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Abstract

In the standard setting of broadcast encryption, information about the receivers is transmitted
as part of the ciphertext. In several broadcast scenarios, however, the identities of the users
authorized to access the content are often as sensitive as the content itself. In this paper, we
propose the first broadcast encryption scheme with sublinear ciphertexts to attain meaningful
guarantees of receiver anonymity. We formalize the notion of outsider-anonymous broadcast
encryption (oABE), and describe generic constructions in the standard model that achieve
outsider-anonymity under adaptive corruptions in the chosen-plaintext and chosen-ciphertext
settings. We also describe two constructions with enhanced decryption, one under the gap
Diffie-Hellman assumption, in the random oracle model, and the other under the decisional
Diffie-Hellman assumption, in the standard model.

Keywords: Recipient Privacy, Broadcast Encryption, Anonymous IBE, Subset Cover Frame-
work.

1 Introduction
Conventional encryption provides the means for secret transmission of data in point-to-point
communication. The setting of broadcast encryption [5,20], instead, consists of a sender, an insecure
unidirectional broadcast channel, and a universe of receivers. When the sender wants to transmit
some digital content, it specifies the set of authorized receivers and creates an encrypted version
of the content. A secure broadcast encryption scheme enables legitimate receivers to recover the
original content, while ensuring that excluded users just obtain meaningless data, even in the face
of collusions.

The intrinsic access control capabilities of broadcast encryption schemes make them a useful tool
for many natural applications, spanning from protecting copyrighted content distributed as stored
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media [1], to managing digital subscriptions to satellite TV, to controlling access in encrypted file
systems [10]. Thanks to its versatility, broadcast encryption has received a lot of attention from the
crypto research community in recent years (see e.g., [9,11,16–19,21,23,24,28]). The quest, however,
has been for ever more efficient solutions in terms of broadcast communication, key storage and
encryption/decryption running time. Little attention, instead, has been devoted to the exploration
of refined security models that accurately account for the requirements inherent in multi-recipient
communication. More specifically, the focus has been on providing assurance for sender-oriented
properties, while overlooking the security and privacy concerns of the receivers.

One problem with the above (informal) definition of broadcast encryption is the implicit
requirement that, whenever the digital content is encrypted and sent in broadcast, information about
the set of authorized receivers is necessary to decrypt it correctly. Therefore, the set of authorized
receivers is transmitted as part of the ciphertext. This in particular implies that an eavesdropper,
even if unable to recover the message, can still easily discover the identities of the actual receivers
of the content. A way to address the privacy implications that result from specifying explicitly the
set of authorized receivers in the broadcast is to use ephemeral IDs and to keep secret the table
that associates such IDs with the actual receivers. This simple solution, however, would at best
result in a pseudonym system, in which it is still possible to link pseudonyms across transmissions
and determine whether the same entity is an authorized receiver for two different broadcasts.

Anonymous Broadcast Encryption. An interesting variant of the broadcast encryption setting
was proposed by Barth et al. in [4]. Therein, the authors introduce the notion of private broadcast
encryption scheme, explicitly aiming to protect the identities of the receivers. As a proof-of-concept,
they also suggest both generic and number-theoretic public-key constructions that do not leak any
information about the list of authorized receivers, and are secure in the standard model and in the
random oracle model, respectively. The proposed schemes, however, have communication complexity
linear in the number of recipients. In [27], Libert et al. recently suggested proof techniques to argue
the security of (a variant of) the number-theoretic construction of [4] without reliance on random
oracles, thus attaining anonymous broadcast encryption with efficient decryption in the standard
model. Still, ciphertexts in the resulting construction have length linear in the number of recipients.

Krzywiecki et al. presented a private public-key broadcast encryption scheme with communication
complexity proportional to the number of revoked users [26]. The security analysis of the proposed
solution is rather informal, however, so the security guarantees are at best heuristic.

In [29], Yu et al. presented the first secret-key multicast scheme with membership anonymity
and communication complexity independent of the number of receivers. The proposed scheme not
only hides the identities of the receives, but also the number of users allowed to receive the content.
A shortcoming is that only a single user can be revoked for each broadcast.

A promising research line toward practical receiver-anonymous broadcast encryption has recently
been started by Jarecki and Liu [25]. The authors propose the first construction of an efficient
unlinkable secret handshake scheme, which is an authenticated key exchange protocol providing
affiliation/policy hiding (i.e., the transmission hides the affiliation and the identities of all parties)
and unlinkability (i.e., it is impossible to link any two instances of the secret handshake protocol).
The proposed construction can be seen as a stateful version of a public-key broadcast encryption
scheme, with the additional property of protecting the receivers’ identities. Statefulness, however,
implies that the key used to encrypt the broadcasts changes for each transmission, and receivers
need to keep track of the changes to be able to recover the content.

An interesting trait of the of construction of [25] is that it trades some degree of anonymity for
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Table 1: Comparison of the main efficiency parameters of our oABE schemes with [4] and [27]. Our
constructions trade full anonymity (achieved by [4, 27]) for sublinear ciphertexts. The second half shows the
schemes with a tagging mechanism allowing only 1 decryption attempt per ciphertext. N is the total number
of users in the system. r is the number of revoked users of a ciphertext.

Scheme MPK Length sk Length c Length Decrypt Attempts
BBW06 [4] O(N) O(1) O(N − r) (N − r)/2
LPQ12 [27] O(N) O(1) O(N − r) (N − r)/2

oABE [Sect. 4.1] O(1) O(logN) O
(
r log

(
N
r

)) (⌊
r log

(
N
r

)⌋
logN

)
/2

BBW06 [4] O(N) O(1) O(N − r) 1
LPQ12 [27] O(N) O(1) O(N − r) 1

oABE [Sect. 4.4] O(N) O(logN) O
(
r log

(
N
r

))
1

oABE [Sect. 4.5] O(N logN) O(N) O(r) 1

better efficiency: while the receiver’s identities are hidden from outsiders, the scheme still allows
authorized users to learn information about other members of the receiver set.

Our Contributions. In this paper we propose the first broadcast encryption scheme with sublinear
ciphertexts to achieve meaningful guarantees of receiver anonymity. In particular, we formalize the
notion of outsider-anonymous broadcast encryption (oABE), and describe a generic construction
based on any anonymous identity-based encryption (AIBE) scheme. Compared with the work of [25],
our construction has the advantage of being stateless, and having constant master public key size.

Additionally, by adapting the techniques of [4], we also obtain an efficient construction with
enhanced decryption, where for a given oABE ciphertext, the decryption algorithm executes a single
AIBE decryption operation. As outlined in Table 1, by relaxing the anonymity guarantees, we
achieve sublinear ciphertexts size in our constructions.

Organization. Sect. 2 provides a brief review of the Subset Cover Framework [28] and of anonymous
identity-based encryption [2, 22]. The setting of outsider-anonymous broadcast encryption is
introduced in Sect. 3. In Sect. 4 we first present generic constructions in the standard model
that achieve outsider-anonymity under adaptive corruptions in the chosen-plaintext (Sect. 4.1) and
chosen-ciphertext (Sect. 4.2) settings. Next, we describe a CCA-secure construction with enhanced
decryption under the gap Diffie-Hellman assumption in the random oracle model (Sect. 4.3), and
also extend it to the standard model (Sect. 4.4), using the twin-DH-based techniques of [13]. In
Sect. 4.5 we also present a variant of the scheme in Sect. 4.4 with even shorter ciphertexts, at a
price on the other parameters, most notably user storage and decryption complexity. Finally, we
outline an optimization for the private-key setting to accommodate storage-constrained systems and
attain constant key storage at the Center, while maintaining efficient decryption and logarithmic
storage at the receivers (Sect. 4.6).

2 Background

2.1 The Subset Cover Framework

The subset cover framework proposed by Naor et al. [28] is an environment for defining and analyzing
the security of revocation schemes in the private-key setting, where only the Center can broadcast.
The main idea of this framework is to define a collection S of subsets of the universe of users
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U = {1, . . . , N} in the system, and assign each subset Sj ∈ S a long-lived key, which is also provided
to the users belonging to Sj . When broadcasting a message m, first the Center determines the set
of revoked users R, then it finds a set of disjoint subsets C from the collection S that “covers” the
set U\R of receivers, and finally it encrypts the short-lived session key used to encrypt m under all
the long-lived keys associated with each subset in C.

In [28], the authors also provide two instantiations of revocation schemes in the subset cover
framework, namely the complete subtree (CS) method and the subset difference (SD) method. In
the CS method, the key assignment is information-theoretic but the ciphertext is O

(
r log

(
N
r

))
long, whereas in the SD method, the ciphertext length is O(2 r − 1) but the key assignment is
computational, where r is the number of revoked users. Although the ciphertext length of the
CS method is asymptotically bigger than that of the SD method, we are still interested in the
CS method due to its information-theoretic key assignment nature, which seems to be crucial for
efficiently preserving the anonymity of the receivers.

Complete Subtree Method. In the CS method as introduced in [28], the N users in the system
are represented as the leaves of a full binary tree T . Since this requires N to be a power of 2,
dummy users are added to the system in case N is not a power of 2. The collection S contains all
possible complete subtrees of T . More precisely, S contains a subtree for every node vj ∈ T . Since
there are 2N − 1 nodes in T , |S| = 2N − 1.

As for key assignment, every subtree in S is assigned a long-lived secret key which is also made
available to the users (leaves) of the given subtree. Since any user ui, for 1 ≤ i ≤ N , is a member of
all the subtrees rooted at each node vj , for 1 ≤ j ≤ logN + 1, in the path from the root of T down
to ui, the length of the user secret key is O(logN).

The ciphertext length in the CS method is O(r log(Nr )) due to the fact that a logarithmic number
of subtrees is required to exclude each of the r revoked users (see [28] for further details).

Extension of the CS Method to the Public-Key Setting. As mentioned earlier, the original
CS method applies in the private-key setting. Thus, only the Center can broadcast since only it
knows all the long-lived keys associated with each subtree in S. In [16], Dodis and Fazio extended
the original CS method to the public-key setting by using a two step process.

The first step is a unique assignment of hierarchical identifiers (HID) to the nodes in T as follows.
First, assign the root of T a special identifier (ID), which we refer to as Root. Then, assign each
edge of T with ID ID ∈ {0, 1} depending on whether the edge connects its parent node to the left or
right child. Now, the HID HIDi of any node vi ∈ T can be computed by concatenating all the edge
IDs starting from the root of T down to vi and then pre-pending the root ID at the front. Since
any prefix of the HID HIDi of vi represents the valid HID of a parent node of vi, for the simplicity
of notation, we denote by HIDi|j the prefix of the hierarchical identifier HIDi of length j.

The second step is to use identity-based encryption, further explained in Sect. 2.2, to encrypt
the short-lived session key during broadcast, essentially porting the original CS method to the
public-key setting. This allows any user to broadcast a message since the tree structure of the users
T and the HIDs of the roots of the subtrees of T are publicly known. In this setting, the Center
acts as the trusted authority to provide each user with the logN + 1 IBE secret keys of the HIDs of
the roots of the subtrees that the user belongs to.
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2.2 Anonymous Identity-Based Encryption (AIBE)

Identity-based encryption (IBE), originally proposed by Shamir in [30], is a public key encryption
scheme in which the user public key is an arbitrary bit-string and the user secret key is generated
by a trusted authority known as the private-key generator (PKG) using its master key. The first
implementation of this scheme was given in [7] (further implementations can be found in [6,8,31] to
name a few).

An IBE scheme is called anonymous, formally called anonymous identity-based encryption
(AIBE), if an adversary cannot distinguish the identity under which a ciphertext is generated. This
notion of anonymity was first introduced in [2]. Subsequent implementations can be found in [12]
and [22]. Given below is the formal definition of an AIBE scheme. We refer the reader to [2] for
further details including the formal definition of security.

Definition 2.1: An anonymous identity-based encryption scheme, associated with a message
space MSP, and a ciphertext space CSP, is a tuple of probabilistic polynomial algorithms
(Init,Ext,Enc,Dec) such that:

(MPK,MSK)← Init(1λ): The initialization algorithm Init takes as input the security parameter
1λ, and outputs the master public key MPK and the master secret key MSK of the system.

skID ← Ext(MPK,MSK, ID): The key extraction algorithm Ext takes as input the master public
key MPK, the master secret key MSK, and an identifier ID ∈ {0, 1}∗. It outputs the secret key
skID capable of decrypting ciphertexts intended for the holder of the given identifier ID.

c← Enc(MPK, ID,m): The encryption algorithm Enc algorithm takes as input the master public
key MPK, an identifier ID ∈ {0, 1}∗, and a message m ∈MSP. It then outputs a ciphertext
c ∈ CSP.

m/⊥ := Dec(MPK, skID, c): Given the master public key MPK, a secret key skID, and a ciphertext
c ∈ CSP, the decryption algorithm Dec either outputs a message m ∈ MSP or the failure
symbol ⊥. We assume that Dec is deterministic.

Correctness. For every ID ∈ {0, 1}∗ and every m ∈ MSP, if skID is the secret key output by
Ext(MPK,MSK, ID), then Dec(MPK, skID,Enc(MPK, ID,m)) = m. ♦

Weakly Robust AIBE. The Robust Encryption, formalized by Abdalla et al. [3], requires that it
is hard to produce a ciphertext that is valid for two different users. In [3], the authors define two
types of robustness, strong and weak. Informally, an AIBE scheme is called weakly robust, if any
adversary has negligible advantage in producing two identities ID0, ID1 and a message m such that
the encryption of m under ID0 can be decrypted with the private key associated with ID1 leading to
a non-⊥ result. In [3], the authors also provide a transformation algorithm which makes possible to
obtain a weakly robust AIBE scheme from a regular AIBE one.

3 Outsider-Anonymous Broadcast Encryption (oABE)

3.1 The Setting

Definition 3.1: An outsider-anonymous broadcast encryption scheme, associated with a universe of
users U = {1, . . . , N}, a message spaceMSP , and a ciphertext space CSP , is a tuple of probabilistic
polynomial algorithms (Setup,KeyGen,Encrypt,Decrypt) such that:
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(MPK,MSK)← Setup(1λ, N): The Setup algorithm takes as input the security parameter 1λ
and the number of users in the system N . It outputs the master public key MPK and the
master secret key MSK of the system.

ski ← KeyGen(MPK,MSK, i): The key generation algorithm KeyGen takes as input the master
public key MPK, the master secret key MSK, and a user i ∈ U . It outputs the secret key ski
of the user i.

c← Encrypt(MPK, S,m): The Encrypt algorithm takes as input the master public key MPK, the
set of receivers S ⊆ U , and a message m ∈MSP. It then outputs a ciphertext c ∈ CSP.

m/⊥ := Decrypt(MPK, ski, c): Given the master public key MPK, a secret key ski, and a ci-
phertext c ∈ CSP, the Decrypt algorithm either outputs a message m ∈MSP or the failure
symbol ⊥. We assume that Decrypt is deterministic.

Correctness. For every S ⊆ U , every i ∈ S, and every m ∈MSP, if ski is the secret key output
by KeyGen(MPK,MSK, i) then Decrypt(MPK, ski,Encrypt(MPK, S,m)) = m. ♦

Notice that the decryption algorithm in the above definition does not require the set of recipients
S as an input. We stress that this is crucial for providing any level of anonymity in a broadcast
encryption scheme.

3.2 The Security Model

Degrees of Anonymity. The degree of recipient-set anonymity captured in our security model,
which we call outsider-anonymity, lies between the complete lack of protection that characterizes
traditional broadcast encryption schemes as introduced in [20,23], and the full anonymity provided
in schemes such as [4,27]. In an oABE scheme, when the adversary receives a ciphertext of which she
is not a legal recipient, she will be unable to learn anything about the identities of the legal recipients
(let alone the contents of the ciphertext). Still, for those ciphertexts for which the adversary is in
the authorized set of recipients, she might also learn the identities of some the other legal recipients.
This seems a natural relaxation, since often the contents of the communication already reveals
something about the recipient set. At the same time, our new intermediate definition of security
might allow the construction of more efficient anonymous broadcast encryption schemes; for example,
in Sect. 4 we describe the first broadcast encryption scheme with sublinear ciphertexts that attains
some meaningful recipient-set anonymity guarantees.

CCA Security. We now present the security requirements for a broadcast encryption scheme to be
outsider anonymous against chosen-ciphertext attacks (CCA). First we define the CCA of an oABE
scheme as a game, which we term oABE-IND-CCA, played between a probabilistic polynomial time
(PPT) adversary A and a challenger C. The security requirement is that A’s advantage of winning
the oABE-IND-CCA game is negligible. The high-level idea of this game is for any two sets of
recipients S0, S1 ∈ U , A cannot distinguish between a ciphertext intended for the recipient set S0
and a ciphertext intended for the recipient set S1 given the fact that the A does not possess the
secret key of any user in S0 ∪ S1. We require the two sets S0, S1 be the same size in order to avoid
trivial attacks. The formal definitions follow.

Definition 3.2: The oABE-IND-CCA game defined for an oABE scheme Π = (Setup,KeyGen,
Encrypt,Decrypt), a PPT adversary A, and a challenger C is as follows:
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Setup: C runs (MPK,MSK) ← Setup(1λ, N) and gives A the resulting master public key MPK,
keeping the master secret key MSK to itself. C also initializes the set of revoked users Rev to
be empty.

Phase 1: A adaptively issues queries q1, . . . , qm where each qi is one of the following:

• Secret-key query i: A requests the secret key of the user i ∈ U .
C runs ski ← KeyGen(MPK,MSK, i) to generate the secret key ski of the user i, adds i
to Rev, and sends ski to A.
• Decryption query (i, c): A issues a decryption query where i ∈ U and c ∈ CSP. First, C
runs ski ← KeyGen(MPK,MSK, i) to generate the secret key ski of the user i. Then, it
runs Decrypt(MPK, ski, c) and gives the output to A.

Challenge: A gives C two equal length messages m∗0,m∗1 ∈ MSP and two equal length sets of
user identities S∗0 , S∗1 ⊆ U with the restriction that Rev ∩ (S∗0 ∪ S∗1) = ∅. C picks a random bit
b∗ ∈ {0, 1}, runs c∗ ← Encrypt(MPK, S∗b∗ ,m∗b∗), and sends c∗ to A.

Phase 2: A adaptively issues additional queries qm+1, . . . , qn where each qi is one of the following:

• Secret-key query i such that i 6∈ S∗0 ∪ S∗1 .
• Decryption query (i, c) such that, if i ∈ S∗0 ∪ S∗1 , then c 6= c∗.

In both cases, C responds as in Phase 1.

Guess: A outputs a guess b ∈ {0, 1} and wins if b = b∗.

We refer to such an adversary A as an oABE-IND-CCA adversary. The advantage of A winning
the above game is defined as,

AdvoABE-IND-CCA
A,Π =

∣∣∣Pr[b = b∗]− 1
2

∣∣∣
The probability is over the random bits used by the adversary A and the challenger C. ♦

Definition 3.3: An oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) is (t, qsk, qd, ε)-secure if
for any t-time oABE-IND-CCA adversary A making at most qsk chosen secret-key queries and at
most qd chosen decryption queries, we have that AdvoABE-IND-CCA

A,Π ≤ ε. As a shorthand, we say that
Π is (t, qsk, qd, ε)-oABE-CCA-secure. ♦

CPA Security. The chosen plaintext attack (CPA) of an oABE scheme is defined similarly to the
oABE-IND-CCA game with the restriction that the adversary is not allowed to issue any decryption
queries during Phase 1 and Phase 2. The adversary is still allowed to issue secret-key queries. The
CPA security game is termed oABE-IND-CPA.

Definition 3.4: An oABE scheme Π = (Setup,KeyGen,Encrypt,Decrypt) is (t, qsk, ε)-oABE-CPA-
secure if Π is (t, qsk, 0, ε)-oABE-CCA-secure. ♦

Remark 3.1. Our definition of security of an outsider-anonymous broadcast encryption scheme can
be easily transformed to a definition of security of a fully anonymous broadcast encryption scheme
by changing the restriction in the Challenge phase, which is currently Rev ∩ (S∗0 ∪ S∗1) = ∅, to
Rev ∩ (S∗0 4 S∗1) = ∅.1

1For any two sets S0, S1, their symmetric difference is denoted by S0 4 S1.
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4 Our Constructions
We now present our constructions of outsider-anonymous broadcast encryption schemes. In a
nutshell, the key point of our constructions is to combine an anonymized version of the public-key
extension by Dodis and Fazio [16] of the CS method by Naor et al. [28] with a fully secure weakly
robust AIBE scheme such as [22]. Notice that our approach can be seen as a framework for achieving
an oABE scheme by using any weakly robust AIBE scheme as an underlying primitive.

The ciphertext length in all constructions is O
(
r log

(
N
r

))
times the ciphertext length of the

underlying AIBE scheme, and the user secret key length is O(logN) times the user secret key length
of the underlying AIBE scheme, where r is the number of revoked users and N is the total number
of users in the system.

We provide two generic public-key constructions: an oABE-CPA-secure construction in Sect. 4.1
and an oABE-CCA-secure construction in Sect. 4.2. The limitation with both of these constructions
is that on average, the Decrypt algorithm attempts

(⌊
r log

(
N
r

)⌋
logN

)
/2 decryption operations of

the underlying AIBE scheme. In Sect. 4.3, we present an enhanced oABE-CCA-secure construction
in which for a given oABE ciphertext, the Decrypt algorithm executes a single AIBE decryption
operation. A drawback of this construction is that its security can only be proven in the random
oracle model. In Sect. 4.4, we present another enhanced oABE-CCA-secure construction whose
security can be proven in the standard model. In Sect. 4.5 we present a variant of the scheme in
Sect. 4.4 attaining even shorter ciphertexts, at a price on the other parameters, most notably, user
storage and decryption complexity. Finally, in Sect. 4.6, we outline an optimization for the private-
key setting to attain constant key storage at the Center, while maintaining efficient decryption and
logarithmic storage at the receivers.

For the simplicity of exposition, our constructions encrypt the actual message m. The ciphertext
length could be further reduced by using a hybrid encryption wherem is encrypted using a private-key
encryption algorithm with a secret key k, and k is then encrypted using the oABE scheme.

In all constructions, T denotes the binary tree of N users in the system with respect to the CS
method. For simplicity, we assume that N = 2n.

4.1 A Generic oABE-CPA-Secure Public-Key Construction

Given a weakly robust AIBE scheme Π′ = (Init,Ext,Enc,Dec), we construct an oABE-CPA-secure
scheme Π = (Setup,KeyGen,Encrypt,Decrypt) as follows.

Setup(1λ, N): Obtain (MPK′,MSK′)← Init(1λ). Output MPK and MSK as

MPK := (MPK′, N) MSK := MSK′.

KeyGen(MPK,MSK, i): Let HIDi := (Root, ID1, . . . , IDn) be the hierarchical identifier associated
with user i in the binary tree T . For k := 1 to n+1, compute ski,k ← Ext(MPK′,MSK′,HIDi|k).
Output the secret key ski of user i as

ski := (ski,1, . . . , ski,n+1) .

Encrypt(MPK, S,m): Let Cover be the family of subtrees covering the set of receivers S according
to the CS method. For each subtree Tj in Cover, let HIDj be the hierarchical identifier
associated with the root of Tj . Let l := |Cover|, r := N − |S| and L :=

⌊
r log

(
N
r

)⌋
.
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For 1 ≤ j ≤ l, compute cj ← Enc(MPK′,HIDj ,m). Set m̃ ←$ {0, 1}|m|. For l + 1 ≤ j ≤ L,
compute cj ← Enc(MPK′, dummy, m̃), where dummy is a special identifier used to obtain padding
ciphertext components. Output the ciphertext c as

c :=
(
cπ(1), . . . , cπ(L)

)
,

where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

Decrypt(MPK, ski, c): Parse the secret key ski as the tuple (ski,1, . . . , ski,n+1) and the ciphertext
c as the tuple (c1, . . . , cL).

1. For k := 1 to n+ 1,
a. For j := 1 to L,

i. Compute m := Dec(MPK′, ski,k, cj).
ii. If m 6= ⊥, return m. Otherwise, continue to next j.

b. If k = n+ 1, return ⊥. Otherwise, continue to next k.

The correctness of this oABE-CPA-secure generic public-key construction follows from the
correctness of the underlying AIBE scheme. In Theorem 4.1 (whose proof is provided in App. A.1),
we establish the security of this construction based on the security of the underlying AIBE scheme.

Theorem 4.1: If Π′ = (Init,Ext,Enc,Dec) is (t, qsk, ε)-AIBE-CPA-secure, then the above construc-
tion is

(
(t, qsk, 2 ε r log

(
N
r

))
-oABE-CPA-secure. �

Parameters. When the above construction is instantiated with Gentry’s Fully Secure AIBE scheme
in the CPA setting [22], we obtain the following parameter lengths. Let G and GT be the two
groups with prime order q in Gentry’s construction. MSK is just one element in Zq and the integer
N . MPK is only 3 group elements in G. The user secret key consists of (logN + 1) elements in Zq
and (logN + 1) elements in G. The ciphertext consists of

⌊
r log

(
N
r

)⌋
elements in G and 2

⌊
r log

(
N
r

)⌋
elements in GT. Also notice that the Enc algorithm in Gentry’s AIBE-CPA-secure scheme does not
require any pairing computations since they can be precomputed.

4.2 A Generic oABE-CCA-Secure Public-Key Construction

Given a weakly robust AIBE scheme Π′ = (Init,Ext,Enc,Dec) and a strongly existentially unforgeable
one-time signature scheme Σ = (Gen,Sign,Vrfy), we construct an oABE-CCA-secure scheme Π =
(Setup,KeyGen,Encrypt,Decrypt) as follows.

Setup(1λ, N): Obtain (MPK′,MSK′)← Init(1λ). Output MPK and MSK as

MPK := (MPK′, N) MSK := MSK′.

KeyGen(MPK,MSK, i): Let HIDi := (Root, ID1, . . . , IDn) be the hierarchical identifier associated
with user i in the binary tree T . For k := 1 to n+1, compute ski,k ← Ext(MPK′,MSK′,HIDi|k).
Output the secret key ski of user i as

ski := (ski,1, . . . , ski,n+1).
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Encrypt(MPK, S,m): Generate (VK, SK)← Gen(1λ). Let Cover be the family of subtrees covering
the set of receivers S according to the CS method. For each subtree Tj in Cover, let HIDj be
the hierarchical identifier associated with the root of Tj .
Let l := |Cover|, r := N − |S| and L :=

⌊
r log

(
N
r

)⌋
.

For 1 ≤ j ≤ l, compute cj ← Enc(MPK′,HIDj ,VK‖m). Set m̃ ←$ {0, 1}|VK‖m|. For l + 1 ≤
j ≤ L, compute cj ← Enc(MPK′, dummy, m̃), where dummy is a special identifier used to obtain
padding ciphertext components. Compute ĉ as

ĉ :=
(
cπ(1), . . . , cπ(L)

)
,

where π : {1, . . . , L} → {1, . . . , L} is a random permutation.
Generate σ ← Sign(SK,VK‖ĉ ), and output c = (σ,VK, ĉ ).

Decrypt(MPK, ski, c): Parse the secret key ski as the tuple (ski,1, . . . , ski,n+1) and the ciphertext
c as (σ,VK, ĉ = (c1, . . . , cL)).

1. For k := 1 to n+ 1,
a. For j := 1 to L,

i. Compute m′ := Dec(MPK′, ski,k, cj).
ii. If m′ 6= ⊥, parse m′ as VK‖m and return m if Vrfy(VK, σ,VK‖ĉ ).

Otherwise, continue to next j.
b. If k = n+ 1, return ⊥. Otherwise, continue to next k.

The correctness of this oABE-CCA-secure generic public-key construction follows from the
correctness of the underlying signature and AIBE schemes. In Theorem 4.2 (proof given in
App. A.2), we establish the security of this construction.

Theorem 4.2: If Σ = (Gen,Sign,Vrfy) is (t, ε1)-strongly existentially unforgeable and Π′ = (Init,
Ext,Enc,Dec) is (t, qsk, qd, ε2)-AIBE-CCA-secure, then the above construction is

(
t, qsk, qd, 2(ε1 + ε2)

r log
(
N
r

))
-oABE-CCA-secure. �

Parameters. The parameter lengths of the above construction when instantiated with Gentry’s
Fully Secure AIBE scheme in the CCA setting [22] are as follows. Let G and GT be the two groups
with prime order q in Gentry’s construction. MSK is one element in Zq and the integer N . MPK
consists of 5 group elements in G and the definition of a hash function H from a family of universal
one-way hash functions. The user secret key consists of 3(logN + 1) elements in Zq and 3(logN + 1)
elements in G. The ciphertext consists of

⌊
r log

(
N
r

)⌋
elements in G and 3

⌊
r log

(
N
r

)⌋
elements in GT.

Similar to Gentry’s AIBE-CPA-secure construction, the Enc algorithm in the AIBE-CCA-secure
construction does not require any pairing computations since they can be precomputed.

4.3 An Enhanced oABE-CCA-Secure Public-Key Construction
in the Random Oracle Model

The main limitation of our generic public-key constructions is the running time of the decryption
algorithm. As described in the opening paragraphs of Sect. 4, decryption amounts to performing(⌊
r log

(
N
r

)⌋
logN

)
/2 AIBE decryption attempts on average. The root cause behind this limitation

is the decryption process’s inability to identify the correct AIBE ciphertext component efficiently.
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In this section, we describe an enhancement of our generic public-key construction under the
Diffie-Hellman assumption, in the random oracle model. The main idea of this enhancement is to
adapt the techniques of [4] to the structure of our ciphertexts and attach a unique tag to each AIBE
ciphertext component of a given oABE ciphertext. With this optimization, the Decrypt algorithm
is able to identify the correct AIBE ciphertext component via a linear search through the whole
oABE ciphertext components, at which point a single AIBE decryption operation suffices to recover
the original plaintext. This yields an asymptotic decryption time of O

(
r log

(
N
r

)
logN

)
, but in fact

this is in a sense an overestimate, since the cost of searching for the correct ciphertext component is
much less than carrying out multiple decryption attempts.

Given a weakly robust AIBE scheme Π′ = (Init,Ext,Enc,Dec) and a strongly existentially unforge-
able one-time signature scheme Σ = (Gen,Sign,Vrfy), we construct an oABE-CCA-secure scheme
Π = (Setup,KeyGen,Encrypt,Decrypt) with enhanced decryption as follows. In this construction,
G = 〈g〉 denotes a group with prime order q > 2λ in which CDH is hard and DDH is easy and g
is a group generator. H : G→ {0, 1}λ is a cryptographic hash function that will be modeled as a
random oracle in the security analysis.

Setup(1λ, N): Obtain (MPK′,MSK′) ← Init(1λ). For each node (with the hierarchical identifier
HID) in T , draw aHID ←$ Zq, and compute AHID := gaHID . Output MPK and MSK as

MPK :=
(
MPK′, N,G, g, {AHID}HID∈T

)
MSK :=

(
MSK′, {aHID}HID∈T

)
.

KeyGen(MPK,MSK, i): Let HIDi := (Root, ID1, . . . , IDn) be the hierarchical identifier associated
with user i in the binary tree T . For k := 1 to n + 1, set ski,k := aHIDi|k , and compute
ski,k ← Ext(MPK′,MSK′,HIDi|k). Output the secret key ski of user i as

ski :=
((
ski,1, ski,1

)
, . . . ,

(
ski,n+1, ski,n+1

))
.

Encrypt(MPK, S,m): Generate (VK, SK)← Gen(1λ). Let Cover be the family of subtrees covering
the set of receivers S according to the CS method. For each subtree Tj in Cover, let HIDj be
the hierarchical identifier associated with the root of Tj .
Let l := |Cover|, r := N − |S| and L :=

⌊
r log

(
N
r

)⌋
. Draw s ←$ Zq, and compute c0 := gs.

For 1 ≤ j ≤ l, compute cj := H(AsHIDj ), cj ← Enc(MPK′,HIDj ,VK‖AsHIDj‖m).
Set m̃ ←$ {0, 1}|VK‖c0‖m|. For l + 1 ≤ j ≤ L, set sj ←$ Zq, and compute cj := H(gsj ), cj ←
Enc(MPK′, dummy, m̃), where dummy is a special identifier used to obtain padding ciphertext
components. Compute ĉ as

ĉ :=
(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
,

where π : {1, . . . , L} → {1, . . . , L} is a random permutation. Generate σ ← Sign(SK,VK‖ĉ ),
and output c := (σ,VK, ĉ ).

Decrypt(MPK, ski, c): Parse the secret key ski as the tuple
((
ski,1, ski,1

)
, . . . ,

(
ski,n+1, ski,n+1

))
and the ciphertext c as (σ,VK, ĉ = (c0, (c1, c1), . . . , (cL, cL))).

1. For k := 1 to n+ 1,

a. Compute tagk := H(c ski,k0 )

11



2. Check whether ∃k ∈ [1, n+ 1] ∃j ∈ [1, L] such that tagk = cj

a. If suitable k, j exist, compute m′ := Dec(MPK′, ski,k, cj).
If m′ can be parsed as VK‖c ski,k0 ‖m and Vrfy(VK, σ,VK‖ĉ ), return m.

b. Otherwise, return ⊥.

Remark 4.1. Notice that the check in Step 2 of the Decrypt algorithm can be performed in expected
time O(n+L) = O(L), e.g., using a hash table H to compute the intersection between {tagk}k∈[1,n+1]
and {cj}j∈[1,L] as follows.

1. Initialize H to be empty.

2. For k := 1 to n+ 1

a. Insert (tagk, k) in H.

3. For j := 1 to L

a. Look up an entry of the form (cj , k) in H. If found, return k.

Theorem 4.3: If Σ = (Gen,Sign,Vrfy) is (t, ε1)-strongly existentially unforgeable, Π′ = (Init,Ext,
Enc,Dec) is (t, qsk, qd, ε2)-AIBE-CCA-secure, and CDH is (t, ε3)-hard in G and DDH is efficiently
computable in G, then the above construction is

(
t, qsk, qd, 2(ε1+ε2+ε3) r log

(
N
r

))
-oABE-CCA-secure,

in the random oracle model. �

The proof of the above theorem is given in App. A.3.

4.4 An Enhanced oABE-CCA-Secure Public-Key Construction
in the Standard Model

In this section, we augment the construction in Sect. 4.3 so that its security can be proven in the
standard model under the decisional Diffie-Hellman assumption using techniques from [27]. The key
ingredient of this modification is the “trapdoor test” of the twin Diffie-Hellman problem [13].

Let Π′ = (Init,Ext,Enc,Dec) be a weakly robust AIBE scheme and Σ = (Gen, Sign,Vrfy) a
strongly existentially unforgeable one-time signature scheme. We construct an oABE-CCA-secure
scheme Π = (Setup,KeyGen,Encrypt,Decrypt) with enhanced decryption in the standard model as
follows. In this construction, G = 〈g〉 denotes a group with prime order q > 2λ in which DDH is
hard and g is a group generator.

Setup(1λ, N): Obtain (MPK′,MSK′) ← Init(1λ). For each node (with the hierarchical identifier
HID) in T , draw aHID, bHID, cHID, dHID ←$ Zq, and compute AHID := gaHID , BHID := gbHID ,

CHID := gcHID , DHID := gdHID . Output MPK and MSK as

MPK :=
(
MPK′, N,G, g, {AHID, BHID, CHID, DHID}HID∈T

)
MSK :=

(
MSK′, {aHID, bHID, cHID, dHID}HID∈T

)
.

KeyGen(MPK,MSK, i): Let HIDi := (Root, ID1, . . . , IDn) be the hierarchical identifier associated
with user i in the binary tree T . For k := 1 to n+1, set ski,k := (aHIDi|k , bHIDi|k , cHIDi|k , dHIDi|k),
and compute ski,k ← Ext(MPK′,MSK′,HIDi|k). Output the secret key ski of user i as

ski :=
((
ski,1, ski,1

)
, . . . ,

(
ski,n+1, ski,n+1

))
.
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Encrypt(MPK, S,m): Generate (VK, SK)← Gen(1λ). Let Cover be the family of subtrees covering
the set of receivers S according to the CS method. For each subtree Tj in Cover, let HIDj be
the hierarchical identifier associated with the root of Tj .
Let l := |Cover|, r := N − |S| and L :=

⌊
r log

(
N
r

)⌋
. Draw s ←$ Zq, and compute c0 := gs.

For 1 ≤ j ≤ l, compute2 cj := ((AVK
HIDjBHIDj )s, (CVK

HIDjDHIDj )s), cj ← Enc(MPK′,HIDj ,VK‖m).
Set m̃ ←$ {0, 1}|VK‖m|. For l + 1 ≤ j ≤ L, set sj,1, sj,2 ←$ Zq, and compute cj := (gsj,1 , gsj,2),
cj ← Enc(MPK′, dummy, m̃), where dummy is a special identifier used to obtain padding cipher-
text components. Compute ĉ as

ĉ :=
(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
,

where π : {1, . . . , L} → {1, . . . , L} is a random permutation. Generate σ ← Sign(SK,VK‖ĉ ),
and output c := (σ,VK, ĉ ).

Decrypt(MPK, ski, c): Parse the secret key ski as the tuple
((
ski,1, ski,1

)
, . . . ,

(
ski,n+1, ski,n+1

))
and the ciphertext c as (σ,VK, ĉ = (c0, (c1, c1), . . . , (cL, cL))).

1. For k := 1 to n+ 1,
a. Parse ski,k as (ak, bk, ck, dk)
b. Compute tagk := (c akVK

0 c bk0 , c ckVK
0 c dk0 )

2. Check whether ∃k ∈ [1, n+ 1] ∃j ∈ [1, L] such that tagk = cj

a. If suitable k, j exist, compute m′ := Dec(MPK′, ski,k, cj).
If m′ can be parsed as VK‖m and Vrfy(VK, σ, ĉ ), return m.

b. Otherwise, return ⊥.

Remark 4.2. Notice that using a technique similar to the one given in Remark 4.1, we can reduce
the tag-searching time in Step 2 of the Decrypt algorithm from O(nL) to O(n+ L) = O(L).

Theorem 4.4: If Σ = (Gen,Sign,Vrfy) is (t, ε1)-strongly existentially unforgeable, Π′ = (Init,Ext,
Enc,Dec) is (t, qsk, qd, ε2)-AIBE-CCA-secure, and DDH is (t, ε3)-hard in G, then the above construc-
tion is

(
t, qsk, qd, 2

(
ε1 + ε2 + 2

(
ε3 + qd

2λ
))
r log

(
N
r

))
-oABE-CCA-secure. �

The proof of the above theorem is given in App. A.4.

4.5 An Enhanced oABE-CCA-Secure Public-Key Construction
with Shorter Ciphertexts

Below we sketch a variation of our techniques from Sect. 4.4 that results in an oABE scheme with
ciphertext length O(r). Unfortunately, this very compact ciphertext length comes at a price on the
other parameters.

The idea is to combine the Dodis-Fazio [16] public-key extension of the SD method by Naor
et al. [28] with a fully secure, weakly robust, anonymous hierarchical identity-based encryption
(AHIBE) scheme with constant ciphertext length such as [14,15]. Following this approach, we would
get the following efficiency parameters.

2We assume for simplicity that the verification keys for the underlying one-time signature scheme can be encoded
into Zq, but one can always use UOWHFs otherwise.
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Ciphertext Length: O(r) AHIBE ciphertexts

Public Key Length: O(N logN) public tag components

Secret Key Length: O(log2N) AHIBE secret keys and O(N) secret tag components

Decryption Time: O(N) tag computation/searching time and one AHIBE decryption attempt

4.6 An Enhanced oABE-CCA-Secure Private-Key Construction

The enhanced oABE-CCA-secure public key constructions achieve a major performance gain in the
Decrypt algorithm compared to the generic oABE-CCA-secure construction, but it also changes the
length of the master public key from O(1) to O(N). This increase in master public key length may
not be a concern for many practical constructions, since the master public key can be stored as a
static data file on a server on the Internet and also in users’ computers. Still, for the private-key
setting it is possible to accommodate storage-sensitive systems and attain constant key storage at
the Center, while maintaining efficient decryption and logarithmic storage at the receivers.

In particular, recall from Sect. 2.1 that in the private-key setting, only the Center can broadcast
messages to the receivers. Thus, the O(N) information from which the tags for efficient decryption
are created does not need to be published. Therefore, this information can be compressed into O(1)
key storage using a standard trick based on any length-tripling pseudo-random number generator G
(cf. e.g., the SD method of Naor et al. [28]). In other words, the random exponents associated with
the subtrees of T (cf. Sect. 4.3) are now pseudorandomly generated from a single seed, by repeated
invocations of G on the left or right third of the result of the previous iteration, based on the path
to the root of the subtree at hand. Finally, upon reaching the subtree root, the middle third of the
pseudorandom output is used to generate the required exponent.

5 Conclusions and Future Work
In this work, we introduced the notion of outsider-anonymity in the broadcast encryption setting
and showed that it enables efficient constructions of broadcast encryption schemes with sublinear
communication complexity and meaningful anonymity guarantees. It remains an interesting open
problem to construct receiver-anonymous broadcast encryption schemes that at once afford full
anonymity to the receivers and attain performance levels comparable to those of standard broadcast
encryption systems.
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A Security Proofs
Notation. U = {1, . . . , N} is the universe of users. T denotes the binary tree of N users in the
system with respect to the CS method. Let r be the number of revoked users in the challenge
ciphertext and L :=

⌊
r log

(
N
r

)⌋
. For b ∈ {0, 1}, let S∗b be the sets of authorized receivers chosen

by the adversary in the Challenge phase. Coverb denotes the family of subtrees covering the set
S∗b according to the CS method. Let lb := |Coverb|. For each subtree T bj in Coverb, let HIDb

j be the
hierarchical identifier associated with the root of T bj where 1 ≤ j ≤ lb.

A.1 Proof of Theorem 4.1

Proof. We organize our proof as a sequence of games, Game0
0, . . . ,Game0

l0 ≡ Game1
l1 , . . . ,Game1

0,
between the adversary A and the challenger C. In the first game (Game0

0), A receives an encryption
of m∗0 for S∗0 and in the last game (Game1

0), A receives an encryption of m∗1 for S∗1 .
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Game0
0: corresponds to the game given in Definition 3.4 when the challenge bit b∗ is fixed to 0. The
interaction between A and C during Setup, Phase 1, and Phase 2 follow exactly as specified in
Definition 3.4. During Challenge, A gives C two equal length messages m∗0,m∗1 ∈MSP and
two equal length sets of user identities S∗0 , S∗1 ⊆ U with the restriction that Rev∩ (S∗0 ∪S∗1) = ∅,
where Rev is the set of users that A corrupted during Phase 1. C computes the challenge
ciphertext c∗, which will subsequently be sent to A, as follows:

1. For j := 1 to l0, compute cj ← Enc(MPK′,HID0
j ,m

∗
0).

2. Set m̃ ←$ {0, 1}|m∗0|.
3. For j := l0 + 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
4. Set c∗ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

Eventually, A outputs a bit b and wins if b = 0.

Game0
h(1 ≤ h ≤ l0): is similar to Game0

h−1, but C computes the challenge ciphertext c∗ as follows:

1. For j := 1 to l0 − h, compute cj ← Enc(MPK′,HID0
j ,m

∗
0).

2. Set m̃ ←$ {0, 1}|m∗0|.
3. For j := l0 − h+ 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
4. Set c∗ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

At the end, A outputs a bit b and wins if b = 0.

Game1
l1
: is identical to Game0

l0

Game1
k(0 ≤ k < l1): is similar to Game1

k+1, but the challenge ciphertext c∗ is now computed by
C as follows:

1. For j := 1 to l1 − k, compute cj ← Enc(MPK′,HID1
j ,m

∗
1).

2. Set m̃ ←$ {0, 1}|m∗1|.
3. For j := l1 − k + 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
4. Set c∗ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

Finally, A outputs a bit b and wins if b = 0.

For 0 ≤ i ≤ l0 and 0 ≤ j ≤ l1, let Adv0,i
A,Π and Adv1,j

A,Π denote A’s advantage of winning
Game0

i and Game1
j respectively. In Lemma A.1, we show that if the underlying AIBE scheme is

(t, qsk, ε)-AIBE-CPA secure, then A’s advantage of distinguishing Game0
h−1 from Game0

h is at most ε.
Similarly, Lemma A.2 states that under similar conditions A’s advantage of distinguishing Game1

k+1
from Game1

k is at most ε. Therefore,∣∣∣Adv0,0
A,Π − Adv1,0

A,Π

∣∣∣ ≤ ε (l0 + l1)

≤ 2 ε L

≤ 2 ε r log
(
N

r

)
. �
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Lemma A.1: For 1 ≤ h ≤ l0, if the underlying AIBE scheme Π′ is (t, qsk, ε)-AIBE-CPA-secure,
then A’s advantage of distinguishing Game0

h−1 from Game0
h is at most ε. In other words,∣∣∣Adv0,h−1

A,Π − Adv0,h
A,Π

∣∣∣ ≤ ε. �

Proof. We build a PPT adversary B that runs the AIBE-IND-CPA game with its challenger C′ as
follows. First, B receives the master public key MPK′ of the AIBE scheme from C′. Next, B internally
executes the oABE-IND-CPA game with A in order to gain advantage in the AIBE-IND-CPA game.
The specifics of the interaction between C′, B, and A are given below.

Setup: B forwards MPK′ to A. B also initializes the set of revoked users Rev to be empty.

Phase 1: When A invokes a secret-key query for user i, first, B computes HIDi, which is the
hierarchical identifier associated with the user i in the binary tree T . Next, for k := 1 to n+ 1,
B obtains the secret key ski,k of the identity HIDi|k from its challenger C′. After adding i to
Rev, B sends to A the secret key of the user i as ski := (ski,1, . . . , ski,n+1).

Challenge: B receives from A two equal length messages m∗0,m∗1 ∈ MSP and two equal length
sets of user identities S∗0 , S∗1 ⊆ U with the restriction that Rev ∩ (S∗0 ∪ S∗1) = ∅. B draws
m̃ ←$ {0, 1}|m∗0| and computes the components of its challenge query as follows:

id′0 = HID0
l0−h+1, id′1 = dummy m′0 = m∗0, m′1 = m̃

Observe that the condition Rev ∩ (S∗0 ∪ S∗1) = ∅, together with the key assignment strategy of
the CS method guarantees that the identity id′0 hadn’t been queried to B’s extraction oracle,
and thus this is a valid challenge query to C′.
B sends the two identities id′0, id′1 and the two messages m′0,m′1 as the challenge query to C′.
C′ picks a random bit b′ ∈ {0, 1} and sends c′ ← Enc(MPK′, id′b′ ,m′b′) to B.
Finally, B computes the challenge ciphertext c∗, which is eventually sent to A, as follows:

1. For j := 1 to l0 − h, compute cj ← Enc(MPK′,HID0
j ,m

∗
0).

2. Set cl0−h+1 := c′.
3. For j := l0 − h+ 2 to L, compute cj ← Enc(MPK′, dummy, m̃).
4. Set c∗ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

Phase 2: This phase is handled similarly to Phase 1 with the usual restriction that A does not
invoke a secret-key query i such that i ∈ S∗0 ∪ S∗1 .

Guess: A outputs a guess b and B passes this bit as its guess for b′ to C′.

Observe that, by construction, it holds that if C′ chooses b′ = 0, then B is playing Game0
h−1,

whereas if b′ = 1, then B is playing Game0
h. Therefore, B’s AIBE-IND-CPA advantage is equivalent

to A’s advantage in distinguishing Game0
h−1 from Game0

h. More formally,∣∣∣Adv0,h−1
A,Π − Adv0,h

A,Π

∣∣∣ = AdvAIBE-IND-CPA
B,Π′ ≤ ε. �
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Lemma A.2: For 0 ≤ k < l1, if the underlying AIBE scheme Π′ is (t, qsk, ε)-AIBE-CPA-secure,
then A’s advantage of distinguishing Game1

k+1 from Game1
k is at most ε. More precisely,∣∣∣Adv1,k+1

A,Π − Adv1,k
A,Π

∣∣∣ ≤ ε. �

Proof. The argument is analogous to the proof of Lemma A.1, and is therefore omitted. �

A.2 Proof of Theorem 4.2

Proof. We organize our proof as a sequence of games, Game0
0, . . . ,Game0

l0 ≡ Game1
l1 , . . . , Game1

0,
between the adversary A and the challenger C. In the first game (Game0

0), A receives an encryption
of m∗0 for S∗0 and in the last game (Game1

0), A receives an encryption of m∗1 for S∗1 .

Game0
0: corresponds to the game given in Definition 3.3 when the challenge bit b∗ is fixed to

0. The interaction between A and C during Setup, Phase 1, and Phase 2 follow exactly as
specified in Definition 3.3. During Challenge phase, A gives C two equal length messages
m∗0,m

∗
1 ∈MSP and two equal length sets of user identities S∗0 , S∗1 ⊆ U with the restriction

that Rev ∩ (S∗0 ∪ S∗1) = ∅, where Rev is the set of users that A corrupted during Phase 1. C
computes the challenge ciphertext c∗, which will subsequently be sent to A, as follows:

1. Generate (VK,SK)← Gen(1λ).
2. For j := 1 to l0, compute cj ← Enc(MPK′,HID0

j ,VK‖m∗0).

3. Set m̃ ←$ {0, 1}|VK‖m∗0|.
4. For j := l0 + 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
5. Set ĉ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

6. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Eventually, A outputs a bit b and wins if b = 0.

Game0
h(1 ≤ h ≤ l0): is similar to Game0

h−1, but C computes the challenge ciphertext c∗ as follows:

1. Generate (VK,SK)← Gen(1λ).
2. For j := 1 to l0 − h, compute cj ← Enc(MPK′,HID0

j ,VK‖m∗0).

3. Set m̃ ←$ {0, 1}|VK‖m∗0|.
4. For j := l0 − h+ 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
5. Set ĉ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

6. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

At the end, A outputs a bit b and wins if b = 0.

Game1
l1
: is identical to Game0

l0

Game1
k(0 ≤ k < l1): is similar to Game1

k+1, but c∗ is now computed by C as follows:

1. Generate (VK,SK)← Gen(1λ).
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2. For j := 1 to l1 − k, compute cj ← Enc(MPK′,HID1
j ,VK‖m∗1).

3. Set m̃ ←$ {0, 1}|VK‖m∗1|.
4. For j := l1 − k + 1 to L, compute cj ← Enc(MPK′, dummy, m̃).
5. Set ĉ :=

(
cπ(1), . . . , cπ(L)

)
, where π : {1, . . . , L} → {1, . . . , L} is a random permutation.

6. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Finally, A outputs a bit b and wins if b = 0.

For 0 ≤ i ≤ l0 and 0 ≤ j ≤ l1, let Adv0,i
A,Π and Adv1,j

A,Π denote A’s advantage of winning Game0
i

and Game1
j respectively. In Lemma A.3, we show that if the underlying one-time signature scheme

and AIBE scheme are respectively (t, ε1)-strongly unforgeable and (t, qsk, qd, ε2)-AIBE-CCA-secure,
then A’s advantage of distinguishing Game0

h−1 from Game0
h is at most ε1 + ε2. Similarly, Lemma A.4

states that under analogous conditions A’s advantage of distinguishing Game1
k+1 from Game1

k is
again at most ε1 + ε2. Therefore,∣∣∣Adv0,0

A,Π − Adv1,0
A,Π

∣∣∣ ≤ (ε1 + ε2) (l0 + l1)

≤ 2 (ε1 + ε2)L

≤ 2 (ε1 + ε2) r log
(
N

r

)
. �

Lemma A.3: For 1 ≤ h ≤ l0, if the underlying one-time signature scheme Σ is (t, ε1)-strongly
unforgeable and the AIBE scheme Π′ is (t, qsk, qd, ε2)-AIBE-CCA-secure, then A’s advantage of
distinguishing Game0

h−1 from Game0
h is at most ε1 + ε2:∣∣∣Adv0,h−1
A,Π − Adv0,h

A,Π

∣∣∣ ≤ (ε1 + ε2). �

Proof. We build a PPT adversary B that runs the AIBE-IND-CCA game with its challenger C′ as
follows. First, B receives the master public key MPK′ of the AIBE scheme from C′. Next, B internally
executes the oABE-IND-CCA game with A in order to gain advantage in the AIBE-IND-CCA game.
The specifics of the interaction between C′, B, and A are given below.

Setup: B forwards MPK′ to A. B also initializes the set of revoked users Rev to be empty.

Phase 1: When A invokes a secret-key query for user i, first, B computes HIDi, which is the
hierarchical identifier associated with the user i in the binary tree T . Next, for k := 1 to n+ 1,
B obtains the secret key ski,k of the identity HIDi|k from its challenger C′. After adding i to
Rev, B sends to A the secret key of the user i as ski := (ski,1, . . . , ski,n+1).
When A invokes a decryption query (i, c = (σ,VK, ĉ = (c1, . . . , cL))), B computes HIDi, and
for each k := 1 to n+ 1, B proceeds as follows:

• If B obtained the secret key ski,k corresponding to the identity HIDi|k in the process of
responding to a previous secret-key query, then B attempts to decrypt in turn all ciphertext
components c1, . . . , cL in ĉ using the secret key ski,k. If any of these decryption attempts
yield a non-⊥ value VK‖m, then B returns m to A if Vrfy(VK, σ,VK‖ĉ ). Otherwise, B
continues to next k.
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• If B did not obtain the secret key ski,k of the identity HIDi|k from an earlier secret-key
query, then B makes L decryption queries to its challenger C′, one for each ciphertext
component c1, . . . , cL, all under identity HIDi|k. If any of these decryption queries return a
non-⊥ value VK‖m, then B returns m to A if Vrfy(VK, σ,VK‖ĉ ). Otherwise, B continues
to next j.

If all the above decryption attempts return ⊥, then B returns ⊥ to A.

Challenge: B receives from A two equal length messages m∗0,m∗1 ∈ MSP and two equal length
sets of user identities S∗0 , S∗1 ⊆ U with the restriction that Rev ∩ (S∗0 ∪ S∗1) = ∅. B generates
(VK,SK)← Gen(1λ), selects a random string m̃ ←$ {0, 1}|VK‖m∗0|, and sets:

id′0 = HID0
l0−h+1, id′1 = dummy m′0 = VK‖m∗0, m′1 = m̃

Next, B sends the two identities id′0, id′1 and the two messages m′0,m′1 as the challenge query
to C′. C′ picks a random bit b′ ∈ {0, 1} and responds to B with c′ ← Enc(MPK′, id′b′ ,m′b′).
Finally, B computes the challenge ciphertext c∗, which is eventually sent to A, as follows,

1. For j := 1 to l0 − h, compute cj ← Enc(MPK′,HID0
j ,VK‖m∗0).

2. Set cl0−h+1 := c′.
3. For j := l0 − h+ 2 to L, compute cj ← Enc(MPK′, dummy, m̃).
4. Set ĉ := (cπ(1), . . . , cπ(L)), where π : {1, . . . , L} → {1, . . . , L} is a random permutation.
5. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Phase 2: Secret-key queries are handled similarly to Phase 1, with the usual restriction that A
does not invoke a secret-key query i such that i ∈ S∗0 ∪ S∗1 .
As for decryption queries, B replies to (i, c = (σ,VK, ĉ = (c1, . . . , cL))), according to one of
the following cases:

• If c = c∗ and i 6∈ S∗0 ∪ S∗1 , then B proceeds as in Phase 1. (Note that in this case B’s
output will be ⊥, as it should be.)
• If c = c∗, and i ∈ S∗0 ∪ S∗1 , B just rejects, since A is submitting an invalid query.
• If c 6= c∗ and i 6∈ S∗0 , then B proceeds as in Phase 1.
• If c 6= c∗ and i ∈ S∗0 , then B computes HIDi, and proceeds as follows:
� If for all k := 1 to n+ 1, it is the case that HIDi|k 6= HID0

l0−h+1, then B proceeds as in
Phase 1 (Case b.). Observe that the condition ∀k ∈ [1, n+ 1] : HIDi|k 6= HID0

l0−h+1
ensures that all the decryption queries that B will make to its challenger C′ in the
process of responding to A’s queries are allowed.
� If ∃ k ∈ [1, n+ 1] such that HIDi|k = HID0

l0−h+1, and c′ does not appear among the
ciphertext components of ĉ, then again B proceeds as in Phase 1 (Case b.). Observe
that the condition that ĉ does not contain c′ ensures that also in this case all the
decryption queries that B will make to its challenger C′ in the process of responding
to A’s queries are allowed.
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� If ∃ k ∈ [1, n+ 1] such that HIDi|k = HID0
l0−h+1, but c′ appears among the ciphertext

components of ĉ, then B outputs ⊥. To see that ⊥ is the correct reply, observe that
in the real oABE-IND-CCA game, a decryption query (i, c) of this type will trigger
decryption of the c′ component. Since by construction c′ is the encryption of VK‖m∗0,
and c 6= c∗, by the unforgeability of the underlying one-time signature scheme, the
verification test of Step 1aii of the decryption algorithm would fail, thus yielding ⊥
as output.

Guess: A outputs a guess b and B passes this bit as its guess for b′ to C′.

Observe that, by construction, it holds that if C′ chooses b′ = 0, then B is playing Game0
h−1,

whereas if b′ = 1, then B is playing Game0
h. Therefore, up to forgeries of the underlying one-time

signature scheme, B’s AIBE-IND-CCA advantage is essentially A’s advantage in distinguishing
Game0

h−1 from Game0
h: ∣∣∣Adv0,h−1

A,Π − Adv0,h
A,Π

∣∣∣ ≤ (ε1 + ε2). �

Lemma A.4: For 0 ≤ k < l1, if the underlying one-time signature scheme Σ is (t, ε1)-strongly
unforgeable and the underlying AIBE scheme Π′ is (t, qsk, qd, ε2)-AIBE-CCA-secure, then A’s
advantage of distinguishing Game1

k+1 from Game1
k is at most ε. More precisely,∣∣∣Adv1,k+1

A,Π − Adv1,k
A,Π

∣∣∣ ≤ (ε1 + ε2). �

Proof. The argument is analogous to the proof of Lemma A.3, and is therefore omitted. �

A.3 Proof of Theorem 4.3

Proof. We organize our proof as a sequence of games between the adversary A and the challenger C
as follows:

Game0
0,Game0

1,Game0
1, . . . ,Game0

l0 ,Game0
l0 ≡ Game1

l1 ,Game1
l1 , . . . ,Game1

1,Game1
1,Game1

0.

In the first game (Game0
0), A receives an encryption of m∗0 for S∗0 and in the last game (Game1

0), A
receives an encryption of m∗1 for S∗1 .

Game0
0: corresponds to the game given in Definition 3.3 when the challenge bit b∗ is fixed to 0. The
interaction between A and C during Setup, Phase 1, and Phase 2 follow exactly as specified in
Definition 3.3. During Challenge, A gives C two equal length messages m∗0,m∗1 ∈MSP and
two equal length sets of user identities S∗0 , S∗1 ⊆ U with the restriction that Rev∩ (S∗0 ∪S∗1) = ∅,
where Rev is the set of users that A corrupted during Phase 1. C computes the challenge
ciphertext c∗, which will subsequently be sent to A, as follows:

1. Generate (VK,SK)← Gen(1λ).
2. Draw s ←$ Zq, and compute c0 := gs.
3. For j := 1 to l0, compute cj := H

(
AsHID0

j

)
, cj ← Enc(MPK′,HID0

j ,VK‖AsHID0
j
‖m∗0).

4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗0|.
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5. For j := l0 + 1 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
6. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
7. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Eventually, A outputs a bit b and wins if b = 0.

Game0
h(1 ≤ h ≤ l0): is similar to Game0

h−1, but C computes the challenge ciphertext c∗ as follows:

1. Generate (VK,SK)← Gen(1λ).
2. Draw s ←$ Zq, and compute c0 := gs.
3. For j := 1 to l0 − h, compute cj := H

(
AsHID0

j

)
, cj ← Enc(MPK′,HID0

j ,VK‖AsHID0
j
‖m∗0).

4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗0|.
5. Compute cl0−h+1 := H

(
AsHID0

l0−h+1

)
, cl0−h+1 ← Enc(MPK′, dummy, m̃).

6. For j := l0−h+2 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
7. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
8. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

At the end, A outputs a bit b and wins if b = 0.

Game0
h(1 ≤ h ≤ l0): is similar to Game0

h, but C computes the challenge ciphertext c∗ as follows:

1. Generate (VK,SK)← Gen(1λ).
2. Draw s ←$ Zq, and compute c0 := gs.
3. For j := 1 to l0 − h, compute cj := H

(
AsHID0

j

)
, cj ← Enc(MPK′,HID0

j ,VK‖AsHID0
j
‖m∗0).

4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗0|.
5. For j := l0−h+1 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
6. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
7. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Finally, A outputs a bit b and wins if b = 0.

Game1
l1
: is identical to Game0

l0

Game1
k(1 ≤ k ≤ l1): is similar to Game1

k, with the challenge ciphertext c∗ computed by C as
follows:

1. Generate (VK,SK)← Gen(1λ).
2. Draw s ←$ Zq, and compute c0 := gs.
3. For j := 1 to l1 − k, compute cj := H

(
AsHID1

j

)
, cj ← Enc(MPK′,HID1

j ,VK‖AsHID1
j
‖m∗1).
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4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗1|.
5. Compute cl1−k+1 := H

(
AsHID1

l1−k+1

)
, cl1−k+1 ← Enc(MPK′, dummy, m̃).

6. For j := l1−k+2 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
7. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
8. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

At last, A outputs a bit b and wins if b = 0.

Game1
k(0 ≤ k < l1): is similar to Game1

k+1, but C computes the challenge ciphertext c∗ as follows:

1. Generate (VK,SK)← Gen(1λ).
2. Draw s ←$ Zq, and compute c0 := gs.
3. For j := 1 to l1 − k, compute cj := H

(
AsHID1

j

)
, cj ← Enc(MPK′,HID1

j ,VK‖AsHID1
j
‖m∗1).

4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗1|.
5. For j := l1−k+1 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
6. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
7. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Finally, A outputs a bit b and wins if b = 0.

For 0 ≤ i1 ≤ l0, 1 ≤ i2 ≤ l0, 0 ≤ j1 ≤ l1 and 1 ≤ j2 ≤ l1, let Adv0,i1
A,Π, Adv0,i2

A,Π, Adv1,j1
A,Π and

Adv1,j2
A,Π denote A’s advantage of winning Game0

i1 , Game0
i2 , Game1

j1 and Game0
j2 respectively. In

Lemma A.5, we show that if the underlying one-time signature scheme and AIBE scheme are
respectively (t, ε1)-strongly unforgeable and (t, qsk, qd, ε2)-AIBE-CCA-secure, then A’s advantage
of distinguishing Game0

h−1 from Game0
h is at most ε1 + ε2. And, in Lemma A.6, we show that if

CDH is (t, ε3)-hard in G and DDH is efficiently computable in G, then A has at most ε3 advantage
in distinguishing Game0

h from Game0
h. Similarly, Lemma A.7 and Lemma A.8 states that under

analogous conditions A’s advantages of distinguishing Game1
k+1 from Game1

k, and Game1
k from

Game1
k is at most ε1 + ε2 and ε3 respectively. Therefore,∣∣∣Adv0,0

A,Π − Adv1,0
A,Π

∣∣∣ ≤ (ε1 + ε2 + ε3) (l0 + l1)

≤ 2 (ε1 + ε2 + ε3)L

≤ 2 (ε1 + ε2 + ε3) r log
(
N

r

)
. �

Lemma A.5: For 1 ≤ h ≤ l0, if the underlying one-time signature scheme Σ is (t, ε1)-strongly
unforgeable and the AIBE scheme Π′ is (t, qsk, qd, ε2)-AIBE-CCA-secure, then A’s advantage of
distinguishing Game0

h−1 from Game0
h is at most ε1 + ε2:∣∣∣Adv0,h−1
A,Π − Adv0,h

A,Π

∣∣∣ ≤ (ε1 + ε2). �
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Proof. The proof is very similar to that of Lemma A.3 and is therefore omitted. The only difference
which we should be careful about is the new tag system of the ciphertext components. The challenger
can trivially compute these tags as specified in the construction of Sect. 4.3 and attach them to the
corresponding ciphertext components during the simulation. �

Lemma A.6: For 1 ≤ h ≤ l0, if CDH is (t, ε3)-hard in G and DDH is efficiently computable in G,
then A’s advantage of distinguishing Game0

h from Game0
h is at most ε3:∣∣∣Adv0,h

A,Π − Adv0,h
A,Π

∣∣∣ ≤ ε3. �

Proof. Let F be the event that A queries the random oracle H at the point AsHID0
l0−h+1

. By
construction, it is clear that ∣∣∣Adv0,h

A,Π − Adv0,h
A,Π

∣∣∣ ≤ Pr[F ].

We want to show Pr[F ] ≤ Pr[CDH] ≤ ε3. Assuming A can distinguish Game0
h from Game0

h,
we build a PPT CDH adversary B which uses A as a subroutine. First, B gets a CDH instance
(g,X = gx, Y = gy) as input from the CDH challenger. Then, B simulates the challenger’s behavior
in Game0

h to A as follows:

Setup: B simulates the Setup phase as in Definition 3.3 except that it sets AHID0
l0−h+1

= Y .

Phase 1: B handles the secret-key queries as specified in Definition 3.3.
Given a decryption query (i, c), we distinguish two cases. If the node (which is denoted by u for
simplicity) with hierarchical identifier HID0

l0−h+1 is not among the ancestors of the leaf node
corresponding to the user i in the tree T , then B just runs the Decrypt algorithm in Sect. 4.3.
Otherwise, B still runs the Decrypt algorithm as in Sect. 4.3, but with one modification. That
is, during Step 1, he skips the computation of the tag corresponding to node u. If this modified
computation of the Decrypt algorithm yielded a valid message m, B simply returns that m. If
not, B proceeds as follows:

1. Denote by sku the AIBE secret key of the node u.
2. Parse c as (σ,VK, ĉ = (c0, (c1, c1), . . . , (cL, cL))).
3. For j := 1 to L,

a. Compute m′ := Dec(MPK′, sku, cj).
b. If m′ = VK‖Z‖m, Vrfy(VK, σ,VK‖ĉ ), the DDH algorithm accepts (g, c0, Y, Z), and

cj = H(Z), return m.
4. If Step 3 did not result in a valid m, return ⊥ (as the original Decrypt algorithm would

have returned).

Challenge: Given two equal length messages m∗0,m∗1 ∈ MSP and two equal length sets of user
identities S∗0 , S∗1 ⊆ U with the restriction that Rev ∩ (S∗0 ∪ S∗1) = ∅, B computes the challenge
ciphertext c∗ as follows:

1. Generate (VK,SK)← Gen(1λ).
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2. Set c0 := X.

3. For j := 1 to l0 − h, compute cj := H
(
X
aHID0

j
)
, cj ← Enc(MPK′,HID0

j ,VK‖X
aHID0

j ‖m∗0).

4. Set m̃ ←$ {0, 1}|VK‖c0‖m∗0|.
5. Compute cl0−h+1 ←$ {0, 1}λ, cl0−h+1 ← Enc(MPK′, dummy, m̃).
6. For j := l0−h+2 to L, set sj ←$ Zq, and compute cj := H(gsj ), cj ← Enc(MPK′, dummy, m̃).
7. Set ĉ :=

(
c0,
(
cπ(1), cπ(1)

)
, . . . ,

(
cπ(L), cπ(L)

))
, where π : {1, . . . , L} → {1, . . . , L} is a

random permutation.
8. Generate σ ← Sign(SK,VK‖ĉ ), and set c∗ := (σ,VK, ĉ ).

Phase 2: B handles Phase 2 as in Phase 1 with the same restrictions given in Definition 3.2.3

Guess: A outputs a guess b and B saves it.

When simulating the random oracle H to A, B picks R ←$ {0, 1}λ as the result and responds
consistently. If A ever makes a random oracle query Z such that the DDH algorithm accepts
(g,X, Y, Z), B halts the computation and outputs Z as its CDH solution.

By construction, A can distinguish Game0
h from Game0

h only if it queries the random oracle on
gxy or sends a decryption oracle query with a ciphertext component containing gxy. In both cases,
B suspends the computation and wins the CDH game. Therefore, A’s advantage in distinguishing
Game0

h from Game0
h is at most ε3. �

Lemma A.7: For 0 ≤ k < l1, if the underlying one-time signature scheme Σ is (t, ε1)-strongly
unforgeable and the AIBE scheme Π′ is (t, qsk, qd, ε2)-AIBE-CCA-secure, then A’s advantage of
distinguishing Game1

k+1 from Game1
k is at most ε1 + ε2. More precisely,∣∣∣Adv1,k+1
A,Π − Adv1,k

A,Π

∣∣∣ ≤ (ε1 + ε2). �

Proof. The argument is analogous to the proof of Lemma A.5, and is therefore omitted. �

Lemma A.8: For 1 ≤ k ≤ l1, if CDH is (t, ε3)-hard in G and DDH is efficiently computable in G,
then A’s advantage of distinguishing Game1

k from Game1
k is at most ε3:∣∣∣Adv1,k

A,Π − Adv1,k
A,Π

∣∣∣ ≤ ε3. �

Proof. The argument is analogous to the proof of Lemma A.6, and is therefore omitted. �

3A slight complication is that, post-challenge, the adversary could try to reuse the c0, cπ(1), . . . , cπ(L) components
from c∗, but combine them with fresh c̃1, . . . , c̃L components for some message m̂ of her choice. If a ciphertext
so crafted were submitted to the decryption oracle for user u, then B would invoke the special decryption process
described in Phase 1, and would be unable to test whether cj = H(Z). However, in order for all the other checks in
Step 3b to go through, m′ should be equal to V̂K‖Z‖m̂, for a Z such that (g, X, Y, Z) is a DDH tuple. Clearly, at
that point B could simply halt its computation, and output Z as its answer to its CDH challenge.
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A.4 Proof of Theorem 4.4

Proof. The proof of this theorem follows almost the same structure as that of Theorem 4.3, with
the exception that the tags are now created as described in Sect. 4.4. More specifically, as in the
proof of Theorem 4.3, we again consider the following sequence of games between the adversary A
and the challenger C:

Game0
0,Game0

1,Game0
1, . . . ,Game0

l0 ,Game0
l0 ≡ Game1

l1 ,Game1
l1 , . . . ,Game1

1,Game1
1,Game1

0.

In the first game (Game0
0), A receives an encryption of m∗0 for S∗0 and in the last game (Game1

0), A
receives an encryption of m∗1 for S∗1 .

Game0
0 corresponds to the original game as described in Definition 3.2, when the challenge bit

b∗ is fixed to 0.
Game0

h(1 ≤ h ≤ l0) is similar to Game0
h−1, except that at position j = l0 − h+ 1, C pairs the

correct tag cj = ((AVK
HIDjBHIDj )s, (CVK

HIDjDHIDj )s) with an encryption cj of a random string m̃ of the
same length of VK‖m∗0.

Game0
h(1 ≤ h ≤ l0) is similar to Game0

h, but C computes the challenge ciphertext components
for position j = l0 − h+ 1 as follows: to create tag cl0−h+1, C uses a random value sj ←$ Zq.

The description of Game1
k(1 ≤ k ≤ l1), and Game1

k(0 ≤ k < l1) is as above, where we replace
m∗0 with m∗1.

For 0 ≤ i1 ≤ l0, 1 ≤ i2 ≤ l0, 0 ≤ j1 ≤ l1 and 1 ≤ j2 ≤ l1, let Adv0,i1
A,Π, Adv0,i2

A,Π, Adv1,j1
A,Π and

Adv1,j2
A,Π denote A’s advantage of winning Game0

i1 , Game0
i2 , Game1

j1 and Game0
j2 respectively.

The proof that A’s advantage of distinguishing Game0
h−1 from Game0

h is at most ε1 + ε2 is
essentially identical to that of Lemma A.5.

The proof that A’s advantage of distinguishing Game0
h from Game0

h is at most 2
(
ε3 + qd

2λ
)
(where

ε3 is the advantage of breaking DDH in G) is essentially identical to that of Lemma 1 of [27].
Similarly, A’s advantages of distinguishing Game1

k+1 from Game1
k, and Game1

k from Game1
k are

at most ε1 + ε2 and 2
(
ε3 + qd

2λ
)
, respectively. Therefore,

∣∣∣Adv0,0
A,Π − Adv1,0

A,Π

∣∣∣ ≤ 2
(
ε1 + ε2 + 2

(
ε3 + qd

2λ
))

(l0 + l1)

≤ 2
(
ε1 + ε2 + 2

(
ε3 + qd

2λ
))

L

≤ 2
(
ε1 + ε2 + 2

(
ε3 + qd

2λ
))

r log
(
N

r

)
. �
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