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Abstract. Distance-bounding protocols prevent man-in-the-middle attacks by measuring response
times. Recently, Dürholz et al. [10] formalized the four attacks such protocols typically address: (1)
mafia attacks, where the adversary must impersonate to a verifier in the presence of an honest prover;
(2) terrorist attacks, where the adversary gets some offline prover support to impersonate; (3) distance
attacks, where provers claim to be closer to verifiers than they really are; and (4) impersonation
security, where adversaries impersonate provers during lazy phases. Dürholz et al. [10] also formally
analyzed the security of (an enhanced version of) the construction of Kim and Avoine [14].

In this paper, we quantify the security of some other well-known distance-bounding protocols, i.e.:

Brands and Chaum [6], Hancke-Kuhn [13], Avoine and Tchamkerten [4]; Reid et al. [16], the Swiss-

knife protocol [15], and the very recent proposal of Yang, Zhuang, and Wong [18]. In particular, our

main results show that (1) relating responses to a long-term secret key, as is the case for most protocols

aiming to thwart terrorist fraud attacks, may make protocols vulnerable to so-called key-learning mafia

fraud attacks, where the adversary learns a key bit-by-bit, by flipping a single time-critical response;

(2) though relating responses can be a bad idea for mafia fraud, it sometimes enforces distance-fraud

resistance, by thwarting in particular the attack of Boureanu et al. [5]; (3) none of the three allegedly

terrorist-fraud resistant protocols, i.e. [15, 16, 18], is in fact terrorist fraud resistant; for two of these

protocols this is a matter of syntax, i.e. they do not meet the strong security requirements given by

Dürholz et al.; the attack against the third protocol, i.e. [18], however, is almost trivial; (4) due to the

absence of a second authentication phase, the protocol of Yang, Zhuang, and Wong is vulnerable to

Denial of Service attacks. In light of our results, we also review definitions of terrorist fraud, arguing

that, while the strong model in [10] may be at the moment more appropriate than the weaker intuition,

it may in fact be too strong to capture terrorist fraud resistance.

Keywords. distance-bounding, location privacy

1 Introduction

Designed by Brands and Chaum [6], distance-bounding protocols address man-in-the-middle (MITM)
relay attacks against authentication protocols, also called mafia fraud by Desmedt [9]. Essentially,
distance-bounding enhances authentication such that the verifier accepts if the prover authenticates and
it can prove it is within a pre-set distance of the verifier (here associated with a clock). Classical distance-
bounding protocols consist of lazy phases (not using a clock) and time-critical phases (where the verifier
measures the time elapsed during a challenge-response phase). As relaying causes processing delays, pure
MITM relay is now detected by the clock.
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Though there are many distance-bounding protocols to be found in the literature, only two more
thorough approaches exist towards modelling their security. Both the earlier framework of Avoine et
al. [2] and Dürholz et al. [10] formalized four attacks against distance-bounding protocols, particularly
for Radio Frequency Identification (RFID) systems. In this setting, provers are so-called RFID tags, and
verifiers are RFID readers. The models differ slightly, though they cover the same attacks; in this paper
we use the more recent framework of [10], which defines the following main attacks.

Mafia Fraud. The adversary impersonates to the reader while communicating with the genuine tag.
Here the clock prevents pure relaying.

Terrorist Fraud. The tag helps the adversary authenticate by disclosing useful information in offline
phases. However, the tag should not reveal trivial information like the secret key.

Distance Fraud. The (malicious) tag claims to be closer to the reader than it actually is.

Offline Impersonation Resistance. The adversary impersonates the honest tag during lazy phases
only.

We note that though Avoine et al. [2] were the first to actually formalize security notions in distance-
bounding protocols, the terminology itself was coined by first coined by Desmedt [9]. Furthermore, note
that the fourth property, offline impersonation security was introduced by Dürholz et al. particularly
for resource-constrained RFID tags, which cannot support many time-critical phases. The alternative
description of Avoine et al. [2] considers impersonation resistance to be the equivalent of offline imper-
sonation resistance combined with time-critical impersonation resistance (i.e. mafia fraud resistance).

Recently, Cremers et al. [8] also introduced a new attack, called distance hijacking. This attack,
however, involves two provers, one honest and one malicious. Since we use the formal, single-reader-
single-tag framework of Dürholz et al., this attack falls outside the scope of this paper.

1.1 RFID Distance-Bounding Protocols

One reason we choose the framework of Dürholz et al. [10] is that the model takes into account the
characteristics of RFID distance bounding (though it is also suitable for general settings). This work
also quantified and proved the security properties of an enhancement of the well-known protocol due to
Kim et al. [14], also meant for RFID environments. On the one hand, such formal analysis can prevent
security breaches like those outlined by Abyneh [1], who showed attacks against two allegedly secure
schemes. On the other hand, analyzing security properties in a common, formal framework enables
easier comparison between protocols.

In this paper continue the assessment work of [10] by quantifying the security of several known RFID
distance-bounding protocols, with quite surprising results. We in fact show a few subtle kinks in various
protocols, which compromise security.

In general, distance-bounding protocols consist of a number of slow (lazy) phases, followed by a
number Nc of time-critical phases where a clock is used by the reader to time bit-exchanges between
itself and the tag. Whereas lazy phases are usually computationally expensive, time-critical phases are
expensive in terms of communication complexity; in fact, in RFID distance-bounding scenarios it is
unclear how many time-critical phases resource-constrained devices can even support.

Since time-critical responses only typically consist of bit-exchanges, the best known mafia fraud

resistance (for Nc time-critical rounds) is about 1
2 per time-critical round, thus

(
1
2

)Nc in total. This
bound was first achieved by Brands and Chaum [6]. However, [6] use computationally-expensive signature
schemes, unsuitable for resource-constrained RFID tags. The same resistance is less expensively achieved
by the Swiss-knife protocol [15], at the cost of a second lazy phase, and it is nearly achieved by the protocol
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of Avoine and Tchamkerten [4], though at the cost of exponential storage. The very efficient, well-known

Hancke-Kuhn protocol [13] achieves only a resistance of
(

3
4

)Nc , being vulnerable to the so-called Go-
Early strategy, where the mafia adversary queries the tag in advance; thus it learns about half of the
correct time-critical responses and can guess the other responses (see the proof in Section 3.1). The
same bound holds for the very recent protocol of Yang, Zhuang, and Wong [18], which also manages
to thwart so-called key-learning mafia fraud attacks. By contrast, the protocol due to Reid et al. [16]
is susceptible to key-learning attacks, and so is not mafia fraud resistant. It is worth noting that the
more efficient symmetric distance-bounding protocols do not, in view of the recent attack of Boureanu
et al. [5], achieve distance fraud resistance. We describe this attack in detail in the following sections.

Some protocols in the literature also address terrorist fraud. An early scheme due to Reid et al. [16]
using a PRF and a symmetric encryption scheme claims to achieve terrorist fraud resistance, since an
adversary that knows both the PRF output and the symmetric encryption can recover the secret key. Also
addressing terrorist fraud is the Swiss-knife protocol of Kim et al. [15] and the very recent proposal due of
Yang et al. [18]. However, we show that, whereas the terrorist fraud proof for the latter protocol is simply
flawed, the former two protocols are also susceptible to a terrorist fraud attack where the adversary learns
some information about the long-term secret, but cannot use this information directly at full efficiency.
This latter attack is more a question of syntax, in the sense that it uses the characteristics of the terrorist
fraud model of Dürholz et al., in particular the disadvantages inherent to the simulator. Both protocols
seem to intuitively achieve a measure of terrorist fraud resistance; however, it seems hard to prove them
secure. We discuss the relation between model strength and intuitive security at length in Appendix A.
In our terrorist fraud attack the prover hands over half of the correct responses and lets the adversary
guess the other responses. This gives the adversary an advantage in sessions when the prover helps; once
the prover stops helping though, the probability drops.

Notably, although these protocols also use pseudorandom functions, the PRF attack of Boureanu et
al. [5] does not necessarily hold here. Thus, the protocol due to Reid et al. [16] computes only one of
the time-critical responses by means of the PRF, while the other response is an encryption of the first
response under a long-term secret key. Reid et al. use a generic symmetric encryption scheme, which
does not automatically grant distance fraud resistance; however some particular instantiations of such
schemes, such as one-time-pad encryption, do grant distance-fraud resistance, possibly under further
assumptions, e.g. the fact that the secret key is chosen by the reader or by a trusted party in an honest
fashion, i.e. uniformly at random, from a distribution computationally indistinguishable from the uniform
random distribution (of appropriate length). Under the same assumption, the Swiss-Knife protocol [15]
is distance-fraud resistant (see below). The crucial fact is that the time-critical responses are not both
computed by means of a PRF, and they are related by means of an honestly-chosen pseudorandom value.
Informally speaking, a distance-fraud adversary may now tamper with the PRF output, but not with
both responses.

Finally, following the sequence of subtle attacks we present in this paper, we show that the protocol
due to Yang, Zhuang, and Wong [18] is not private. In particular, we disprove claims by the authors
that the protocol is immune to desynchronization Denial-of-Service (DoS) attacks.

1.2 Our Contributions

In this paper we quantify the security of the following protocols: Brands-Chaum [6], Hancke-Kuhn [13],
Avoine and Tchamkerten [4], Reid et al. [16], Kim et al. [15], and Yang et al. [18]. For each protocol,
we (1) show concrete security bounds for the properties that actually hold, thus (2) disproving claims
of distance-fraud resistance for the protocols of Hancke and Kuhn, Avoine and Tchamkerten, and Yang
et al. (the attack is a direct consequence of the generic attack of Boureanu et al. [5]), (3) disproving
claims of terrorist fraud resistance for all the three allegedly terrorist fraud resistant schemes (though
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the attack against [16] and [15] is rather a technical attack, specific to the simulation-based model of
Dürholz et al.), (4) disproving claims of mafia fraud resistance for the protocol due to Reid et al. [16]
(we show a key-learning mafia fraud attack against this protocol), (5) disprove claims of resistance to
Denial-of-Service desynchronization attacks for the protocol of Yang et al.

Let us take a closer look at our result (3). Apart from the flaw in the proof of Yang et al. [18], we show
that, though they are intuitively terrorist-fraud resistant, the allegedly terrorist fraud resistant schemes
of [15] and [16] cannot, in fact, be proved to be terrorist fraud resistant in the model of Dürholz et al.
The question is thus whether we are in more need of stronger protocols, or mor exact model. Our attack
takes into account the syntax of the framework in [10], and uses the fact that —by yielding relatively
information about a long-term secret key— the malicious tag can (1) help the adversary authenticate
and, at the same time, (2) diminish its probability of later authenticating on its own. Similarly, we use
the syntax of the model in [10] to break the terrorist fraud resistance of [15]. In particular, the tag
can even hand over its secret key, as long as it doesn’t forward its secret identifier (this will enable the
adversary to authenticate with the prover’s support, but not without it). The question of whether these
attacks are a weakness of the protocols or of the terrorist fraud model of Dürholz et al. is discussed in
the appendix.

In particular, we compare with the intuition behind terrorist fraud with the strong model of Dürholz
et al. Our analysis seems to indicate that the problem lies somewhere in the middle, between the strength
of the model and the security of the protocol. Our attack against the scheme of Reid et al. assumes
that the malicious tag will agree to yield some partial information about the secret key in order to aid
the adversary, but not if this information is directly useful to the adversary in future authentication
sessions. However, note that the attack is in itself somewhat impractical, or flawed, in the sense that
(a) when the tag helps, the adversary’s success probability is not overwhelming (merely significantly
larger than guessing probability); (b) when the tag stops helping the adversary has a lower probability
to succeed than before, but the probability is not insignificant. Thus, it seems the model of Dürholz et
al. is exaggeratedly strong. Note, however, that at the moment, this framework gives the only thorough
formalization of terrorist fraud resistance in the literature. The initial framework and later work of
Avoine et al. [2], resp. [3] seems to indicate information-theoretical hiding properties are required for the
secret key shared between the reader and the tag. Note, however, that this seems too strong a restriction:
intuitively, an adversary may learn some information about the key without gaining any advantage in
future attacks. We leave two open questions regarding this issue: (1) Should we aim to design protocols
which are provably secure in the framework of Dürholz et al.?; and (2) Is it possible to capture terrorist
fraud resistance better in a different model?

The results of our protocol analysis are summarized in Table 1, where we show (only the loose)
security bounds for the attacks described above, ignoring the small terms. A precise quantification can
be found in Section 3.

2 Preliminaries

2.1 Model Overview

The security model in [10] considers single-verifier-single-prover distance-bounding, particularly for RFID
settings; here, a single prover (tag) T and a single verifier (reader) R share a secret key sk generated by
an algorithm Kg. We explicitly require that the key is selected at random from the space of all keys,
which we denote K. In particular, we require that the tag does not choose its own key (this will later
ensure that the protocols are distance fraud resistant). The reader uses a clock to measure the time
elapsed between sending a challenge and receiving the response. Dürholz et al. consider round-based
distance-bounding protocols, where rounds are time-critical if the clock is used, and lazy otherwise. We
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Figure 1: Distance Bounding at a glance. 1 This protocol uses expensive primitives. 2 This protocol
requires exponential storage capacity. 3 The distance fraud proof for this protocol holds only for some
instantiations of the protocol. We denote by Nc the number of time-critical rounds, by T a tolerance
level for faults, and by |V | is the bit length of an authentication string V sent by the verifier.

briefly review here the main possible attacks and refer to [10] for more details.

Mafia Fraud. Mafia fraud resistance is a man-in-the-middle
(MITM) attack, where pure relay is prevented by the reader’s clock. Informally, the MITM consists of
two adversaries: a leech, which impersonates the reader to an honest tag, and a ghost, which impersonates
the tag to an honest reader. The adversary must authenticate to the reader; however, the clock detects
processing delays in the MITM resulting from pure relay. Both the reader and the tag are unaware of
the MITM attack.

Dürholz et al. [10] formalize mafia fraud by introducing an abstract clock denoted clock, which keeps
track of the messages sent in several protocol executions called sessions. These sessions can be: reader-tag
(the adversary is a passive eavesdropper), reader-adversary (the adversary impersonates the tag to the
reader), and adversary-tag (the adversary impersonates the reader to the tag). Relaying is considered
round-wise (actually, [10] considers phases consisting of several rounds, in case the reader measures time
over many rounds). A phase is called tainted if the adversary purely relays communication between
a reader-adversary and an adversary-tag session. Here, pure relay refers to an adversary receiving a
message in a session sid and then relaying the exact, same message in a session sid’. Having received a
response, the adversary relays it back again between sid’ and sid, for all subsequent rounds in the tainted
phase. If the adversary changes any of the messages in one session before it forwards them in the other
session, this is not pure relay. Also, if the adversary queries one session with some message m before
receiving the same m in the other session, this is not relaying. We refer to [10] for a precise definition
of, and motivation behind tainted phases, and show the following illustration, also from [10]:

R A T R A T R A T
sid sid∗ sid sid∗ sid sid∗

mk−−−−→ mk−−−−→ mk−−−−→
mk−−−−→

m∗k−−−−→
mk+1←−−−−

mk+1←−−−−
mk+1←−−−− mk−−−−→

mk+1←−−−−
mk+1←−−−−

mk+1←−−−−

tainted untainted untainted

(pure relay) (distinct messages m∗
k 6= mk) (distinct scheduling)

Figure 2: Tainted and Untainted Time-Critical Phases.

Terrorist Fraud. A terrorist adversary must also authenticate to the reader, this time aided by
the dishonest tag, which should not give information allowing the adversary to win on its own. In [10],
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the dishonest tag only interacts with the adversary in lazy phases1. A time-critical phase of a reader-
adversary session is tainted if during this phase the adversary queries the tag.

A crucial part of terrorist fraud definition is formalizing how much a tag can help the adversary.
In [10], terrorist fraud is defined in terms of a simulator: a scheme is terrorist fraud resistant if an
adversary aided offline by a tag is as likely to win as a simulator having access to the adversary’s internal
information. To be fair, the simulator has as many impersonation attempts as the adversary, but it only
begins its attack once the adversary successfully authenticates. If the tag only relays session-specific
data, then this data is useless to the simulator. If, however, the data contains the secret key, then the
simulator can recover it and also succeed. Formally, for every successful terrorist fraud adversary A,
there must exist a simulator S whose success probability is at least as large as the adversary’s. As we
discuss later and in the Appendix, this definition is very strong; in fact in light of our results, it seems it
may be too strong. However, one advantage of this definition is that it outlines a formal proof technique
for terrorist fraud resistance. On the other hand, other approaches in the literature, e.g. [3] seem to
require that no information is leaked about the secret key, which seems to restrict the attack too much,
i.e. the model appears to be too weak.

Distance Fraud. Distance fraud adversaries are the malicious tags themselves, who are farther than
allowed from the reader, but aim to convince the reader of the contrary. Since the reader’s clock measures
time accurately, the adversary must anticipate the reader’s challenges and respond in advance. In [10],
the adversary must commit in advance to each time-critical phase response. If the adversary does not
commit to the response of one phase, this phase is called tainted. For distance fraud, reader-tag and
adversary-tag sessions are no longer relevant as the adversary is the tag.

(Offline) Impersonation Resistance. Finally, offline impersonation resistance refers to lazy-phase
tag authentication. The idea, introduced by [4], is that even without the time-critical phases, the prover
is still authenticated. Replays, however, are still allowed at this stage. We refer to the definition in [10]
for the formalization of this notion. We note that the notion of impersonation resistance due to [10] refers
only to lazy phases, whereas Avoine et al. [2] defines impersonation security for the entire protocol. We
call the notion of [10] offline impersonation resistance in order to emphasize the difference between the
two notions. We note that, for mafia fraud resistant protocols, the total impersonation security equals
the lazy phase impersonation security of Dürholz et al. together with the mafia fraud resistance during
time-critical phases.

2.2 Parameters

Apart from the upper-bound tmax of the roundtrip transmission time and the number of time-critical
rounds Nc, [10] also allows for max. Tmax phases with delayed responses and max. Emax phases with
wrong responses. Though most existing protocols do not provide for erroneous/delayed communication,
fault tolerance is essential in resource constrained environments, e.g. RFID.

When specifying the adversary’s characteristics we consider its runtime t (including honest party
processing time, where the adversary waits for honest responses) and the numbers qR, qT , resp. qobs of
reader-adversary, adversary-tag, and resp. reader-tag sessions. To relate the distance bounding security
levels to the security of the underlying cryptographic primitives, we often transform a successful distance-
bounding adversary A into one or more adversaries A′ against the primitive(s). We use standard notions
for these primitives, letting AdvExp

S (A′) denote the maximal probability that an adversary A′ breaks a
cryptographic scheme S in some experiment Exp. For example, AdvUnf

Sign(A′) denotes the probability of

1We note that allowing the prover to only help the adversary offline is in agreement with the previous, more informal
model of Avoine et al. [2] and with the general intuition behind terrorist fraud attacks.
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forging signatures, Advd
PRF(A′) denotes the advantage of distinguishing a pseudorandom function PRF

from random, and AdvIND-CPA
E (A′) is the advantage of breaking the IND-CPA security in encryption.

The parameters of A′ in these experiments will be specified in terms of the parameters of A.

Flavours of unforgeability. Most distance-bounding protocols in the literature use pseudorandom
functions. However, the protocol due to Brands and Chaum [6] uses signature schemes instead. A
signature scheme is defined as usual as a triplet of algorithms Sign = (SKg, SSign,SVf) such that, on
input a security parameter (in unary) 1k, the key-generation algorithm SKg outputs a private-public key
pair (sk, pk); on input a message m and the secret key sk, the signing algorithm SSign(sk,m) outputs a
signature σ; and on input a message m, a signature σ, and the public key pk, the verification algorithm
SVf(pk,m, σ) outputs a bit indicating whether the signature verifies (the output bit is then 1), or does
not verify (the output bit is 0).

The security of signature schemes is usually defined in terms of unforgeability, which intuitively
captures the fact that adversaries against the signature scheme should not be able to forge signatures for
“fresh” message m even if they have the possibility to query correct signatures for arbitrary messages of its
choice (but these messages should be different from m for the usual notion of existential unforgeability).
More formally, let Sign(sk,m) be an oracle that, for a secret key sk, and a message m, outputs the
signature SSign(sk,m). We quantify adversaries against the unforgeability of the signature scheme in
terms of the runtime t and the number of queries Q to the Sign oracle, and we define unforgeability as
follows.

Definition 2.1 Let Sign = (SKg, SSign, SVf) be a signature scheme as above. Let A be an adversary
against the unforgeability of Sign, running in time t and making at most Q queries to the signing oracle
Sign (see the experiment below). Then the forging advantage of A is defined as

AdvUnf
Sign(A) = Prob

[
ExpSign

A (1k) = 1
]
,

where ExpSign
A (1k) is defined as follows.

Experiment ExpSign
A :

(pk, sk)← SKg(1k)

(m,σ)← ASign(sk,·)Q(pk)
The experiment outputs 1 if (a) SVf(pk,m, σ) = 1 and (b) the message m was not previously queried to
Sign.

For our security proof in the case of the Brands and Chaum protocol (see Section 3.0.1), we also
require the property of strong unforgeability, where an adversary can also output a tuple (m,σ) with m
previously queried to Sign, under the condition that σ is not the signature that the oracle Sign forwarded
to the adversary. In fact, the definition is the same as in the case of existential unforgeability, but the
security game is modified as follows.
Experiment Exp∗Sign

A :
(pk, sk)← SKg(1k)

(m,σ)← ASign(sk,·)Q(pk)
Let L = {mi, σi}Qi=1 be the list of queries and responses to the signing oracle. The experiment outputs
1 if (a) SVf(pk,m, σ) = 1 and (b) the tuple (m,σ) 6∈ L.
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3 Protocol Assessment

In this section, we analyze the resulting properties of the following distance-bounding protocols: Hancke
and Kuhn [13], Avoine and Tchamkerten [4], Reid et al. [16], and the Swiss-Knife protocol [15]. We
note that in view of the results of Boureanu et al. [5], these protocols do not achieve distance fraud
resistance. In our analysis, we show that provable terrorist fraud resistance is harder to attain than
intuition indicates.

Also, most earlier distance-bounding protocols do not allow for fault tolerance. In other words, the
assumption is that the prover’s behavior is always constant and that both transmissions and transmission
times are reliable and constant. Thus the assumption is that the verifier’s challenges always arrive at
the prover (in constant time), the prover’s responses also always arrive at the verifier (in constant time),
and the prover always has the same processing delay. This is not always the case, particularly not for
resource constrained devices like RFID, where transmissions are not always reliable, and transmission
times and processing delays may vary. In [10], Dürholz et al. introduce fault tolerance parameters as
outlined in Section 2.2.

3.0.1 Brands and Chaum

In the Brands and Chaum construction [6], the reader and tag first exchange random bits in Nc time-
critical phases, then finally signs the concatenation of these bits under the shared secret key sk — see
Figure 3. Though in this case the lazy phases do not pre-date the time-critical phases, the concept
of impersonation resistance is still applicable. We only require that the adversary can forward a fresh
signature in a winning reader-adversary session, in the sense that the adversary has not seen it before.
As the lazy phase has a single message, the only possibly relayed message here is the signature.

R(sk) T (sk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Time-Critical Phase
for i = 1, . . . , Nc

pick Ri ← {0, 1} pick Ti ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→
Ti←−−−−−−−−−−−−−−

Clock: Stop, output ∆t
Check ∆t ≤ tmax

Slow Phase

Verify signature
Sign(sk;R1||T1|| . . . ||RNc ||TNc)←−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3: The Brands and Chaum protocol

Intuitively, the time-critical phases of this protocol must ensure here that the reader-to-tag distance
is no greater than the one associated with tmax. Finally, the signature in the lazy phase must ensure
that the bit exchange was done by a legitimate prover. This ensures both impersonation resistance and
a measure of mafia fraud resistance. Lazy phases are susceptible to pure relay (which otherwise taints
time-critical rounds), thus the signature yields neither terrorist, nor distance fraud resistance. Unlike
most other distance bounding protocols, however, the tag’s responses are fully random, thus the difficulty
in mafia fraud attacks is not to answer the time-critical rounds, but rather to make the tag generate the
correct signature at the end.
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We formally state the properties of this protocol below, without considering any further fault tol-
erance. If the parameters Emax and Tmax are considered, upper-bounding the number of erroneous
transmissions and respectively the number of transmissions exceeding tmax, the security bound for mafia
fraud resistance drops by a factor 2Tmax . Note, however, that should any of the transmissions go wrong,
the signature will not longer verify: for scenarios where transmissions are not reliable, the tag should
append the values R1, . . . , RNc , T1, . . . , TNc to the signature.

Theorem 3.1 (Brands-Chaum Properties) Let Sign = (SKg, SSign,SVf) be the signature scheme
used above. The Brands and Chaum protocol ID above has the following properties:

• It is not resistant to terrorist, nor to distance fraud.

• For any (t, qR, qT , qobs)-impersonation adversary A against the Brands Chaum protocol, there exists
an adversary A′ against the strong unforgeability of Sign that runs in time t and requests at most
qT + qobs signatures, and that then outputs a valid forgery with an advantage Advimp

ID (A) such that:

Advimp
ID (A) ≤ AdvstrUnf

Sign (A′) + qR(qT + qobs) · 2−Nc .

• For any (t, qR, qT , qobs)-mafia-fraud adversary A against the Brands Chaum protocol, there exists
an adversary A′ against the unforgeability of Sign that runs in time t and requests at most qT +qobs
signatures, and that then outputs a valid forgery with an advantage AdvUnf

Sign(A′) such that:

Advmafia
ID (A) ≤ AdvUnf

Sign(A′) + qR(qT + qobs) · 2−Nc + qR · 2−Nc .

Proof. The second statement is easily proved. Consider a reader-adversary session sid where an adversary
A successfully impersonates to the reader. Firstly, there is at most a probability of (qobs+qT )·2−|Nc| that
the challenges in this verifier-adversary session coincide with the challenges Ri in a previous reader-tag
or adversary-tag session. In this case, the adversary can replay the past session (including the signature
received at the end), thus winning with probability 1. We account for this probability in each of the
verifier-adversary sessions, and assume from now on that the string of challenges {R1, . . . , RNc} is unique
amongst all the past reader-tag and adversary-tag sessions.

We consider now a single reader-adversary session sid. The adversary can now open a parallel
adversary-tag session sid′. The definition of impersonation security requires that the adversary does
not forward lazy phase information between the two sessions. The adversary can, however, forward the
time-critical phase information between the two sessions. We show that the adversary can now win with
probability at most equal to the advantage of any adversary against the strong unforgeability of the
signature scheme Sign. Indeed, we construct such an adversary A′ which runs A in a black-box way.
Every time A runs either a prover-verifier or resp. adversary-prover session, the adversary A′ queries its
signature oracle for the transcript of the protocol, and forwards the signature to A, storing the value
of SSign(sk;R1||T1|| . . . ||RNc ||TNc). Finally, assuming that A succeeds in impersonating the prover in a
session sid, the adversary A′ forwards the tuple consisting of the time-critical transcript of the protocol,
together with the signature used by A in its successful attempt, to the challenger in the strong unforge-
ability game. In case the adversary has relayed the time-critical transcript, the adversary A only wins
if it forwards a different signature for the same message, i.e. we must require strong unforgeability. If
the impersonation adversary A has an advantage Advimp

ID (A), then the unforgeability adversary A′ has
a probability at least as large to succeed in its attempt. Accounting for qR possible replays, we obtain
the specified bound.

The first statement also follows easily: the adversary A against distance fraud simply commits to
randomly chosen values of Ti, then computes the (correct) signature with its own secret key sk, and
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succeeds with probability 1. For terrorist fraud, the adversary trivially generates random time-critical
responses, then forwards these values and the values of Ri to the dishonest prover, and receives the
signature. The success probability of this adversary is 1. However, the simulator’s success probability is
upper bounded by the probability that it can forge a signature for a fresh session. For an unforgeable
signature scheme, the simulator’s success probability is negligible, and thus the scheme is not terrorist
fraud resistant.

We now prove the last statement. Consider the adversary A mounting a mafia fraud attack. Consider
the reader-adversary session sid whereA successfully authenticates to the reader. As in the impersonation
fraud proof, there is a probability of (qT + qobs) · 2−Nc that the challenges Ri in sid are all identical
to the fast phase values R∗i in one of these sessions. In this case, the adversary can simply forward
the observed/received values T ∗i to the reader in session sid; at the end, the adversary forwards the
observed/received value of the signature. We now assume that the verifier-adversary session sid is the
only session the adversary has access to. The adversary can start a concurrent adversary-tag session
sid∗. We call a round successful if the reader input Ri and the response Ti in round i of sid are the same
as the adversary input R∗i and the response T ∗i in sid∗, without pure relay, i.e. the adversary must send
R∗i in sid∗ before receiving Ri in sid or it must guess Ti in advance, before receiving T ∗i .

We first show that, except with negligible probability, the adversary cannot win unless all time-critical
rounds are successful. Indeed if one round is not successful (i.e. R∗i in sid is different from Ri in sid∗)
and yet A authenticates to the reader in sid, we can build an adversary against the unforgeability of
the signature scheme. This adversary’s forgery is the message m containing the concatenation of all the
queries and responses in session sid and the signature that A forwards in sid. The signature must be
correct – else A cannot authenticate —and the message is fresh, as at least in round i the value of Ri||Ti
is fresh. Thus the probability that A wins without being successful in each round is AdvUnf

Sign(A′).
If the adversary is successful in every round, then it wins with probability 1, since in this case the

time-critical transcripts are identical between sid and sid∗ and the adversary can just relay the lazy-
phase response. However, since the challenges and responses are independent, the probability that the

adversary is successful in every round is
(

1
2

)N
c

for each of the reader-adversary sessions. Accounting for
all reader-adversary sessions, we obtain the bound above. �

3.1 Hancke and Kuhn

The protocol due to Hancke and Kuhn addresses mafia and distance fraud, and uses a PRF implemented
as HMAC. This protocol has better distance fraud resistance than e.g. the Brands and Chaum protocol [6],
but at the cost of a lower mafia fraud resistance. The protocol consists of: (i) a lazy phase, where the
parties exchange nonces and pre-compute an HMAC value, divided in a left and a right half, and (ii) Nc

time-critical phases where the reader forwards a random bit and the tag responds with a bit either from
the left or right half of response. This is also depicted in Figure 4.

The PRF output is 2Nc bits, and the left and right halves of this output have equal length. Note that
the value PRF(sk, NR||NT ) cannot be computed by a mafia fraud adversary, without knowledge of sk.
Note that for this protocol, the lack of reader authentication leads to a decreased mafia fraud resistance;
however, the random challenges provide distance fraud resistance. There is no offline impersonation
resistance, as we also state more formally below.

Theorem 3.2 (Hancke-Kuhn Properties) Let ID be the distance-bounding authentication scheme in
Figure 4 with parameters (tmax, Nc). This scheme has the following properties:

• It is not offline impersonation resistant, distance fraud resistant, nor resistant to terrorist fraud.

• For any (t, qR, qT , qobs)-mafia-fraud adversary A against the scheme there exists a (t′, q′)-distinguisher
A′ against PRF (where A′ runs in time t′ = t+O(n) and makes at most q′ = qR+qT +qobs queries)
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R(sk) T (sk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lazy Phase

pick NR ← {0, 1}∗
NR−−−−−−−−−−−−−−→ pick NT ← {0, 1}∗
NT←−−−−−−−−−−−−−−

let T 0||T 1 ← PRF(sk, NR||NT )

Time-Critical Phases
for i = 1, . . . , Nc

pick Ri ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→

TRi
i←−−−−−−−−−−−−−−

Clock: Stop, output ∆t
Check ∆t ≤ tmax

Figure 4: The Hancke and Kuhn protocol

such that

Advmafia
ID (A) ≤ qR ·

(
3
4

)Nc +

(
qR + qobs

2

)
· 2−|NR|

+Advd
PRF(A′) +

(
qT
2

)
· 2−|NT |.

Proof. The first statement follows easily: an offline impersonation adversary which simply generates
a random nonce during the single lazy phase of this protocol wins with probability 1 as there is no
authentication during this lazy phase. For terrorist fraud resistance, a malicious tag equips the adversary
during the lazy phase of session sid with the output T 0||T 1 of the PRF for nonces NR and NT . This
adversary succeeds with probability 1, as it can answer the queries of the honest reader in sid as though
it were the legitimate tag. Now consider a simulator attempting to authenticate with the data obtained
from the adversary; as the simulator’s session is fresh, however, so is the reader’s nonce, thus either
the PRF output is different, or we can find a collision in the PRF. Finally, the attack of Boureanu et
al. [5] makes the protocol not distance-fraud resistant: indeed, since the adversary in this case knows
the secret key, it can choose a weak nonce, such that T 0 = T 1 with high probability (note that the
pseudorandomness of PRF only requires that it is indistinguishable from random on the average, and not
for every input). Once the distance fraud adversary forwards this nonce to the reader, it can trivially
commit to the value T 0

i for every round, irrespective of the challenge, thus winning with high probability.
The proof of the last statement consists of the following high-level steps:

1. Show that one can safely replace the PRF runs of honest parties by picking independent random
strings T 0||T 1 and for each new nonce tuple (NR, NT ,M).

2. Show that nonce pairs are (almost) unique, except for possibly one adversary-tag session sid∗ having
the same nonce pair as a reader-adversary session sid (here the adversary relays the nonces between
sessions).

3. Bound the probability that the adversary passes the time-critical phases for at most one adversary-
tag interaction.
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For the first step we claim that replacing the PRF-values by random (but consistent) values can at
most decrease the adversary’s success probability by the distinguishing advantage for PRF. This holds
as we can construct adversary A′ against PRF via black-box simulation of A, each time applying the
random or pseudorandom oracle to nonce pairs on behalf of the honest parties. Finally, A′ checks if A
succeeds in some reader-adversary session and outputs 1 if this happens. The distinguishing advantage
of A′ then corresponds to the decrease of the success probability of A when switching to random values
T 0||T 1.

Next consider the adversary A mounting a mafia fraud attack and all the pairs of nonces appearing
in the attack. Assume that there exist two sessions (between adversary and tag or reader, or between
both honest parties) with the same pair (NR, NT ). We claim that this can only be a reader-adversary
session and an adversary-tag session, except with probability(

qR + qobs
2

)
· 2−|NR| +

(
qT
2

)
· 2−|NT |.

This holds as for each two executions for the reader resp. tag the nonce of this party is picked at
random. If three identical nonce pairs appear in some executions then two of them are either in the at
most qR + qobs executions with the reader, or in the qT executions with the tag. Such collisions occur
with the above probability.

Declare A to lose if a collision appears, decreasing its success probability by this negligible term, but
allowing us to consider collision-free executions. In particular, except for the matching session, all values
T 0||T 1 in the attack are independent.

Now consider a reader-adversary session sid in whichA successfully impersonates toR. By assumption
the same nonce pair appears in at most one other adversary-tag session. If there exists a (unique)
matching adversary-tag session sid∗ then we claim that this session taints sid with high probability (if
there is no such session, we have the case below, where the adversary does not take advantage of a
matching session). Since for this protocol it holds that Tmax = 1, this invalidates session sid. Suppose,
to the contrary, that the matching session sid∗ taints no time-critical phase in sid.

Consider an untainted time-critical phase of sid where R sends Ri = b and expects T b
i ⊕ b. The

adversary has thus successfully passed the first i− 1 time-critical phases and can choose to do one of the
following in the i-th phase:

The Go-Early Strategy. In session sid∗ the adversary has sent some bit R∗i to T before having
received Ri (i.e., clock(sid, i + 2) > clock(sid∗, i + 2) in the notation of [10]). Then, since Ri is
random and independent of all other data, the probability of R∗i 6= Ri is 1

2 , in which case A does
not receive T ∗i in sid∗ and can only guess the value Ti in sid. If b = Ri = R∗i , however, the adversary
returns the correct reply T b

i with probability 1.

The Go-Late Strategy. In session sid the adversary replies to Ri with some T ∗i before receiving (T b
i )∗

in session sid∗ (i.e., clock(sid, i + 3) < clock(sid∗, i + 3)). Now A succeeds only with probability 1
2

for this phase.

The Modify-it Strategy. The adversary schedules the message such that it receives Ri in sid, sends
some R∗i = b in sid∗, receives (T b

i )∗ in sid∗, and forwards some T ∗i in sid. Hence, the scheduling
corresponds to a pure relay attack, but Ri 6= R∗i or T ∗i 6= (T b

i )∗. If b = R∗i is wrong, then (T b
i )∗ is

actually never sent by T in sid∗ and the adversary can thus only guess T ∗i with probability 1
2 ; if

b = Ri = R∗i then T ∗i 6= (T b
i )∗ makes the reader reject.

The Taint-it Strategy. The adversary taints this phase of sid through sid∗. This is equivalent here
to losing in sid.
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The Taint-it strategy may be ignored, as it disables sid. The Go-Late and Modify-it strategies both
succeed with probability at most 1

2 . The Go-Early strategy succeeds with probability 3
4 . As all rounds

are independent, and taking into account the qR trials, this gives the claimed bound. �

3.1.1 Avoine and Tchamkerten

As noted in the previous section, the Hancke and Kuhn construction has interdependent challenges,
allowing the adversary to run a complete number of time-critical exchanges with the tag before attempting
to authenticate to the reader. The Avoine and Tchamkerten protocol tries to correct this flaw by
providing some reader authentication. The main idea is to store the secret key in one (or more) binary
tree(s); the challenges are inter-related, with the responses forming paths from the root to the leaves.

Consider now an adversary impersonating a reader in an adversary-tag session in a Go-Early strategy
as in the proof of Theorem 3.2. For [13], an adversary can choose challenges R∗i for each round i =
1, . . . , Nc and receive responses T ∗i from the tag, having a 50% probability to have queried the honest tag
with the correct R∗i = Ri; for these queries, the adversary will know the correct response Ti = T ∗i . On
the other hand, once an adversary makes an incorrect guess for some R∗i , none of the future responses
will be the correct ones.

This is also depicted in Figure 5.

Figure 5: The Avoine-Tchamkerten protocol where the reader sends challenges R1 = 0, R2 = 1

Note that this protocol requires at least 2Nc+1− 2 potential response bits; at the expense of security,
one could consider more than just one tree. We have, however, lazy phase authentication, leading to a
total PRF output of m+ 2Nc+1 − 2 bits for acceptably large m. The first m bits of the PRF output are
denoted M ; the last 2Nc+1−2 bits are denoted T and stored in a tree as follows: from the top downwards
and from left to right, each node is labelled with an output bit. The edge between each node and its left
child is labelled 0 and the edge to the right child is labelled 1. We denote by Node(R1, . . . , Ri) the label
of the node that has the path R1, . . . , Ri from the root. With this notation, the protocol runs as shown
in Figure 6. Note in particular that the responses Ti do not correspond directly to the bits of T , but are
rather chosen from amongst the bits of T according to the path R1, . . . , Ri.

Intuitively, the m-bit value V offers impersonation resistance. While the inter-dependency between
the challenges of the reader increases the protocol’s mafia fraud resistance, this is still not optimal, and
it requires a great deal of storage. We formalise the concrete security of this construction below.

Theorem 3.3 (Avoine-Tchamkerten Properties) Let ID be the distance-bounding authentication
scheme in Figure 6 with parameters (tmax, Nc). This scheme has the following properties:

• It is not resistant to terrorist fraud, nor to distance fraud.

• For any (t, qR, qT , qobs)-mafia-fraud adversary A against the scheme there exists a (t′, q′)-distinguisher
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R(sk) T (sk)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NR−−−−−−−−−−−−−−→

let V ||T ← PRF(sk, NR||NT )
V,NT←−−−−−−−−−−−−−−

compute V ||T ← PRF(sk, NR||NT )
abort if V does not verify

Time-Critical Phases
for i = 1, . . . , Nc

pick Ri ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→
Ti = Node(R1, . . . , Ri)

Ti←−−−−−−−−−−−−−−
Clock: Stop, output ∆t

Check ∆t ≤ tmax

Figure 6: The Avoine and Tchamkerten protocol

A′ against PRF (where t′ = t+O(n) and q′ = qR + qT + qobs) such that

Advmafia
ID (A) ≤ 1

2qR[Nc + 2] · 2−Nc + Advd
PRF(A′) +

(
qR + qobs

2

)
· 2−|NR| +

(
qT
2

)
· 2−|NT |.

• For any (t, qR, qT , qobs)-impersonation adversary A against the scheme there exists a (t′, q′)-distinguisher
A′ against PRF (where t′ = t+O(n) and q′ = qR + qT + qobs) such that

Advimp
ID (A) ≤ qR · 2−|V | +

(
qR + qobs

2

)
· 2−|NR| + Advd

PRF(A′) +

(
qT
2

)
· 2−|NT |.

Proof. The proofs of the first statement is identical to those of the Hancke-Kuhn protocol, as shown in
Theorem 3.2. For mafia fraud resistance, we change the Hancke-Kuhn proof as follows: for each round,
we denote by passj the event that an adversary guesses the correct Ri in a Go-Early attack. Again
the Go-Early strategy is the most effective, with a success probability given by the iterative expression
below:

Prob

[∧Nc

j=i
passj

∣∣∣∣∧i−1

j=1
passj

]
≤ 1

2 ·
1
2

Nc−i+1
+

1

2
· Prob

[∧Nc

j=i+1
passj

∣∣∣∣∧i

j=1
passj

]
.

After summing up and iterating, we have the bound above.
Finally, impersonation security follows similarly as the mafia fraud resistance. We first account for

nonce-collisions between authentication sessions, as in Theorem 3.2. The impersonation adversary’s
advantage is now given by the advantage of the distinguisher A′ and the probability that the adversary
knows the output of the PRF for the successful reader-adversary session sid (which only happens if it
has seen, resp. generated the authentication value V in a reader-tag, resp. adversary-tag session). �

3.2 Reid et al.

The construction in [4] has better mafia fraud resistance (but greater data storage) than [13]. The
scheme in [4] is additionally offline impersonation resistant. However, neither scheme is terrorist fraud
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resistant. We now analyse the protocol due to Reid et al. [16], which adds a symmetric encryption scheme
to the Hancke and Kuhn construction (the authors suggest a one-time-pad xor operation2). Thus, this
protocol inherits the lack of offline impersonation resistance of [13], as well as the lower mafia fraud
resistance. Interestingly enough, distance-fraud resistance might be achieved for some implementations
of the symmetric encryption scheme, but not for others, since the attack of Boureanu et al. [5] cannot
be extended to arbitrary schemes.

We first describe this protocol. In their paper [16] use a so-called key derivation function denoted KDF
which can be viewed as a PRF for the sake of simplicity. We thus denote it PRF as for the construction
due to Hancke and Kuhn. Furthermore, Reid et al. consider a symmetric IND-CPA encryption scheme
denoted E . To this scheme they associate a symmetric ephemeral secret key eph and a long term secret
key sk. The notation Eeph(sk) denotes the encryption under eph of the plaintext sk. We denote the
corresponding decryption process by D. Furthermore, Reid et al. [16] associate to the tag and reader
some public identities IDA, IDB.

The main idea here is that both reader and tag compute a symmetric ephemeral key eph as the output
of PRF, and then they use eph to encrypt the long-term secret key sk with E . For each time-critical
round, the reader challenges the tag with a random bit, and the tag responds with a bit, originating
either from the encrypted value or from eph. Intuitively, terrorist fraud resistance results from the fact
that the adversary requires either the long term secret sk(which can be later be used by the simulator
to authenticate) or both eph and the encryption of sk (which can be used by the simulator to compute
Deph(sk), thus also obtaining the secret sk). The scheme is depicted in Figure 7.

R(sk, IDR) T (sk, IDT )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NR, IDR−−−−−−−−−−−−−−→

let eph← PRF(sk, IDR||IDT ||NR||NT )
eph← PRF(sk, IDR||IDT ||NR||NT )

NT , IDT←−−−−−−−−−−−−−− c← Eeph(sk)
c← Eeph(sk), R← {0, 1}Nc

T 0||T 1 ← eph||c T 0||T 1 ← eph||c

Time-Critical Phases
for i = 1, . . . , Nc

Clock: Start
Ri−−−−−−−−−−−−−−→

TRi
i←−−−−−−−−−−−−−−

Clock: Stop, output ∆t
Check Ti and ∆t ≤ tmax

Figure 7: The Reid et al. protocol

Before stating the security properties we note that the informal definition of a successful terrorist
fraud attack is that the adversary can authenticate if aided by a malicious tag in a particular session,
but cannot authenticate without this aid. However, this informal definition is deceptive: many protocols
claiming to be terrorist fraud resistant are actually resistant to the very restrictive requirement that
the prover does not forward any sensitive information to the adversary; in other words, the adversary
gains no knowledge about the secret key [3]. By tying any knowledge (or accurate guessing) of both

2We note that Reid et al. also suggest different versions of this protocol, where the symmetric encryption is done
differently; our analysis here applies equally to generic ways of implementing the encryption scheme.
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responses to the secret key, protocols can attain this form of terrorist fraud resistance. In other words,
if the prover forwards even a single bit of one of the responses, this is considered trivial help, as it gives
the adversary an increased success probability in future rounds. We note, however, that in practice this
definition restricts an adversary very much; in fact, in many cases some information about the secret key
could leak without significantly aiding the adversary in future authentication attempts.

However, the definition of Dürholz et al. [10] considers such partial attacks to be valid terrorist fraud
attacks, concretely requiring that the prover’s help does not give the adversary an equal advantage for
future sessions, i.e. it only excludes attacks where the prover forwards the adversary a fragment of the
secret key itself, exclusively. Thus, whereas the previous definition restricts the prover’s strategies such
that no information about the secret key leaks to the adversary, the model of Dürholz et al. restricts the
adversary very little: only insofar the adversary does not have an equal winning probability after the
prover stops helping. We discuss the merits of both definitions in Appendix A.

In the following, we show that the protocol of Reid et al. in Figure 7 does not attain terrorist fraud
resistance in the sense of Dürholz et al.

Theorem 3.4 (Reid et al. Properties) Let ID be the distance-bounding authentication scheme in Fig-
ure 7 with parameters (tmax, Nc). This scheme has the following properties:

• It is neither offline impersonation resistant, nor terrorist fraud resistant (assuming the pseudoran-
domness of PRF).

• If the symmetric encryption scheme in this protocol is instantiated as bitwise XOR, this scheme is
not mafia fraud resistant.

• If the symmetric encryption scheme used in this protocol is instantiated as bitwise XOR, and
furthermore if the secret key sk is generated honestly at random from a distribution computationally
indistinguishable from the uniform random distribution, for any (t, , qR, qT , qobs)-distance-fraud
adversary A it holds that:

Advdist
ID (A) ≤ qR ·

(
3
4

)Nc .

Proof. This protocol inherits the lack of offline impersonation resistance from the protocol due to Hancke
and Kuhn [13] and so we do not show the proof here.

We first look at the distance-fraud resistance of this protocol (i.e. the second statement). The
difference for distance-fraud resistance (with respect to the Hancke and Kuhn protocol) is that the
responses computed here by the tag are eph and c, only one of which is computed by means of a PRF.
Thus, the attack of Boureanu et al. [5] does not transfer trivially. However, the tag can, in a similar
fashion, choose a convenient nonce that outputs a “weak” eph, such that, when it is later used as a key,
it yields an output that has little entropy. This is possible since the IND-CPA notion applies to keys
selected at random by a key-generation algorithm.

However, in case the symmetric encryption function E is instantiated as bitwise XOR, the Hamming
distance between the two responses, eph and c is exactly sk at each execution. The proof goes as follows.
First we replace sk by a uniform random value (and lose a term equalling the distinguishing advantage
between the uniform random distribution and the distribution that sk is chosen from). Now we consider
each round i in a distance-fraud attack. For this phase it holds with probability 1

2 that the bit ci is
different from the corresponding bit of ephi = ci⊕ sk. If ci = ephi (this happens with probability 1

2), the
adversary forwards ci and wins the round; else, if the two values are unequal, then the adversary has to
guess which value to send (essentially predicting the challenge) and is successful with probability 1

2 .
However, if the symmetric encryption function is instantiated as a one-time-pad XOR operation,

i.e. c ← eph ⊕ sk, we cannot prove the protocol mafia fraud secure. A mafia fraud adversary could run
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the following attack, trying to recover the key sk. We will denote the adversary’s guess of sk by sk′. The
adversary begins by initiating a reader-adversary session sid1 and an adversary-tag session sid∗1. It relays
all the lazy and time-critical rounds between the reader and the tag up to the n − 1-th round (this is
possible since the definition of mafia fraud resistance only excludes time-critical relaying —up to Tmax

rounds— for the session sid where the adversary succeeds in its authentication attempt). Finally, in the
last round, it receives a challenge bit b = RNc ∈ {0, 1} in session sid1. Then the adversary forwards the
challenge b̄ = b⊕ 1 in session sid∗1, receiving the value T b̄. The attacker finally forwards this value to the
reader in session sid and waits to see if it is authenticated by the reader; if so, it sets sk′Nc

= 0, and else
it sets sk′Nc

= 1.
There are two cases:

b = 0. Then, in sid1, the reader expects cNc as a response. From session sid∗1, where the adversary has
forwarded b̄ = 1, the adversary has learned ephNc

= cNc ⊕ skNc , which it forwards to the verifier; if
the verifier accepts, then cNc = cNc ⊕ skNc , and thus skNc = 0; in this case, the adversary’s guess
is correct, and sk′Nc

= skNc . Else, if the verifier rejects, then skNc = 1, and the adversary has again
guessed correctly.

b = 1. In this case, the reader expects ephNc
; the value forwarded by the adversary is cNc = ephNc

⊕skNc .
The same reasoning applies as above.

The adversary continues the attack in the same way, recovering the secret key bit-by-bit. Once the
adversary has the complete sk′ = sk, the adversary finally initiates its “challenge” session sid with the
verifier, and a parallel session sid∗ with the prover. The adversary forwards the lazy phase communication,
and then queries the prover in advance to learn eph (i.e. it sends a challenge bit Ri = 1 for every round
i ∈ 1, . . . , Nc in sid∗). Since these queries are made before the adversary receives the challenge in session
sid, the adversary has not tainted the round. For every round in sid, if the verifier sends a challenge
Ri = 1, then the adversary sends ephi; else, if the verifier sends Ri = 0, then the adversary forwards
ephi ⊕ sk′i, and thus also responds correctly. Now the adversary authenticates with probability 1.

However, this attack is not extendable to arbitrary symmetric encryption schemes. What is needed
in order for the scheme to achieve some mafia fraud resistance (equal to the mafia fraud resistance of the
protocol of Hancke and Kuhn [13]) is for the encryption scheme to not leak any information about the
key from learning both possible time-critical round responses for a given round.

Finally we show a terrorist adversaryA for which there exists no simulator such that Advterror
ID (A,S, T ) ≤

0. This would therefore show that the scheme is not terrorist fraud resistant. The idea is for the mali-
cious tag T ′ to give information that facilitates the adversary’s attack, without revealing any essential
information about future impersonation attempts. Indeed, let A receive the value eph from T ′ in each
of its qR impersonation attempts. In the subsequent time-critical phases, if the reader sends challenge
Ri = 1, A sends Ti = ephi; else, the adversary guesses Ti. This adversary’s probability to win is thus
3
4

Nc + AdvIND-CPA
E (A′′) for the adversary A′′ whose advantage to win against the IND-CPA of E is the

largest.
Now consider a simulator S. The simulator has no access to the tag T , but it may run A internally.

However, under the assumption of the pseudorandomness of PRF, there is only a negligible probability
that A knows eph for any of the qR impersonation sessions where the simulator attempts to authenticate

to the reader. Thus, the simulator’s probability of winning is 1
2

Nc+AdvIND-CPA
E (A′′). Thus, the adversary

has an advantage over any simulator S. �

3.3 The Swiss-Knife RFID Distance Bounding Protocol

The Swiss-Knife protocol due to Kim et al. [15] aims to achieve privacy as well as mafia, terrorist, and
distance fraud resistance. Very notably, the lazy phase of this protocol is divided into two parts: the
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first precedes the time-critical phase, the second follows it. In the first part, the reader and tag exchange
nonces and the tag computes a pseudo-random function (PRF) on input a system constant and a tag-
chosen nonce NT . The output of this function, a, is then XORed with the long-term secret key sk, thus
obtaining response vectors T 0 and T 1. These values are sent in the time-critical rounds, depending on
the reader’s challenge.

If this protocol is run in an RFID scenario, the size of sk, which equals the number of time-critical
rounds, is restricted by the tag’s capacity to sustain time-critical rounds. Thus, the keys are short.
Finally, after the time-critical rounds, during the second lazy phase, the tag authenticates by computing
the PRF on all the received challenges, its identity, and both the reader and the tag’s nonces. The reader
may then also authenticate by computing the PRF on input the tag’s nonce. This second lazy phase is
essential in preventing the recovery of the secret key during a mafia fraud attack. Also, this second PRF
computation brings the mafia fraud resistance to loosely (1

2) per round.
In the Swiss-Knife scenario, each tag is associated with an identity ID, stored by the reader in the

same database that stores the secret key sk of the tag. In order to achieve anonymity, this identity is
never sent, and the reader needs to search the database exhaustively to find it. This protocol also has
some fault tolerance, i.e. the reader counts a total number of errors consisting of: (1) the number of faulty
challenges Ri that the tag receives; (2) the number of faulty responses Ti that the reader receives; and
(3) the number of rounds in which the tag’s response exceeds the time threshold tmax. The protocol is
depicted in Figure 8. Note that Kim et al. also present a more efficient version, but whereas this second
scheme is computationally more efficient than the simplified one, the security properties are comparable.
In Figure 8, the value const is a system constant.

Theorem 3.5 (Swiss-Knife Properties) Let ID be the distance-bounding authentication scheme in
Figure 8 with parameters (tmax, Nc). Assume furthermore that the secret key sk output by Kg is cho-
sen uniformly at random from a distribution that is computationally indistinguishable from the random
distribution on bitstrings of length |sk|. This scheme has the following properties:

• It is not terrorist fraud resistant (assuming the pseudorandomness of PRF).

• For any (t, qR, qT , qobs)-distance-fraud adversary A against the scheme, there exists an adversary
A′ distinguishing sk from a truly random value such that:

Advdist
ID (A) ≤ qR ·

(
3
4

)Nc−T + Advd
sk(A′).

• For any (t, qR, qT , qobs)-mafia-fraud adversary A against the scheme there exists a (t′, q′)-distinguisher
A′ against PRF (where t′ = t+O(n) and q′ = qR + qT + qobs) such that

Advmafia
ID (A) ≤

(
1
2

)Nc−T + 2

(
qT
2

)
· 2−(|NT |+dNc

2 e−T )

+2

(
qR + qobs

2

)
· 2−(|NR|+dNc

2 e−T )

+

(
qR + qobs

2

)
· 2−(|NR|+Nc−1−T )

+2

(
qT
2

)
· 2−(|NT |+Nc−1−T )qR ·Advd

PRF(A′).

• For any (t, qR, qT , qobs)-offline impersonation adversary A against the scheme there exists a (t′, q′)-
distinguisher A′ against PRF
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R(sk, IDR) T (sk, IDT , state)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NR−−−−−−−−−−−−−−→

a← PRF(sk, const||NR||NT )
NT←−−−−−−−−−−−−−−

T 0||T 1 ← a||(a⊕ sk)

Time-Critical Phases
for i = 1, . . . , Nc

pick Ri ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→

TRi
i←−−−−−−−−−−−−−−

Clock: Stop, store TRi
i ,∆t

Second Lazy Phase

V ← PRF(sk, R1|| . . . ||RNc ||IDT ||NR||NT )
V,R1, . . . , RNc←−−−−−−−−−−−−−−

Check ID in database
Compute T 0, T 1

Compute: errR = |{| i : faulty Ri}
errT = |{| i : correct Ri ∧ faulty Ti}
errt = |{| i : correct Ri ∧∆t > tmax}
If errR + errT + errt ≥ T , Reject.

W ← PRF(NT )
W−−−−−−−−−−−−−−→

Check W .

Figure 8: The Swiss-Knife protocol

(where t′ = t+O(n) and q′ = qR + qT + qobs) such that

Advimp
ID (A) ≤ qR · 2−|V | +

(
qR + qobs

2

)
· 2−(|NR|+Nc−T )

+Advd
PRF(A′) +

(
qT
2

)
· 2−(|NT |+Nc−T ).

Proof. The proof of statement 1 is trivial: the malicious tag can even send the adversary the secret key
sk and the output V for the second lazy phase. However, the simulator cannot guess the value of IDT
except with probability 2|IDT |.

For the second statement, note that the tag does not choose the key sk, thus, if this key is chosen
at random from a distribution computationally indistinguishable from the uniform random distribution,
the attack of Boureanu et al. [5] is thwarted. Indeed, with great probability, whatever the value a output
by the PRF for this session, the value a⊕sk is with high probability at a large Hamming distance from a.
The proof goes as follows. First we replace sk by a uniform random value (and lose a term Advd

D(A′)).
Now we consider each round i in a distance-fraud attack. For this phase it holds with probability 1

2 that
the bit T 0

i = ai is different from the corresponding bit of T 1
i = ai ⊕ sk. If T 0

i = T 1
i (this happens with

probability 1
2), the adversary forwards T 0

i and wins the round; else, if the two values are unequal, then
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the adversary has to guess which value to send (essentially predicting the challenge) and is successful
with probability 1

2 . After we account for the fault tolerance level T we attain the above-stated bound.
For the third statement, the proof goes slightly differently than for previous protocols, e.g. the scheme

due to Hancke and Kuhn 3.1. In particular, the response strings T 0 and T 1 are now related. The proof
follows in these rough steps: (1) assuming that the secret key sk is indistinguishable from a random string
of appropriate length at the end of any mafia fraud interaction, we can prove mafia fraud security as in the
previous proofs, in particular replacing the response strings by random values. We also account, even for
sessions with matching NR and NT , for about half the challenges in time-critical rounds. Then, we show
that (2) except with negligible probability the adversary cannot distinguish the key sk from a random
string of corresponding length. This second step is proved as follows: note first that if the adversary
merely observes the interaction between an honest prover and an honest verifier, or simply relays all
messages exactly as he receives them, this does not, with great probability, reveal any information about
sk. However, if two sessions share the same nonces (and the computed responses are identical), the prover
may learn about

⌈
Nc
2

⌉
of the bits of the secret key (wherever the challenges differ and the prover gives

the correct response from the other response string). This happens with probability roughly(
qR + qobs

2

)
· 2−(|NR|+dNc

2 e−T ) +

(
qT
2

)
· 2−(|NT |+dNc

2 e−T ).

We now assume this is not the case. Now for each of the Nc time-critical phases the adversary learns
a bit from either one of the two response strings, but not from both, thus leaking no information about
the secret key. Furthermore, if the adversary does interfere with the running of the protocol, in particular
changing either a challenge or a response, there are only three possibilities: (a) the adversary changes at
least one challenge or one response, in which case the matching prover computes a different authentication
value in the matching adversary-prover session than the value expected by the verifier in the verifier-
adversary session, and the adversary is unable to provide the correct authentication value (in this case
the adversary can learn nothing beyond what it learns in a common observation of an authentication
attempt); (b) the adversary has seen (or “created”, by forwarding nonces) another session in which all
the challenges and responses are exactly the same for all except the rounds where the adversary wishes
to change the challenge and/or response (thus the adversary has seen a valid authentication string V for
the altered string of challenges and responses); (c) the adversary is able to come up with a forgery for
the value V . Event (b) happens with probability:(

qR + qobs
2

)
· 2−(|NR|+Nc−1−T ) +

(
qT
2

)
· 2−(|NT |+Nc−1−T ).

Event (c) happens with probability Advd
PRF(A′) (per verifier-adversary session). This accounts for

the bound above.
The proof for offline impersonation security runs more or less as in the previous proof, only now we

only account for the probability of lazy-phase authentication. �

3.4 The Protocol of Yang, Zhuang, and Wong

Similarly to the Swiss-Knife protocol, the very recent protocol due to Yang, Zhuang, and Wong [18]
aims to achieve mafia, distance, terrorist, and offline impersonation security, as well as privacy. The
protocol is also supposed to achieve mutual authentication. Furthermore, the authors claim to achieve
this with a single slow phase, rather than two (as in the Swiss-Knife protocol). In this protocol, privacy
is achieved by means of tag-id updates, where the reader is supposed to resynchronize with the tag at
every authentication attempt. In the distance-bounding part, the reader authenticates first in the lazy
phase (though the tag does not do so). Instead, tag authentication is limited to the time-critical phases.
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Both the reader and the tag compute in this protocol a pseudo-random function with as input two
nonces interchanged by the parties, and the tag’s identifier. The PRF output is split into three parts:
one string called v is used for the reader authentication mentioned above, and two other parts, which
we denote T 1 and T 2, are used first in order to compute a third string T 3, which is the bitwise XOR
of T 1, T 2, and sk, i.e. the secret key shared by the reader and the tag. If the verifier authentication is
completed, then the time-critical phases begin: in each phase i = 1, . . . , Nc, the reader sends a random
challenge Ri. The tag computes the response depending on the value of Ri||vi, where vi denotes the i-th
bit of the verifier authentication string v. In particular, if Ri||vi = 0||0, then the response bit is T 1

i ; if
Ri||vi = 1||1, then the response bit is T 2

i ; else, the response bit is T 3
i . We denote by PRF the pseudo-

random function used for the generation of the time-critical responses and a different pseudo-random
function H for the key update. This protocol is depicted in Figure 9.

R(sk, T ID, T ID∗) T (sk, ID)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

First Lazy Phase

pick NR ← {0, 1}∗ pick NT ← {0, 1}∗
NT , ID←−−−−−−−−−−−−−−

If ID 6∈ {T ID, T ID∗}, abort
Else, if ID = T ID∗, then

Set T ID ← T ID∗ and T ID∗ ← H(ID, sk)
T 1||T 2||v ← PRF(sk, NT ||NR||ID)

NR, v−−−−−−−−−−−−−−→ Compute T 1, T 2, v
If v does not verify, abort

T 3 ← T 1 ⊕ T 2 ⊕ sk

Time-Critical Phases
for i = 1, . . . , Nc

pick Ri ← {0, 1}
Clock: Start

Ri−−−−−−−−−−−−−−→
If Ri||vi = 0||0 then set Ti ← T 1

i

Else if Ri||vi = 1||1 set Ti ← T 2
i

Else set Ti ← T 3
iTi←−−−−−−−−−−−−−−

Clock: Stop, store Ti,∆t

If ∀i, Ti is correct and ∆t ≥ tmax Update ID ← H(ID, sk)
then set T ID ← H(ID, sk) and T ID∗ ← H(T ID, sk)

Else reject prover.

Figure 9: The Yang, Zhuang, Wong protocol

As we show in the following theorem, the protocol achieves none of its claimed properties. While
the idea to make the responses depend on a couple of bits (including a randomly generated challenge)
rather than on a single bit thwarts key-learning attacks (as in the case of Reid et al.), the absence of
the second authentication phase enables a simple Denial-of-Service (DoS) attack, which can be used to
break privacy, see e.g. [17]. Furthermore, the proof of terrorist fraud resistance in the original paper [18]
is flawed, since it assumes the malicious tag would only forward the adversary (1 or 2) entire strings
T 1, T 2, or T 3; however, a malicious tag can also simply forward bits from different strings, depending on
the string v (which is a known value). We summarize this analysis below.
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Theorem 3.6 (Yang-Zhuang-Wong Properties) Let ID be the distance-bounding authentication scheme
in Figure 9 with parameters (tmax, Nc). Assume furthermore that the secret key sk output by Kg is cho-
sen uniformly at random from a distribution that is computationally indistinguishable from the random
distribution on bitstrings of length |sk|. This scheme has the following properties:

• It is not terrorist fraud resistant, nor distance-fraud resistant, nor (tag) offline-impersonation se-
cure.

• For any (t, qR, qT , qobs)-mafia-fraud adversary A against the scheme there exists a (t′, q′)-distinguisher
A′ against PRF (where A′ runs in time t′ = t+O(n) and makes at most q′ = qR+qT +qobs queries)
such that

Advmafia
ID (A) ≤ qR ·

(
3
4

)Nc +

(
qR + qobs

2

)
· 2−|NR|

+Advd
PRF(A′) +

(
qT
2

)
· 2−|NT |.

• This protocol does not preserve privacy, since it does not preserve long-term completeness (it enables
Denial of Service (DoS) attacks). In particular, there exists an adversary that desynchronizes the
reader and tag state with probability 1

2 .

Proof. We begin with the second statement. Note that now there are three bitstrings which, XORed
together, give the secret key. This strategy effectively blocks key-learning attacks. In particular, the
mafia-fraud proof for this part follows the lines of the proof in the Hancke-Kuhn protocol, so we don’t
give it here again.

We now focus on the first statement. First, the protocol is not distance-fraud resistant. In an attack
similar to those shown by Boureanu et al. [5], a malicious prover could choose a weak nonce NT such
that T 1 = T 2 = sk. In this case, it holds that T 3 = sk⊕ sk⊕ sk, and thus the malicious prover can always
respond to a randomly generated challenge, regardless of the value of v.

Second, the protocol is trivially not (tag) offline-impersonation secure in the definition of Dürholz et
al., since it involves no lazy-phase authentication for the tag.

Thirdly, the protocol is not terrorist fraud resistant. The malicious tag’s strategy is as follows. After
computing v, it forwards the following values to the adversary: for i = 1, . . . , Nc, if vi = 0, then it
forwards 0||T 1

i and 1||T 3
i , but not T 2

i ; and else, if Vi = 1, then it forwards 1||T 2
i and 0||T 3

i , but not T 1
i .

Here, the prepended bits indicate to the adversary which response to forward during the time-critical
phases. Now the adversary can authenticate with probability 1; however, it doesn’t learn any information
about the key, which is still bitwise hidden by the third, unknown string. Thus, a simulator can’t hope
to compete with the adversary in this setting.

Finally, we show a Denial of Service attack against this protocol. Note that when the tag is in the
reader’s proximity, an adversary can effectively perform relays. The attack goes as follows: during an
honest reader-tag authentication session, the adversary forwards all the communication, apart from the
last time-critical phase. For this phase, the adversary does not forward the reader’s challenge to the tag,
which eventually drops the session. However, upon receiving the challenge from the reader, the adversary
has a probability of 1

2 to guess the correct response and thus authenticate, making the reader update
state such that it is desynchronized from the tag. Indeed the tag state will still be some value ID, while
the reader will keep states: T ID = H(ID, sk) and T ID∗ = H(H(ID, sk), sk). This directly contradicts
the proof of privacy given by the protocol designers [18]. �
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A The Case for Terrorist Fraud Resistance

In this paper, we prove that two constructions which claim to achieve terrorist fraud resistance, and
which intuitively achieve some degree thereof, can be proved to be insecure in the framework due to
Dürholz et al. [10]. In particular, our attack against these two schemes uses the fact that partial key-
related information from the dishonest prover gives the adversary some advantage over a simulator, which
represents the adversary when the prover stops helping.

Our results may be viewed from two separate points of view. It can be argued, on the one hand, that
our model due to Dürholz et al. is too strong, and does not accurately capture the notion of terrorist
fraud resistance. On the other hand, our results may be viewed as proof that terrorist fraud resistance
is in fact a very powerful attack, which is difficult to counteract in practice. We present and assess both
points of view in the considerations below.

Model strength. As noted in Section 3.2, the notion achieved by [16] is very weak in the sense that
it excludes even prover information that significantly aids adversary authentication while disclosing a
relatively insignificant part of the secret key. We note that previous definitions, such as the one in Avoine
et al.’s framework [2], are ambiguous regarding this point. In fact, Avoine et al. require, literally, that the
prover’s help gives the adversary no advantage in future attempts. It is unclear, however, what “further”
means in this context: does it refer to the success probability of the adversary after the prover helped it,
compared to the adversary’s success before the prover helped it, or rather to the notion captured by [10],
i.e. the success probability of the adversary after the prover helped it compared to while the prover
helped it?

In fact, the recent work of Avoine et al. [3] indicates that a construction is terrorist fraud resistant
if it leaks no information about the secret key (in particular the proof of [3] looks at the conditional
entropy of the secret). However, we can argue that perhaps this restriction on the adversarial capacity
is too strong: in particular, the adversary could learn information about the secret as long as this does
not increase its success probability.

If we take the intuitive notion of Avoine et al. [2], the protocol due to Reid et al. [16] is intuitively
terrorist fraud resistant. However, we point out that no formal definition in the literature covers the
weaker definition of terrorist fraud resistance presented informally above. Thus, it is difficult to say how
secure these protocols are, nor how they compare in terms of adversarial advantage.

A further question is which definition best captures the intuition behind terrorist fraud attacks. A
strong degree of terrorist fraud resistance is always more desirable, thus from this point of view the
definition due to Dürholz et al. sets the standard for protocol design. On the other hand, this definition
seems hard to achieve, as it enables attacks where some indirect information about the key is forwarded
to the adversary (as in sections 3.2 and 3.4).

The intuition of terrorist fraud resistance is that the malicious prover is willing to assist the adversary
in its authentication attempt, but wants to control his access. Thus, the adversary should not be able to
authenticate without the prover’s help. We note, however, that the adversary always has some (usually
negligible in the number of time-critical rounds) probability of authenticating without the prover’s help:
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this is equivalent to the probability that he guesses the correct replies or, equivalently, that he guesses
the secret key.

How far does the model in [10] cover this intuitive notion? Dürholz et al. quantify the adversary’s
success probability in the presence of the malicious prover, and then the simulator’s probability (where
the simulator does not have access to the prover, only somewhat to the adversary in the state when
communicating with the tag). The scheme is considered terrorist fraud resistant if the simulator’s
probability of success equals (or is greater than) the adversary’s probability of success. In other words,
an attack is successful if the prover’s help enables the adversary to succeed in one session with some
probability, but this probability diminishes in future sessions, when the prover is no longer available. In
this scenario the prover has the guarantee that the adversary will only be able to authenticate (afterwards)
with less probability. This definition also seems too strong, in the sense that Dürholz et al. accept an
attack where the prover authenticates with probability 75% (3 out of 4 times), but the simulator can
only authentication with probability 50% (1 out of 2 times). This contradicts the spirit of terrorist fraud
resistance as it is understood in the literature.

A middle way would be to define a so-called tolerance level for the simulator, i.e. accept attacks
as long as the simulator’s success probability does not exceed this tolerance level. Note, however, that
the attack presented in Section 3.2 can be tweaked so that the adversary still has an advantage over
the simulator, whereas the simulator succeeds with a probability within the tolerance level (instead of
giving half the response, the prover would forward only a number of bits of this response, thus easing
the adversary’s job).

It is our opinion that the notion described by Dürholz et al., though strong, does capture the intuition
of terrorist fraud resistance better than the weaker definition which these protocol seem to attain. A
common approach in security is to be conservative and to ask for strong(er) security, rather than to label
insecure protocols as secure.

Constructive aspects. A second perspective in which to view our result is a constructive one, i.e. if
we consider that the model by Dürholz et al. captures the correct notion of terrorist fraud resistance,
then clearly achieving this definition requires a stronger construction. One might argue that the strong
requirement posed by the model in [10] would lead to inefficient constructions. We argue, however, that
the notion of terrorist fraud resistance, is, in its own right, a very strong notion: here, the (dishonest)
prover helps the adversary authenticate. The challenge is thus to ensure that any information leaked to
the adversary automatically will carry over to the simulator.

We also note that there is a clear separation between distance-bounding realizations for RFID and for
more powerful devices. Indeed, terrorist fraud resistance might be more easily achieved if it is possible
to use, say, public key cryptography. In this sense, we could wonder how realistic a threat terrorist
fraud attacks are on RFID systems and whether it is worth addressing them directly in protocol design.
With RFID tags used in the pharmaceutical industry, in general logistics, and in public transport [7, 11],
it seems quite likely that terrorist fraud attacks are quite likely in practice in these settings. In fact,
RFID systems are also used in airport security in many German airports: impersonation MITM attacks
have already been mounted on these systems by the Chaos Computer Club (CCC) [12]. Though these
attacks were not real-time relay attacks, the incentive to mount mafia and terrorist fraud attacks on
RFID authentication protocols is rather high. It remains an open question whether RFID systems can
be efficiently protected against terrorist fraud in practice, however. The results in this paper show that
terrorist fraud resistance is not trivial to achieve, and that achieving it may be inefficient for RFID
devices. As terrorist fraud resistance is, however, both a very strong, and a very desirable goal, the
authors of this paper interpret their results as an incentive to construct protocols that are, in fact,
terrorist fraud resistant in the notion of Dürholz et al.
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