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Abstract In a Multistage Secret Sharing (MSSS) scheme,

the authorized subsets of participants could reconstruct

a number of secrets in consecutive stages. A One-Stage

Multisecret Sharing (OSMSS) scheme is a special case

of MSSS schemes that all secrets are recovered simulta-

neously. In these schemes, in addition to the individual

shares, the dealer should provide the participants with

a number of public values related to the secrets. The

less the number of public values, the more efficient the

scheme. It is desired that MSSS and OSMSS schemes

provide the computational security; however, we show

in this paper that OSMSS schemes do not fulfill the

promise. Furthermore, by introducing a new multi-use

MSSS scheme based on linear one-way functions, we

show that the previous schemes can be improved in

the number of public values. Compared to the previous

MSSS schemes, the proposed scheme has less complex-

ity in the process of share distribution. Finally, using

bilinear maps, the participants are provided with the

ability of verifying the released shares from other par-

ticipants. To the best of our knowledge, this is the first

verifiable MSSS scheme in which the number of public

values linearly depends on the number of the partici-

pants and the secrets and which does not require secure

communication channels.
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1 Introduction

In many applications, some piece of private information

is required. For example, the parties involved in a se-

cure communication may need to agree upon a secret

to safeguard the transmitted data against misuse. How-

ever, secrets are always exposed to unauthorized access

or getting lost. To prevent a secret from the above men-

tioned risks, one could benefit from a secret sharing

scheme.

In a secret sharing scheme, a secret is shared among

a set of parties, called participants, such that only au-

thorized subsets of them could recover the secret. To

make it happen, usually a trusted third party (dealer)

assigns a confidential value to each participant as his/her

share (shadow). Having these values, authorized subsets
of participants could compute the secret through a pre-

specified rule. The set, including all of the authorized

subsets, is called an access structure. An access struc-

ture could be chosen arbitrarily or it could be based

on a threshold rule. In a (t, n)-threshold secret sharing

scheme, each of the n participants is given a private

share, such that every subset of at least t participants

could recover the secret from their shares.

The concept of secret sharing was first introduced by

Shamir [1] and Blakley [2] in 1979, independently. Many

other secret sharing schemes were presented since then,

for example [3] and [4]. Some various features were con-

sidered as well such as verifiability of the shares [5], [6],

resistance against the presence of a number of cheaters

[7], [8], generalized access structures [4] and dynamic

change of the threshold and the number of participants

[9], [10].

A (t, n)-threshold secret sharing scheme is called

perfect, if less than t participants neither could recon-

struct the secret, nor obtain any information about it
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[11]. Note that here, the unconditional security is con-

sidered, that is, no limitation is presumed on the com-

putational power of the participants. It has been shown

that in a perfect secret sharing scheme, the size of the

shares should not be less than the size of the secret [11];

in the case of equality, the scheme is referred to as ideal

[12]. However, it is possible to decrease the share size

below the secret size, if it suffices to have the computa-

tional security [13]. It should be notified that as stated

in [13], ”computational security is in no way a practi-

cal limitation. In fact, most implementations of theo-

retically perfect secret sharing schemes result in actual

computational security”.

A multistage secret sharing scheme (MSSS) is a gen-

eralization of a secret sharing scheme, where there are

more than one secret to be shared. Still, each partic-

ipant receives one master-shadow, the size of which is

the same as the size of each secret. Thus, MSSS schemes

could only provide computational security. The first

MSSS scheme was proposed by He and Dawson in 1994

[14] and further improved in [15], [16], [17], [18], [19],

[20], [21]. In MSSS schemes, the secrets could be re-

covered in different stages, possibly according to a pre-

specified order. In these schemes, there are some public

values in addition to the master-shadows. The partici-

pants, who wish to participate in a secret reconstruction

stage, derive the corresponding sub-shadows from their

master-shadows and the public values.

In 2000, a one-stage multisecret sharing (OSMSS)

scheme was proposed by Chien et al. [22]. In such a

scheme, by assigning each of the participants a pri-

vate shadow, a number of secrets are shared among

them. However, when an authorized subset of partic-

ipants pull their shares together, they recover all the

secrets simultaneously in one stage, hence the name.

Numerous OSMSS schemes were proposed thereafter to

reduce the computational complexity and the number

of public values [23], [24], [25], [26], [27], [28].

In this paper, we briefly study some of the previous

MSSS and OSMSS schemes. The results of this inves-

tigation show that the least number of public values

published so far is equal to m × (n − t) in the former

schemes [16] and equal to m + n − t + 1 in the latter

schemes [24]. In the case of verifiable OSMSS scheme,

the least number of public values increases to 2n+1 [29]

and 2(n+1)+m− t [28], where m, n and t indicate the

number of secrets, the number of participants and the

threshold value, correspondingly. We also show that the

OSMSS scheme has an inherent security problem, that

is, it cannot provide the desired level of computational

security. More specifically, every unauthorized subset

of t − k participants are able to reduce the size of the

secret space from |S|m to |S|k, where S indicates the

secret space and 0 < k < min(m, t). Because of such a

security dilemma in OSMSS schemes, we only focus on

MSSS schemes, thereafter. Here, we propose an MSSS

scheme, using a linear one-way function [30], which re-

duces the number of public values from m× (n− t) to

m. Note that this is just equal to the number of secrets

and is independent of the number of participants.

Next, we propose a modified version of the new

scheme to acquire share verifiability with 2(n+1)+m−t
public values. To the best of our knowledge, this is the

first published verifiable MSSS scheme in which the par-

ticipants could verify the correctness of other shares

in the reconstruction stage. The proposed scheme also

does not require any secure channel for transmitting

the share values.

The rest of this paper is organized as follows. In

section 2, we review the main concepts of secret shar-

ing schemes. In section 3, we briefly study some of the

previous MSSS and OSMSS schemes. The security flaw

of OSMSS schemes is introduced in section 3 and then

proved in section 4. The new MSSS scheme and its ver-

ifiable version are presented in section 5. A thorough

analysis of the new schemes along with a comparison

with the previous schemes are given in the subsequent

section. We conclude the paper in section 7.

2 Definitions

Let P = {P1, P2, ..., Pn} be the set of n participants and

S and SP be the sets of all possible values for the secret

(the secret space) and the shares (share space), respec-

tively. A secret sharing scheme is a method that guaran-

tees accessibility and security of a secret s ∈ S, simul-

taneously. In such a scheme, each participant Pi, 1 ≤
i ≤ n receives a private share sPi

∈ SP such that only

prespecified subsets of the participants, called autho-

rized subsets, are able to recover the secret, using their

shares. The set of all the authorized subsets is named

an access structure, denoted by Γ . A threshold secret

sharing scheme is a specific but crucial type of secret

sharing with an access structure of the form

Γ = {A ⊆ P : |A| ≥ t} (1)

where t is the threshold value.

A (t, n)-threshold secret sharing scheme with a se-

cret s ∈ S and the shares s1, s2, ..., sn ∈ SP is called

perfect, if for every set of t indices {i1, ..., it} ⊂ {1, ..., n},
the two following conditions hold, where H(.) is the en-

tropy function.

H(s|si1 , ..., sit−1 , sit) = 0

H(s|si1 , ..., sit−1) = H(s) (2)
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In [11], it has been shown that the above constraints

demand

H(si) ≥ H(s), i = 1, .., n (3)

Assuming that the secret and the shares are uniformly

distributed in S and SP , respectively, which is usually

the case, the relation (3) yields |Sp| ≥ |S|, where |A|
represents the size of the set A. The scheme in which

|Sp| = |S| is called an ideal secret sharing scheme [12].

In other words, in an ideal secret sharing scheme, all

the shares have the same size as the secret. Being ideal

is a desired feature since the transmission and storage

of large shares are not profitable. Moreover, large share

size brings about redundancy in the scheme that re-

duces the efficiency.

A secret sharing scheme is composed of share distri-

bution and secret reconstruction processes. The share

distribution process is usually accomplished by a third

authorized participant, called dealer. The dealer cal-

culates the shares and sends them to the participants

through secure channels. In the secret reconstruction

process, an authorized set of participants cooperate to

recover the secret.

A dilemma of the secret sharing schemes is that

they are not resistant against the cheating participants

who provide false share values to prevent the others

from recovering the correct secret. This problem could

be solved by adding verifiability of the shares to the

scheme. In a verifiable secret sharing scheme, usually

the dealer publishes some extra values during the share

distribution process. By the help of these values, each

participant is able to verify the correctness of the shares

that are provided by other participants, before recover-

ing the secret. The first verifiable secret sharing schemes

were presented by Chor et al. [5] and Stadler [6], in 1985

and 1996, respectively. Since then, numerous verifiable

secret sharing schemes have been presented, for exam-

ple [31] and [32]. The former scheme uses the points on

an elliptic curve and the discrete logarithm problem to

achieve verifiability, while the latter utilizes a bilinear

map.

Perfect secret sharing schemes have the two follow-

ing limitations:

1. In each scheme just one secret is shared among the

participants; and

2. After the secret recovery, all of the shares, even the

shares of those participants who have not joined the

secret reconstruction process, get revealed.

Hence, to share another secret among these partici-

pants, the dealer has to send them a new set of shares.

Multistage secret sharing (MSSS) schemes and one-stage

multisecret sharing (OSMSS) schemes have been pre-

sented as efficient solutions to overcome the mentioned

constraints of the secret sharing schemes. In an MSSS

scheme, a number of secrets are shared among the par-

ticipants by assigning just one share (a master share)

to each. All master shares have the same size as each of

the secrets. Moreover, the participants are able to re-

construct the secrets in different stages, without jeop-

ardizing the security of uncovered secrets. An OSMSS

scheme is a special case of MSSS schemes, in which all

the secrets get revealed simultaneously. It is noteworthy

that based on the lower bound on the size of the shares

in a perfect secret sharing scheme, given in equation

(3), both MSSS and OSMSS schemes could not pro-

vide perfect security. Hence, we are just looking for the

computational security in these schemes.

3 Review of previous MSSS and OSMSS

schemes

In this section, we briefly review some of the previous

MSSS and OSMSS schemes. The pioneer MSSS scheme

presented by He and Dawson in 1994 [14] is based on the

Shamir’s secret sharing scheme and exploits the concept

of public shift values. Let f : Zp → Zp be an arbitrary

one-way function. For every x ∈ Zp and every positive

integer k, fk(x) denotes the result of k successive ap-

plications of f on x, that is, fk(x) = f
(
fk−1(x)

)
and

f0(x) = x. Let x1, x2, ..., xn be n label values corre-

sponding to the n participants. To share the secrets

S1, ..., Sm among the participants P1, ..., Pn according

to a (t, n)-threshold scheme, the dealer performs the

following steps:

1. Chooses n arbitrary integers s1, ..., sn.

2. For each secret Si, i ∈ {1, ...,m}, chooses random

values ai1 , ai2 , ..., ait−1 ∈ Zp and generates the poly-

nomial

Qi(x) = Si + ai1x+ ...+ ait−1x
t−1 (4)

Then, he computes the shift values as di,j = Qi(xj)−
f i−1(sj), j ∈ {1, ..., n}.

3. Sends the master-shares s1, s2, ..., sn through secure

channels to the participants P1, P2, .., Pn, respec-

tively and publishes di,j , i ∈ {1, ...,m} and j ∈
{1, ..., n}.

Accordingly, the participant Pj , who has got sj , is able

to compute Qi(xj) by adding the values f i−1(sj) and

di,j for every i ∈ {1, ...m}. Then, to construct a se-

cret Si in a stage, a set of t participants interpolate

the polynomial Qi(x) by the help of values Qi(xj) for

t arbitrary j ∈ {1, ..., n}. The secret Si is simply equal

to Qi(0). In order to protect the security of unrevealed
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pseudo-shares and subsequently the secrets, the partic-

ipants should follow a predetermined order for the se-

cret recovery: the secret Sm−l+1 should be recovered in

the l-th stage, l ∈ {1, ...,m} and to reconstruct the se-

cret Si, the participant Pj presents f i−1(sj) as his/her

pseudo-share.

In [14], it has been shown that the public shift val-

ues do not leak any information about the secrets and if

the predetermined order of secret recovery is preserved,

this scheme has computational security. However, in

this scheme, the participants are able to contravene the

predetermined order and compromise the security of

unrecovered secrets.

The number of public values in MSSS and OSMSS

schemes is an important parameter that affects the ef-

ficiency of a scheme by increasing the required memory

and communication load [33]. In the above scheme, the

number of public values is equal to m × n. A similar

MSSS scheme aiming to decrease the number of public

values is presented in [16]. This scheme needs m×(n−t)
public values which leads to a significant decrease of the

number of public values when t is close to n. However,

it still requires that the participants follow a predeter-

mined order of secret recovery to preserve the security

of the scheme.

In 1995, He and Dawson presented another MSSS

scheme [15] to remove the predetermined constraint

on the order of secret recovery. In this scheme, a two-

variable one-way function is used instead of successively

applying a one-way function on the master shares. To

share the secrets in this scheme, the dealer performs the

following steps.

1. Chooses n random integers s1, ..., sn and n arbitrary

constants c1, ..., cn.

2. For i ∈ {1, ..., n}, shares the secret Si by applying

the public shift values technique and by assuming

the values F (sj , ci), j ∈ {1, ..., n} as the pseudo-

shares, where F (., .) denotes a two-variable one-way

function. Let di,j = Qi(xj)−F (sj , ci) be the result-

ing shift values.

3. Sends the master shares s1, s2, ..., sn through se-

cure channels to the participants P1, P2, .., Pn, re-

spectively and publishes di,j , i ∈ {1, ...,m} and j ∈
{1, ..., n}.

In this scheme, different secrets could be reconstructed

in different stages in an arbitrary order. Again, the re-

constructed secrets and public values do not leak any in-

formation about unrecovered secrets. Furthermore, the

number of public values in this scheme is m× n+m =

m× (n+ 1). Note that in all of the above schemes, the

dealer generates m polynomials to share m secrets.

Another MSSS scheme with similar structure is pre-

sented in [18]. In this scheme, the secrets are again as-

sumed to be recovered in a specific order but unlike [14],

this scheme could guarantee that the participants pre-

serve this order. Similar to the previous MSSS schemes,

this scheme employs m polynomials to share m secrets

and it needs m×n public values. Moreover, it is a multi-

use scheme, that is, even after recovering all the secrets,

the master-shares of the participants would be still kept

secret and hence could be used in another MSSS ses-

sion.

The first OSMSS scheme presented in 2000 is based

on linear block coding [22]. In this scheme, m secrets are

interpreted as the m components of a message vector.

This vector is then encoded using the generator matrix

of a systematic block code. Finally, a number of code

symbols are given to the participants as their shares and

some other symbols are published. The authorized sub-

set of participants could decode the codeword and re-

cover the secrets, simultaneously. This scheme requires

(m+ n− t+ 1) public values.

Two more OSMSS schemes based on the Shamir’s

secret sharing scheme are proposed in [23] and [24]. In

these schemes, the shares are generated by a polynomial

that has all the secrets as its coefficients. The number of

public values in the former scheme is equal to (m+n−
t+1) and n+1 when m > t and m ≤ t, respectively. For

the latter scheme, this number is equal to (m+n−t+1).

Many other OSMSS schemes have been presented

that employ different methods for sharing the secrets.

For example, the scheme in [25] is a verifiable OSMSS

scheme with 2(n+1) and 2(n+1)+m− t public values

for the case of m ≤ t and m > t, respectively and

the one in [31] is a verifiable scheme based on linear

recursive equations with 2(n+ 1) +m− t public values.
In [29], another verifiable OSMSS scheme with 2(n+1)

public values is presented. This scheme makes use of

bilinear maps to provide the share verifiability for the

participants.

Before we finish this section, we briefly explain the

specific OSMSS scheme introduced in [23] as an exam-

ple through which we reveal the security flaw of the

OSMSS schemes in general.

Share Distribution Process. In this scheme, to share the

secrets among the participants, the dealer first chooses

a large enough prime number p. Then, he chooses n ran-

dom values s1, s2, ..., sn ∈ Zp and sends them through

secure channels to the n participants (p is chosen such

that S1, S2, ..., Sm ∈ {1, 2, ..., p− 1}). He also chooses

a random value r ∈ Zp and calculates the pseudo-

shares F (sj , r), j ∈ {1, ..., n}, where F resembles a two-

variable one-way function. In the case of m ≤ t, the

dealer performs the following steps.
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1. Chooses the random values a1, ..., at−m ∈ {1, ..., p−
1} and generates a polynomial Q(x)(mod p) of de-
gree t− 1 according to

Q(x) = S1 + S2x+ ...+ Smx
m−1

+ a1x
m + a2x

m+1 + ...+ at−mx
t−1(mod p) (5)

2. Calculates the values yj = Q
(
F (sj , r)

)
, j ∈ {1...n}.

3. Publishes (r, y1, ..., yn). The number of public values

in this case is equal to (n+ 1).

In the case of m > t, the dealer does the following steps.

1. Generates a polynomialQ(x)(mod p) of degreem−1

according to

Q(x) = S1 + S2x+ ...+ Smx
m−1(mod p) (6)

2. Calculates the values yj = Q
(
F (sj , r)

)
, j ∈ {1, ..., n}.

3. Computes the public values Q(i)(mod p), i ∈ {1, ...,
m− t} and publishes the vector

(r, y1, ..., yn, Q(1), ..., Q(m− t)). The number of pub-

lic values in this case is equal to (n+m− t+ 1).

Secret Reconstruction Process. In the case of m ≤ t, at

least t participants could obtain t points of the form(
F (sj , r), yj

)
on the polynomial Q(x) and using the

Lagrange interpolation, they could calculate Q(x) and

subsequently the secrets. In the other case, in order

to reconstruct the polynomial Q(x) of degree m − 1,

these participants could use the m − t public points

(i, Q(i)), i ∈ {1, ...,m − t} on the polynomial, in addi-

tion to their shares.

Although in the above scheme, t − 1 participants

could not reconstruct the m secrets, according to the

following discussion, they could reduce the search space

of the secrets from |S|m to |S|, where S denotes the se-

cret space. Assume m ≤ t and consider the following set

of (t−m+1) equations with t unknowns (S1, S2, ..., Sm,
a1, ..., at−m).

yj = S1 + S2F (sj , r) + ...+ Sm

(
F (sj , r)

)m−1
+ a1

(
F (sj , r)

)m
+ ...+ at−m

(
F (sj , r)

)t−1
,

j ∈ {1, ..., t−m+ 1} (7)

Every set of (t − m + 1) participants, with the help

of their shares, are able to omit t − m unknown co-

efficients a1, ..., at−m and reduce the equations in (7)

to one equation in m unknowns (S1, S2, ..., Sm). Us-

ing a similar approach, t − 1 participants could find

(t − 1) − (t −m) = m − 1 linear relations between the

m secrets. As a result, the search space of the secrets

reduces to that of one secret for these unauthorized set

of t − 1 participants. That is, if they could find the

value of just one secret somehow, they would recover

all the secrets. The same argument satisfies for the case

of m > t. In the next section, we show that what is

stated here as a security flow for the OSMSS scheme in

[23] is generally true for all OSMSS schemes.

4 Security flaw in OSMSS schemes

In this section, we show that in a (t, n)-threshold OSMSS

scheme, an unauthorized subset of k participants (k <

min(m, t)) could reduce the search space of secrets from

|S|m to |S|t−k, where S and m are the secret space and

the number of secrets, respectively. This is mainly be-

cause the secrets are supposed to be revealed, simul-

taneously. As a result, each participant uses the same

share value to recover all the secrets.

Assume that at least t participants are needed to

recover all the secrets and k ∈ {1, ...,min(m, t)} is an

integer. The secrets and the shares are chosen randomly,

according to an identical distribution from the same

space S = Sp, where Sp is the share space. Hence,

H(S1) = H(S2) = ... = H(Sm) = H(s1) = ... = H(sn)

(8)

where H(.) is the Entropy function. Then,

I (s1, ..., sk;S1, ..., Sm|sk+1, ..., st) =

H (s1, ..., sk|sk+1, ..., st)−H(s1, ..., sk|sk+1, ..., st, S1, ..., Sm) =

H (S1, ..., Sm|sk+1, ..., st)−H(S1, ..., Sm|s1, ..., sk, sk+1, ..., st)

(9)

With due attention to the definition of OSMSS schemes,

H(S1, ..., Sm|s1, ..., sk, sk+1, ..., st) = 0. Therefore,

H (S1, ..., Sm|sk+1, ..., st) ≤
H (s1, ..., sk|sk+1, ..., st) ≤
H (s1, ..., sk) ≤ H(s1) + ...+H(sk) =

kH (s1) = kH(S1) (10)

Equation (10) shows that the uncertainty about the m

secrets in t−k shares is at most equal to the uncertainty

of k secrets. In the case of k = 1, the uncertainty of

t − 1 participants about the secrets is equal to that of

one secret.

5 Efficient MSSS schemes

In the previous sections, we fully investigated MSSS

and OSMSS schemes. The study of OSMSS schemes

revealed that they have an intrinsic security weakness

that causes an authorized set of participants to be able

to reduce the uncertainty about the secrets to that of

one secret. That is, in a (t, n)-threshold OSMSS scheme,

every set of t−1 participants would be able to find some

relations between their shares and the secrets and sub-

sequently recover all the secrets, if they could somehow

seize the value of just one secret. Moreover, OSMSS

schemes provide less flexibility, compared to MSSS. More
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precisely, in OSMSS schemes, all the secrets get re-

vealed simultaneously which causes the required num-

ber of public values in these schemes to be much lower

than the corresponding number in MSSS schemes. The

required number of public values in all of OSMSS schemes

studied so far, depends linearly on the number of par-

ticipants (n) and the number of secrets (m) which is

equal to m+ n− t+ 1 in the best case [22,24].

MSSS schemes are more flexible, that is, in these

schemes, the secrets could be recovered independently

and possibly according to a desired order in successive

stages. The required number of public values in all of

the proposed MSSS schemes depends on the product of

the number of participants and the number of secrets

whose minimum value has been equal to m × (n − t)
[16].

In this section, we propose two threshold MSSS

schemes based on a linear one-way function. The first

scheme needs just m public values in order to share m

secrets among n participants. Then, by employing bilin-

ear maps, we propose a verifiable version of this scheme

that needs 2(n + 1) + m − t public values to share m

secrets according to a (t, n)-threshold MSSS scheme. As

referred to in section 3, no verifiable MSSS scheme has

been proposed so far and the verifiable OSMSS schemes

in [31] and [29] require 2(n + 1) + m − t and 2(n + 1)

public values, respectively.

5.1 Preliminaries

Bilinear maps and linear one-way functions were first

introduced in [34] and [30], respectively and then found

some applications in identity-based cryptosystems [34]

and network security [35], [36]. In this section, we briefly

introduce these concepts, before we employ them in the

proposed MSSS schemes.

Definition 1 [34] Let G be an additive group and G1

be a multiplicative group, both of order q for some large

prime q (for example 160 bits). A map e : G×G→ G1

is said to be an admissible bilinear map, if

1. e(aP, bQ) = e(P,Q)
ab

for all a, b ∈ Zq and P,Q ∈ G
(Bilinear condition).

2. The map does not project all elements of G×G to

the identity element of G1 (Non-degeneracy condi-

tion).

3. There is an efficient algorithm to compute e(P,Q)

for all P,Q ∈ G (Computability condition).

An example of the groups G and G1 together with

a bilinear map could be found in [34].

The existence of an admissible bilinear map e : G×
G → G1 leads to the following result in the groups G
and G1 [34].

– The Decision Diffie-Hellman problem (DDH) in G is

easy, that is, it is easy to distinguish between the val-

ues (P, aP, bP, abP ) and (P, aP, bP, cP ) where a, b, c

are random in Z∗q and P is random in G∗ but the

Computational Diffie-Hellman problem (CDH) in G
can be still hard; in other words, it is hard to find

abP given random values (P, aP, bP ).

Also, the discrete logarithm problem on elliptic curves,

as defined below, is supposed to be hard [34].

– Let P be a generator and Q be an arbitrary ele-

ment of G. There exist an integer r ∈ Z∗q such that

Q = rP . The discrete logarithm problem on elliptic

curves is equivalent to finding r, given P and Q.

Remark 1 Consider the isomorphism induced from G
to G1 by the bilinear map e. More specifically, for a

point Q ∈ G∗ define the isomorphism fQ : G → G1

by fQ(P ) = e(P,Q). The existence of an efficient algo-

rithm for inverting fQ, for some Q, would lead to an

efficient algorithm for solving discrete logarithm prob-

lem in G1 [34]. Consequently, the isomorphism fQ is

believed to be a one-way function whenever discrete log-

arithm is believed to be hard in G1, as it is the case in

all of the examples given in [34]. Therefore, throughout

the paper the bilinear map e is considered as a one-way

function (P and Q cannot be inferred from e(P,Q)).

In [30], a linear one-way function h : G×Z∗q → G is

introduced to be used in an identity-based encryption

(IBE) system. Here, we benefit from the properties of

h in the proposed scheme.

Definition 2 [30] Let G be an additive group of order

q, where q is a large prime number. h : G× Z∗q → G is

a linear one-way function, if

– For all P ∈ G and a, x ∈ Z∗q we have h(aP, x) =

ah(P, x).

– Given x, xi ∈ Z∗q , P ∈ G and
(
xi, h(aP, xi)

)
for all

i ∈ {1, ..., n}, h(aP, x) could not be computed, using

any probabilistic polynomial-time algorithm.

The function h, defined above, is a one-way function

with respect to its first argument, that is, P cannot be

inferred from h(P, x) and x.

5.2 An MSSS scheme based on a linear one-way

function

Let h : G×Z∗q → G be a linear one-way function where

q and G denoted a sufficiently large prime number and

an additive group of order q, respectively. Here, we as-

sume that G is an additive group that consists of the
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points on an elliptic curve. Also, assume that the secrets

S1, S2, ..., Sm are all in G. The proposed MSSS scheme

consists of two processes: share distribution and secret

reconstruction.

Share Distribution Process. To share the secrets S1, S2,

· · · , Sm according to a (t, n)-threshold MSSS scheme,

the dealer executes the following steps.

1. Chooses random coefficients a0, a1, ..., at−1 ∈ Z∗q and

generates the polynomial Q(x) = a0 + a1x + ... +

at−1x
t−1.

2. Computes the values s1 = Q(x1), s2 = Q(x2), · · · ,
sn = Q(xn), where x1, ..., xn ∈ Z∗q are the label val-

ues assigned to the participants P1, ..., Pn, respec-

tively.

3. Randomly chooses a generator P ∈ G and sends

s1P, s2P, ..., snP via secure channels to the partici-

pants P1, P2, ..., Pn as their shares, respectively.

4. Calculates the values α1 = h(s0P, 1), α2 = h(s0P, 2),

· · · , αm = h(s0P,m), where s0 = Q(0). Next, he

publishes the values S1 − α1, ..., Sm − αm.

Secret Reconstruction Process. Assume that a set of t

participants P1, ..., Pt want to collaborate in one stage

to recover the secret Si, i ∈ {1, ...,m}. Each of these

participants first calculates and pools his/her pseudo-

share h(sjP, i), j ∈ {1, ..., t}. Next, they compute the

value h(s0P, i) from the following equation.

∑t
j=1

( t∏
i=1
i6=j

xi
xi − xj

)
h(sjP, i)

= h

(( t∑
j=1

sj

t∏
i=1,i6=j

xi
xi − xj

)
P, i

)
= h

(
Q(0)P, i

)
= h(s0P, i) (11)

The participants P1, ..., Pt can then recover the secret

Si from Si − αi and αi = h(s0P, i).

The number of public values for sharing m secrets

among n participants in the proposed scheme is inde-

pendent of n and it is equal to m. Moreover, the par-

ticipants can reconstruct the secrets according to their

desired order rather than in a prespecified one.

5.3 A verifiable MSSS scheme based on a linear

one-way function and a bilinear map

In this section, we present a modified version of the

proposed MSSS scheme. In the new scheme, the dealer

does not need secure channels to assign the shares to

the participants. Moreover, the participants who collab-

orate in a secret reconstruction stage could verify the

correctness of pseudo-shares that are presented by the

other participants, before recovering the secrets. Here,

in addition to the linear one-way function h, we employ

a bilinear map e : G × G → G1 to verify the shares,

where G and G1 are defined as in section 5.1.

Share Distribution Process. The dealer randomly chooses

a generator P ∈ G and a random secret value r ∈ Z∗q .

Then, he computes Q = rP and publishes the val-

ues P and Q. Subsequently, each participant randomly

chooses a secret value sj ∈ Z∗q as his/her share and

sends the value sjQ to the dealer, via public chan-

nels. Upon receiving all sjQ, j ∈ {1, ..., n}, the dealer

first checks if these values are all distinct and then he

computes the values sjP, j ∈ {1, ..., n} by the following

equation.

r−1(sjQ) = r−1(sjrP ) = sj(r
−1rP ) = sjP (12)

Then, the dealer computes the value Q(0)P according

to the following equation, where Q(x) is a polynomial

of degree at most n−1 which passes through the points

(x1, s1P ), (x2, s2P ), ..., (xn, snP ).

Q(0)P =

n∑
j=1

( n∏
i=1
i 6=j

xi
xi − xj

)
sjP (13)

The dealer also computes Q(dk)P as shown in (14),

where dk, k ∈ {1, ..., n− t} are the n− t smallest values

in the set {1, ..., q − 1} \ {xj |j = 1, ..., n} and then cal-

culates α1 = h
(
Q(0)P, 1

)
, α2 = h

(
Q(0)P, 2

)
, ..., αm =

h
(
Q(0)P,m

)
. Finally, he publishes the vector(

siQ,Sj − αj , Q(dk)P
)
i=1,...,n,j=1,...,m,k=1,...,n−t

Q(dk)P =

n∑
j=1

( n∏
i=1
i 6=j

dk − xi
xj − xi

)
sjP , (14)

k ∈ {1, ..., n− t}.

Secret Reconstruction Process. Let P1, P2, ..., Pt resem-
ble t participants who come together in one stage to
recover the secret Si, i ∈ {1, ...,m}. Using their pseudo-
shares h(sjP, i), j ∈ {1, ..., t} and the public values
Q(d1)P,Q(d2)P, ..., Q(dn−t)P , the participants are able to cal-
culate αi according to

αi = h(Q(0)P, i)

=
t∑

j=1

( t∏
i=1,i 6=j

xi

xi − xj

)( n−t∏
i=1

di

di − xj

)
h(sjP, i)

+
n−t∑
j=1

( n−t∏
i=1,i 6=j

di

di − dj

)( t∏
i=1

xi

xi − dj

)
h(Q(dj)P, i) (15)

Now, the secret Si is simply the sum of αi and Si − αi.
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Share Verification Process. Before computing αi and re-
covering the secret Si, the participants P1, P2, ..., Pt could con-
firm the correctness of the submitted pseudo-shares through
the following equation,

e(h(sjP, i), Q) = e(h(P, i), sjQ), 1 ≤ i ≤ m, j = 1, ..., t, (16)

where sjQ, j ∈ {1, ..., n} are public values.
If the equality in (16) holds for any j ∈ {1, ..., t}, the partic-
ipants get confident about the validity of the pseudo-share
h(sjP, i).

The proposed verifiable MSSS scheme has 2(n+1)+m− t
public values, including Q,P, s1Q, ..., snQ,S1 − α1, ...,

Sm − αm, Q(d1)P, ..., Q(dn−t)P . Similar to the scheme pre-
sented in section 5.2, every t participants in this scheme are
able to recover the secrets in a desired order and in consecu-
tive stages.

A comprehensive analysis of the above schemes is pre-
sented in the next section.

6 Analysis of the proposed MSSS schemes

In this section, we try to present a thorough analysis of the
MSSS schemes, presented in section 5. This analysis is di-
vided into two parts. First, we investigate the security of the
proposed schemes. Next, we compare these schemes with the
other MSSS schemes already presented in the literature.

We prove the computational security of the proposed MSSS
schemes, by means of a couple of theorems. First, consider the
scheme presented in Section 5.2. In that scheme, the random
generator P ∈ G does not need to be published. The following
theorems, however, are still valid in the case that P is public.

Theorem 1 In the MSSS scheme based on a linear one-way

function, one cannot gain any information about the undisclosed
secrets from already recovered secrets, in polynomial time.

Proof : Assume that the secrets {Si}i∈I , I ⊂ {1, ...,m} are re-
covered. Consequently, the values {αi = h(s0P, i)}i∈I and the
pseudo-shares {h(sjP, i), 1 ≤ j ≤ n}i∈I are revealed to those t
participants. Regarding the properties of the one-way linear
functions,stated in Definition 2 of Section 5.1, however, none
of the values s0P, h(s0P, k), sjP and h(sjP, k), 1 ≤ j ≤ n for
k /∈ I could be calculated from {αi = h(s0P, i)}i∈I ,
{h(sjP, i), 1 ≤ j ≤ n}i∈I and I, in polynomial time. Hence,
no information about undisclosed secrets is leaked from the
recovered secrets, in polynomial time. �

Theorem 2 In the MSSS scheme based on a linear one-way
function, no subset of P = {P1, P2, ..., Pn} with at most t −
1 participants obtain any information about the secrets Si, i ∈
{1, ...,m}, in polynomial time.

Proof : Assume that a group of t− 1 participants conspire to
recover the secret Si in a stage. According to Theorem 1,
the recovered secrets do not leak any information about the
undisclosed secret Si in polynomial time. Without loss of gen-
erality we assume that Si is the first secret to be recovered. To
calculate Si, the cheating participants need one of the values
s0P or h(s0P, i). Calculation of s0P requires knowledge of at
least t values of the master-shares sjP, 1 ≤ j ≤ n on the poly-
nomial Q(x)P , while these participants have only (t− 1) out
of the n master-shares. Regarding the perfectness of Shamir’s
scheme, having only t − 1 values of siP on the polynomial

Q(x)P with the coefficients chosen randomly according to a
uniform distribution from Zq, it is not possible to obtain any
information about s0P , the constant term of this polynomial.
Moreover, to compute h(s0P, i), these participants need at
least t values of the form h(sjP, i), 1 ≤ j ≤ n but they just
have t − 1 of them. Hence, the cheating participants do not
extract any information about the secret Si. Bear in mind
that the public values in this scheme are of the type of shift
values presented in [14] and as shown in the same paper, these
values do not leak any information about the secrets. �

The above theorems confirm that the proposed MSSS
scheme based on a linear one-way function has the computa-
tional security. Moreover, it is a multi-use scheme. This means
that even after recovering all of the secrets, the master-shares
of the participants (that is, sjP, 1 ≤ j ≤ n) are kept confiden-
tial and the shareholders can use their shares to recover a
new set of secrets.

Security analysis of the verifiable MSSS scheme, intro-
duced in Section 5.3, is similar to the above analysis. The
only point that should be considered is that the values pub-
lished to provide verifiability of the shares do not give any
information about the shares of the participants. This state-
ment is proved in the next theorem.

Theorem 3 In the verifiable MSSS scheme based on a linear
one-way function h : G×Z∗q → G and a bilinear map e : G×G→
G1, no information about the master-shares leaks from the public

values in polynomial time.

Proof : It suffices to show that having the values P,Q, sjQ, 1 ≤
j ≤ n, one could not compute the values sj and sjP . With re-
spect to the discrete logarithm problem, it is computationally
impossible to calculate sj from sjQ and Q. Similarly, the par-
ticipants could not compute r, r−1 ∈ Z∗q which satisfy Q = rP

and P = r−1Q. As a result, none of the participants can com-
pute sjP from sjP = r−1sjQ. Consequently, it is not possible
for the participants to calculate any of sj or sjP from the
public values. This completes the proof. �

Table 6 shows the results of comparing the two MSSS
schemes, proposed in section 5, with previous schemes from
the following points of view: 1) The level of security; 2) Veri-
fiability of the shares; 3) Number of public values for sharing
m secrets among n participants according to a (t, n)-threshold
scheme. It can be inferred from the results that the proposed
MSSS scheme based on a linear one-way function needs the
least number of public values; moreover, the verifiable MSSS
scheme based on a bilinear map requires nearly the same num-
ber of public values as the OSMSS schemes in [28],[29]. This is
while the two latter schemes fail to provide the computational
security.

7 Conclusions

In this paper, we have considered two generalizations of a
secret sharing scheme: The One-Stage Multisecret Sharing
scheme and the Multi-Stage Secret Sharing scheme. The de-
sired level of security in these schemes is the computational
security. However, we have proved that an OSMSS scheme
fails to provide this security level. More precisely, in a (t, n)
threshold OSMSS scheme with m secrets, a set of k < t unau-
thorized participants could reduce the uncertainty about the
m secrets to that of only t− k secrets. This is mainly because
each participant applies the same share value in recovering
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Table 1 Comparison of the two proposed MSSS schemes with the previous schemes

Scheme Computational Verifiability No. of Public
Security Values

OSMSS [22] No No n+m− t+ 1
n+ 1(m ≤ t)

OSMSS [23] No No
n+m− t+ 1(m > t)

OSMSS [24] No No m+ n− t+ 1
n+ 1(m ≤ t)

OSMSS [27] No No
n+m+ 1(m > t)

OSMSS [28] No Yes 2(n+ 1) +m− t
OSMSS [29] No Yes 2n+ 1
MSSS [14] Yes No m× n
MSSS [15] Yes No m× (n+ 1)
MSSS [16] Yes No m× (n− t)
MSSS [18] Yes No m× n
MSSS [20] Yes No m× (n− t+ 1)

The proposed Yes No m
MSSS scheme

The proposed verifiable Yes Yes 2(n+ 1) +m− t
MSSS scheme

different secrets. Alternatively, in an MSSS scheme, the se-
crets could be recovered in different stages. To make it hap-
pen, the participants should derive some pseudo-shares from
their master-shares to present in recovery of different secrets.

OSMSS and MSSS schemes come usually with a num-
ber of public values that are used for the share verification
and the secret reconstruction. The study of MSSS schemes
revealed that the number of public values in the proposed
schemes is proportional to product of the number of the par-
ticipants and that of the secrets and in the best case, it is
equal to m × n. By employing a linear one-way function, we
have presented an MSSS scheme where the number of pub-
lic values exclusively depends on the number of secrets. This
scheme uses only one generating polynomial for sharing dif-
ferent secrets and hence has less computational complexity
in the share distribution process, when compared to the pre-
viously proposed schemes. The new scheme is multi-use and
provides the desired computational security. Finally, using
bilinear maps, we have presented a verifiable version of our
scheme in which the participants are able to verify the re-
leased shares from other participants. This verifiable scheme
does not need any secure channel and the participants gen-
erate their own shares. The number of public values in this
scheme is equal to 2(n+ 1) +m− t.

Acknowledgements This work is partially supported by ITRC
under the contraction no. T500/20961 and supported by cryp-
tography chair of Iran NSF.

References

1. A. Shamir, ”How to Share a Secret”, Commun. ACM, vol.
22, no. 11, pp. 612–613, 1979.

2. G.R. Blakley, ”Safeguarding Cryptographic Keys”,
AFIPS, National Computer Conference, vol. 48, pp. 313–
317 , 1979.

3. M. Mignotte, ”How to Share a Secret”, Cryptography Pro-
ceedings, Burg Feuerstein 1982, T. Beth, ed., LNCS 149, pp.
371–375, 1983.

4. J. Benaloh and J. Leichter, ”Generalized Secret Shar-
ing and Monotone Functions”, Advances in Cryptology –
CRYPTO ’88, S. Goldwasser, ed., LNCS 403, pp. 27–35,
1989.

5. B. Chor and S. Goldwasser and S. Micali and B. Awer-
buch, ”Verifiable Secret Sharing and Achieving Simultane-
ity in the Presence of Faults”, Proceedings of the 26th IEEE
Symposium on the Foundations of Computer Science, IEEE
Press, pp. 383–395, 1985.

6. M. Stadler, ”Publicley Verifiable Secret Sharing”, Ad-
vances in Cryptology, EUROCRYPT’96, LNCS, vol. 1070,
pp. 190–199, 1996.

7. E.F. Brickell and D.R. Stinson, ”The Detection of
Cheaters in Threshold Schemes”, Society for Industrial and
Applied Mathematics (SIAM), vol. 4, no.4, pp. 502–520,
1991.

8. W. Ogata and K. Kurosawa, ”Optimum Secret Sharing
Scheme Secure against Cheating”, U. Maurer (ed.) Ad-
vances in Cryptology, EUROCRYPT’96. LNCS, vol. 1070,
pp. 200–211. Springer, Heidelberg, 1996.

9. K.M. Martin and R. Safavi-Naini and H. Wang, ”Bound
and Techniques for Efficient Redistribution of Secret Shares
to New Access Structures”, Computer Journal, vol. 42, no.
8, pp. 638–649, 1999.

10. S.G. Barwick and W.A. Jackson and K.M. Martin, ”Up-
dating the Parameters of a Threshold Scheme by Minimal
Broadcast”, IEEE Transactions On Information Theory,
vol. 51, no. 2, pp. 620–633, 2005.

11. E.D. Karnin and J.W. Greene and M.E. Hellman, ”On
Secret Sharing System”, IEEE Transaction on Information
Theory, vol. 29, no. 1, pp. 35–41, 1983.

12. E.F. Brickell and D.M. Davenport, ”On the Classification
of Ideal Secret Sharing Schemes”, Journal of Cryptology,
vol. 4, pp. 123–134, 1991 [Preliminary version appeared in
Advances in Cryptology – CRYPTO ’89, G. Brassard, ed.,
LNCS 435, pp. 278–285, 1990].

13. H. Krawczyk, ”Secret Sharing Made Short”, Advances in
Cryptology – CRYPTO ’93, D. R. Stinson, ed., LNCS 773,
pp. 136–146, 1994.



10 Mitra Fatemi et al.

14. J. He and E. Dawson, ”Multi-Stage Secret Sharing
Scheme Based on One-way Function”, Electronic Letters,
vol. 30, no. 19, pp. 1591–1592, 1994.

15. J. He and E. Dawson, ”Multisecret-Sharing Scheme
Based on One-way Function”, Electronic Letters, vol. 31,
no. 2, pp. 93–95, 1995.

16. L. Harn, ”Comment: Multistage Secret Sharing based on
One-way Function”, Electronics Letters, vol. 31, no. 4, pp.
262–262, 1995.

17. L. Harn, ”Efficient Sharing (Broadcasting) of Multiple
Secrets”, Proceeding of the IEE Comput. Digit. Tech., vol.
142, no. 3, pp. 237–240, May 1995.

18. T.Y. Chang and M.S. Hwang and W.P. Yang, ”A New
Multi-Stage Secret Sharing Scheme Using One-Way Func-
tion”, ACM SIGOPS Operating Systems, vol. 39, pp. 48–55,
2005.

19. C.W. Chan and C.C. Chang, ”A Scheme for Threshold
Multi-Secret Sharing”, Applied Mathematics and Compu-
tation, vol. 166, pp. 1–14, 2005.

20. H.X. Li and C.T. Cheng and L.J. Pang, ”An Improved
Multi-Stage (t,n)-Threshold Secret Sharing Scheme”,
WAIM05, Fan W., Wu Z., and Yang J., eds., LNCS 3739,
pp. 267–274, 2005.

21. M. Fatemi and T. Eghlidos and M. Aref, ”A Multi-stage
Secret Sharing Scheme Using All-or-Nothing Transform Ap-
proach”, ICICS’09, LNCS 5927, pp. 449–458, 2009.

22. H.Y. Chien and J.K. Jan and Y.M. Tseng, ”A Practical
(t, n) Multi-Secret Sharing Scheme”, IEICE Transactions
on Fundamentals, vol. E83-A, no. 12, pp. 2762–2765, 2000.

23. C.C. Yang and C.C. Chang and M.S. Hwang, ”A (t, n)
multi-secret sharing scheme”, Applied Mathematics and
Computation, vol. 151, no. 2, pp. 483–490, 2004.

24. L.J. Pang and Y.M. Wang, ”A New (t,n) Multi-Secret
sharing Scheme Based on Shamir’s Secret Sharing”, Ap-
plied Mathematics and Computation, vol. 167, pp. 840–848,
2005.

25. J. Zhao and R. Zhao, ”A Practical Verifiable Multi-Secret
Sharing Scheme”, Computer Standards and Interfaces, vol.
29, no. 1, pp. 138–141, 2007.

26. M.H. Dehkordi and S. Mashhadi, ”An Efficient Threshold
Verifiable Multi-Secret Sharing”, Computer Standards and
Interfaces, vol. 30, pp. 187–190, 2008.

27. S. Runhua and H. Liusheng and L. Yonglong and Z.
Hong, ”A Threshold Multi-Secret Sharing Scheme”, IEEE
International Conference on Networking, Sensing and Con-
trol, ICNSC’08, pp. 1705–1707, 2008.

28. M.H. Dehkordi and S. Mashhadi, ”New Efficient and
Practical Verifiable Multi-Secret Sharing Schemes”, Infor-
mation Sciences, vol. 178, pp. 2262–2274, 2008.

29. S.J. Wang and Y.R. Tsai and J.J. Shen, ”Dynamic
Threshold Multi-secret Sharing Scheme Using Elliptic
Curve and Bilinear Maps”, International Conference
on Future Generation Communication and Networking
(FGCN’08), vol. 2, pp. 405–410, 2008.

30. J. Horwitz and B. Lynn, ”Toward Hierarchical Identity-
Based Encryption,” Proceedings of EUROCRYPT ’02,
LNCS 2332, pp.466–481, 2002.

31. M.H. Dehkordi and S. Mashhadi, ”Verifiable Secret shar-
ing Schemes Based on Non-homogeneous Linear Recursions
and Eliptic Curves”, Computer Communications, vol. 31,
pp. 1777–1784, 2008.

32. C. Wei and L. Xiang and B. Yuebin and G. Xiaopeng,
”A New Dynamic Threshold Secret Sharing Scheme from
Bilinear Maps”, ICPPW, Intl Conf. on Parallel Processing
Workshops07, IEEE Computer Society, pp. 19–22, 2007.

33. G.D.L. Crescenzo, ”Sharing One Secret vs. Sharing Many
Secrets: Tight Bounds on the Average Improvement Ratio”,

Proc. of 11th Annual ACM-SIAM Symp. on Discrete Algo-
rithms, Society for Industrial and Applied Mathematics, pp.
273–274, 2000.

34. D. Boneh and M. Franklin, ”Identity-Based Encryption
from the Weil Pairing”, Advances in Cryptology, Crypto’01,
LNCS 2139, pp. 213–229, 2001.

35. Z. Wan and K. Ren and B. Preneel, ”A secure privacy-
preserving roaming protocol based on hierarchical identity-
based encryption for mobile networks”, First ACM Conf.
on Wireless Network Security (WiSec08), 2008.

36. M. Fatemi and S. Salimi and A. Salahi, ”Anonymous
Roaming in Universal Mobile Telecommunication System
Mobile Networks”, IET Information Security, vol. 4, no. 2,
pp. 93-103, 2010.


