi, Pj) to P1, ..., Pm and all the adversaries.

3. Upon receiving a value (Choose,cid′, cid′′,Pj) from Froom proceed as follows:

(a) generate a unique ˆcid

(b) record the tuple
(

ˆcid, Pj , b̂
)

(̂b is the value inside box cidcid′cid′′)
(c) delete the records (read_only, cid11, Pj , b11), (read_only, cid01, Pj , b01),

(read_only, cid00, Pj , b00), and (read_only, cid10, Pj , b10)

(d) send the message (Chosen,cid′, cid′′, ˆcid, Pj) to P1, ..., Pm and all the adversaries.

Fig. 24: The functionality for shuffling

Next, we model Oblivious Transfer (OT), which was described in 7.1.1 and presented in Figure 24.
Functionality FCOT, which is used to models OT, proceeds as follows.

– The permuting operation is modeled by having FCOT receive a value (Shuffle, cid00,cid01, cid10,
cid11, Pi, Pj) from Froom. Here, Pj is the receiver. In response, FCOT changes the owner of the
commitment to Pj and the permission to “read-only”. Then, it lets all parties know that Pj is the
new owner of the “read-only” commitments.

– The choosing operation is modeled by having FCOT receive a value (Choose, cid′, cid′′,Pj) from
Froom. In response, FCOT generates an unique ˆcid (new commitment ID for the chosen commit-
ment), records the commitment associated with the values inside cid’, cid′′ with it new ID, deletes
the “read-only” commitments and informs the parties that Pj has chosen a commitment that associ-
ated with commitment ID ˆcid.
This ensures that all players have no clue regarding the serial number of the chosen box (which is
uniquely determined by the values inside cid’ and cid′′) but they can verify that only one box was
chosen.

– Destroying the boxes after choosing one of them is modeled by having FCOT delete all records
associated with the OT after the receiving party chose his box. Deleting all records ensures that no
additional information regarding sender’s input to the OT will be revealed.

Finally, we would like to capture the ability of players to publicly open a box they possess via the
opening machine, while keeping its content private. This is done in a straightforward manner.

Functionality Flocal_open, described in Figure 25, proceeds as follows. Flocal_open is initiated by
receiving a message (Local_open, cid, Pi) from Froom. In response, Flocal_open hands the value (Open,
cid, Pi, b) to Pi and lets all parties know that Pi has opened a commitment he owns with the serial
number cid. In addition, the opened record is destroyed.
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Functionality Flocal_open

Functionality Flocal_open running with functionalities Fdb, Froom and proceeds as follows. At the first
activation, At the first activation, verify that sid = (P, T ; sid′), where P is an ordered set of m

identities, and T is a set of functionality identities; else halt. Denote the parties identities P1, ..., Pm
and the adversaries identities

{
A(i,j)

}
i 6=j,i∈P,j∈P . Next:

.

1. Upon receiving input (Corrupt, Pi, p) from Pi related adversary A(i,j) do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.
(b) send all Pi related adversaries any output that was given to Pi.

2. Upon receiving a value (Local_open, cid, Pi) from Froom,do:

(a) if Pi corrupted then send the message (Open, cid, Pi, b) to all Pi related adversaries; otherwise,
sent it to Pi.

(b) delete the record (cid, Pi, b).
(c) send (Opened, cid, Pi) to P1, ..., Pm and all the adversaries.

Fig. 25: The functionality that locally opens messages

We clarify that all the ideal functionalities presented communicate among themselves via secure
channels. In addition, all record, delete, duplicate and ownership requests are done by sending an appro-
priate request to Fdb. The relations between functionalities are presented in Figure 26.
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Fig. 26: The hierarchy of the ideal functionalities. A bidirectional arrows represent bidirectional com-
munication where one directional arrow represent communication in the arrow direction.

7.1.3 An ideal functionality for secure function evaluation

We would like an ideal functionality that would capture multi-party computation in the physical model
presented3 above. This ideal functionality proceeds in rounds, and at each round may leak information
to the adversarial parties.

3 For simplicity we restrict ourselves to PPT functions instead of functionalities
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We would like to capture an ideal process for securely evaluating a function in a physical computa-
tion model. We would like to allow parties to act simultaneously at all times, therefore the functionality
proceeds in rounds. At each round all parties may act if they wish to. Since each action can depend only
on actions that precede it, we can linearize and discretize the actions through the use of rounds.

Moreover, we would like all actions to be transparent to all participants, that is: all parties should be
aware of the actions taken so far. Our goal is to maintain the inputs’ and outputs’ privacy while making
the action public. To that end, we have the functionality inform all parties and adversaries about any
defection. This ideal functionality formally presented in Figure 27.

.

7.2 The Physical-GMW protocol

We now present a construction form parties to compute any function f that is expressed by an arithmetic
circuit which consists of OR and AND gates. We assume that there are m parties P1, ..., Pm, and each
input consists of n bits. We further assume that each party holds the values of some of the input wires to
the circuit, and in addition there are random input wires.

Our construction is similar to the GMW protocol in the honest-but-curious setting, where the goal
is to propagate, via private computation, shares of the input wires of the circuit to shares of all wires of
the circuit, so that finally we obtain shares of the output wires of the circuit. In contrast, our construction
will be resilient to Byzantine adversaries. In all steps of the protocol party Pi starts his computation only
after party Pi−1 had finished and all the messages generated by the parties P1, ..., Pm are send through
Froom.

The key points of the construction are that at any moment there exists only one legal action which
should be performed by some specific party and verified by all the others. Thus, this protocol has exactly
one valid transcript (which is unavoidable in order to prevent corrupted parties from signaling). In addi-
tion, no party can deviate by opening commitments it owns since the opening functionality is activated
only in the last round of the protocol. Moreover, in this round the only commitments available to parties
are the ones that associated with their outputs and the only functionality available is Flocal_open. There-
fore, no party can discover its output while preventing output from others. In other words, the protocol
guarantees complete fairness.

7.2.1 The protocol Πf
GMW

Let f be some PPT function and let Cf be the analogous arithmetic circuit. Let P = P1, ..., Pm
denote the parties identities and xi denote the input of party Pi.

Step 0: Insuring the only faults are “abort faults” Since all the commitment ID’s (cid’s) are generated
by Fccon, Fadd, Fmult and Fduplicate sequentially and each ideal functionality sends all the commitment
IDs involved in the operation it performs (Fccon in “pass”, Fadd in “Add” etc.) to all parties, each
party can verify that all the parties are using the right boxes for the operations (“pass”, “add”, etc) by
reconstructing the sequence of ID generation. If some partyPj doesn’t follow the protocol then all parties
will detect that and abort (this cheating will be included in parties transcript). Moreover, all operations,
the ID’s of the parties involved in them, and the commitment ID’s associated with them are fully public.
Hence, each party can verify that the protocol is followed properly.

Step 1: Sharing the inputs Each party Pi (in increasing order of i) splits each of its input bits. That
is, for every input bit xij for j = 1, ..., n and k 6= i (in increasing order of k) the party Pi generates a
commitment to a random bit rkj using Fccon. Then, party Pi sets his own share of his j-th input wire
by generating a commitment to xij +

∑
k 6=i
rkj by adding two values repeatedly using Fadd (the party will

duplicate the shares before using Fadd). Then, each party Pi (in increasing order of i) shares each of its
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Functionality Ffpsfe

Functionality Ffpsfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})m ×R→ ({0, 1}∗)m.
At the first activation, verify that sid = (P; sid′), where P is an ordered set of m identities; else halt.
Denote the parties identities P1, ..., Pm, adversaries identities

{
S(i,j)

}
i 6=j,i∈P,j∈P and let pid′ be the

first PID in P .Also, initialize variables x1, ..., xm, y1, ..., ym to default value ⊥ , currpid = pid′ and
output a continue message to all

{
S(pid′,j)

}
pid′ 6=j,j∈P (referred as currpid related adversaries).
Next:

1. INPUT: Upon receiving input (Input,v) from party Pi then set xi = v and output (Input, Pi) to all
Pi related adversaries.

2. RESPONSE: Upon receiving message (response) from all currpid related adversaries do:

(a) if currpid is not the last PID in P then:
i. record responses

ii. advance currpid and output a continue message to all currpid related adversaries.
(b) else do as follows:

i. set currpid = pid′

ii. if all response=okay send an advance message to all adversaries and a continue
message to all currpid related adversaries.

iii. if at least one response=abort (at least one party aborted the game)

A. output the identities of the aborting parties to all parties and adversaries.
iv. if at least one response=cheat (at least one party deviated) do:

A. output the identities of the cheating parties followed by the description of the defections
to all parties and adversaries.

v. if at least one response=output do:
A. if xi has been set for all parties in P , and y1, ..., yn have not yet been set, then choose

r ← R and set (y1, .., yn) ← f(x1, ..., xn, r); else if xi has not been set for all parties,
ignore .

B. for each output request: if the party is corrupted then output yi to all PID related adver-
saries; else output yi to the party.

C. output the identities of the output requesting parties to all other parties and adversaries.
vi. if (iii) or (iv) happened and none of the parties received output then halt; otherwise, output

continue message to all currpid related adversaries.

3. CORRUPT: Upon receiving input (Corrupt, Pi, p) from Pi related adversary do:

(a) record Pi as corrupted party and send (Corrupted, Pi) to Pi.
(b) give xi, output that was given to Pi (if any) and the identity of the corrupter to all Pi related

adversaries.

4. DELIVER: Upon receive input (Deliver, S(`,k), m) from S(i,j) and Pi is corrupted then:

(a) if i = ` then output (Deliver, S(i,j), S(`,k), m) to S(`,k).

5. SET INPUT: Upon receiving input (set_input,Pi, v′) from Pi related adversary do:

(a) if Pi is corrupted and none of the parties received output then set xi ← v′; otherwise ignore.

Fig. 27: The functionality for secure function evaluation
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input bits with all other parties (in order): Pi sends to party Pk its share of the j-th input wire of party Pi
using Fccon. Additionally, each party Pi (in increasing order of i) generates a commitment to a random
bit using Fccon for each of his random input wires. To guarantee total order, Pi will start only after Pi−1

finishes.
During this process, each party verifies, as described in Step 0, that the proceedings are done cor-

rectly.

Step 2: Circuit emulation Proceeding by the order of wires in Cf , the parties use their commitments to
the two input wires to a gate in order to privately compute shares for the output-wire of the gate. Suppose
that the parties hold the commitments that correspond to the two input wires of some gate: that is, for
i = 1, ...,m, party Pi holds the commitments to the shares ai, bi, where a1, ..., am are the shares of the
first wire, and b1, .., bm are the shares of the second wire.

Since the boxes are destroyed after use, each party (in increasing order) duplicates the shares it is
about to use the exact number of times those shares will be needed in the future (and only if it didn’t
duplicate those shares before). Next, we consider the usual two cases:

Evaluation of OR gate:
Each party (in increasing order) sets its output wire to be ai+ bi by using Fadd. In other words, each

party commits to the XOR of ai and bi using the functionality Fadd. That way, the shared output will be
given by

m∑
i=1

(ai + bi) = a+ b

and that is the desired true output.
Evaluation of AND gate:
The true value is given by(

m∑
i=1

ai

)
·

(
m∑
i=1

bi

)
=

m∑
i=1

aibi +
n∑
i=1

∑
i<j≤m

(aibj + ajbi)

Thus, if every party Pi will have his share set to

wi = aibi +
∑

i<j≤m
(aibj + ajbi)

then the true output will be given by
∑
wi.

Since each party Pi owns commitments to ai, bi it is left with the task of finding out the value of
aibj + ajbi for every i < j. For every i, j such that i < j, it is Pj’s responsibility to help the party
Pi learn aibj + ajbi. The solution is to use FCOT: For each j > i in increasing order of j the party
Pj will generate “read only” commitments to aibj + ajbi for every possible combination of (ai, bi) by
publicly committing twice to 0 and then twice to 1 using Fccon and then using Fadd and Fmult. Then,
using Fshuffle, it will transfer the commitment to the correct combination to party Pi by passing all four
commitments to Pi and allowing Pi to choose the one that corresponds to his shares. That way, the i-th
party will obtain a commitment to the j-th share it needs in order to compute its own share using the
suitable ideal functionalities.

Again, as in Step 1 each party Pk verifies that Pi was using the right values (commitments) in the
evaluation (in other word, in case of the OR gate evaluation, Pi indeed set wi to be ai + bi and not
ai+1 + bi−1for example), and that the calculations are done in the right order. And again, this is done as
described in Step 0.

Step 3: Output reconstruction Once the shares of Cf output wires are computed, each party passes its
commitment to the share of each such wire to the party with which the wire is associated (in increasing
order). This is done using Fccon. Once again the each party verifies that the right commitment was sent
to the right party (as described in Step 0).
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Then, in an order described before, each party adds all m shares using Fadd. Lastly, all parties open
their box containing the sums and discover the function output using Flocal_open (again, this is done in
an order described above but here parties do not verify the behavior of others and do not abort due to
inappropriate behavior).

Again, each party Pk verifies that Pi was using the right values (commitments) in the evaluation and
in the correct order (this is done as described in Step 0).

This completes the description of Πf
GMW and now we are ready to prove the following theorem:

Theorem 10. Let f be a PPT function. Then, protocol Πf
GMW LUC-realizes Ffpsfe in the presence of

adaptive adversaries where the corruptions are done PID-wise. Moreover, Πf
GMW guarantees complete

fairness .

On the use of cameras. The reader should note that opposed to [ILM05] our protocol can handle up to
n corruptions and not n− 1. This implies that signaling is prevented even if all the parties are corrupted.
We do not establish security on the existence of honest party to detect inappropriate behavior. Instead,
we introduce the camera entity which takes the responsibility of honest parties to perform detection.
This entity enforces honest behavior not only by detection but also by controlling the activation of
machines. Although, it might considered as unusual assumption, the existence of such external observer
is essential to obtain the ability to reason about game theoretic solution concepts which require absence
of coalitions.

7.2.2 Proof sketch

The proof is strongly relies on parties common knowledge of the unique legal behavior enforced by the
protocol and on the ability to verify each step in the execution. Moreover, no matter when a party was
corrupted we know that up to this point all parties honestly followed the protocol.

We prove this theorem with respect to the dummy adversary D by showing that there exists an
simulator SD such that no environment Z can distinguish between LEXECLIDEAL

Ff
psfe

,SD,Z and

LEXEC
Πf

GMW,D,Z . In our case, the output ensembles will be identically distributed.

High-level description of the simulator SD.
The simulation is done in a round-by-round manner. Since the ideal functionality Ffpsfe enforces round
discipline, no simulator will proceed to round k unless all the simulators successfully passed round
k−1 (where “successfully passed” is that all the parties neither cheated nor aborted in round k−1). We
call the output given by Ffpsfe regarding the aborting and cheating of parties (i.e., advance/abort/cheat

messages from Ffpsfe) at current round as “round leakage”.

Simulation of honest party Pi. Since all the communication is done via ideal functionalities which
reports to all entities, the simulator need only to send response=okay messages and
response=output message (when it is Pi’s turn to receive output from Flocal_open) to Ffpsfe unless

the party is corrupted at some later time. In addition, SD generates an appropriate messages as inΠf
GMW

and forward them to Z based on the output message from Ffpsfe regarding current round leakage. This
can be easily done since at each round there is only one action associated with an advance message,
where any other type of the messages contain all the information needed. If the party is later corrupted,
the simulator receives party’s input and any output it received from Ffpsfe and can construct its internal
state (see internal state construction).

Internal state construction. When party Pi become corrupted, the simulator need to generate an in-
ternal state which reflects a honest participation of the party in Πf

GMW up to the corruption point. Upon
receiving an input (Corrupt, Pi, p) SD forward it to Ffpsfe. Recall that the only private information
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available to Pi is its input (to which Pi committed in step 1) and the output received from Flocal_open.
However, SD receives this information from Ffpsfe and can easily construct the internal state based on
the well-known legal transcript.

Corrupted party simulation. Here we analyze two possible scenarios: In case SD is not the corrupter
of Pi then it forwards all inputs from Z to the corrupter. This is done using the Deliver service provided
by Ffpsfe. all outputs received from Ffpsfe are treated as in the “honest party simulation”.

When SD is the corrupter of Pi, it honestly plays the role of Froom. More formally, upon receiving
a continue message the simulation of round k proceed as follows:

When received round k instruction, SD informs the ideal functionality Ffpsfe about this by sending
an appropriate message (a cheat message would be accompanied by a deviating message that SD
generates by honestly simulating the response of the suitable ideal functionality that the instruction was
aimed for). Note that if the instructed action is unavailable for the party at current round according to
Froom and Fvalid (which SD honestly simulates) then SD sends okay to Ffpsfe. Based on the leakage

of Ffpsfe in this round SD simulates the responses of all functionalities used at this round (as done in
“honest party simulation”).

In addition, during the simulation of Step 1 (of the protocol), SD plays the role of Fccon. In this step,
Z should commitment to chosen content. In the process, SD will discover the value x′i that Z uses as an
input to the protocol and will update Pi’s input sending (set_input,Pi, x′i) to Ffpsfe. All of this
holds only if Z plays the protocol correctly (neither aborts nor cheats) until this phase.

Output distribution indistinguishability.
All the parties’ actions are public since all actions are done via the ideal functionalities (capturing the
corresponding physical actions), which inform all the parties regarding the illegal actions other parties
do. By the protocol’s construction, there is only one valid run (transcript) of the protocol. Therefore, as
mentioned previously, any party at any time can verify (even during the execution of the protocol) that
the protocol executed correctly: that is, no cheating can go undetected.

On the one hand, if there occurred cheating/aborting at some round k in the real world, then in
the ideal world, once the simulation reaches round k, we will discover the defection via the leakage
provided by the ideal functionality Ffpsfe (as described in the simulation) and generate output according
to the output of the suitable ideal functionalities in the real world. Note that no cheating can occur in the
opening the output wires phase since the only available functionality isFlocal_open and the only available
commitment is the output. Furthermore, causing the protocol to abort at this phase is impossible. Due to
the leakage and the round-by-round simulation, the environment view is identical to its view in the real
world. Moreover, the views of all internal adversaries are consistent with each other.

On the other hand, if there was no deviation, the simulators play honestly, making the view of the
environment in the simulation identical to the view of the real-world. The protocol has only one legal
transcript, which all the simulator know. The transcripts produced by the simulators would be the legal
transcripts, which are consistent with each other, and the union of these transcripts represents the only
legal execution of the protocol. In particular, the output of the function would be same as in the real
world.

8 A solution via semi-trusted mediator

This section presents general constructions for LUC-realizing any multi-party ideal functionality in the
presence of adaptive adversaries. The high-level construction is basically that of Alwen et. al. [AKL+09].
The idea is to add a shared subroutine, called the mediator, which the parties partially trust: if the media-
tor is honest, the resulting LUC-security guarantees isolation between players. Moreover, if the mediator
is dishonest it can harm only the separation guarantee; but neither the security nor the correctness is dam-
aged. However, there are some differences (that also differentiate our feasibility result from [AKMZ12]).
First, Alwen et. al. consider static adversaries whereas we consider adaptive adversaries. The second dif-
ference between the Alwen et. al. construction and ours is that while Alwen et. al. consider super-ideal
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channels, where the adversary is not aware if a communication occurred, we consider more realistic
setting where any communication leaks information to the adversaries and controlled by them. We note
that although the protocols are similar, our proof of security is significantly different. In particular, we
have to deal with the fact that the revealed communication and the adversarial capabilities might be used
as additional means of immunity testing.

We begin by presenting the components of our construction. Following this we present the protocol
for LUC-realizing any multi-party functionality in presence of static adversaries. Then we extend the
protocol to the adaptive case.

8.1 Functionalities

The first step is to define the set of functionalities for which our feasibility results apply. As in the work
of [CLOS02,CDPW07] we put some restrictions on the ideal functionalities to be realized . We consider
the following class of ideal functionalities:

Well-formed functionalities. Informally, a well-formed functionality allows the adversary to delay
the generation of outputs to uncorrupted parties and receive the length of their inputs. In addition, it
allows the adversary to control the inputs and outputs of all corrupted parties. The formal definition is
presented in [CLOS02].

Aborting functionalities. A functionality F is aborting if the ideal protocol LIDEALF allows the
adversary to abort the execution at any time by giving special input ⊥ to F . Moreover, the adversary
allowed deciding which of the honest parties outputs ⊥.

Non-reactive functionalities. For sake of simplicity we restrict ourselves to non-reactive function-
alities. In other words, we consider functionalities for secure function evaluation.

8.2 Tools and assumptions

We review the functionalities and the underlying protocols used within our construction.

8.2.1 The LUC functionalities

The functionalities presented below are standard, well known functionalities that are extended to a
multiple adversary setting. We start by formally defining in LUC the widely use term of delayed-output.

Delayed-output. A delayed-output to some party is an output that its delivery is adversarially sched-
uled. More formally, in a centralized adversary frameworks a functionality said to generate a delayed
output m to party P if: Whenever the output m is ready to be outputted to P by the functionality, it
sends (OUTPUT, P, p) to the adversary, where p is optional parameters. Later, whenever receiving an
input of the form (APPROVE, P, p) from the adversary, the functionality writes m to the subroutine
output tape of P . A public delayed output reveal the output m to the adversary, where private delayed
output not. We extend this definition to the LUC framework for two-party functionalities as follows: Let
P1, P2 denote the party-identities, and A(1,2), A(2,1) denote the appropriate adversaries. Functionality
F generates delayed output m to Pi by sending (OUTPUT, Pi, p) first to A(i−1,i) and upon receiving
its confirmation F sends (OUTPUT, Pi, p) to A(i,i−1). Once A(i,i−1) approves the output delivery, F
writes m to the subroutine output tape of Pi.

Secure Message Transmission functionality. Informally, in secure message transmission the ad-
versary has no access to the content of the transmitted message and only learns that a message was send.
In addition, the transmission is ideally authenticated. The original formulation of the secure message
transmission functionality Fsmt can be found in [Can01]. We extend Fsmt to the LUC framework by
defining the analog merger functionality Fsmt as in Definition 5. The functionality is formally presented
in Figure 28.
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Functionality Fsmt

Functionality Fsmt running with parties S, R and the adversaries S(S,R), S(R,S), proceeds as follows:

– Upon receiving an input (Send, sid, m) from party S do: verify that sid = (S,R, sid′), else ig-
nore the input. Next, record m, and send a private delayed output (Send, sid, m) to R. Once m is
recorded, ignore any subsequent (Send, ...) inputs.

– Upon receiving an input(Corrupt,sid,T) ,where T ∈ {S,R}, from an appropriate adversary
do: if T = S then disclose m to S(S,R) and S(R,S). Furthermore, if S(S,R) now provides an input m′

and the output was not yet written on R’s tape, then change recorded message to m′. In any case,
output (Corrupted,sid,T) to the newly corrupted party.

– Upon receiving an input (Deliver, S(j,i), m) from S(i,j) do: verify that S(i,j) and S(j,i)∈
{S(S,R), S(R,S)}, else ignore the input. output (Deliver, S(j,i),S(i,j), m) to S(j,i).

Fig. 28: The secure message transmission functionality Fsmt

Augmented CRS functionality. Recall the LUC augmented CRS functionality Ḡacrs presented in
Figure 5. Similarly to the UC functionality Ḡacrs, it holds a single short “master public key”, and guar-
antees that the parties who follow their protocols never obtain their secret keys. In addition, any retrieve
or CRS request done by some party is notified to all its adversaries. It is important to note that Ḡacrs do
not enable the adversaries to exploit its services for signaling.

8.2.2 The underlying protocol

Now, we are ready to define a general class of protocols and show that any well-formed aborting
functionality F can be UC-realized by some protocol in this class. Our feasibility result is applied with
respect to this class of protocols.
G-Setup oblivious protocols. A protocol π is G-setup oblivious if it consists of a setup-phase, in

which all the interaction between parties and G happens. Moreover, this phase precedes any other com-
munication in the protocol, and any incoming communication is ignored until the end of the setup-phase.

Claim. For any adaptively well-formed aborting ideal functionality F , there exists a Ḡacrs-setup obliv-
ious protocol π that UC-realizes F in the Ḡacrs-hybrid model in the presence of static adversaries over
unauthenticated channels, where all corruptions are PID-wise.

The claim follows by composing the [CDPW07] protocol for realizing any well-formed aborting
functionality over authenticated channels with the authentication protocol in [Wal08]. The obtained
protocol in the Ḡacrs-hybrid model can be modified to a new protocol where all the interaction with
Ḡacrs performed offline.

A protocol π that UC-realizes F . Let π be an n-party protocol as in Claim 8.2.2. We assume the
following about π, all of which can be ensured using standard techniques:

– The protocol π consists of a sequence of rounds. It has a fixed, known number of rounds and every
party learns its output in the final round of the protocol.

– All messages in π include the round number it associated with. In any given round each party send
fixed length messages to all other parties (at once) and these messages do not depend on messages
associated with the current round.

8.3 Oblivious computation of π

The general structure of the compiler, as described in the introduction, has the mediator send to each
party P commitments (using a commitment scheme C) to its protocol messages of π. Thus, P cannot
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compute its π-messages directly, but rather it is done by executing a two-party protocol with the media-
tor. Specifically, we define a two-party functionality FπOblComp that computes the next π-message of P
and enables P to obtain its π-output. This functionality is stateless but verifies that P and the mediator
agree on protocol history with respect to P ’s view; it also updates P ’s view. In case of failure a special
message ⊥ outputted. More formally, FπOblComp expect to receive, both from P and the mediator, com-
mitments to all previous messages received by P in π, and to its inputs and randomness. It also receives
decommitment information to each of the commitment from the appropriate entity. Then, FπOblComp ver-
ifies input correctness and consistency; this verification guarantees that no corrupted party/mediator is
able to learn information or bias the output of honest parties. The formal definition of the functionality
FπOblComp can be found in Figure 29.

8.4 An ideal functionality for secure function evaluation

Protocol π is UC-secure and therefore it guarantees correctness in its original setting. However, when
introducing another entity (i.e., a mediator) the correctness is no longer guaranteed, and it depends on
the mediator integrity. When the mediator is honest correctness should be maintained. In the case of
corrupted mediator, this is no longer true. A corrupted mediator can prevent honest parties from receive
their output (and receive ⊥ instead). However, the mediator cannot learn any information on honest
parties’ inputs and outputs or to cause a honest party to output an incorrect value.

To capture these capabilities, we present an ideal functionality which initially receives a bit that
indicates the integrity of the mediator and behave according to it. In the honest mediator case, in contrast
to the SFE functionality presented in Figure 27, the ideal functionality here, denoted by Ffmsfe, does not
provide the corrupted parties with a leakage regarding the defection of players. Additionally, letting the
scheduling be completely controlled by the environment (by introducing the (Compute,...) input) enables
Ffmsfe to provide only limited means of synchronization between parties. (See discussion regarding these
SFE functionalities in 8.4.) More formally, Ffmsfe receives also (Compute,...) inputs and forward them
to the appropriate adversary for approval.Ffmsfe do not allow the adversaries to communicate, and it only
notifies the adversaries whenever there are approved (Compute,...) inputs of all parties. Excluding this
difference in the adversarial interface, Ffmsfe behaves the same as the standard SFE functionality. In the
corrupted mediator case, Ffmsfe behaves similarly to the UC functionality Ffsfe (presented in [Can01]);
however it additionally receives a (Compute,...) input. This ideal functionality is formally presented in
Figure 30.

Mediated vs. Physical Solution. The difference between the secure function evaluation function-
ality Ffmsfe and functionality Ffpsfe that presented in the GMW section is the synchronization provided

to parties by the functionality. Recall that Ffpsfe operates in round robin manner, and therefore provides

strong synchronization, where Ffmsfe provides only minimal synchronization. This difference follows
from Ffpsfe being designed for a specific physical setting as described in Section 7. Therefore, the pro-

tocol realizing this functionality can operate only in this setting. In contrast, functionality Ffmsfe, and
the protocol realizing it can be used in any setting. Moreover, Ffmsfe can be modified to define different
clusterings of isolated parties and the realizing protocol will preserve this isolation.

8.5 A compiler for secure multi-party computation

We present a general compiler MComp() that translates a given protocol π to a more “robust" one that
introduces new entity called mediatorM. The compiled protocol has a strong isolation guarantee and
preserves the original properties even when the mediator is malicious. Informally, the effect of the com-
piler on the mediator’s capabilities is that the mediator must exhibit honest behavior, or else its cheating
will be detected. The compiler expects π to be a fully instantiated protocol, namely a protocol that uses
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Functionality FπoblComp

Functionality FπOblComp proceeds as follows, given a protocol π. At the first activation, verify that
sid = (P,M; sid′), where P is an ordered set of m identities; else halt. Denote the parties identities
Pj ,M and the adversaries S(j,M), S(M,j). Also, initialize variables OUTj and −−→msg to ⊥. Next:

– Pj inputs a pair of commitments cominput and comrand; a vector of commitments
−→
C ; and a round

number rid. In addition, Pj inputs strings decinput and decrand, and string CRS.

– M inputs a pair of commitments cominput
j and comrand

j ; a vector of commitments
−→
Cj ; a commit-

ment Crid′−1
j ; and a round number rid′. In addition,M inputs a vector

−−→
decj , decrid′−1

j and a string
CRS′.

1. Upon receiving an input (Compute− party, sid, cominput, comrand,
−→
C , rid,

decinput, decrand, CRS) from party Pj record the input, and send a public delayed output (Re-
ceipt_party, sid, Pj) toM. Once it is recorded, ignore any subsequent (Compute− party, ...) in-
puts.

2. Upon receiving an input (Compute, sid, cominput
j , comrand

j ,
−→
Cj , C

rid′−1
j , rid′,

−−→
decj , decrid′−1

j , CRS′) from M and (Compute− party, sid, ...) already outputted to M, then
record the input. Once it is recorded, ignore any subsequent (Compute, ...) inputs.

3. Upon receiving (Corrupt,sid,T),,where T ∈ {Pj ,M}, from an appropriate adversary, do:
give both adversaries this party inputs. Furthermore, if this adversary now provides some input value
and none of the parties received output, then change the record to this value. In any case, output
(Corrupted,sid,T) to the newly corrupted party.

4. Upon receiving an input (Deliver, S(j,i), m) from S(i,j) do: verify that S(j,i) and S(i,j)∈
{S(j,M),S(M,j)}, else ignore the input. output (Deliver, S(j,i), S(i,j), m) to S(j,i).

5. Upon receiving an input (next_message,sid) from S(M,j) and the values above are recorded,
run Compute() to obtain −−→msg and output (message, sid,−−→msg) toM.

6. Upon receiving an input (update,sid) from S(j,M) and the values above are recorded, run Com-
pute() to obtain OUTj and output (update, sid, Crid′−1

j ,OUTj) to Pj .

Procedure Compute()

– If (cominput, comrand,
−→
C , rid, CRS) 6= (cominput

j , comrand
j ,

−→
Cj , rid′, CRS′) then set −−→msg =

OUTj = ⊥.

– If decinput
(

resp.,decrand
)

is not a valid decommitment to cominput
j

(
resp., comrand

j

)
, or
−−→
decj

does not contain valid decommitments to all the commitments in
−→
Cj then set −−→msg = OUTj = ⊥.

– If rid′ > 1 and decrid′−1
j is not a valid decommitment to Crid′−1

j then set −−→msg = OUTj = ⊥.

– Let −−→msg1, . . . ,
−−−−−−→msgrid′−1 be the committed values in

−→
Cj and Crid′−1

j . If any of these contain dummy
values, set −−→msg = OUTj = ⊥.

– Let xj and rj be the committed values in cominput
j and comrand

j respectively and −−→msg = OUTj =

⊥. if rid′ < r + 1 then compute and store in −−→msg the next messages that party Pj would send in
protocol π when running with input xj , random tape rj , common reference string CRS, and after
receiving messages −−→msg1, . . . ,

−−−−−−→msgrid′−1. else compute and store in OUTj the output of party Pj .
– Return

〈−−→msg,OUTj

〉
.

Fig. 29: The functionality computing the next round messages of party Pj in π
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Functionality Ffmsfe

Functionality Ffmsfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})m ×R→ ({0, 1}∗)m.
At the first activation, verify that sid = (P; sid′), where P is an ordered set of m identities; else halt.
Denote the parties identities P1, ..., Pm, adversaries identities

{
S(i,j)

}
i 6=j,i∈P

⋃
{M},j∈P

⋃
{M}. Also,

initialize variables x1, ..., xm, y1, ..., ym to default value ⊥. Next:

– If mediator = 1 (this indicates a honest mediator) then Ffmsfe proceeds as follows:

1. INPUT&COMPUTE: Upon receiving an input message from party Pi do:
(a) if input is (Input,sid,v) then set xi = v and output (Input,sid,Pi) to S(i,M).
(b) if input is (Compute,sid) then notify the adversaries S(i,M), S(M,i) and record the

(Compute,...) request.
2. INPUT RESPONSE: Upon receiving an okay message from allM related adversaries and all

inputs are set then output a continue message to allM related adversaries.
3. COMPUTE RESPONSE: Upon receiving input (response,sid) from S(M,i) do:

(a) mark the appropriate (Compute,sid) request as approved in current round (if Pi is corrupted
mark as if recorded).

(b) if all parties in P have at least one (Compute,...) approved in current round then output a
continue message to allM related adversaries and delete all approved requests.

4. OUTPUT: Upon receiving an (output,Pi,p) message from S(i,M) do:
(a) if xi has been set for all parties in P , and y1, ..., yn have not yet been set, then choose r ← R

and set (y1, .., yn)← f(x1, ..., xn, r); else if xi has not been set for all parties, ignore.
(b) if Pi is corrupted then output yi to S(i,M); else output yi to Pi.

5. CORRUPT: Upon receiving input (Corrupt, Pi, p) from Pi related adversary do:
(a) record Pi as corrupted party and output (Corrupted, Pi) to Pi.
(b) give xi and an output that was given to Pi (if any) to all Pi related adversaries.

6. DELIVER: Upon receive input (Deliver, S(`,k), m) from S(i,j) do:
(a) if i = ` and Pi is corrupted or j = ` =M and k = j then output (Deliver, S(i,j), S(`,k), m)

to S(`,k).
7. SET INPUT: Upon receiving input (set_input,Pi, v′) from S(i,M) do:

(a) if Pi is corrupted and none of the parties received output then set xi ← v′; otherwise ignore.
8. ABORT: Upon receiving input (abort,Pi) from S(i,M) do:

(a) if Pi is corrupted and none of the parties received output then set (y1, .., yn) ← (⊥, ...,⊥);
otherwise ignore.

– If mediator = 0 (this indicates a corrupted mediator) then Ffmsfe proceeds as follows:

1. INPUT&COMPUTE: Upon receiving an input message from party Pi do as in the honest medi-
ator case but notify all adversaries.

2. OUTPUT: Upon receiving an (output,Pi,p) message from S(i,M) do:
(a) if xi has been set for all parties Pi ∈ P , and y1, ..., yn have not yet been set, then choose

r ← R and set (y1, .., yn) ← f(x1, ..., xn, r); else if xi has not been set for all parties,
ignore.

(b) if Pi is corrupted then output yi to all adversaries.
(c) else: if p= ⊥ then set yi = ⊥. In any case, output yi to Pi.

3. CORRUPT: Upon receiving input (Corrupt, Pi, p) from Pi related adversary do as for the honest
mediator case but notify all adversaries.

4. DELIVER: Upon receive input (Deliver, S(`,k),m) from S(i,j) then output (Deliver, S(i,j), S(`,k),
m) to S(`,k) (this capture the ability of corrupted parties to communicate using corrupted medi-
ator)

5. SET INPUT: Upon receiving input (set_input,Pi,v′) from S(i,M) do as in the honest
mediator case.

Fig. 30: The Secure Function Evaluation functionality for evaluating an n-party function f58



no ideal functionalities other than Ḡacrs. As discussed above, the constructed protocol MComp(π) is
presented as an (Fsmt,FπOblComp, Ḡacrs)-hybrid protocol. Next, when these functionalities are realized
we obtain a protocol in the Ḡacrs-hybrid model.

The protocol consists of three stages. In the first stage the parties and the mediator communicate with
Ḡacrs and obtain the CRS string. In the second stage, the parties commit to their inputs and random coins
for a protocol π that securely computes F . In the third stage, the parties emulate π, round-by-round,
as follows. Upon party Pj requests,M engages in Pj’s next π-message computation. at the end of this
computation,M obtains the messages that Pj would send in the current round of π, and Pj obtains a
commitment to the messages it would receive in the previous round of π. In last round emulation Pj
also obtains its output. However, the mediator would not engage in a computation with the same party
more than once in a given round, but rather records the request and process it in the next round of the
protocol. Whenever M collects all current round messages it proceeds to the emulation of the next
round. Everything the mediator sends to the parties will be “wrapped” inside a commitment. When all
parties behave honestly, these will all be commitments to legitimate protocol messages of π. If some
party Pj aborts (or deviates from the protocol),M will not be able to generate a valid commitment of
this sort. Nevertheless, we do not want other party to learn that Pj aborted the protocol; Therefore, we
allow M to send special “dummy commitments" to ⊥. It is important to note that no corrupted party
can collude with the corrupted mediator to perform a malleability attack on the protocol. More formally,
the input commitments received by the corrupted mediator do not enable to compute the protocol on a
related value. This follows from the idealFπOblComp (that do not reveal any information on the committed
values to the mediator) and from the UC security of the protocol realizing FπOblComp. Therefore, a
standard statistically binding non-interactive commitment scheme suffices. Let C be such a commitment
scheme, whereC(m; r) denotes a commitment tom using random coins r. The decommitment of com =
C(m; r) is dec = (m; r). Recall that that the interface of FπOblComp involves the commitment scheme
C. Formal description of the protocol appears in Figures 31 and 32.

We are now ready to prove the security of the compiled protocol MComp(π):

Theorem 11. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is Ḡacrs-setup oblivi-
ous UC-realization of the well-formed aborting functionalityFfsfe. Then the compiled protocol MComp(π)

LUC-realize Ffmsfe in the (Fsmt,FπOblComp, Ḡacrs)-hybrid model in the presence of static adversaries,
where all corruptions are PID-wise.

8.6 Proof of security

Let f = (f1, ..., fn) be a (poly-time) function and let π be a r-round as in 8.2.2 that UC-realize Ffsfe
in the Ḡacrs-hybrid model. Let MComp(π) be the compiled protocol in the (Fsmt,FπOblComp, Ḡacrs)-
hybrid model, and let A be an adversary interacting with MComp(π). We construct a simulator S that
interacts with Ffmsfe in the ideal model, such that no environment Z can tell whether it is interacting
with MComp(π) and A or with Ffmsfe and S. As usual, we restrict attention to the case where A is the
dummy adversary. We prove LUC realization for the honest and malicious mediator scenario separately.
For convenience, we denote a simulator with identity ((i, j),⊥) as S(i,j).

8.6.1 Honest mediator

Recall that the messages in MComp(π) are adversely scheduled. Therefore, the simulator is not only
in charge of simulating the protocol messages but also simulate the scheduling done in the execution of
MComp(π). The idea of simulating the adversarial scheduling is that each pair of simulator can jointly
simulate the scheduling of each round of the protocol using the DELIVER service of Ffmsfe. When the
mediator is honest our goal is to simulate the view of corrupted parties.
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Protocl MComp(π): Party Pj

– INITIALIZATION: Pj is initialized with the common reference string CRS produced by Ḡacrs.
– INPUT: Having received input (Input,sid,xj) do:

1. Pj chooses random sj and computes cominput = C (xj , sj). We denote by decinput be the
decommitment owned by Pj .

2. let ` is the number of coins needed to run π. Pj chooses random r′j , s
′
j , where

∣∣∣r′j∣∣∣ = ` and

computes comrand = C
(
r′j , s

′
j

)
. Let decrand =

(
r′j , s

′
j

)
the decommitment owned by Pj .

Also, initialize i = 1.
3. Pj provides (Send, sid, cominput, comrand) to Fsmt.

– COMPUTE: Upon Pj receives (Compute, sid) input, where Pj finished the INPUT phase, and there
is no open (Compute,...) session with FπOblComp do:

1. let
−→
C =

(
comj

1, . . . , comj
i−2

)
be the commitments that Pj received in the previous i−2 rounds.

Pj sends FπOblComp its commitments cominput and comrand, the vector of commitments
−→
C , the

round identifier rid=0i , the decommitments decinput and decrand. Additionally, it sends CRS.

– UPDATE: Having received output (update, sid, comj
i−1,OUTj) from FπOblComp do:

1. if i > 1 then update
−→
C to include comj

i−1.
2. if i < r + 1 then increment i = i+ 1; else output OUTj and halt.

Fig. 31: The general function evaluation protocol for party Pj

Simulation of the interaction with the setup. The simulator behaves identically to the dummy
adversary and records the obtained CRS. That is, any instruction to interact with Ḡacrs is honestly
executed and any output received from Ḡacrs is forwarded to Z .

Simulation of honest party. Let j denote the party identity of party Pj . Then the simulator S(j,M)

proceeds as follows:

1. Upon output (Input,sid,Pj) from Ffmsfe and no (Input,sid’,Pj) previously received, the simulator
S(j,M) first initialize rid = 1, OUT=⊥ and ABORT=false. Next, record (Input,sid,Pj) and output
(OUTPUT,M, sid) to Z .

2. Upon output (Compute,sid,Pj) from Ffmsfe and (Input,sid′,Pj) previously received, do the follow-
ing:

(a) if it is the first (Compute,...) message in round rid then S(j,M) record
(Compute,sid,Pj) and outputs (OUTPUT,M, sid) to Z .

3. Upon input (APPROVE,M, sid) from Z proceed as follows:

(a) if (Input,sid,Pj) recorded, then erase (Input,sid,Pj) and send (APPROVE− input,M, sid)

to S(M,j) ( by giving a (DELIVER,S(M,j),...) input to Ffmsfe).
(b) if (Compute,sid,Pj) recorded, then erase (Compute,sid,Pj) and send

(APPROVE− compute,M, sid) to S(M,j)

4. Upon message (Compute−Med,sid) from S(M,j) then S(j,M) records this tuple.
5. Upon input (update,sid) from Z and (Compute−Med,sid) recorded, then S(j,M) does the

following:

(a) if rid = r+1 then sent (output,Pj,p) toFfmsfe and halt; otherwise erase (Compute−Med,sid)
and set rid = rid+ 1.
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Protocl MComp(π): MediatorM

– INITIALIZATION:M is initialized with the common reference string CRS produced by Ḡacrs.

– INPUT: Having received commitments (cominput
j , comrand

j ) from Fsmt for all j ∈ P , initialize
i = 1, ABT=false, and a round i message matrix Di

|P|×|P|−1 with dummy messages. In addition,
for each recorded open session do as in COMPUTE REQUEST and not yet engaged with Pj in
current round.

– COMPUTE REQUEST: Having received output (Receipt_party, sid, Pj) from FπOblComp do:

• if have not yet engaged with Pj in current round and i initialized computation then provides

cominput
j and comrand

j , the commitments
(

comj
1, . . . , comj

i−2

)
, the commitment comj

i−1 to

round i− 1 messages, the round identifier rid’=0i, the decommitments
(

decj1, . . . , decji−2

)
, and

the decommitment decji−1. Additionally, it sends CRS. The commitment comj
0 is a commitment

to zero for all j ∈ P .
• else if no open session recorded for Pj then record (Receipt_party, sid, Pj) as open session.

Additionally, if i = r + 1 and engaged with all parties in P in current round computation then
halt.

– UPDATE: Having received output (message, sid,−−→msg) fromFπOblComp where sid = (Pj ,M; sid′),
and i < r + 1 do:

1. if −−→msg = ⊥ then set ABT=true; else, update Di to include −−→msg.
2. if received −−→msg for all j ∈ P in round i then:

(a) if ABT=true then rewrite Di with dummy messages.
(b) for all k ∈ P choose random rk and compute a commitment comk

i = C
((
Di
)
k
, rk
)

to the
messages that Pk would receive in round i. Let decki =

((
Di
)
k
, rk
)

be the decommitment
owned byM.

(c) increment i = i+1 and initialize round imessage matrixDi
|P|×|P|−1 with dummy messages.

(d) for each recorded open session do as in COMPUTE REQUEST and not yet engaged with Pj
in current round.

Fig. 32: The general function evaluation protocol for mediatorM
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Simulation of corrupted party. Let j denote the party identity of party Pj . Then the simulator S(j,M)

proceeds as follows:

1. Upon input (Send, sid, cominput, comrand) from Z do the following:

(a) if this is the first (Send, ...) input then record
(
sid, cominput, comrand

)
and initialize rid = 1,

OUT=⊥ and ABORT=false and go to (d).
(b) else if there exists a recorded commitment associated with sid and S(M,j) yet send okay to
Ffmsfe then change record to the received commitments.

(c) else if sid was never used, record
(
sid, cominput, comrand

)
and go to (d).

(d) Records (Input,sid,Pj) and outputs (OUTPUT,M, sid) to Z .

2. Upon input (Compute− party, sid, cominput, comrand,
−→
C ′, rid′, dec

input
,dec

rand
, CRS′) from

Z do the following:
(a) if rid ≤ r + 1then:

i. if sid was never used, then record this tuple.
ii. Else if (Compute− party, sid, ...) recorded and S(M,j) yet send

(response,sid) then update the existing record. Otherwise, ignore input and skip (b).
(b) record (Compute,sid,Pj) and output (OUTPUT,M, sid) to Z .

3. Upon input (APPROVE,M, sid) from Z then, do as in the honest party simulation.
4. Upon message (Committed,sid,Pj) from S(M,j), then set

(
sid, cominput, comrand

)
as the com-

mitments given by Pj toM.
5. Upon message (Compute−Med,sid) from S(M,j), then record it.
6. Upon input (update,sid) from Z and (Compute−Med,sid) recorded, then S(j,M) does the

following:
(a) compute comrid−1 = C(0n), and erase (Compute−Med,sid).
(b) checked correctness. That is, Let (Compute− party, sid, cominput, comrand,

−→
C ′, rid′, dec

input
,

dec
rand

, CRS′) be the recorded tuple.

– If rid=1 then set
(

decinput, decrand
)

=

(
dec

input
,dec

rand
)

and send (set_input,Pi,x′)

to Ffmsfe where x′ is the value in dec
input

.
– If (cominput, comrand,

−→
C , rid, CRS,decinput, decrand)

6= (cominput, comrand,
−→
C ′, rid′, CRS′,dec

input
, dec

rand
) then set ABORT=true.

– if dec
input

(
resp.,dec

rand
)

is not a valid decommitment to cominput
(

resp., comrand
)

, then
set ABORT=true.

– Let −−→msg1, . . . ,
−−−−−−→msgrid′−1 be the committed values in

−→
Cj and Crid′−1

j . If any of these contain
dummy values, set ABORT=true.

– if rid < r + 1 and ABORT set to true then send (abort,Pj) to Ffmsfe.
(c) if rid = r + 1 and ABORT=false then sent (output,Pj,p) to Ffmsfe and set OUT to be the

output of Pj given by Ffmsfe; else if rid < r + 1 then set rid = rid+ 1.
(d) Update the commitments vector

−→
C to contain comrid−1 and output (update, sid, comrid−1,OUT)

to Z .

Simulation of the honest mediator. The simulator S(M,j) with identity (⊥, (M, j)) initialize rid∗ = 0
and b = 1. Next, it proceeds as follows:

1. Upon message (APPROVE− input,M, sid) from S(j,M) , then S(M,j) records (Input,sid,Pj)
and outputs (OUTPUT,M, sid) to Z .

2. Upon message (APPROVE− compute,M, sid) from S(j,M), then S(M,j) records (Compute,sid,Pj)
and outputs (OUTPUT,M, sid) to Z .
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3. Upon input (APPROVE,M, sid) received from Z , S(M,j) proceeds as follows:
(a) if (Input,sid,Pj) recorded do:

i. if this is the first input approved then send (Committed,sid,Pj) to S(j,M) and okay toFfmsfe;
otherwise, erase this record.

(b) if (Compute,sid,Pj) recorded do:
i. erase (Compute,sid,Pj).

ii. if b = 0 then record (Compute,sid,rid∗,b) and sent (Compute−Med,sid) to S(j,M).
iii. if b = 1 and there is no record with b = 1 and k = rid∗ then record (Compute,sid,rid∗,b)

4. Upon input(next_message,sid) from Z and (Compute,sid,k,b) recorded then:
(a) if rid∗ < r + 1 and (b = 0 or b = 1 ∧ rid∗ > k) then do:

i. erase (Compute,sid,k,b) and instruct S(j,M) to abort if the simulation of FπOblComp with
session id sid results in ABORT=true .

ii. send (response,sid) to Ffmsfe.
(b) otherwise, ignore this input.

5. Upon continue output from Ffmsfe, the simulator sets rid∗ = rid∗ + 1. In addition, if a record
with b = 1 exists then set b = 1 and send (Compute−Med,sid) to S(j,M); otherwise, set b = 0.

In order to show that the environment’s output in the real-life model is indistinguishable from its output
in the ideal-process, we consider the following hybrids:

Ideal/Fake: The output of Z in an execution in the ideal process with S and Ffmsfe (with commitments
to zero generated by S).

Ideal/Genuine(i,k): The output of Z from the following interaction. Each simulator of a party, in each
round, is given the real messages. That is, the messages that this party would receive commitments to
them from the honest mediator in MComp(π). If a simulator with identity ((j,M),⊥) is supposed
to generate commitment to a messages received by a corrupted party in a round smaller then i or if
the current round equal i and j < k, then we let it to compute the commitment by committing to the
real messages instead of a zero string. Note that Ideal/Genuine(1,1) is exactly the Ideal/Fake hybrid.

Real/Genuine: The output of Z in a real-life execution with parties running the protocol MComp(π),
honest mediator, and dummy adversary D . This amounts to retrieving the global CRS and then
running the protocol in the real-life model with D and Z .

Indistinguishability of Ideal/Fake and Ideal/Genuine(r+2,1). Let us presume, for sake of contradic-
tion, that Z tells apart the hybrids Ideal/fake and Ideal/Genuine(r+2,1) with non-negligible probabil-
ity. From a standard hybrid argument follows that there exists (i,k), for some 1 ≤ i ≤ r + 1 and
1 ≤ k ≤ m where k + 1 is an identity of a corrupted party, and an environment Z(i,k) that can dis-
tinguish between Ideal/Genuine(i,k) and Ideal/Genuine(i,k+1). (In case k = m we consider the hybrid
Ideal/Genuine(i+1,1)).

We note that the only difference between Ideal/Genuine(i,k) and Ideal/Genuine(i,k+1) is the com-
mitment to all zero string given by Pk+1 in Ideal/Genuine(i,k). From this, we construct a receiver R∗

that breaks the hiding property of the commitment. Details follow.
By definition, for a computationally hiding commitment scheme C() the prediction probability of

any polynomially-bounded receiver R∗ should not exceed 1
2 by a non-negligible amount. Given envi-

ronment Z(i,k) that distinguishes between Ideal/Genuine(i,k) and Ideal/Genuine(i,k+1), we construct a
successful receiver for the hiding property of the commitment scheme C.

Let m0 be the all zero string and m1 be a vector of messages in the commitment given by FπOblComp

to party Pk+1 in round i. The receiver R∗ gets 1n as input. Let b be the random bit that determines if
the committer commits to m0 (b = 0) or m1 (b = 1) messages. R∗ tries to predict b by simulating a
Ideal/Genuine(i,k+1) execution:

– R∗ run internally Z(i,k) and simulate an execution of Ideal/Genuine(i,k+1) with the following dif-
ference: in round i, instead of giving Z(i,k) a commitment to all zero string on behalf of Pk+1, the
receiver is giving the commitment it received from the committer S.
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– at the end, R∗ outputs whatever Z(i,k) outputs.

If S commits tom0 thenR∗ simulates an Ideal/Genuine(i,k) execution. We conclude that the probability
thatR∗ outputs 1 in this case equals the probability thatZ(i,k) returns 1 in experiment Ideal/Genuine(i,k).
Also, if the committer commits to m1 then R∗ simulates the experiment Ideal/Genuine(i,k+1) and out-
puts 1 exactly if Z(i,k) gives output 1 in this experiment. Hence,

Prob[R∗ outputs b]

= Prob[b = 1 ∧ Z(i,k) outputs 1] + Prob[b = 0 ∧ Z(i,k) outputs 0]

=
1

2
· Prob[Z(i,k) outputs 1 in Ideal/Genuine(i, k + 1)]

+
1

2
· Prob[Z(i,k) outputs 0 in Ideal/Genuine(i, k)]

=
1

2
+

1

2
· (Prob[Z(i,k) outputs 1 in Ideal/Genuine(i, k + 1)]

−Prob[Z(i,k) outputs 1 in Ideal/Genuine(i, k)])

R∗’s prediction probability is therefore bounded away from 1
2 by a non-negligible function, contra-

dicting the hiding property of the commitment scheme C.
Indistinguishability of Ideal/Genuine(r+2,1) and Real/Genuine. In order to show that the envi-

ronment’s output in the real-life model is indistinguishable from its output in Ideal/Genuine(r+2,1), we
first need to show that the scheduling observed by the environment in the real execution of MComp(π)
is identical to the scheduling in Ideal/Genuine(r+2,1). By inspecting the code of the simulator and the
protocol we observe the following:

– The delayed output simulation is done identically to the dummy adversary in the real execution
of MComp(π). Moreover, the simulator engage in a delayed output simulation only if the rid, as
recorded by the simulator, indicates that the party invoked an instance of FπOblComp or Fsmt in the
real execution.

– The parties generate their output when the round id rid, as maintained by the party simulator, reaches
r + 1.

– Commitments to messages received by a corrupted party are generated only if the rid of the cor-
responding mediator’s simulator indicates that the honest mediator in the real execution submitted
inputs an instance of FπOblComp with a suitable sid.

Based on the observations above, it suffices to prove that at each point during the ideal execution the
round id maintained by the simulators is identical to the round id of the participants in MComp(π). We
start by proving this for the simulators associated with the mediator (i.e., the simulators with identity
((M, j),⊥)).

At first activation, the simulator S(M,j) set the round id rid∗ to zero. The rid∗ advances upon the
continue output received from Ffmsfe. The rid∗ advances for the first time only after all simulators
associated with the mediator announce the reception of the input-randomness commitment from the
party associated with the identity of the simulator. Since the simulator behaves as a dummy adversary
during the delayed output simulation, its reception announcement happens exactly when the mediator re-
ceive an input-randomness commitment from this party in the execution MComp(π). Therefore, when
rid∗ is set to ’1’ in the simulated execution it is also set to ’1’ by the mediator in the execution of
MComp(π).In the rest of the simulation a continue output received only when all the simulators as-
sociated with the mediator send (response,sid) to Ffmsfe. A simulator sends (response,sid)
to the functionality exactly when the environment instructs the adversary to let FπOblComp to give output
to the mediator. Therefore, when the rid∗ is advanced in the simulated execution it is also advanced by
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the honest mediator in the real execution of MComp(π). In addition, a (response,sid) message is
never send after rid∗ reaches r+1, which is the last round in MComp(π). This implies that the round id
rid∗ , as maintained by the simulators of the mediator, is identical to the round id of the honest mediator
in the real execution.

Next, we prove that the round id rid, as maintained by the simulator of the parties (i.e., the simulators
with identity ((j,M),⊥)) is identical to the round id of the corresponding party in the real execution.
Since a corrupted party only execution the instructions received from the environment, we only need to
show this with respect to the round id of honest parties.

We note that rid is set to ’1’ when the simulator receive the first (Input,sid,Pj) message. In the real
execution, when a party receives the first (Input,sid,Pj) message, it set rid = 1 (and invoke an instance
of Fsmt); therefore the rid is identical during the first round of the protocol. Moreover, A simulator
advance rid exactly when the environment instructs the adversary to let FπOblComp to give output to this
party (and the rid∗ of the corresponding mediator’s simulator indicates the mediator submitted its input
to this instance of FπOblComp). Therefore, based on the correctness of rid∗, when the rid is advanced in
the simulated execution it is also advanced by the honest party in the real execution of MComp(π).

We note that up to round r+1 the produced transcript in both hybrids is indistinguishable. In order to
complete this proof we need to show indistiguishability of the outputs of the honest parties. We consider
the following possible events:

No deviations. In this case in the real-life execution of MComp(π) all parties submit toFπOblComp

inputs that match the input submitted by the honest mediator, and therefore, generate outputs
according to the underlying protocol π. Moreover, the corrupted parties inputs and random-
ness in the execution of π is uniquely determined by the statistically binding commitment
given in the INPUT phase of MComp(π). In the execution of Ideal/Genuine(r+2,1) the simu-
lators associate with a corrupted party set the parties inputs (by sending it toFfmsfe) according
to the decoomitment received from the environment in the first round simulation (this input
cannot later change due to the binding property of C()). Since the corrupted parties inputs
to FπOblComp are according to honest execution of MComp(π), then ABORT is never set to
true and the output is generated according to f(x1, ..., xn, r). Based on the correctness of π,
these outputs are indistinguishable from the outputs in MComp(π).

At least one deviation. Since deviations in the last round of MComp(π) effect only the deviating
parties output, which is⊥ in both executions, we concentrate on the case where the deviations
occur in round i < r+1. Although up to the output generation the transcript is not influenced
by the deviations (since in both executions the environment is exposed only to commitments,
with an identical underlying values), it is crucial for a deviation to identically effect the
output in both execution. The only feasible deviation for a corrupted party participating in
MComp(π) is submitting inappropriate inputs toFπOblComp, and causing all parties to output
⊥. If the environment let a corrupted party Pj to submit inappropriate input, the simulator
detect it, sets ABORT=true and sent (abort,Pj) to Ffmsfe. In is important to note that
(abort,Pj) is sent toFfmsfe before any of the mediator’s simulators engage in a simulation
of final round (in which the outputs are generated). In other word, the output of all parties
in Ideal/Genuine(r+2,1) is also set to ⊥. This implies that the output in both executions is
identical.

8.6.2 Corrupted mediator

In the corrupted mediator scenario the ideal functionality Ffmsfe allow all the simulators to commu-
nicate, where with honest mediator only suitable pairs of simulators were allowed to communicate. This
makes the simulation easier, since all the simulators can coordinate their view through Ffmsfe. In this
scenario our goal is to simulate the view of the corrupted mediator during the execution of MComp(π).
Let Dπ be the dummy adversary interacting with π, and let Sπ be the simulator guaranteed for Dπ. The

65



idea of the simulation is to internally invoke Sπ, where the instructions from the environment regarding
the messages delivered to the honest parties is forwarded to the internal Sπ and receiving from Sπ the
next round messages send by the honest parties. We denote by “master” the simulator S(M,j) where j is
the minimal identity of a player participating in MComp(π). The master run internally Sπ.

Simulation of the interaction with the setup. Whenever a simulator receives a notification from
Ḡacrs it forward it to the master. The master forward the notification internally to Sπ. Once Sπ re-
quest to output it to Z , the simulator forward it to all identity related simulators in an increasing or-
der. The simulators upon receiving this notification from the master output the notification to Z . Any
(retrieve, sid,PID) instruction is given to a corrupted party is treated in the same manner. In addition,
the simulators record the CRS.

Simulation of corrupted party. In this case both the party and the simulator are corrupted, and they
can jointly simulate any mutual computation in MComp(π) using the DELIVER service of Ffmsfe.

Simulation of honest party. Let j denote the party identity of party Pj . Then the simulator S(j,M)

proceeds as follows:

1. Upon output (Input,sid,Pj) from Ffmsfe and no (Input,sid’,Pj) previously received, do as in the
honest mediator case.

2. Upon output (Compute,sid,Pj) from Ffmsfe and (Input,sid′,Pj) previously received, do the follow-
ing:

(a) if it is the first (Compute,...) message in round rid then S(j,M) record (Compute,sid,Pj) and
outputs (OUTPUT,M, sid) to Z . In addition, send (Compute− party,sid, rid) to S(M,j).

3. Upon input (APPROVE,M, sid) from Z then do as in the honest mediator case.
4. Upon message (Compute−Med,sid) from S(M,j) then S(j,M) records this tuple.
5. Upon input (update,sid) from Z and (Compute−Med,sid) recorded, then S(j,M) does the

following:

(a) if rid = r + 1 then ask S(M,j) whether ABORT=true in simulation of FπOblComp with session

id sid and set p accordingly. Next, (output,Pj,p) to Ffmsfe and halt.
(b) else set rid = rid+ 1 and erase (Compute−Med,sid).

Simulation of the corrupted mediator. The simulator S(M,j) with identity (⊥, (M, j)). Next, it pro-
ceeds as follows:

1. Upon message (APPROVE− input,M, sid) from S(j,M) , then S(M,j) as in the honest mediator
case.

2. Upon message (APPROVE− compute,M, sid) from S(j,M), then S(M,j) as in the honest medi-
ator case.

3. Upon input (APPROVE,M, sid) received from Z , S(M,j) proceeds as follows:

(a) if (Input,sid,Pj) recorded then compute and record cominput = C(0n), comrand = C(rj)

where rj is chosen at random from {0, 1}`. Next, output (Send, sid, cominput, comrand) to Z .
(b) if (Compute,sid,Pj) recorded erase (Compute,sid,Pj) and output (Receipt_party, sid, Pj) to Z .

4. Upon message (Compute− party,sid, k) from S(j,M) then record this message.

5. Upon receiving input (Compute, sid, cominput, comrand,
−→
C ′, C ′rid

′−1, rid′,
−→
dec, decrid′−1, CRS′)

and (Receipt_party, sid, Pj) outputted to Z do:

(a) if a tuple with session id already recorded and rid = k , where k is the round in
(Compute− party,sid, k), then update the recorded tuple.

(b) else record this tuple and send (Compute−Med,sid) to S(j,M).

6. Upon input(next_message,sid) from Z and(Compute, sid, ...) recorded. Let
(Compute− party,sid, k) be the recorded tuple. Then:

(a) If (cominput, comrand,
−→
C , k, CRS) 6= (cominput, comrand,

−→
C ′, rid′, CRS′) then set

ABORTsid = true.
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(b) if
−→
dec
(

resp., decrid′−1
)

is not a valid decommitment to
−→
C ′
(

resp., C ′rid
′−1
)

, then set
ABORTsid = true.

(c) Let −−→msg1, . . . ,
−−−−−−→msgrid′−1 be the committed values in

−→
Cj and Crid′−1

j . If any of these contain
dummy values, set ABORTsid = true.

(d) erase (Compute− party,sid, k).
(e) if k < r + 1 then update the recorded commitment vector

−→
C to contain C ′rid

′−1 and send the
messages in decrid′−1 to the master copy. Once receive −−→msg do as follows:

i. if ABORTsid = true then output (message, sid,⊥) to Z .
ii. else output (message, sid,−−→msg) to Z .

(f) if k = r + 1 then output (message, sid,⊥) to Z .

In addition to the above, whenever Sπ wishes to send input (set_input,Pj,x′) to Fsfe the master
simulator instructs S(j,M) to send it to Fmsfe. Whenever, Sπ wishes to request output of a corrupted
party Pj , then the master simulator instructs S(j,M) to send (output,Pj,p) to Fmsfe. Once S(j,M)

replies with the output of Pj , the master forwards it internally to Sπ.
To prove that Z’s output in the real-life is indistinguishable from its output in the ideal process with

a corrupted mediator we investigate the following hybrid variables:

Ideal/Fake: The output of Z in an execution in the ideal process with S and Ffmsfe (where S generate
commitments to zero instead of commitments to parties inputs).

Ideal/Genuine(k): The output of Z from the following interaction. Each simulator of the mediator,
is given the real input of the party it associated with. When a simulator with identity ((M, j),⊥),
where j ≤ k, is generating a commitment to a party input, then we let it to compute the commitment
by committing to the real input instead of a zero string. Note that Ideal/Genuine(0) is exactly the
Ideal/Fake hybrid. For convenience, we denote by Ŝk this modified simulator.

Real/Genuine: The output of Z in a real-life execution with parties running the protocol MComp(π),
corrupted mediator, and dummy adversary D.

Suppose that the extreme hybrids Ideal/Fake and Real/Genuine are distinguishable. This means either
that the hybrids Ideal/Fake and Ideal/Genuine(m) are distinguishable or that the hybrids Ideal/Genuine(m)
and Real/Genuine are distinguishable. We will show that this leads to a contradiction to hiding property
of the commitment scheme or to the UC security of the underlying protocol π.

Indistinguishability of Ideal/Fake and Ideal/Genuine(m). Let us assume towards a contradiction
of a distinguishing environment. From a hybrid argument follows that there exists 0 ≤ k < m and
environment Zk that manages to distinguish between Ideal/Genuine(k) and Ideal/Genuine(k+1) with
non-negligible probability. Using this environment, we construct a receiver that breaks the hiding prop-
erty of the commitment scheme with non-negligible probability. This is done in the same manner as in
the honest mediator case with the following difference: the receiver plants the received commitment in-
stead of the input commitment generated by the simulator with identity ((M, k+1),⊥). Due to identical
analysis, we omit the rest of the details.

Indistinguishability of Ideal/Genuine(m) and Real/Genuine. First, we need to show that no en-
vironment is able to distinguish between Ideal/Genuine(m) and Real/Genuine based on its activation.
By inspecting the code of the simulator in the corrupted mediator case and the protocol we observe the
following:

– The case of delayed output simulation is the same as in the honest simulation case and depend on
rid. Moreover, the commitments to input and randomness outputted by a corrupted mediator are
generated only when Z approve a delivery.

– The parties generate their output when the round id rid, as maintained by the party simulator, reaches
r + 1.

– The messages send by the parties are outputted to Z only upon its request and only if both parties
submitted inputs to the this simulated instance of FπOblComp. It is important to note that based on the
properties of the underlying protocol π and and its security, we are promised the following: upon
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receiving a message vector addressed to honest party Pj , the simulator Sπ immediately output the
simulated messages send by Pj in the next round of π.

Therefore, in order to prove identical scheduling in both hybrids we need to show that the round id
rid of each simulator associated with a honest party Pj (i.e a simulator with identity ((j,M),⊥)) in
Ideal/Genuine(m) is identically set during all the execution. The rid is set to ’1’ as in the honest media-
tor case and is identically to the real execution for the same reasons. The rid advances exactly when the
environment instructs the adversary to let FπOblComp to give output to this party (and the corresponding
mediator’s simulator declared on submission of input to this instance ofFπOblComp). Therefore, whenever
rid is advanced in Ideal/Genuine(m) it is also advanced by the honest party in the Real/Genuine. More-
over, in round r + 1 the simulator request an output from Ffmsfe and halt, identically to Real/Genuine.

Now we are ready to complete the validity proof by showing that no environment can distinguish
between Ideal/Genuine(m) and Real/Genuine. Assume for contradiction that there is an environment
Z such that LEXECMComp(π),D,Z 6≈LEXECFfmsfe,Ŝm,Z

. We construct a UC environment Zπ such that
EXECπ,Dπ ,Zπ 6≈EXECFfsfe,Sπ ,Zπ

. Environment Zπ runs internally an interaction between simulated in-

stances of Z and D in a presence of a global Ḡacrs. In addition:

1. Any output of Ḡacrs coming from the external adversary is forwarded toZ as if they are coming from
the dummy adversaries with the associated identities. Similarly, any (retrieve, sid,PID) instruction
is forwarded to the external adversary.

2. Whenever Z passes input (Input,sid,xj) to party Pj , Zπ honestly simulates an invocation of Fsmt

and givesZ a commitment to xj and random string of length `. Next it forwards xj to the external
party with party identity j.

3. Whenever Z passes input (Compute, sid) to party Pj , Zπ honestly simulates the delayed output of
FπOblComp and gives Z a message (Receipt_party, sid, Pj).

4. Whenever Z passes input (update,sid) to S(j,M), Zπ honestly simulates FπOblComp. That is:
(a) if the round id is smaller than update the round id of the local Pj .
(b) else:

i. check the correctness of the recorded tuple as FπOblComp and set ABORT accordingly.

ii. instruct the external adversary to deliver to Pj the messages in decrid′−1
j .

iii. upon receiving the output OUT from external Pj , give OUT or ⊥to Z according to the
ABORT value.

5. WheneverZ passes input (Compute, sid, cominput
j , comrand

j ,
−→
Cj , C

rid′−1
j , rid′,

−−→
decj , decrid′−1

j , CRS′)
toM, Zπ record this tuple.

6. Whenever Z passes input (next_message,sid) to S(M,j), Zπ honestly simulates FπOblComp.
That is:
(a) check the correctness of the recorded tuple as FπOblComp and set ABORT accordingly.

(b) instruct the external adversary to deliver to Pj the messages in decrid′−1
j .

(c) upon receiving the next round messages vector −−→msg of Pj from the external adversary, give −−→msg
or ⊥ to Z according to the ABORT value in the current round.

7. Finally, Zπ outputs whatever the simulated Z outputs.

From inspecting the code of Zπ and Ŝm it follows that if Zπ interacts with parties running π then the
view of the simulated Z within Zπ is distributed identically to the view of Z when interacting with
MComp(π) and adversaries running D in Real/Genuine. Similarly, if Zπ interacts with parties running
IDEALFfsfe

then the view of the simulated Z within Zπ is distributed identically to the view of Z when

interacting with Ffmsfe and adversaries running Ŝm in Ideal/Genuine(m). Therefore,

EXECπ,Dπ ,Zπ 6≈EXECFfsfe,Sπ ,Zπ

, as desired.
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8.7 Putting all together

The constructed compiler MComp() operates in the (Fsmt,FπOblComp, Ḡacrs)-hybrid model. In this sec-
tion we show how to transform MComp() to a new compiler in a Ḡacrs-hybrid model. Moreover, we
show that in the corrupted mediator case, the LUC realization is equivalent to UC realization. In order
to achieve this goal, we first show how to LUC realize Fsmt and FπOblComp.

Recall that Fsmt is a merger functionality of the UC secure message transmission functionality
Fsmt. Therefore, combining Claim 8.2.2, stating the existence of realizing protocol for Fsmt, with the
equivalence theorem 5 we obtain realization of Fsmt. That is:

Lemma 2. There exists a protocol that LUC-realizes Fsmt in the Ḡacrs-hybrid model in the presence of
static adversaries over unauthenticated channels.

Next, consider the UC functionality F̃ such that the merger functionality of F̃ is FπOblComp (as

defined in Definition 5). F̃ is a well-formed two-party functionality; therefore, by claim 8.2.2, F̃ can be
UC-realized in theḠacrs-hybrid model. Combining this with theorem 5, we obtain that:

Lemma 3. There exists a protocol that LUC-realizes FπOblComp in the Ḡacrs-hybrid model in the pres-
ence of static adversaries over unauthenticated channels.

Now we can wrap it all together using the LUC composition theorem and obtain a compiler in the
Ḡacrs-hybrid model. That is, combining Lemma 2 and 3 with theorem 11 we have the following:

Theorem 12. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is setup oblivious
UC-realization of the well-formed aborting functionality Ffsfe. Then there exists a compiled protocol

M̃Comp(π) that LUC-realize Ffmsfe in the Ḡacrs-hybrid model in the presence of static adversaries over
unauthenticated channels, with PID-wise corruptions.

We note that the compiler M̃Comp() is exactly the compiler MComp() composed with the protocols
of [CDPW07] and [Wal08] (transformed to the Ḡacrs-hybrid model as described above) to replace the
Fsmt and FπoblComp instances in MComp().

Finally that the compiler is instantiated, we are ready to show that M̃Comp() is also a UC secure
realization of the SFE functionality when the mediator corrupted. More formally, let f = (f1, ..., fn) be
a poly-time function. Consider the UC functionality F̂f sfe such that the merger functionality of F̂f sfe

is Ffmsfe restricted on the malicious mediator case (as defined in 5). By theorem 12 and theorem5 we
obtain that:

Theorem 13. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is setup oblivious
UC-realization of the well-formed aborting functionality Ffsfe. Then the compiled protocol M̃Comp(π)

UC-realize F̂f sfe in the Ḡacrs-hybrid model in the presence of static adversaries over unauthenticated
channels, with PID-wise corruptions.

We note that the only difference between F̂f sfe and Ffsfe is the additional inputs from parties, i.e.,
“Compute” inputs.

8.8 A Solution for adaptive adversaries

We now show that our construction LUC-realizesFfmsfe in the presence of adaptive adversaries. The
difference between this protocol and the protocol for static adversaries is in the properties of the under-
lying commitment scheme C in use. Essentially, here we use a commitment scheme that is “adaptively
secure". We start by introducing the new underlying components, and then we proceed to extending the
above result to adaptive corruption.
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Commitments. Let Ĉ be a non-interactive equivocal commitment scheme, where Ĉ(m; r) denotes a
commitment tom using random coins r. The decommitment of com = Ĉ(m; r) is dec = (m; r). In par-
ticular, the commitment scheme UCCReUse/NotErase from [CF01] satisfies this requirement, where the
local setup is replaced with a global knowledge-based registration functionality Gkrk of [CDPW07]. The
Gkrk, upon receiving a (register,sid) from the mediator generate public and secret keys for a claw-free
trapdoor permutation. This can be improved in term of setup length by using the UCCReUse proto-
col in the augmented CRS model, where the used encryption scheme is IBE CCA-secure scheme of
[BCHK06]. However, this holds only for erasing parties. This commitment scheme is used only by the
parties in the INPUT phase of the protocol.

Key Exchange functionality. The key exchange functionality Fke , presented in[Wal08], offers a
symmetric key exchange service. The functionality allows a corrupted receiver to determine the sym-
metric key, where in the honest receiver case a fresh key is sampled. We extend this functionality to
the LUC framework as follows. The functionality Fke behaves the same as Fke with the difference that
the receiver’s adversary is allowed to determine the symmetric key in the corrupted receiver case. The
functionality formally presented in Figure 33.

Functionality Fke

Functionality Fke running with parties S and R and the adversaries S(S,R), S(R,S), proceeds as follows:

– Upon receiving message of the form (keyexchange, sid, S,R) from party S, if S is not yet “active",
mark S “active", and a send public delayed output (keyexchange, sid, S,R) toR. (Otherwise, ignore
the message).

– Upon receiving a message of the form (keyexchange, sid, S,R) from party R, if R is not yet “ac-
tive", mark R as “active" and send a public delayed output (keyexchange, sid, S,R) to S. (Other-
wise, ignore the message.)

– Upon receiving a message of the form (setkey, sid, S,R, k′) from S(R,S), if R is corrupt and S
is “active", then send private delayed output (setkey, sid, S,R, k′) to S and R, and halt. If R is

“active" but not corrupt, then sample a fresh key k
$← {0, 1}λ and send private delayed out-

put (setkey, sid, S,R, k) to R. Furthermore, if S is “active", then send private delayed output
(setkey, sid, S,R, k) to S as well. In all cases, this completes the protocol, and the functionality
halts.

Fig. 33: The symmetric key exchange functionality Fke

Claim. For any adaptively well-formed aborting ideal functionality F , there exists a (Ḡacrs,Fke)-setup
oblivious protocol π that UC-realizes F in the (Ḡacrs,Fke)-hybrid model in the presence of adaptive
adversaries over unauthenticated channels, where all corruptions are PID-wise.

Here, as opposed to the static case we need to use adaptively secure authentication protocol. [Wal08]
present such an authentication protocol in the Fke-hybrid model. as before, the setup obliviousness
obtained by performing all the interaction with the setups in an offline stage.

We note that although the authentication functionality Fauth is cryptographically equivalent to Fke,
protocols in the Fauth-hybrid model are not Fauth-setup oblivious.

Oblivious computation and the mediated compiler. The only difference in FπoblComp is that it
expects also to receive the share keys from the party and it computes the messages of the next round
using the shared keys as well. The initialization phase in the mediated compiler MComp() for some
party also includes invoking an instance of Fke for each pair of parties. In addition, the parties commit
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to their inputs and randomness using Ĉ. Note that the mediator commits to the message vectors using
the previous commitment scheme C from the static case.

Now we can show the results with respect to adaptive corruption.

Theorem 14. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is (Ḡacrs,Fke)-setup
oblivious UC-realization of the well-formed aborting functionality Ffsfe. Then the compiled protocol
MComp(π) LUC-realize Ffmsfe in the
(Fsmt,FπoblComp, Ḡacrs,Fke)-hybrid model in the presence of adaptive adversaries, where all corrup-
tions are PID-wise.

Proof. The proof of the theorem is almost identical to the one in the case of static adversaries. Only this
time the ideal-model simulator needs also to reconstruct the internal state of the newly corrupted party.
As for the static case, we analyze the validity of the simulator for the malicious and honest mediator
separately.

Honest mediator. The simulator S works similarly to the static case with a difference in simulating
FπoblComp. that is, if the environment manages at some point in the execution to present an input or
randomness decommitment to a different values then the previous decommitment, then the simulator
sends (abort,Pj) to Ffmsfe. In addition, a (Corrupt, Pj , p) input is forwarded to Ffmsfe and upon
receiving Pj’s input xj , the simulator reconstruct the internal state as follows:

– honestly generate commitments to xj and random string rj of length ` using Ĉ.
– for each round up to the current round the simulator generate a commitment to all zero string using
C, as a commitment that Pj received from FπoblComp.

– Provide the environment with the above commitments and a decommitments to the input and ran-
domness.

We note that the internal state upon corruption is indistinguishable between Ideal/Fake and Real/Genuine.
The validity of S is proved as in the static case with a slightly different analysis in the “Indistin-

guishability of Ideal/Genuine(r+2,1) and Real/Genuine” scenario where no deviations occur. Potentially,
the environment may present a different decommitment and cause the honest parties in Ideal/Genuine(r+2,1)
to output⊥, where in the Real/Genuine execution they will generate an output according to π. However,
due to the computational binding property of Ĉ, this event can happen only with negligible probability.
Therefore, the indistinguishability follows.

Corrupted mediator. The construction of the simulator is similar to the case of static corruptions.
The differences are when the mediator commits to parties input and randomness or a party is corrupted.
In addition, it also needs to simulate the interaction with the key-exchange functionality (that do not
exist in the static case). That is:

Simulation of the interaction with the setup. The simulation of the interaction with Ḡacrs is
done as in the static case. To mimic the behavior of Fke we let Sπ to schedule the delayed
output in Fke. We note that in Fke the scheduling is done by both adversaries, and therefore,
we let Sπ to play the role of the second adversary in the scheduling process. The scheduling
done by the first adversary is simulated by executing the environment’s instructions without
involving Sπ. The scheduling done by the second adversary is simulated by forwarding the
scheduling instructions of the environment internally to Sπ.

Generation of input and randomness commitments. Recall that once the mediator is cor-
rupted it retrieves the trapdoor of the claw-free permutation. In out case, the simulator with
identity ((M, j),⊥) generate equivocal commitments using the trapdoor and hands it to the
environment as if they were given by Pj (via Fsmt).

Party corruption. Assume that the environment demands to corrupt a party. Then the simulator
forward it to Sπ and gets all its internal state in π (this done by corrupting it in the ideal
model and receive from Sπ its internal state in π). Then the simulator modifies all decom-
mitment information about input and randomness commitments of this party to match the
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received data. Next, the simulator hands this modified internal information and the round
commitments (received from the environment as part of input instruction to FπoblComp) to
the environment.

The validity proof is identical to the case of static corruptions. Moreover, it can be easily verified
that the internal state presented to the environment in Ideal/Fake is indistinguishable from
Real/Genuine.

8.8.1 Conclusions

As in the static case, we first need to extend the correspondence between the LUC and the UC re-
alizations to the key exchange hybrid model.

Theorem 15. Let F be a functionality in the UC model and π be some (Ḡacrs,Fke)-hybrid protocol.
Then π UC-realizes F with respect to static PIDs environments if and only if π̄ LUC-realizes the merger
functionality mF in the (Ḡacrs,Fke)-hybrid model.

Sketch of Proof The proof is similar to the proof presented for the static adversaries. First, we show
that UC realization of F implies LUC realization of mF also with global setup. Let S be the LUC
simulator constructed in theorem 6 for the dummy adversary. To mimic the behavior of Fke we do the
same as in the proof of corrupted mediator above. Except this, any message of SD is forwarded to the
appropriate external simulator and any received messages is forwarded internally to SD.

To show that LUC realization of mF implies UC realization of F with Fke we take, as before, the
simulator constructed in 6 and extend it to simulate interaction with the global setup. The scheduling in
Fke is done as follows: The (APPROVE, P, p) messages from Fke are forwarded to the first internal
simulator. Once approved it is forwarded to the second internal simulator that takes the role of the
scheduling adversary.

We do not present the validity proof as it repeats the same ideas as in 3.5. ut

Repeating the same steps as in the static scenario we obtain the following:

Theorem 16. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is setup oblivious
UC-realization of the well-formed aborting functionality Ffsfe. Then there exists a compiled protocol

M̃Comp(π) that LUC-realize Ffmsfe in the (Ḡacrs,Fke)-hybrid model in the presence of adaptive adver-
saries over unauthenticated channels, with PID-wise corruptions.

Theorem 17. Given a (poly-time) function f = (f1, ..., fn) and a protocol π that is setup oblivious
UC-realization of the well-formed aborting functionality Ffsfe. Then the compiled protocol M̃Comp(π)

UC-realize F̂f sfe in the (Ḡacrs,Fke)-hybrid model in the presence of adaptive adversaries over unau-
thenticated channels, with PID-wise corruptions.
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