
Password Protected Smart Card and Memory
Stick Authentication Against Off-line Dictionary

Attacks

Yongge Wang
Department of Software and Information Systems

UNC Charlotte, Charlotte, NC 28223, USA
yonwang@uncc.edu

March 3, 2012

Abstract

We study the security requirements for remote authentication with password
protected smart card. In recent years, several protocols for password-based au-
thenticated key exchange have been proposed. These protocols are used for the
protection of password based authentication between a client and a remote server.
In this paper, we will focus on the password based authentication between a smart
card owner and smart card via an untrusted card reader. In a typical scenario, a
smart card owner inserts the smart card into an untrusted card reader and input the
password via the card reader in order for the smart card to carry out the process
of authentication with a remote server. In this case, we want to guarantee that the
card reader will not be able to impersonate the card owner in future without the
smart card itself. Furthermore, the smart card could be stolen. If this happens, we
want the assurance that an adversary could not use the smart card to impersonate
the card owner even though the sample space of passwords may be small enough
to be enumerated by an off-line adversary.

1 Introduction
Numerous cryptographic protocols rely on passwords selected by users (people) for
strong authentication. Since the users find it inconvenient to remember long passwords,
they typically select short easily-rememberable passwords. In these cases, the sample
space of passwords may be small enough to be enumerated by an adversary thereby
making the protocols vulnerable to a dictionary attack. It is desirable then to design
password-based protocols that resist off-line dictionary attacks (see, e.g., [16]).

The problem of password-based remote authentication protocols was first stud-
ied by Gong, Lomas, Needham, and Saltzer [6] who used public-key encryption to
guard against off-line password-guessing attacks. In another very influential work (see,

1



e.g., [16]), Bellovin and Merritt introduced Encrypted Key Exchange (EKE), which be-
came the basis for many of the subsequent works in this area. These protocols include
SPEKE and SRP (see, e.g., [16]). Other papers addressing the above protocol prob-
lem can be found in [1–3]. In models discussed in the above mentioned papers, we
can assume that there is a trusted client computer for the user to input her passwords.
In a smart card based authentication system, this assumption may no longer be true.
The smart card reader could be malicious and may intercept the user input passwords.
Furthermore, a smart card could be stolen and the adversary may launch an off-line
dictionary attack against the stolen smart card itself. It is the goal for this paper to
discuss the security models for smart card based remote authentication and to design
secure protocols within these models.

In a practical deployment of smart card based authentication systems, there may be
other system requirements. For example, we may be required to use symmetric cipher
based systems only or to use public key based systems. Furthermore, the system may
also require that the server store some validation data for each user or the server do not
store any validation (this can be considered as identity based systems). Furthermore,
there may be other requirements such as user password expiration and changes.

In the following, we use an example to show the challenges in the design of secure
smart card based authentication protocols. A traditional way to store or transfer the
secret key for each user is to use a symmetric key cipher such as AES to encrypt user’s
long term secret key with user’s password and store the encrypted secret key on the
user’s smart card or USB memory card. This will not meet our security goals against
off-line dictionary attacks. For example, in an RSA based public key cryptographic
system, the public key is a pair of integers (n, e) and the private key is an integer
d. With the above mentioned traditional approach, the smart card contains the value
AESα(d) in its tamper resistant memory space, where α is the user’s password. If such
a card is stolen, the adversary could feed a message (or challenge) m to the smart card
for a signature. The adversary needs to input a password in order for the smart card to
generate a signature. The adversary will just pick one α′ from her dictionary and ask
the card to signm. The card will “decrypt” the private key as d′ = AES−1α′ (AESα(d))

and return a signature s′ = md′ mod n on m. Then the adversary only needs to check
whether s′e mod n = m. If the equation holds, the adversary knows that the guessed
password is correct. That is, α′ = α. Otherwise, the attacker will remove α′ from
the dictionary. Similar attacks work for Guillou-Quisquater (GQ), Fiat-Shamir, and
Schnorr zero-knowledge identification schemes.

This example shows that the “off-line” dictionary attack in the stolen smart card
environments is different from the traditional client-server based off-line dictionary
attacks. There have been quite a number of papers dealing with smart card based
remote authentications (see, e.g., [4,5,7,10,12,13,15]). However, most of these papers
present attacks on protocols in previous papers and propose new protocols without
proper security justification (or even a security model).

2



2 Security models
Halevi and Krawczyk [8, Sections 2.2-2.3] introduced a notion of security for remote
authentication with memorable passwords. They provide a list of basic attacks that a
password-based client-server protocol needs to guard against. Though these attacks
are important for password-based authentication, they are not sufficient for password-
protected smart card based remote authentication. In the following, we provide an
extended list of attacks that a password-protected smart card based authentication pro-
tocol needs to protect against. An ideal password-protected smart card protocol should
be secure against these attacks and we will follow these criteria when we discuss the
security of password-protected smart card authentication protocols.

• Eavesdropping. The attacker may observe the communications channel.

• Replay. The attacker records messages (either from the communication channels
or from the card readers) she has observed and re-sends them at a later time.

• Man-in-the-middle. The attacker intercepts the messages sent between the two
parties (between user U and smart card C or between smart card C and servers
S) and replaces these with her own messages. For example, if she sits between
the user and the smart card, then she could play the role of smart card in the
messages which it displays to the user on the card reader and at the same time
plays the role of users to the smart card.

• Impersonation. The attacker impersonates the user (using a stolen smart card
or a fake smart card) to an actual card reader to authenticate to the remote server,
impersonate a card reader to a user who inserts an authentic smart card, imper-
sonate a card reader and a smart card (a stolen card or a fake card but without the
actual user), or impersonate the server to get some useful information.

• Malicious card reader. The attacker controls the card reader and intercepts
the smart card owner’s input password. Furthermore, the attacker controls all of
the communications between smart card and the card owner via the card reader,
and all of the communications between smart card and the remote server. For
example, the attacker may launch a man in the middle attack between the smart
card and smart card owner.

• Stolen smart card. The attacker steals the smart card and impersonates the
smart card owner to the remote server via a trusted or a malicious smart card
reader. In this case, the attacker could use the stolen card to impersonate the card
owner with guessed passwords to the remote server with a limited time of failures
since the server may disable the card from the server side after certain number
of failures. If the attacker is allowed to use the card with guessed passwords to
impersonate the card owner to the remote server for unlimited times of failures,
then it will be considered as an on-line dictionary attack which scenario is not
considered in this paper. However, the attacker is allowed for three kinds of
further attacks that we will discuss in the following. One exception that we need
to make in our security model is that we will not allow the attacker to control

3



a malicious card reader to intercept the card owner’s password and then to steal
the smart card. There are three kinds of attackers based on the stolen smart card
scenario:

– Smart card is tamper resistant with counter protection. The attacker cannot
read the sensitive information stored in the tamper resistant memory. Fur-
thermore, the attacker may only issue a fixed amount of queries to the smart
card to learn useful information. The smart card will be self-destroyed if
the query number exceeds certain threshold (e.g., the GSM SIM card V2 or
later has this capability).

– Smart card is tamper resistant without counter protection. The attacker
cannot read the sensitive information stored in the tamper resistant mem-
ory. However, the attacker may issue large amount of queries to the smart
card to learn some useful information. For example, the attacker may setup
a fake server and uses a malicious card reader to guess the potential pass-
word.

– Smart card is not tamper resistant. The attacker (with the card) may be
able to break the tamper resistant protection of the smart card and read the
sensitive information stored in the tamper resistant memory. In this case,
the smart card will look more like a USB memory stick that stores the user
credential with password protection. But still there is a difference here.
In order for the user to use USB memory stick based credentials, the user
needs the access to a trusted computer to carry out the authentication. How-
ever, one may assume that even if the smart card is not tamper resistant, it
is not possible for a malicious card reader to read the sensitive information
on the card within a short time period (e.g., during the time that the card
owner inserts the card into the card reader for an authentication).

• Password-guessing. The attacker is assumed to have access to a relatively small
dictionary of words that likely includes the secret password α. In an off-line
attack, the attacker records past communications and searches for a word in the
dictionary that is consistent with the recorded communications or carry out inter-
action with a stolen smart card without frequent server involvement (the attacker
may carry out one or two sessions with server involved and all other activities
without server involvement). In an on-line attack, the attacker repeatedly picks a
password from the dictionary and attempts to impersonate U , C, U and C, or S. If
the impersonation fails, the attacker removes this password from the dictionary
and tries again, using a different password.

• Partition attack. The attacker records past communications, then goes over
the dictionary and deletes those words that are not consistent with the recorded
communications from the dictionary. After several tries, the attacker’s dictionary
could become very small.

We now informally sketch the definition of security models. We have three kinds of
security models.

4



1. Type I. The attacker A is allowed to watch regular runs of the protocol between
a smart card reader R (could be under the control of A) and the server S, can
actively communicate with R and S in replay, impersonation, and man-in-the-
middle attacks, and can also actively control a smart card reader when the card
owner inserts the smart card and inputs her password. Furthermore, the attacker
may steal the smart card from the user (if this happens, we assume that the at-
tacker has not observed the user password from the previous runs of protocols)
and issue a large amount of queries to the smart card using a malicious card
reader. However, we assume that the smart card is tamper resistant and the at-
tacker could not read the sensitive data from the smart card. A protocol is said to
be secure in the presence of such an attacker if (i) whenever the server S accepts
an authentication session with R, it is the case that the actual user U did indeed
insert her smart card intoR and input the correct password in the authentication
session; and (ii) whenever a smart card accepts an authentication session with S,
it is the case that S did indeed participate in the authentication session and the
user U did indeed input the correct password.

2. Type II. The capability of the attacker is the same as in the Type I model except
that when the attacker steals the smart card, it can only issue a fixed number of
queries to the smart card using a malicious card reader. If the number of queries
exceeds the threshold, the smart card will be self-destroyed.

3. Type III. The capability of the attacker is the same as in the Type I model ex-
cept that when the attacker steals the smart card, it will be able to read all of
the sensitive data out from the smart card. But we will also assume that when
a card owner inserts the card into a malicious card reader for a session of au-
thentication, the card reader should not be able to read the information stored in
the tamper resistant section of the card. In another word, the smart card is not
tamper resistant only when the attacker can hold the card for a relatively long
period by herself. Another equivalent interpretation of this assumption is that
the attacker may not be able to intercept the password via the card reader and
read the information stored in the card at the same time.

3 Smart card based secure authentication and key agree-
ment

3.1 Symmetric key based scheme: SSCA
In this symmetric key based smart card authentication scheme SSCA, the server should
choose a master secret β and protect it securely. Note that this master secret β could
be different for different users (cards). The Setup phase is as follows:

• For each user with identity C and password α, the card maker (it knows the
server’s master secret β) sets the card secret key as K = H(β, C) and stores
K = Eα(K) in the tamper resistant memory of the smart card, where E is a

5



symmetric encryption algorithm such as AES andH is a hash algorithm such as
SHA-2.

In the SSCA scheme, we assume that the smart card has the capability to generate
unpredictable random numbers. There are several ways for smart card to do so. One
of the typical approaches is to use hash algorithms and EPROM. In this approach, a
random number is stored in the EPROM of the smart card when it is made. Each time,
when a new random number is needed, the smart card reads the current random number
in the EPROM and hash this random number with a secret key. Then it outputs this
keyed hash output as the new random number and replace the random number content
in the EPROM with this new value. In order to keep protocol security, it is important
for the smart card to erase all session information after each protocol run. This will
ensure that, in case the smart card is lost and the information within the tamper resistant
memory is recovered by the attacker, the attacker should not able to recover any of the
random numbers used in the previous runs of the protocols. It should be noted that
some smart card industry uses symmetric encryption algorithms to generate random
numbers. Due to the reversible operation of symmetric ciphers, symmetric key based
random number generation is not recommended for smart card implementation.

Each time when the user inserts her smart card into a card reader (which could be
malicious), the card reader asks the user to input the password which will be forwarded
to the smart card.

1. Using the provided password α, the card decrypts K = Dα(K). If the password
is correct, the value should equal toH(β, C). The card selects a random number
Rc, computes RA = EK(C, Rc), and sends the pair (C, RA) to the card reader
which will be forwarded to the server.

2. The server recovers the value of (C, Rc) using the key K = H(β, C) and verifies
that the identity C of the card is correct. If the verification passes, the server se-
lects a random number Rs, computes RB = EK(C, Rs), and sends (C, RB , Cs)
to the card reader which forwards it to the card. HereCs = HMACsk(S, C, Rs, Rc)
is the keyed message authentication tag on (S, C, Rs, Rc) under the key sk =
H(C,S, Rc, Rs) and S is the server identity string.

3. The card recovers the value of (C, Rs) using the key K = H(β, C), com-
putes sk = H(C,S, Rc, Rs), and verifies the HMAC authentication tag Cs.
If the verification passes, it computes its own confirmation message as Cc =
HMACsk(C,S, Rc, Rs) and sends Cc to the server. The shared session key will
be sk.

4. The server accepts the communication if the HMAC tag Cc passes the verifica-
tion.

The protocol SSCA message flows are shown in the Figure 1
In the following, we use heuristics to show that SSCA is secure in the Type I

and Type II security models. If the underlying encryption scheme E and HMAC
are secure, then eavesdropping, replay, man-in-the-middle, impersonation, password-
guessing, and partition attacks will learn nothing about the password since no informa-
tion of password is involved in these messages. Furthermore, a malicious card reader

6



Figure 1: Message flows in SSCA

Card −→ Server : C, EK(C, Rc)
Card←− Server : EK(C, Rs), Cs
Card −→ Server : Cc

can intercept the password, but without the smart card itself, the attacker will not be
able to learn information about the secret key K = Dα(K). Thus the attacker will not
be able to impersonate the server or the card owner. When the attacker steals the smart
card (but she has not controlled a card reader to intercept the card owner password in the
past), she may be able to insert the card into a malicious card reader and let the card to
run the protocols with a fake server polynomial many times. In these protocol runs, the
attacker could input guessed password α′. The smart card will output (C, EK′(C, Rc))
where K ′ = Dα′(K). Since the attacker has no access to the actual server (this is
an off-line attack), the attacker can not verify whether the output (C, EK′(C, Rc)) is in
correct format. Thus the attacker has no way to verify whether the guessed password
α′ is correct. In a summary, the protocol is secure in the Type I and Type II security
models.

The protocol SSCA is not secure in the Type III security model. Assume that the
attacker has observed a previous valid run of the protocol (but did not see the password)
before steals the smart card. For each guessed password α′, the attacker computes
a potential key K ′ = Dα′(K). If this key K ′ is not consistent with the observed
confirmation messages in the previous run of the protocol, the attacker could remove
α′ from the password list. Otherwise, it guessed the correct password.

If we revise the attacker’s capability in Type III model by restricting the attacker
from observing any valid runs of the protocol before she steals the smart card, we
get a new security model which we will call Type III′ model. We can show that the
protocol SSCA is secure in the Type III′ model. The heuristics is that for an attacker
with access to the value K = Eα(K), he will not be able to verify whether a guessed
password is valid off-line. For example, for each guessed passwordα′, she can compute
K ′ = Dα′(K). But she has no idea whether K ′ is the valid secret key without on-line
interaction with the server. Thus the protocol is secure in the Type III′ security model.

Remarks: Modification of the protocol may be necessary for certain applications.
For example, if the card identification string C itself needs to be protected (e.g., it is
the credit card number), then one certainly does not want to transfer the identification
string C along with the message in a clear channel.

3.2 Public key based scheme: PSCAb
In this section, we introduce a public key based smart card authentication scheme with
bilinear groups: PSCAb, it is based on the identity based key agreement protocol from
IEEE 1363.3 [9, 14].

In the following, we first briefly describe the bilinear maps and bilinear map groups.

1. G and G1 are two (multiplicative) cyclic groups of prime order q.

7



2. g is a generator of G.

3. ê : G×G→ G1 is a bilinear map.

A bilinear map is a map ê : G×G→ G1 with the following properties:

1. bilinear: for all g1, g2 ∈ G, and x, y ∈ Z, we have ê(gx1 , g
y
2 ) = ê(g1, g2)

xy .

2. non-degenerate: ê(g, g) 6= 1.

We say that G is a bilinear group if the group action in G can be computed efficiently
and there exists a groupG1 and an efficiently computable bilinear map ê : G×G→ G1

as above. For convenience, throughout the paper, we view bothG andG1 as multiplica-
tive groups though the concrete implementation of G could be additive elliptic curve
groups.

Let k be the security parameter given to the setup algorithm and IG be a bilinear
group parameter generator. We present the scheme by describing the three algorithms:
Setup, Extract, and Exchange.
Setup: For the input k ∈ Z+, the algorithm proceeds as follows:

1. Run IG on k to generate a bilinear group Gρ = {G,G1, ê} and the prime order
q of the two groups G and G1. Choose a random generator g ∈ G.

2. Pick a random master secret β ∈ Z∗q .

3. Choose cryptographic hash functions H1 : {0, 1}∗ → G, H2 : {0, 1}∗ →
{0, 1}∗, and π : G×G→ Z∗q . In the security analysis, we view H1, H2, and π
as random oracles.

The system parameter is 〈q, g,G,G1, ê,H1,H2, π〉 and the master secret key is β.
Extract: For a given identification string C ∈ {0, 1}∗, the algorithm computes a gen-
erator gC = H1(C) ∈ G, and sets the private key dC = gβC where β is the master
secret key. The algorithm will further compute gS = H1(S) ∈ G where S is the server
identity string, and store the value (C, gS , d′C) in the tamper resistant smart card where
d′C = EH2(α)(dC), α is card owner’s password. and E is the encryption function that
could be defined in one of the following ways:

1. E is a standard symmetric cipher such as AES

2. EH2(α)(dC) = AESH2(α)(dC) + i0 where i0 = min{i : AESH2(α)(dC) + i ∈
G, i = 0, 1, . . .}. For an inputed passwordα′, dC is computed as AES−1H2(α′)(d

′
C−

i0) where i0 = min{i : AES−1H2(α′)(d
′
C − i) ∈ G, i = 0, 1, . . .}.

3. EH2(α)(dC) = d
H2(α)
C

Exchange: The algorithm proceeds as follows.

1. The card selects x ∈R Z∗q , computes RA = gxC , and sends it to the Server via the
card reader.

8



2. The Server selects y ∈R Z∗q , computes RB = gyS , and sends it to the card.

3. The card computes sA = π(RA, RB), sB = π(RB , RA), and dC = DH2(α′)(d
′
C)

where D is the decryption function and α′ is the user inputed password. If dC is
not an element of G, the card chooses the value for sk as a random element of
G1. Otherwise, the card computes the value sk = ê(gC , gS)

(x+sA)(y+sB)β as

ê
(
d
(x+sA)
C , gsBS ·RB

)
.

4. The card computesK1 = H(sk, , RA, RB , C,S, 1),K2 = H(sk, , RA, RB , C,S, 2),
and sends CC = HMACK1

(C,S, RA, RB) to the server. K2 is the shared secret.

5. The server computes sA = π(RA, RB), sB = π(RB , RA) and sk as

ê(gC , gS)
(x+sA)(y+sB)β = ê

(
gsAC ·RA, g

(y+sB)β
S

)
.

6. The server verifies whether CC is correct. If the verification passes, the server
computes K1 = H(sk, , RA, RB , C,S, 1), K2 = H(sk, , RA, RB , C,S, 2) and
sends CS = HMACK1

(S, C, RB , RA) to the card. K2 is the shared secret.

7. The card verifies the value of CS .

The smart card should never export the value of sk to the card reader during the proto-
col run. However, the smart card may need to export K2 to the card reader in certain
applications. The protocol PSCAb message flows are shown in the Figure 2

Figure 2: Message flows in PSCAb

Card −→ Server : gxC
Card←− Server : gyS
Card −→ Server : CC
Card←− Server : CS

In the following, we use heuristics to show that PSCAb is secure in the Type I,
Type II, and Type III security models. It should be noted that if the encryption function
is chosen as a standard symmetric cipher such as AES, then PSCAb is only weakly
secure in the Type III security model as follows. When the attacker has access to the
value d′C , she could remove those α′ from her dictionary such that DH2(α′)(d

′
C) is not

an element of G. In other words, PSCAb is secure in the type III security model only
if the remaining dictionary is still large enough.

The security of the underlying identity based key agreement protocol IDAK [14]
(it is called Wang Key Agreement protocol in [9]) is proved in [14]. Furthermore,
the eavesdropping, replay, man-in-the-middle, impersonation, password-guessing, and
partition attacks will learn nothing about the password since no information of pass-
word is involved in these messages. Furthermore, these attackers will learn nothing

9



about the private keys dC and β based on the proofs in [14]. For an attacker with
access to the information d′C (the attacker may read this information from the stolen
smart card), she may impersonate the card owner to interact with the server. Since
the attacker could not compute the correct value sk, she will not be able to generate
the confirmation message CC . Thus the server will not send the server confirmation
message back to the attacker. In another word, the attacker will get no useful infor-
mation for an off-line password guessing attack. Furthermore, even if the attacker has
observed previous valid protocol runs, it will not help the attacker since the smart card
does not contain any information of the session values x of the previous protocols runs.

Remarks: In the protocol PSCAb, it is important to have the card to send the
confirmation message to the server first. Otherwise, PSCAb will not be secure in the
Type III security model. Assume that the server sends the first confirmation message.
After the attacker obtains the value d′C from the smart card, she could impersonate
the user by sending the vale RA to the server. After receiving the server confirmation
message, she will remove α′ from her dictionary such that

sk′ = ê
(
DH(α′)(d

′
C)

(x+sA), gsBS ·RB
)

is not consistent with the confirmation message CS .

3.3 Public key based scheme: PSCA
In the previous section, we presented a protocol PSCAb based on the identity based
key agreement protocol IDAK. In this section, we briefly discuss a protocol based on
the HMQV key agreement protocol [11]. Let g be the generator of the group Gρ, q be
the prime order of g, and h be a constant. In this case, the server and the smart card
will both have public keys.

The server private/public key pair is (b, gb). The smart card private/public key pair
is (a, ga). The data stored on the smart card is: (a × H(α), gb). In the following, we
use C and S to denote the client (smart card) and server identity strings respectively.

1. The card selects x ∈R [1, q − 1], computes RA = gx, and sends it to the server.

2. Server selects y ∈R [1, q − 1], computes RB = gy , and sends it to the card.

3. The card decrypts the private key a via the user inputed password, computes
πA = H(RA,S), πB = H(RB , C), sA = (x + πAa) mod q, and the shared
session key: KHMQV = (RB · (gb)πB )sAh.

4. The server computes πA = H(RA,S), πB = H(RB , C), sB = (y+πBb) mod q,
and the shared session key: KHMQV = (RA · (ga)πA)sBh.

Remarks: Heuristics could be used to show that this protocol is secure in the Type
I and Type II security models. However this protocol is not secure in the Type III
security model. After the attacker obtains the value (a×H(α), gb), the attacker could
recover the password from a × H(α) and the smart card public key ga. However, if
ga is only known to the server, then PSCA should be secure in the Type III model. We
conjecture that it may be impossible to design HMQV based protocols that are secure
in the Type III model if the public key of the smart card is available to the attackers.

10



3.4 Public key based scheme with password validation data at server:
PSCAV

In previous sections, we discussed two protocols SSCA and PSCAb that the server does
not store any password validation data. In this section, we discuss a protocol where the
server needs to store password validation data for each card. One of the disadvantages
of this kind of protocols is that if the card owner wants to change her password, the
server has to be involved.

It should be noted that the password based remote authentication protocols that
have been specified in the IEEE 1363.2 [9] are not secure in our models. The major
reason is that the only secure credential that a client owns is the password. If the smart
card owner inputs her password on an untrusted card reader, the card reader could just
record the password and impersonates the client to the server without the smart card in
future.

Before we present our scheme PSCAV, we briefly note that the protocol PSCAb in
Section 3.2 can be easily modified to be a password protected smart card authentication
scheme that the server stores user password validation data. In Section 3.2, the identity
string for each user is computed as gC = H(C) ∈ G. For protocols with password
validation data, we can use a different way to compute the identity strings. In particular,
assume that the user U has a password α, then the identity string for the user will be
computed as gC = H(C, α) ∈ G and the private key for the user will be dC = gβC
where β is the master secret key. The value

(
C, gS , EH2(α)(dC)

)
will be stored in the

tamper resistant smart card, and the value gC will be stored in the server database for
this user. The remaining protocol runs the same as in Section 3.2. We can call the
above mentioned protocol as PSCAbV

Now we begin to describe our main protocol PSCAV for this section. Assume that
the server has a master secret β (β could be user specific also). For each user with
password α, let the user specific generator be gC = H1(C, α, β), the value gH2(α)

C is
stored on the smart card, where H2 is another independent hash function. The value
gC = H1(C, α, β) will be stored in the server database for this user. The remaining of
protocol runs as follows:

1. The card selects random x and sends RA = gxC to the server.

2. Server selects random y and sends RB = gyC to the card.

3. The card computes u = H(C,S, RA, RB) where S is the server identity string,
sk = g

y(x+uα)
C , and sends Cc = H(sk, C,S, RA, RB , 1) to the server

4. After verifying that Cc is correct, server computes u = H(C,S, RA, RB), sk =

g
y(x+uα)
C , and sends Cs = H(sk,S, C, RB , RA, 2) to the card.

The protocol PSCAV message flows are the same as for the PSCAb protocol mes-
sage in the Figure 2 (but with different interpretation for the variables in the figure).

In the following, we use heuristics to show that PSCAV is secure in the Type I,
Type II, and Type III security models. For the PSCAV protocol, the eavesdropping, re-
play, man-in-the-middle, card (client) impersonation, password-guessing, and partition

11



attacks will learn nothing about the password due to the hardness of the Diffie-Hellman
problem. For the attacker that carries out a server impersonation attack, it will receive
the value RA, and send a random RB to the card. The attacker will then receive the
card confirmation message CC . The attacker may not launch an off-line dictionary at-
tack on these information since for each guessed password α′, it has no way to generate
a session key sk′ due to the hardness of the Diffie-Hellman problem. For an attacker
with access to the information gH2(α)

C (the attacker may read this information from the
stolen smart card), she may impersonate the card owner to interact with the server. The
attacker may send a random RA to the server which could be based on gH2(α)

C , and re-
ceives a valueRB from the server. But it cannot compute the correct value for sk based
on these information. Thus it could not send the confirmation messageCC to the server.
Thus the server will not send the server confirmation message back to the attacker. In
other words, the attacker will get no useful information for an off-line password guess-
ing attack. Furthermore, even if the attacker has observed previous valid protocol runs,
it will not help the attacker since the smart card does not contain any information of
the session values x of the previous protocols runs.

Remarks: The attack described in the Remarks at the end of Section 3.2 could be
used to show that it is important to have the card to send the confirmation message to
the server first in the protocol PSCAV also.

4 Remote Authentication with password protected portable
memory sticks

In this section, we investigate the scenario that the user stores her private key on a USB
memory stick. Our goal is that if the memory stick is lost, then the adversary will
not be able to mount an off-line dictionary attack to impersonate the legitimate user.
Since a memory stick will not have its own CPU, the owner has to insert the memory
stick into a trusted computer (otherwise, the malicious computer could just intercept
the password and copy the content on the memory sticks and impersonates the owner
in future). Thus the security model for this kind of protocols are different from the
Type I, II, III models that we have discussed in Section 2, but are closely related to the
Type III model. Specifically, we will have the following Type IV model for portable
memory sticks.

• Type IV. The attackerA is allowed to watch regular runs of the protocol between
a client C (the client will only insert her memory stick and input her password to
trusted computers that are not controlled by the attacker) and the server S, can
actively communicate with C and S in replay, impersonation, and man-in-the-
middle attacks, and can also steal the memory stick from the user and read the
content in the memory stick. A protocol is said to be secure in the presence of
such an attacker if (i) whenever the server S accepts an authentication session
with C, it is the case that the actual user U did indeed insert her memory stick
into a computer C and input the correct password in the authentication session;
and (ii) whenever a client C accepts an authentication session with S, it is the

12



case that S did indeed participate in the authentication session and the user U
did indeed input the correct password.

Remark: It is an open question whether the security models Type III and Type IV
are equivalent.

References
[1] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure

against dictionary attacks. pages 139–155. Springer-Verlag, 2000.

[2] Victor Boyko, Philip Mackenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. pages 156–171. Springer-
Verlag, 2000.

[3] E. Bresson, O. Chevassut, and D. Pointcheval. Security proofs for an efficient
password-based key exchange. In In ACM Conference on Computer Communi-
cations Security, pages 241–250. ACM Press, 2003.

[4] Y. Chen, J. Chou, and C. Huang. Comment on four two-party authentication
protocols, 2010.

[5] M. L. Das, A. Saxena, and V. P. Gulati. A dynamic id-based remote user au-
thentication scheme. IEEE Transactions on Consumer Electronics, 50:629–631,
2004.

[6] Li Gong, T. Mark, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer.
Protecting poorly chosen secrets from guessing attacks. IEEE J. Selected Areas
in Communications, 11:648–656, 1993.

[7] T. Goriparthi, M. L. Das, and A. Saxena. An improved bilinear pairing based
remote user authentication scheme. Computer Standards and Interfaces, 31:181–
185, 2009.

[8] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols.
ACM Transactions on Information and System Security, 2(3):230–268, 1999.

[9] IEEE 1363. Standard specifications for public-key cryptography, 2005.

[10] W. S. Juang, S. T. Chen, and H. T. Liaw. Robust and efficient password-
authenticated key agreement using smart cards. IEEE Trans. Industrial Elec-
tronics, 55:2551–2556, 2008.

[11] Hugo Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol.
In CRYPTO 2005: 546-566.

[12] Y. Lee, J. Nam, and D. Won. Vulnerabilities in a remote agent authentication
scheme using smart cards. In LNCS: AMSTA, Vol. 4953, pages 850–857. Springer-
Verlag, 2008.

13



[13] H. S. Rhee, J. O. Kwon, and D. H. Lee. A remote user authentication scheme
without using smart cards. Computer Standards and Interfaces, 31:6–13, 2009.

[14] Yongge Wang. Efficient identity-based and authenticated key agreement protocol.
http://eprint.iacr.org/2005/108, 2005.

[15] T. Xiang, K. Wong, and X. Liao. Cryptanalysis of a password authentication
scheme over insecure networks. Computer and System Sciences, 74:657–661,
2008.

[16] Z. Zhao, Z. Dong, and Y. Wang. Security analysis of a password-based authenti-
cation protocol proposed to ieee 1363. Theoretical Computer Science, 352:280–
287, 2006.

14


