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Abstract. In this paper, we investigate the relation between the au-
tocorrelation of a cubic Boolean function f ∈ Bn at a ∈ F2n and the
kernel of the bilinear form associated with Daf , the derivative of f at
a. Further, we apply this technique to obtain the tight upper bounds
of absolute indicator and sum-of-squares indicator for avalanche char-
acteristics of various classes of highly nonlinear non-bent cubic Boolean
functions.
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1 Introduction

Let Fn2 be the vector space n-tuples over the F2, the prime field of characteristic
2. A function from Fn2 to F2 is called a Boolean function on n variables. Bn de-
notes the set of all such functions. The Boolean functions used in cryptosystems
should possess certain desirable cryptographic criteria such as high nonlinearity
profile, resiliency, low additive autocorrelations and low crosscorrelations etc.
Resiliency ensures the system is not prone to correlation attacks [18, 20] while
high nonlinearity offers protection against linear approximation attacks [15, 16].
Another criterion studied in many recent papers, is low additive autocorrelation
[9, 13] which ensures that the output of the Boolean function is complemented
with probability close to 1/2 when any number of input bits are complemented.
As a result, it provides protection against differential-like cryptanalysis [1]. In
[21], it has been discussed that this is a more practical criterion than the prop-
agation criterion of order k, which, in the case of high nonlinearity may cause
linear structures to occur.

Zhang and Zheng [21] introduced two indicators related to global avalanche
characteristics (GAC) called the absolute indicator (or additive autocorrelation)
4f and sum-of-square indicator σf of autocorrelation function of a Boolean
function. Zhou et al. [22] proposed the absolute indicator 4f,g and sum-of-
square indicator σf,g of crosscorrelation function between two Boolean functions
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and obtained lower and upper bounds for them. Determining the autocorrelation
4f (a), a ∈ F2n and the additive autocorrelation 4f of any f ∈ Bn are of great
interest in cryptography and codding theory [9]. In addition, autocorrelation
function in another form also have applications in physics [10, 11]. Although
autocorrelation is is an important indicator for a Boolean function, it is a difficult
task to determine all the autocorrelation coefficients because the computation
of the Hamming weights of the derivatives of the function at each point is a
difficult problem.

In this paper we investigate the relation between the autocorrelation of a
cubic function f ∈ Bn at a ∈ F2n and the kernel of the bilinear form associated
with Daf , the derivative of f at a. Further, we apply this technique to obtain the
upper bounds of absolute indicators ( i.e., additive autocorrelation) and sum-of-
squares avalanche characteristics for various classes of highly nonlinear non-bent
cubic Boolean functions.

Remainder of paper is organized as follows. Section 2 provides several known
results. In section 3 we compute the autocorrelation of quadratic Boolean func-
tions for an even n. In section 4 we establish a relation between the autocorre-
lation of a cubic Boolean function and the kernel of the bilinear form associated
with the derivative of f.

2 Priliminaries

The set Fn2 of all n-tuples of elements of F2 is isomorphic to F2n as F2-vector
spaces. Thus, a Boolean function can also be thought of as functions from F2n to
F2. The addition in both Z and F2n is denoted by ‘+’, whereas ‘⊕’ denotes the
addition in Fn2 . The Hamming weight of any element x ∈ Fn2 , wH(x) :=

∑n
i=1 xi,

where the sum is over Z. The trace function trn1 : F2n → F2 is defined as follows:

trn1 (x) = x+ x2 + x22
+ . . .+ x2n−1

, for all x ∈ F2n .

The functions (x, y) 7→ trn1 (xy) and (x,y) 7→ x · y = ⊕ni=1xi yi are both inner
products on F2n and Fn2 , respectively. The algebraic normal form (ANF) of a
Boolean function, f ∈ Bn is

f(x1, x2, . . . , xn) =
∑

a=(a1,a2,...,an)∈Fn
2

µa

n∏
i=1

xai
i , where µa ∈ F2.

The algebraic degree of f , deg(f) := max{wH(a) : µa 6= 0,a ∈ Fn2}. For any
f, g ∈ Bn, the Hamming distance between f and g is d(f, g) = |{x ∈ F2n : f(x) 6=
g(x)}|.

The derivative of f ∈ Bn with respect to a ∈ F2n is defined as

Daf(x) = f(x) + f(x+ a) for all x ∈ F2n .

Suppose a, b ∈ F2n are F2-linearly independent and generate a two-dimensional
subspace V in F2n . The function

DV f(x) = DaDbf(x) = f(x) + f(x+ a) + f(x+ b) + f(x+ a+ b) for all x ∈ F2n
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is said to be the second-derivative of f with respect to the subspace V . It can
be checked that DV f is independent of the choice of the basis of V . This notion
can further be generalized. For more details we refer to [5].

The Walsh-Hadamard transform of f ∈ Bn at a ∈ F2n is defined as

Wf (a) =
∑
x∈F2n

(−1)f(x)+trn
1 (ax).

The nonlinearity of f ∈ Bn is defined as nl(f) = minl∈An{d(f, l)}, where An
be the set of all affine functions in Bn. The nonlinearity of f ∈ Bn in terms of
Walsh-Hadamard transform is defined as

nl(f) = 2n−1 − 1
2

max
a∈F2n

|Wf (a)|.

By Parseval’s identity, ∑
a∈F2n

Wf (a)2 = 22n,

it can be shown that maxa∈F2n |Wf (a)| ≥ 2n/2, which implies that nl(f) ≤
2n−1 − 2

n
2−1. The functions achieving this bounds are called bent [17]. These

functions exist only for even integers.
The sum

Cf,g(a) =
∑
x∈F2n

ξf(x)+g(x+a),

is called the cross-correlation of f, g ∈ Bn at a ∈ F2n . In particular for f = g,
the sum Cf,f (a) = Cf (a) is called the autocorrelation of f at a ∈ F2n .

The additive autocorrelation or the absolute indicator [21] of the autocorre-
lation function of f ∈ Bn is defined as

4f = max
a∈F2n\{0}

|4f (a)|.

and the sum-of-squares indicator [21] of the autocorrelation function of f is
defined as

σf =
∑
a∈F2n

|4f (a)|2.

The smaller are the values of 4f and σf , the better is the GAC of a Boolean
function. Like many other characteristics of a function including nonlinearity,
algebraic degree etc., the two indicators for the GAC are invariant under non-
singular linear transformations on the input coordinates. We have 4f = 0 if and
only if f is bent, and 4f = 2n if and only if f has nonzero linear structure.
Moreover, 0 ≤ 4f ≤ 2n and 22n ≤ σf ≤ 23n. If f is cubic non-bent function on
F2n then 4f ≥ 2

n+1
2 [21].
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2.1 Quadratic Boolean functions

Suppose f ∈ Bn is a quadratic function and B(x, y) = f(0)+f(x)+f(y)+f(x+y)
is the bilinear form associated with f . The kernel Ef of B(x, y) is the subspace
of F2n defined by

Ef = {x ∈ F2n : B(x, y) = 0 for all y ∈ F2n}.

Lemma 1 ([3], Proposition 1). Let V be a vector space over a field Fq of
characteristic 2 and Q : V −→ Fq be a quadratic form. Then the dimension of
V and the dimension of the kernel of Q have the same parity.

Lemma 2 ([3], Lemma 1). Let f be any quadratic Boolean function. The
kernel Ef is the subspace of F2n consisting of those a such that the derivative
Daf is constant. That is,

Ef = {a ∈ F2n : Daf = constant }.

If f ∈ Bn be a quadratic Boolean function and B(x, y) be the associated bilinear
form, then the Walsh spectrum of f depends only on the dimension of the kernel
Ef of B(x, y) [3, 14]. The weight distribution of the Walsh spectrum of f is
provided in Table 1.

Table 1. Weight distribution of the Walsh spectrum of a quadratic function f

Wf (a) number of a

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f(0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f(0)2(n−k−2)/2

3 Additive autocorrelation and sum-of-squares indicators

Gong and Khoo [9] introduced the concept of dual function of a Boolean function
and investigated the autocorrelation of the functions having 3-valued Walsh-
Hadamard spectrum. The dual of f ∈ Bn is defined as follows

Definition 1. The dual of f ∈ Bn is a function f̃ ∈ Bn defined by

f̃(x) =

{
1 if Wf (x) 6= 0,
0 if Wf (x) = 0.
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By Parseval’s identity it is observed that if the Walsh-Hadamard spectrum of f
is 3-valued, i.e., for any a ∈ F2n Wf (a) ∈ {0,±2i}, then the weight of its dual f̃ is
22(n−i). A function f ∈ Bn is semi-bent if for any a ∈ F2n (i) Wf (a) ∈ {0,±2

n+1
2 }

for odd n, and (ii) Wf (a) ∈ {0,±2
n+2

2 } for even n. The following result is due
to Gong and Khoo [9]

Lemma 3. [9] Let f ∈ Bn such that Wf (a) ∈ {0,±2i} for all a ∈ F2n . Then

Cf (a) = −22i−(n+1)Wf̃ (a), for all a ∈ F2n \ {0}.

In particular, if f ∈ Bn is semi-bent Boolean function, then for any a 6= 0

Cf (a) =

{
−Wf̃ (a) if n ≡ 1 mod 2,
−2Wf̃ (a) if n ≡ 0 mod 2.

Thus the autocorrelation spectrum of a semi-bent Boolean function f depends
on the Walsh-Hadamard spectrum of its dual f̃ . It is shown in [9, Theorem 2]
that if f ∈ Bn (for odd n) is a balanced preferred (semi-bent) function and
f̃ ∈ Bn is preferred, then 4f = 2

n+1
2 and Cf (a) = 0 for 2n−1 − 1 a′s. That is, f

has optimal additive autocorrelation. Now, if f ∈ Bn (for n even ) be semi-bent,
then the Hamming weight of f̃ , the dual of f is 2n−2, and the Hamming weight
of f , wH(f) ∈ {2n−1, 2n−1 ± 2

n
2 }. Therefore, by Lemma 3 and [9, Proposition

3], we have the following

Proposition 1. Let n be an even positive integer and f ∈ Bn be a semi-bent
function. Then dual f̃ of f will never be bent, or semi bent. In particular, the
function f will never achieve the optimal value of additive autocorrelation, and
the sum of square indicators, σf , is at most 5 · 22n.

Remark 1. It follows from Lemma 3 that if n is an odd positive integer and
f ∈ Bn is semi-bent, then the sum of square indicators, σf , of f is at most
22n+1.

Theorem 1. Let n be a positive integer and M = {x ∈ F2n : x22i

+ x = 0}.
Then the autocorrelation of a quadratic Boolean function, f(x) = trn1 (x2i+1) is
given as

|Cf (a)| =

{
2n if a ∈M,

0 otherwise.

Proof. Let a ∈ F2n . Then we have,

Cf (a) =
∑
x∈F2n

(−1)f(x)+f(x+a) =
∑
x∈F2n

(−1)tr
n
1 (x2i+1)+trn

1 ((x+a)2
i+1)

= (−1)tr
n
1 (a2i+1)

∑
x∈F2n

(−1)tr
n
1 (x2i

a+a2i
x)

= (−1)tr
n
1 (a2i+1)

∑
x∈F2n

(−1)tr
n
1 (x(a2i

+a2n−i
)) = (−1)tr

n
1 (a2i+1)2nφM (a),
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where φM is the indicator function of M . Therefore,

|Cf (a)| =

{
2n if a ∈M,

0 otherwise.

ut

4 Upper bounds of additive autocorrelation and sum-of-
squares indicators for cubic functions

Zhou et al. [22], provided the following relation between the (r − 1)th order
nonlinearity of the derivative of f ∈ Bn and two indicators 4f,g and σf,g.

Proposition 2. [22, Theorem 8] If f, g ∈ Bn and deg(g) ≤ r, then

(i) 4f,g ≤
√

22n − 2
∑
b∈F2n

nlr−1Df(x)(b), and

(ii) σf,g ≤ 23n − 2n+1
∑
b∈F2n

nlr−1Df(x)(b).

In particular, using these relations for f = g, we get 4f ≤ 2n and σf ≤ 23n,
which are well known and are worst upper bounds. Thus, we have no new infor-
mation about the two indicators 4f and σf .
In the following lemma, for a cubic Boolean function f ∈ Bn, we establish
a relation between absolute indicator 4f and the kernel of the bilinear form
associated with Daf , the derivative of f at a ∈ F2n .

Lemma 4. Let f ∈ Bn be a cubic Boolean function then the autocorrelation of
f at a ∈ F2n is

|Cf (a)|2 = 2n
∑

b∈EDaf

(−1)εa,b , (1)

where EDaf is the kernel of Daf and εa,b is given by

EDaf = {b ∈ F2n : DbDaf(x) = εa,b(constant)}.

Also, we have

|Cf (a)|2 ≤ 2n|EDaf |. (2)

Proof. We have

Cf (a) =
∑
x∈F2n

(−1)f(x)+f(x+a) =
∑
x∈F2n

(−1)Daf(x)
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Therefore,

|Cf (a)|2 =
∑
x∈F2n

∑
y∈F2n

(−1)Daf(x)(−1)Daf(y)

=
∑
x∈F2n

∑
y=x+b∈F2n

(−1)Daf(x)(−1)Daf(y)

=
∑
b∈F2n

∑
x∈F2n

(−1)Daf(x)+Daf(x+b)

=
∑
b∈F2n

∑
x∈F2n

(−1)DbDaf(x) (3)

Since f is a cubic function therefore, Daf , the first derivative of f , at each
a ∈ F2n is at most quadratic. The weight distribution of quadratic and affine
functions is well known [14, Chap. 15]. The kernel, EDaf , of bilinear form asso-
ciated with Daf is

EDaf = {b ∈ F2n : DbDaf(x) = εa,b}. (4)

Moreover, DbDaf(x) is at most affine. This implies that DbDaf(x) is either
constant or balanced. Therefore, by Eq. (4), DbDaf(x) is balanced if b 6∈ EDaf

otherwise DbDaf(x) is constant. Using this result in (3), we have

|Cf (a)|2 =
∑

b∈EDaf

∑
x∈F2n

(−1)εa,b +
∑

b 6∈EDaf

∑
x∈F2n

(−1)DbDaf(x)

= 2n
∑

b∈EDaf

(−1)εa,b .

Therefore, we have

|Cf (a)|2 ≤ 2n|EDaf |.

ut

4.1 Upper bounds for Welch and Modified Welch functions

A vectorial function F : F2n → F2n such that F (x) = xd is called a power
function. The vectorial Welch function Fwelch : x ∈ F2n → x2`+3 ∈ F2n is
defined by x → x2`+3, where ` is a positive integer such that n = 2` + 1,
`. The Welch functions are almost perfect nonlinear functions, i.e., they are
maximally nonlinear [2]. Let fλ(x) = trn1 (λx2`+3) is a Welch Boolean function.
The crosscorrelatiom spectrum betwwen any two Welch functions is 3-valued,
{−1,−1±2`+1} [7]. The vectorial Welch function is a permutation. Therefore, all
Boolean functions trn1 (λx2`+3), λ ∈ F2n \ {0}, are affine equivalent to each other
[4] and hence autocorrelation spectrum of these functions are same. We shall
therefore study the additive autocorrelation and sum-of-squares of avalanche
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characteristics of trn1 (x2`+3). The second-order nonlinearities of these functions
are extremely good [4]. Carlet [4, Lemma 1] proved that the dimension k(a) of
the kernel EDaf is at most 3 for any a ∈ F2n \ {0}. Thus, by Remark 1 and
Lemma 4, we have the following

Theorem 2. Let n, ` be positive integers such that ` = n−1
2 and let f(x) =

trn1 (x2`+3). Then 4f ≤ 2
n+3

2 and σf ≤ 22n+1.

Remark 2. It is to be noted that 22n ≤ σf ≤ 23n. Also, for an odd positive
integer n, the optimal value of 4f is 2

n+1
2 [9, Theorem 2] and the worst value is

2n. Hence by Theorem 2, we observe that for the Welch functions, the additive
autocorrelation and the sum-of-squares indicator of avalanche characteristics
both are extremely good.

Carlet [4, Eq. (3)] has established that the lower bound on second-order non-
linearity of modified Welch functions is better than that of the Welch functions.
This bound is improved in the same paper [4, pp. 1269]. In the following theo-
rem we obtain the upper bounds for additive autocorrelation and sum-of-squares
indicator of avalanche characteristics for these functions.

Theorem 3. Let n, ` be positive integers such that ` = n+1
2 and let f(x) =

trn1 (x2`+3). Then (i) 4f ≤ 2
n+3

2 , and (ii) σf ≤ 22n+2 + 22n+1 if gcd(n, 3) = 1
otherwise σf ≤ 22n+2 + 22n+1 + 7

√
6 · 2 3n

2 −1.

Proof. From [4, pp 1269] the dimension k(a) of the kernel EDaf is at most 3 for
any a ∈ F2n \{0}. Moreover, N(a), the number of a′s for which k(a) = 1 is 2n−1,
i.e., N(a) = 2n−1 if gcd(n, 3) = 1 otherwise N(a) ≥ 2n−1 − 2

n
2−1
√

6. Applying
these results in Lemma 4, we have the theorem.

Remark 3. We observe that the additive autocorrelation and the sum-of-squares
indicator of avalanche characteristics of modified Welch functions are efficiently
very low. It is to be noted that while the lower bound on second-order nonlin-
earity of modified Welch functions is better than that of the Welch functions,
the bound for σf is very high in comparison to Welch functions.

4.2 Upper bounds for two classes of semi-bent functions

In this section, we deduce the upper bounds of additive autocorrelation and sum-
of-squares indicators of two well known classes [6] of cubic semi-bent Boolean
functions (functions with nonlinearity 2n−1 − 2

n
2 ) of the form f(x) = trn1 (xd),

for all x ∈ Fn2 , where (i) d = 2r+1 + 3 and n = 2r, and (ii) d = 22r + 2r+1 + 1,
n = 2r, and r is odd. Sun and Wu [19] have demonstrated that the lower bounds
of second-order nonlinearities of these functions are extremely good. In particu-
lar, for n = 8, these functions achieve the maximum possible second-order non-
linearity ( nl2(f) = 84) [19, Section 4]. The bounds of additive autocorrelation
and sum-of-squares indicator of these classes are given in the following
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Theorem 4. Let f ∈ Bn be cubic Boolean function of the form f(x) = tr(xd),
where

(i) d = 2r+1 + 3 and n = 2r, or
(ii) d = 22r + 2r+1 + 1, n = 2r, and r is odd.

Then 4f ≤ 2
3n+4

4 and σf ≤ 5 · 22n.

Proof. It is shown by Sun and Wu [19, Lemma 2 and Lemma 3] that the dimen-
sion k(a) of the kernel EDaf in either case satisfies the following relation

k(a) =

{
2 if a 6∈ F2r ,

r + 2 if a ∈ F2r .
(5)

Using Lemma 4, we have

|Cf (a)|2 ≤

{
2n+2 if a 6∈ F2r ,

2n+r+2 if a ∈ F2r .

Therefore,
4f = max

a∈F2n\{0}
|Cf (a)| ≤ 2

3n+4
4

In either case f is semi-bent. The second part then follows from Proposition
1. ut

4.3 Upper bounds for cubic functions with exponent d = 22r +2r +1
with gcd(r, n) = 1

Gode and Gangopadhyay [8] have obtained some lower bounds on second-order
nonlinearity for a more general classes of cubic functions. They have proved that
the dimension of the kernel for the cubic functions of the form trn1 (αx22r+2r+1),
where gcd(n, r) = 1 and n > 4, is at most 4, i.e., k(a) ≤ 4 for all a 6= 0 if
n is even, and otherwise k(a) ≤ 3 for all a 6= 0. Therefore, by Lemma 4 the
additive autocorrelation of these functions is at most 2

n+3
2 if n is odd, and 2

n+4
2 ,

otherwise.
Li et al. [12] generalized these classes of cubic Boolean functions with more

than one trace terms and deduced the lower bounds on second-order nonlineari-
ties. There may exists more semi-bent functions whose upper bounds on additive
correlation and sum-of-squares avalanche characteristic can be computed by us-
ing the results in this paper.
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