
Identity-Based Encryption with Master Key-Dependent Message
Security and Applications

David Galindo1, Javier Herranz2, and Jorge Villar2

1 University of Luxembourg
e-mail: david.galindo@uni.lu

2 Universitat Politècnica de Catalunya, Dept. Matemàtica Aplicada IV (Spain)
e-mail: {jherranz,jvillar}@ma4.upc.edu

Abstract. We introduce the concept of identity-based encryption (IBE) with master key-dependent chosen-
plaintext (mKDM-sID-CPA) security. These are IBE schemes that remain secure even after the adversary sees
encryptions, under some initially selected identities, of functions of the master secret key(s). We then propose a
generic construction of chosen-ciphertext secure key-dependent encryption (KDM-CCA) schemes in the public key
setting starting from mKDM-sID-CPA secure IBE schemes. This is reminiscent to the celebrated work by Canetti,
Halevi and Katz (Eurocrypt 2004) on the traditional key-oblivious setting. Previously only one generic construction
of KDM-CCA secure public key schemes was known, due to Camenisch, Chandran and Shoup (Eurocrypt 2009),
and it required non-interactive zero knowledge proofs (NIZKs). Our transformation shows that NIZKs are not
intrinsic to KDM-CCA public key encryption. Additionally, we are able to instantiate our new concept under the
Rank assumption on pairing groups and for affine functions of the secret keys. The scheme builds on previous work
by Boneh, Halevi, Hamburg and Ostrovsky (Crypto 2008). Our concrete schemes are only able to provide security
against a bounded number of encryption queries, which is enough in some practical scenarios. As a corollary we
obtain a KDM-CCA secure public key encryption scheme, in the standard model, whose security reduction to a
static assumption is independent of the number of challenge queries. As an independent contribution, we give new
and better reductions between the Rank problem (previously named as Matrix DDH problem) and the Decisional
Linear and the Decisional 3-Party Diffie-Hellman problems.

1 Introduction

Until recently public key encryption (PKE) schemes were only required to provide confidentiality against
adversaries that see encryptions of plaintexts that depend solely on public information. That is, it was
assumed (and even advocated) that an encryption scheme would never be used to encrypt its own decryption
key. This requirement is certainly reasonable for many applications, but it has been challenged both by
practical and foundational reasons [1, 14]. The paradigmatic case is the scenario of circular encryptions,
where for n ≥ 2 public/secret key pairs (pk1, sk1), . . . , (pkn, skn), the adversary is given the ciphertexts
Encpk1(sk2), Encpk2(sk3), . . . , Encpkn(sk1), and still semantic security shall hold. Thus a dedicated stronger
security notion called key-dependent message security has emerged in the last few years [5]. Roughly speaking,
it is required that semantic security holds even if the adversary sees encryptions of plaintexts that depend
on the decryption keys. For the motivation, applications and history of key-dependent message security we
refer to the excellent survey by Teranishi, Malkin and Yung [23].

The first breakthrough was due to Boneh, Halevi, Hamburg and Ostrovsky (BHHO) [9], who proposed a
public key encryption scheme with indistinguishability against key-dependent chosen-plaintext attacks (KDM-
CPA) in the standard model under the Decisional Diffie-Hellman assumption for affine functions of the secret
key. Shortly after Applebaum, Cash, Peikert, and Sahai [3] proposed an efficient KDM-CPA secure scheme for
affine functions under the Learning Parity with Noise assumption. Brakerski and Goldwasser [11] extended
the BHHO scheme to a suite of KDM-CPA schemes secure under subgroup indistinguishability assumptions.

Camenisch, Chandran and Shoup [13] proposed a generic construction of chosen-ciphertext secure key-
dependent encryption (KDM-CCA) schemes in the public key setting, that requires in particular a KDM-CPA
secure scheme and specialized non-interactive zero knowledge proofs (NIZKs). By applying their transforma-
tion to (a variation of) the BHHO scheme, they obtained a KDM-CCA secure scheme under the Decision
Linear assumption on pairing groups. This was the only generic construction of KDM-CCA secure public
key encryption schemes in the standard model before our work. Concurrently to our work, Hofheinz [20]

has proposed a PKE scheme with KDM-CCA security in the standard model with compact ciphertexts; his
construction is direct and does not use key-dependent IBE.

1.1 Our Contribution

We initiate here the study of identity-based encryption (IBE) schemes secure against key dependent messages1.
This has a double interest, since IBE is of interest by itself [28] and because of its numerous applications [8]. In
IBE there are two types of secret keys, on the one hand a master secret key SKi corresponding to the master
public key PKi; on the other hand the secret keys sk[id] belonging to individual users id. This potentially
gives rise to two levels of key-dependent message security, depending on whether the adversary is allowed to
ask for encryptions of functions of the master-keys or the user-keys. We choose here to deal only with master
key-dependent messages (mKDM security). A concurrent work [2] deals with the user key-dependent message
security. The first reason is that this allows us to update mKDM-sID-CPA. Secondly, master key-dependence
seems harder to achieve than user-key dependence, and that in some cases master key-dependent security
implies a restricted form of user-key dependent security “for free” (see Section 4.1 for the case of our scheme).

Informally, we say that an IBE scheme has master key-dependent indistinguishability against selective-
identity and chosen plaintext attacks (mKDM-sID-CPA security for short) if no adversary is able to distinguish
between encryptions of a particular message m and encryptions of some functions of a set of master secret
keys, under a certain set identities chosen by the adversary ahead of time. We are able to give an instantiation
of a mKDM-sID-CPA secure IBE in the standard model, under the Rank assumption over bilinear groups.
The Rank assumption states that it is difficult to distinguish whether an n × n matrix has rank r1 or r2,
where 2 ≤ r1 < r2 ≤ n. As an additional contribution, which may be of independent interest, we give a
new reduction between the Rank problem and both the Decisional Linear and the Decisional 3-Party Diffie-
Hellman problems. Our new reduction improves that of [26] from a linear to a logarithmic factor and can be
used to improve the reduction from the Rank assumption to the Decisional Diffie-Hellman problem given in
[9] in a similar fashion.

One of the most well-known applications of IBE in the theory of cryptography is the CHK generic
construction of chosen-ciphertext secure public key encryption out of chosen-plaintext secure identity-based
encryption. We show that the same transformation can be applied to the KDM setting, resulting in KDM-
CCA secure public key encryption out of mKDM-sID-CPA secure identity-based encryption. Thus we show
a practical generic construction for key-dependent chosen-ciphertext security that dispenses with the need of
NIZKs from [13]. In other words, we show that NIZKs are not inherent to KDM-CCA public key encryption.
Plugging our concrete IBE scheme(s) into the Canetti-Halevi-Katz transformation gives rise to KDM-CCA
secure encryption scheme(s) with security based on either the Decisional Linear assumption or the Decisional
3-Party Diffie-Hellman assumption. Surprisingly, it turns out that if we use in our instantiations a strongly
unforgeable one-time signature scheme with tight security in the multi-user setting (i.e. more than one public
keys are considered in the security definition [24]), we obtain KDM-CCA secure schemes whose security
reduction loss factor does not depend on the number of encryption queries. Let us point out that the Camenish
et al. KDM-CCA scheme incurs in a loss factor in its reduction that depends linearly on the total number
of encryption queries. Our result (partially) solves an open problem posed by Bellare, Boldyreva and Micali
[4] regarding chosen-ciphertext secure encryption schemes in the multi-user setting. One drawback of our
chosen-ciphertext secure schemes is that the public key size depends on the number of encryption queries per
public key (but importantly ciphertext-size does not); in other words, we were only able to prove security
against a bounded number of encryption queries per public key. However, this is enough in some practical
scenarios such as that of circular security, where the number of encryption queries per public key equals the
binary length of a secret key. Previously Hofheinz and Unruh [21] proposed KDM-CPA symmetric encryption
schemes secure against a bounded number of encryption queries but with some limitations, e.g. messages
length must be smaller than secret key length. Such restrictions are overcome here. We stress here that the
concurrent construction of uKDM-sID-CPA secure IBE in [2] has a similar drawback: therein, the size of the

1 See [2] for a concurrent and independent work on the same topic.

master public key, the user secret keys and the ciphertext depend on the parameter n, which is the maximum
number of user secret keys involved in an encryption query.

1.2 Organization

In Section 2 we introduce most of the notation to be used throughout the paper, as well as the hardness
assumptions we will work with. Additionally we recall previous KDM security notions for public key encryp-
tion. In Section 3 we define master key-dependent indistinguishability against selective-identity and chosen-
plaintext attacks for identity-based encryption. We prove then that the celebrated CHK transformation from
passively-secure IBE to chosen-ciphertext PKE also holds in the KDM setting. Section 4 contains the bulk
of our contribution, namely an instantiation of identity-based encryption with key-dependent security in the
standard model under the Decisional Linear assumption or the Decisional 3-Party Diffie-Hellman assumption.
Actually two schemes are presented: the first one is simpler to reason with and its security reduction is easier
to understand; the second one improves the efficiency by a factor 2λ, where λ is the security parameter. We
end in Section 5 by outlining future research directions.

2 Preliminaries

In this section we list some of the notation, probability results and computational assumptions that will be
used afterwards.

2.1 Some Probability and Linear Algebra

A distribution of probability D defined on a set X is ε-uniform if
∑

x∈X

∣∣∣D(x)− 1
|X |

∣∣∣ ≤ ε.
A family of hash functions H = {h : X → Y} is 2-universal if ∀x1, x2 ∈ X , x1 6= x2, we have Prh∈H[h(x1) =
h(x2)] ≤ 1

|Y| .

Lemma 1. (Simplified left-over hash lemma, [9]). Let H be a 2-universal hash family from a set X to

a set Y. Then the distribution (h, h(x)), where h ∈R H and x ∈R X , is
√
|Y|
4|X | -uniform on H×X .

Corollary 1. Let W ∈R Zq2×`;2 and s ∈R {0, 1}`. Then the distribution (W,Ws) is 1
q -uniform on Zq2×`;2×Z2

q,
provided ` ≥ 4 log q.

Proof. We consider X = {0, 1}` and Y = Z2
q . For any matrix W ∈ Zq2×`;2, we consider the hash function

hW : X → Y defined by hW(s) = Ws. It is quite easy to check that the family of hash functions H = {hW :
X → Y}W∈Zq`1×`2;r is 2-universal.

Applying Lemma 1 to X ,Y,H, we obtain that the distribution (W,Ws) is
√

q2

4·2` -uniform on Zq2×`;2×Z2
q .

Since ` ≥ 4 log q, we have
√

q2

4·2` ≤
1
2q <

1
q , as desired. ut

In the security proofs of this paper we will use the following technical results, some of them arising from
basic linear algebra. For convenience we will use the notation A⊕B for block matrix concatenation:

A⊕B =

(
A 0

0 B

)
In addition, we will denote I` and 0`1×`2 for the neutral element in GL`(Zq) and the null matrix in Zq`1×`2 ,
respectively. The shorthand 0` = 0`×` will also be used. Given a matrix A ∈ Zq`1×`2 , the transpose of A is
denoted as A>, and the vector subspace spanned by the columns of A is denoted as Span(A) ⊆ Z`1q , which

dimension equals rank(A). The orthogonal subspace of a vector subspace V ⊂ Z`q of dimension r is denoted as

V ⊥, and its dimension is `− r. Notice that as we are working on positive characteristic fields, the intersection
V ∩ V ⊥ can be nontrivial.

Lemma 2. The statistical distance of the two probability distributions A0 ∈R Zq`×` and A1 ∈R GL`(Zq) is

upper bounded by 1− q−`2 |GL`(Zq)| < 1/(q − 1).

Lemma 3. The following three natural group actions are transitive:2

1. the left-action of GL`1(Zq) on Zq`1×`2;`2, for `1 ≥ `2, defined by A 7→ UA, where U ∈ GL`1(Zq) and
A ∈ Zq`1×`2;`2,

2. the right-action of GL`2(Zq) on Zq`1×`2;`1, for `1 ≤ `2, defined by A 7→ AV, where V ∈ GL`2(Zq) and
A ∈ Zq`1×`2;`1,

3. the left-right-action of GL`1(Zq) × GL`2(Zq) on Zq`1×`2;r, defined by A 7→ UAV, where U ∈ GL`1(Zq),
V ∈ GL`2(Zq) and A ∈ Zq`1×`2;r.

Lemma 4 (Rank Decomposition). Given any matrix A ∈ Zq`1×`2;r, there exist matrices L ∈ Zq`1×r;r
and R ∈ Zqr×`2;r such that A = LR.

Lemma 5. Given two matrices A,B ∈ Zq`1×`2 such that Span(A) = Span(B), there exists C ∈ GL`2(Zq)
such that B = AC.

2.2 Bilinear Pairings, Matrices and Hardness Assumptions

Let G be a multiplicative group of prime order q admitting a bilinear pairing. That is, let GT be a multiplicative
group of prime order q and let e(·, ·) : G × G → GT an efficiently computable bilinear map. We will denote as
gT = e(g, g) the generator of GT induced by g a given generator of G. Note that, due to the bilinear properties
of the pairing, for any two integers a, b ∈ Zq we have gabT = e(ga, gb) = e(ga, g)b = e(gb, g)a.

These operations extend to vectors and matrices in a natural way. Let Zq`1×`2 denote the set of all `1× `2
matrices and Zq`1×`2;r the matrices with rank r. In the special case of invertible matrices we will write
GL`(Zq) = Zq`×`;`. Let G`1×`2 and GT `1×`2 denote the set of all `1 × `2 matrices over G and GT respectively.
Therefore, for any two matrices A ∈ Zq`1×`2 and B ∈ Zq`2×`3 , we have gAB = (gA)B ∈ G`1×`3 . Here, if
the (i, j) component of matrix A is denoted as ai,j ∈ Zq, then gA denotes the matrix obtained, component-
wise, by computing the values gai,j . Note that gAB can be easily computed from gA and B. Again, we can
naturally extend these definitions to matrices and bilinear pairings: if A ∈ Zq`1×`2 and B ∈ Zq`2×`3 , then
e(gA, gB) = gAB

T . Once again, gAB
T can be computed from gA

T and B. Furthermore, if C ∈ Zq`3×`4 , then it
holds gABC

T = e(gAB, gC) = e(gA, gBC) ∈ GT `1×`4 .

The security of our schemes can be reduced to the hardness of the Decisional Linear (DLin) problem [7]
or the Decisional 3-Party Diffie-Hellman (D3DH) problem [22, 10, 19] in the group G.

The DLin problem consists in distinguishing between the distributions (g, gx, gy, gz, gt, g(x
−1z+y−1t)) ∈ G6

and (g, gx, gy, gz, gt, gu) ∈ G6, where g is a generator of G and x, y, z, t, u ∈R Zq are chosen independently and
at random. The problem is formally defined through the following two experiments between a challenger and
a solver ADLin. Experiment ExpDLinbADLin

(G) is defined as follows, for b = 0, 1.

1. The challenger chooses a generator g of G and random x, y, z, t, u ∈R Zq independently and uniformly
distributed.

In Experiment b = 0, the challenger sends (g, gx, gy, gz, gt, g(x
−1z+y−1t)) ∈ G6 to ADLin.

In Experiment b = 1, it sends (g, gx, gy, gz, gt, gu) ∈ G6 to ADLin.

2. The solver ADLin outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ADLin outputs b′ = 1 in Experiment ExpDLinbADLin
(G). Let

AdvDLinADLin
(G) = |Pr[Ω0]−Pr[Ω1]|. We can then define AdvDLin(G; t) = maxADLin

{AdvDLinADLin
(G)},

where the maximum is taken over adversaries ADLin running in time at most t.

2 The action of a group G on a set A is transitive if for any a, b ∈ A there exists g ∈ G such that b = g · a. As a consequence, if
g ∈R G then for any a ∈ A, g · a is uniform in A.

Definition 1. The Decisional Linear assumption in G states that AdvDLin(G; t) is negligible in λ = log |G|
for any value of t that is polynomial in λ.

For a group G with prime order q > 2λ and a generator g of G, the Decisional 3-Party Diffie-Hellman
(D3DH) problem [22, 10, 19] consists in distinguishing between the distributions (g, gx, gy, gz, gxyz) ∈ G5
and (g, gx, gy, gz, gt) ∈ G5, where x, y, z, t ∈R Zq are chosen independently at random. The problem is for-
mally defined through the following two experiments between a challenger and a solver AD3DH. Experiment
ExpD3DHb

AD3DH
(G) is defined as follows, for b = 0, 1.

1. The challenger chooses random x, y, z, t ∈R Zq independently and uniformly distributed.

In Experiment b = 0, the challenger sends the tuple (g, gx, gy, gz, gxyz) ∈ G5 to AD3DH.

In Experiment b = 1, the challenger sends the tuple (g, gx, gy, gz, gt) ∈ G5 to AD3DH.

2. The solver AD3DH outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that AD3DH outputs b′ = 1 in ExpD3DHb
AD3DH

(G). Let AdvD3DHAD3DH
(G) =

|Pr[Ω0] − Pr[Ω1]| and let AdvD3DH(G, t) = maxAD3DH
{AdvD3DHAD3DH

(G)}, where the maximum is
taken over adversaries AD3DH running in time at most t.

Definition 2. The Decisional 3-Party Diffie-Hellman assumption in a group G states that AdvD3DH(G, t)
is negligible in λ = log |G| for any value of t that is polynomial in λ.

2.3 The Rank Problem

We consider an assumption related to matrices. Given a (multiplicative) cyclic group G of prime order q, the
Rank(G, `1, `2, r, s) problem informally consists of distinguishing if a given matrix in Zq`1×`2 has rank r or
has rank s for given integers r 6= s, when the matrix is hidden in the exponent of a generator g of G. The
problem is formally defined through the following two experiments between a challenger and a distinguisher
ARank. For b = 0, 1, experiment ExpRankbARank

(G, `1, `2, r, s) is defined as follows.

1. In Experiment b = 0, the challenger chooses M ∈R Zq`1×`2;r and sends gM to ARank.

In Experiment b = 1, it chooses M ∈R Zq`1×`2;s and sends gM to ARank.

2. The solver ARank outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ARank outputs b′ = 1 in Experiment ExpRankbARank
(G, `1, `2, r, s).

For any such adversary ARank let

AdvRankARank
(G, `1, `2, r, s) = |Pr[Ω0]− Pr[Ω1]|

We can then define

AdvRank(G, `1, `2, r, s; t) = max
ARank

{AdvRankARank
(G, `1, `2, r, s)} ,

where the maximum is taken over adversaries ARank running in time at most t.

Definition 3. The Rank(G, `1, `2, r, s) assumption in a group G states that AdvRank(G, `1, `2, r, s; t) is
negligible in λ = log |G| for any value of t that is polynomial in λ.

The Rank assumption appeared in recent papers under the names Matrix-DDH [9] and Matrix d-Linear [26].
Therein, it was already proved that the Rank problem is harder than the Decisional Linear problem. However,
the reduction given in the next proposition substantially improves the reductions previously given. Namely,
the loss factor is no longer linear but logarithmic in the rank.

Proposition 1. For any `1, `2, r, s such that 2 ≤ s < r ≤ min(`1, `2) we have

AdvRank(G, `1, `2, r, s; t) ≤
⌈
log(3r)−log(3s−2)

log 3−log 2

⌉
AdvDLin(G; t′)

≤ d1.71(log2 r − log2(s− 1))eAdvDLin(G; t′),

where t′ = t+O(`1`2(`1 + `2)), taking the cost of an exponentiation in G as one time unit.

Before proving the proposition, we note that the Rank(G, `1, `2, r, s) problem is random self-reducible,
because given M0 ∈ Zq`1×`2;k, for random L ∈R GL`1(Zq) and R ∈R GL`2(Zq) the product LM0R is
uniformly distributed in Zq`1×`2;k. For the actual proof of Proposition 1, we use the following result.

Lemma 6. Any distinguisher for Rank(G, `1, `2, k−δ, k), `1, `2 ≥ 3, k ≥ 3, 1 ≤ δ ≤
⌊
k
3

⌋
can be converted into

a distinguisher for the Decisional Linear (DLin) problem, with the same advantage and running essentially
within the same time.

Proof. Given the DLin instance (g, gx, gy, gz, gt, gu) the DLin distinguisher builds the `1 × `2 matrix

M =

x 0 1
0 y t
z 1 u

⊕ · · · ⊕
x 0 1

0 y t
z 1 u

︸ ︷︷ ︸

δ times

⊕Ik−3δ ⊕ 0(`1−k)×(`2−k)

and submits the randomized matrix gLMR to the Rank(G, `1, `2, k−δ, k) distinguisher, where L ∈R GL`1(Zq)
and R ∈R GL`2(Zq). Notice that if u = x−1z + y−1t mod q then the resulting matrix is a random matrix in
G`1×`2;k−δ. Otherwise, it is a random matrix in G`1×`2;k. ut

We can now apply a hybrid argument to prove Proposition 1. Let us consider the sequence of integers {ri}
defined by the recurrence r0 = s and ri+1 =

⌊
3ri
2

⌋
, and let k be the smallest index such that rk ≥ r. Then define

a sequence of random matrices {Mi}, where Mi ∈R Zq`1×`2;ri for i = 0, . . . , k − 1, and Mk ∈R Zq`1×`2;r. For
any distinguisher ARank with running time upper bounded by t, let pi = Pr[1← ARank(gMi)]. By Lemma 6,
we have that for i = 0, . . . , k − 2

|pi+1 − pi| = AdvRankARank
(G, `1, `2, ri+1, ri) ≤ AdvDLin(G; t′),

|pk − pk−1| = AdvRankARank
(G, `1, `2, r, rk−1) ≤ AdvDLin(G; t′)

Therefore, AdvRankARank
(G, `1, `2, r, s) = |pk − p0| ≤

|p1 − p0|+ . . .+ |pk − pk−1| ≤ k ·AdvDLin(G; t′).

On the other hand, since
⌊
3x
2

⌋
≥ 3x−1

2 then rk ≥
(
3
2

)k (
s− 2

3

)
, which implies that k ≤ log(3r)−log(3s−2)

log 3−log 2 . ut
Similarly, we can prove that the D3DH problem is easier than the Rank problem.

Proposition 2. For any `1, `2, r, s such that 2 ≤ s < r ≤ min(`1, `2)

AdvRank(G, `1, `2, r, s; t) ≤
⌈

log(3r)− log(3s− 2)

log 3− log 2

⌉
AdvD3DH(G; t′) ≤

≤ d1.71(log2 r − log2(s− 1))eAdvD3DH(G; t′)

Proof. The proof only differs from the proof of Proposition 1 in the 3×3 blocks built from a problem instance,
in the proof of Lemma 6. Indeed, given the D3DH instance (g, gx, gy, gz, gt) the matrixx −1 0

0 y 1
t 0 z

has rank 2 or 3 depending on whether t = xyz mod q. ut

As a consequence of the results in this section, any appearance of AdvDLin in the security results of
this paper can be safely replaced with AdvD3DH.

2.4 KDM Secure Encryption

A public key encryption scheme Π supporting ciphertexts consists of four probabilistic polynomial algorithms,
Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec)3. The setup protocol Π.Stp takes as input a security parameter λ and
outputs some public information pms, including plaintext space M and secret key space S. The security
parameter λ is included in the string pms, which is implicitly an input to the remaining algorithms. The
key generation protocol Π.KGpms on input the empty string ε outputs a pair of secret and public keys,
(sk, pk), where the secret key sk belongs to the set S of possible secret keys. The encryption protocol takes
as input a public key pk and a message m ∈ M and outputs a ciphertext C = Π.Encpms(pk,m). Finally,
the decryption protocol takes as input secret key sk and a ciphertext C, and outputs m̃ = Π.Decpms(sk, C),
where m̃ ∈ M ∪ {⊥}. The correctness property requires that Π.Decpms(sk,Π.Encpms(pk,m)) = m, for any
message m ∈M and parameters pms generated by Π.Stp and any pair (sk, pk) generated by Π.KGpms.

Informally, security with respect to key dependent messages under chosen plaintext attacks (KDM-CPA)
requires that an adversary is not able to distinguish between encryptions of a particular message m and
encryptions of some functions (chosen by the adversary from a specific set of functions F) of a set of secret
keys. In the case of security with respect to key dependent messages under chosen ciphertext attacks (KDM-
CCA), the adversary is given additional access to a decryption oracle that he can query for ciphertexts of his
choice, as long as these ciphertexts are different to those the adversary has to distinghish.

Unlike standard security definitions for PKE schemes [18, 27, 17], KDM security notions have been defined
from the very beginning [14, 5, 13] in the multi-user setting, namely they involve in general n public keys with
n ≥ 1. For concrete security concerns, in the following definitions two integer parameters n, qe ≥ 1 are given
as input to the security game, representing respectively the number of users in the system and the maximum
number of encryption queries per user allowed to the adversary. We shall see how these two parameters
influence security reductions of our and previous KDM secure schemes.

To formalize this notion, we follow the definitions in [13, 23]. Let n, qe ≥ 1 be integers and let F = {f :
Sn →M} be a finite set of efficiently computable functions. KDM-CPA security of a public key encryption
scheme Π is defined with respect to the set of functions F through the following two experiments between a
challenger and an adversary AΠ . Let m ∈M be a fixed message.

Experiment ExpKDM-CCAb,Π
AΠ (λ, n, qe) is defined as follows, for b = 0, 1.

1. Initialization. The challenger runs pms ← Π.Stp(λ) and then runs n times (ski, pki) ← Π.KGpms to
produce n pairs (sk1, pk1), . . . , (skn, pkn). The public keys (pk1, . . . , pkn) and pms are sent to AΠ . A list
Lquer is initially set to empty.

2. Queries. The adversary AΠ can adaptively make two types of queries to the challenger.

(a) Encryption queries. For each 1 ≤ i ≤ n the adversary AΠ can make up to qe encryption queries
of the form (i, f) with f ∈ F . The challenger computes m = f(sk1, . . . , skn) ∈ M, and then sets
C = Π.Encpms(pki,m) in Experiment b = 0, and sets C = Π.Encpms(pki,m) in Experiment b = 1. The
resulting ciphertext C is sent to AΠ and the tuple (i, C) is added to the list Lquer.

(b) Decryption queries. AΠ can make a decryption query of the form (i, C), as long as (i, C) /∈ Lquer.
The challenger sends back to AΠ the output Π.Decpms(ski, C).

3. Final guess. The adversary AΠ outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that AΠ outputs b′ = 1 in Experiment ExpKDM-CCAb,Π
AΠ (λ, n, qe).

For any adversary AΠ as above let AdvKDM-CCAΠ
AΠ (λ, n, qe) = |Pr[Ω0] − Pr[Ω1]|. For any t, n, qe we

define the advantage function of the scheme Π for key-dependent message security against chosen-ciphertext
attacks (KDM-CCA) as AdvKDM-CCA(Π,λ, n, qe; t) = maxAΠ

{
AdvKDM-CCAΠ

AΠ (λ, n, qe)
}

, where
the maximum is over adversaries AΠ with time-complexity t and making no more than qe encryption queries
for each 1 ≤ i ≤ n.

3 Notice that the algorithm Π.Stp was only implicitly considered in [5, 9, 13]. Such an algorithm is needed to ensure that all
users in the system share message and secret key spaces, and it is included in the latest work [23].

Definition 4. A public key encryption scheme Π is polynomially-secure against key dependent chosen-
ciphertext attacks with respect to the set of functions F if AdvKDM-CCA(Π,λ, n, qe; t) is negligible in
λ for all polynomial values of t, n, qe.

Analogously we can define indistinguishability against key dependent chosen-plaintext attacks, denoted
KDM-CPA security. The resulting definition is obtained by disallowing any decryption queries in the KDM-
CCA experiment. In both cases, we refer to security against single encryption queries when qe = 1, which
means that the adversary can make several encryption queries but each one for a different public key.

In this work we consider F to be the set of affine functions. This contains as particular cases constant
functions (which lead to the notion of IND-CCA security in the multi-user setting [4]) and projections
fi(sk1, . . . , skn) = ski, for 1 ≤ i ≤ n. An encryption scheme which is KDM-CCA-secure with respect to a set
of functions containing projections achieves clique security, which in particular captures circular security.

3 From mKDM-sID-CPA Secure IBE to KDM-CCA Secure PKE

In this section we extend the Canetti-Halevi-Katz transformation [16] to build IND-CCA encryption schemes
to the key-dependent messages setting. We start by recalling the syntactic definition and security properties
of one-time signatures. A (one-time) signature scheme Θ = (Θ.Stp, Θ.KG, Θ.Sign, Θ.Vfy) consists of four
probabilistic polynomial time protocols. pmsΘ ← Θ.Stp(1λ) is the setup protocol, which produces some
common public parameters (that will be an implicit input for the rest of protocols) for a given security
parameter. (skΘ, vkΘ)← Θ.KG() is the key generation protocol, which outputs a secret signing key skΘ and
a public verification key vkΘ. The signing protocol θ ← Θ.Sign(skΘ,m) takes as input the signing key and a
message m, and outputs a signature θ. Finally, the verification protocol {1, 0} ← Θ.Vfy(vkΘ,m, θ) takes as
input the verification key, a message and a signature, and outputs 1 if the signature is valid, or 0 otherwise.

Regarding security, we consider an adversary FΘ in the multi-user setting, with N users. FΘ first receives

N verification keys {vk(i)Θ }1≤i≤N obtained from running Θ.Stp(1λ)→ pmsΘ once and then running N times

the protocol Θ.KG() → (sk
(i)
Θ , vk

(i)
Θ), for i = 1, . . . , N . The adversary can make at most one signature query

of the form (i,mi), for each i = 1, . . . , N , for messages mi of his choice, obtaining as answer valid signatures

Θ.Sign(sk
(i)
Θ ,mi) → θi. Finally FΘ outputs a tuple (i?,m?, θ?). We say that the adversary FΘ succeeds if

Θ.Vfy(vk
(i?)
Θ ,m?, θ?)→ 1 and (m?, θ?) 6= (mi? , θi?).

We denote FΘ’s success probability in the above game as AdvOTSΘFΘ(λ,N). The signature scheme

Θ is one-time strongly unforgeable if AdvOTSΘFΘ(λ,N) is a negligible function of the security parameter
λ ∈ N, for any polynomial-time attacker FΘ against Θ and any polynomial value of N . A good candidate
is the scheme proposed by Mohassel [25], whose security is tightly related to the hardness of the Discrete
Logarithm problem, in the standard model. Although the proof by Mohassel is in the single-user setting,
it can be easily adapted to the multi-user setting, by using the self-reducibility properties of the Discrete
Logarithm problem.

3.1 mKDM-sID-CPA Identity-Based Encryption

An identity-based encryption scheme Γ consists of five probabilistic polynomial algorithms, Γ = (Γ .Stp,
Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec). The setup protocol, Γ .Stp takes as input a security parameter λ and outputs
some system-wide parameters ibp to be shared by all the master authorities in the system. In particular, ibp
includes the description of the sets of admissible identities, plaintexts and ciphertexts, I, M, C respectively.
The string ibp is an implicit input to the remaining algorithms. Γ .Mkgibp on input the empty string outputs
(PK,SK), where PK is the master public key and SK is the master secret key. The user’s key generation
protocol, Γ .Ukgibp, on input the master secret key SK and an identity id, outputs the user’s decryption key
sk[id]. The encryption algorithm Γ .Encibp takes as input PK, an admissible identity id and a plaintext m and
outputs a ciphertext c = Γ .Encibp(PK, id,m). Finally, the decryption protocol takes as input a decryption
key sk[id] and an admissible ciphertext c and outputs m̃, where m̃ is an admissible plaintext or the reject

symbol ⊥. The correctness property requires that Γ .Decibp(Γ .Ukg(SK, id), Γ .Encibp(PK, id,m)) = m, for any
identity id ∈ I, message m ∈ M, parameters ibp generated by Γ .Stp(1k) and any pair (PK,SK) generated
by Γ .Mkgibp().

Informally, we say that an IBE scheme has master key-dependent indistinguishability against selective-
identity and chosen plaintext attacks (mKDM-sID-CPA security, for short) if no adversary is able to dis-
tinguish between encryptions of a particular message m and encryptions of some functions (chosen by the
adversary from a specific set of functions F) of a set of master secret keys.

To formalize this notion, we extend the definitions in [15, 9, 13]. Let n, qe ≥ 1 be integers and let
F = {f : T n → M} be a finite set of efficiently computable functions, where T is the set of master se-
cret keys andM the set of admissible plaintexts. mKDM-sID-CPA security is defined with respect to the set
of functions F through the following two experiments between a challenger and an adversary AΓ . Let m ∈M
be a fixed message.

Experiment ExpKDM-sID-CPAb,Γ
AΓ (λ, n, qe) is defined as follows, for b = 0, 1.

1. Setup. The challenger runs ibp← Γ .Stp(λ). The adversary AΓ on input ibp outputs a tuple I? of n · qe
identities I? = (id11, . . . , id

qe
1 , id

1
2, . . . , id

qe
2 , . . . , id

1
n, . . . , id

qe
n).

2. Initialization. The challenger runs n times Γ .Mkgibp to obtain n pairs (PK1, SK1), . . . , (PKn, SKn).
The master public keys (PK1, . . . , PKn) are sent to AΓ .

3. Queries. The adversary AΓ can adaptively make two types of queries to the challenger:

(a) Encryption Queries. For every index i such that 1 ≤ i ≤ n, a counter j is maintained, with
initial value j ← 1. AΓ can make encryption queries of the form (i, f), where f ∈ F . The challenger
computes m = f(SK1, . . . , SKn) ∈M, and then sets c = Γ .Encibp(PKi, id

j
i ,m) in Experiment b = 0,

and sets c = Γ .Encibp(PKi, id
j
i ,m) in Experiment b = 1, where j is the current counter value. After

the ciphertext c is sent to AΓ , the counter is updated as j ← j + 1. AΓ can make up to qe encryption
queries per index i.

(b) Private key Queries. AΓ can make users’ private key queries of the form (i, id), where 1 ≤ i ≤ n
and id 6= idji for all j ∈ {1, . . . , qe}. The challenger computes ski[id] = Γ .Ukgibp(SKi, id) and gives it
back to AΓ .

4. Final guess. The adversary AΓ outputs a bit b′ ∈ {0, 1}.

Let us denote asΩb the event thatAΓ outputs b′ = 1 in Experiment ExpKDM-sID-CPAb,Γ
AΓ (λ, n, qe). For

any adversaryAΓ as above let AdvKDM-sID-CPAΓ
AΓ (λ, n, qe) = |Pr[Ω0]−Pr[Ω1]|. For any t, n, qe we define

the advantage function of the scheme Γ against selective-identity and key-dependent chosen plaintext attacks
(mKDM-sID-CPA) as AdvKDM-sID-CPA(Γ, λ, n, qe; t) = maxAΓ

{
AdvKDM-sID-CPAΓ

AΓ (λ, n, qe)
}

,
where the maximum is taken over adversaries AΓ with time-complexity t.

Definition 5. An identity-based encryption scheme Γ is polynomially-secure against selective-identity and
master key-dependent chosen plaintext attacks (mKDM-sID-CPA) with respect to the set of functions F if
AdvKDM-sID-CPA(Γ, λ, n, qe; t) is negligible in λ for polynomial values of n, t, qe.

For technical reasons we will additionally consider a restriction of the mKDM-sID-CPA security notion
in which the adversary is given only one master key (i.e., n = 1) and it can only select a single identity (i.e.,
id11 = · · · = idqe1). We will refer to this notion as mKDM-ssID-CPA security, from single-selective ID, as only
one identity can be selected, while the adversary can still make up to qe encryption queries.

In the rest of the paper, we will sometimes use the explicit notation (n, qe)-mKDM-sID-CPA security,
meaning that the adversary is given n master public keys and it can ask up to qe encryption queries per
master public key. Similarly qe-mKDM-ssID-CPA security means that the adversary is allowed to make up to
qe encryption queries in the mKDM-ssID-CPA experiment. mKDM-sID-CPA security for single encryption
queries is obtained when qe = 1.

3.2 Canetti-Halevi-Katz Transformation in the KDM Setting

Let Γ = (Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec) be an IBE scheme and let Θ = (Θ.KG, Θ.Sign, Θ.Vfy) be a
one-time signature scheme. We use the well-knownCanetti-Halevi-Katz transformation [16] to construct from
these two primitives a public-key encryption scheme Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec), as follows:

Π.Stp(1λ): run ibp ← Γ .Stp(1λ) and pmsΘ ← Θ.Stp(1λ). Let us recall that ibp contains in particular the
description of the admissible identities, plaintexts and ciphertexts for the scheme Γ . We assume that verifi-
cation keys output by Θ lie in the identities space of Γ . Otherwise choose an encoding mapping the space
of verification keys inside the space of admissible identities for Γ . Define the output of the setup protocol as
pms = (ibp, pmsΘ).

Π.KGpms(): parse pms = (ibp, pmsΘ), run (PK,SK)← Γ .Mkgibp() and define the secret key as sk = SK and
the public key as pk = PK.

Π.Encpms(pk,m): to encrypt a plaintext m ∈ M for a receiver with public key pk, parse pms = (ibp, pmsΘ)
and proceed as follows. Run (skΘ, vkΘ) ← Θ.KG() and set id = vkΘ; run c ← Γ .Encibp(pk, id,m); run
θ ← Θ.Sign(skΘ, c). The final ciphertext output by the algorithm is C = (vkΘ, c, θ).

Π.Decpms(sk, C): parse pms = (ibp, Θ) and C = (vkΘ, c, θ). First of all, run Θ.Vfy(vkΘ, c, θ). If the output
bit is 0, then stop and output ⊥. Otherwise, set id = vkΘ and run sk[id]← Γ .Ukgibp(sk, id) and output the
result of running Γ .Decibp(sk[id], c).

Theorem 1. If Γ enjoys mKDM-sID-CPA security with respect to a set of functions F and the signature
scheme Θ is one-time strongly unforgeable, then the constructed public-key encryption scheme Π enjoys
KDM-CCA security with respect to the same set of functions F .

Proof. Let us assume, to the contrary, that Π does not enjoy KDM-CCA security with respect to the set
of functions F . This means that there exists a successful adversary AΠ in the KDM-CCA security game
described in Section 2.4. Let us use the existence of such an adversary AΠ to contruct either a successful
adversary AΓ against the mKDM-sID-CPA security of the scheme Γ or a successful forger FΘ against the
one-time unforgeability of the signature scheme Θ. This will contradict the assumption that both Γ and Θ
are secure, and so will conclude the proof.

The adversary AΓ against the identity-based encryption scheme Γ is initialized with input ibp, where
ibp← Γ .Stp(1k) has been executed by the challenger. After that, AΓ runs pmsΘ ← Θ.Stp(1λ) once and then

runs n ·qe times the key generation protocol Θ.KG(1k), obtaining n ·qe key pairs {(sk(i,j)Θ , vk
(i,j)
Θ)}1≤i≤n,1≤j≤qe .

NowAΓ defines idji = vk
(i,j)
Θ , for i = 1, . . . , n and j = 1, . . . , qe, to form and output the set I? of n·qe identities.

Now the challenger sends to AΓ a list of n master public keys (PK1, . . . , PKn).
AΓ can then define pms = (ibp, pmsΘ) and initialize the adversary AΠ against the encryption scheme Π

by giving pms and (pk1, . . . , pkn) to him, where pki = PKi for i = 1, . . . , n. The adversary AΠ is allowed to
make encryption and decryption queries, that AΓ answers in the following way. The list Lquer is initially set
to empty.

(a) Encryption queries. For each index i ∈ {1, . . . , n}, AΠ can make up to qe encryption queries of the form
(i, f), with f ∈ F . Let us consider the j-th query of this form, where j ∈ {1, . . . , qe}. Then AΓ makes an
encryption query (i, f) to his encryption oracle, and receives as answer a ciphertext c, computed for master

public key PKi = pki and identity idji . After that, AΓ runs θ ← Θ.Sign(sk
(i,j)
Θ , c), defines C = (vk

(i,j)
Θ , c, θ)

and sends C to AΠ . The tuple (i, C) is added to the list Lquer.
(b) Decryption queries. AΠ can make decryption queries of the form (i, C), as long as (i, C) /∈ Lquer. Let

us parse C = (vkΘ, c, θ). First of all, AΓ runs Θ.Vfy(vkΘ, c, θ). If the output is 0, then AΓ sends back ⊥
to AΠ . Otherwise, we distinguish two cases:

(i) vkΘ 6= vk
(i,j)
Θ for all j ∈ {1, . . . , qe}. In this case, AΓ can define id = vkΘ and make the private key

query (i, id), receiving as answer the value ski[id]← Γ .Ukgibp(SKi, id). Finally, AΓ sends to AΠ the
result of running Γ .Decibp(ski[id], c).

(ii) vkΘ = vk
(i,j)
Θ for some j ∈ {1, . . . , qe}. In this case, AΓ aborts. Let us denote as δ the probability that

AΓ aborts due to one such decryption query.

At the end of the experiment, adversary AΠ outputs a bit b′. The adversary AΓ that we are constructing
outputs the same bit b′.

It is easy to see that, provided AΓ does not abort during the experiment, the advantage of AΓ in the
experiment ExpKDM-sID-CPAb,Γ

AΓ (λ, n, qe) is exactly the same as the advantage of AΠ in the experiment

ExpKDM-CCAb,Π
AΠ (λ, n, qe). Therefore, the only difference between these two advantages is given by the

probability δ that AΓ aborts.

However, it is possible to construct a forger FΘ against the one-time unforgeability of the signature scheme
Θ, in a scenario with N = n · qe users, whose success probability would be ≥ δ. The idea is to run AΓ by

considering as the identities idji the verification keys vk
(i,j)
Θ that FΘ receives as input in his unforgeability

game (in the multi-user setting). The n key pairs of Γ are generated by FΘ and therefore it can compute any

function f ∈ F of the master secret keys. The step where AΓ needs the corresponding secret keys sk
(i,j)
Θ to

answer encryption queries is replaced with a (one-time) query by FΘ to his signing oracle for secret key sk
(i,j)
Θ .

If AΓ receives a valid decryption query (i, C) where C = (vkΘ, c, θ) with vkΘ = vk
(i,j)
Θ for some i ∈ {1, . . . , n}

and some j ∈ {1, . . . , qe}, and such that (i, C) /∈ Lquer, this means that θ is a valid and fresh signature, under

verification key vk
(i,j)
Θ , for a message c. In other words, FΘ succeeds with probability δ.

Putting all the pieces together, we conclude that

AdvKDM-CCAΠ
AΠ (λ, n, qe) ≤ AdvKDM-sID-CPAΓ

AΓ (λ, n, qe) + AdvOTSΘFΘ(λ, n · qe) ut

4 New Bounded mKDM-sID-CPA Secure IBE Schemes

In this section we propose some identity-based encryption scheme enjoying mKDM-sID-CPA security. We
start with a basic scheme Γ0 that achieves (n, qe)-mKDM-sID-CPA security. It is inspired by some IBE
techniques [6] and the KDM-CPA techniques in [9]. After that, we explain the modifications that can be
applied to Γ0 to improve its efficiency (for example, the size of the master public keys). The final resulting
scheme, Γ2, can be used to implement the transformation of Section 3.2, in combination with any one-time
signature scheme, leading to new KDM-CCA secure public-key encryption schemes. In all the schemes in this
section, the size of the master public keys depends linearly on the number qe of allowed encryption queries;
that is, these schemes achieve mKDM-sID-CPA security only against bounded adversaries.

4.1 The Basic mKDM-sID-CPA Secure Scheme, Γ0

Let us introduce a glossary for notation valid hereafter. The letter S denotes a matrix in Zq`×` and the letter
Ψ denotes a matrix in Zq(`+1)×`; t denotes a column vector in Z`q; c,d respectively denote row and column

vectors in G`; finally r denotes a row vector in Z`+1
q . For a specific value of qe the scheme Γ0(qe) works as

follows.

Setup, Γ0.Stp(1λ): a pairing group (G,GT , e(·, ·)) of prime order q, where q is λ-bits long, and a generators
g ∈ G, gT = e(g, g) ∈ GT are chosen. A second security parameter ` > 4λ is also considered. Therefore, we
define ibp = (λ, `, q,G, g,GT , gT , e(·, ·)).
Master key generation, Γ0.Mkgibp(): firstly, take Ψ ∈R Zq(`+1)×`;`, S̃ ∈R GL`(Zq) and a binary (column)

vector x ∈R {0, 1}`, and compute g−Ψx
T ∈ G`T . Then two random functions are built in the following way. Take

random matrices S0, . . . ,Sqe−1 ∈R Zq`×` and Sqe ∈R GL`(Zq), which define the function F(·) acting on the

identity space Zq as F(id) =
∑qe

j=0 id
jSj ∈ Z`×`q . Then define F̃(id) = ΨF(id)S̃

−1
=
∑qe

j=0 id
jΨ̃j ∈ Z(`+1)×`

q ,

where Ψ̃j = ΨSjS̃
−1

, for j = 0, . . . , qe. Therefore F̃(id)S̃ = ΨF(id) for any id ∈ Zq. The public and master

secret keys are then PK = (gΨ, gF(·), gF̃(·), gS̃, g−Ψx
T) and SK = gxT , where the description of the functions

gF(·) and gF̃(·) are their (matrix) coefficients gS0 , . . . , gSqe and gΨ̃0 , . . . , gΨ̃qe , respectively.

User key generation, Γ0.Ukgibp(SK, id): for an identity id ∈ Zq the secret key sk[id] = (gd1 , gd2) ∈ G`×G`

is generated as gd1 = gx · gF(id)t and gd2 = gS̃t, where t ∈R Z`q and gx is computed component by component

from SK = gxT . The user can verify the validity of the secret key by checking the equation g−Ψx
T ·e(gΨ, gd1) =

e(gtF(id), gd2).

Encryption, Γ0.Encibp(PK, id,m): to encrypt a message m ∈ GT for an identity id ∈ Zq and master public
key PK, a row vector r ∈R Z`+1

q is chosen and the ciphertext C = (gc1 , gc2 , c) ∈ G` × G` × GT is computed

as gc1 = grΨ, gc2 = grtF(id) and c = m · g−rΨxT . The ciphertext fulfils the equation e(gc1 , gF(id)) = e(gc2 , gS̃),
so its consistency with respect to identity id can be publicly verified.

Decryption, Γ0.Decibp(sk[id], C): let C = (gc1 , gc2 , c) be a ciphertext for an identity id. The user who owns
sk[id] = (gd1 , gd2) recovers m = c · e(gc1 , gd1)/e(gc2 , gd2).

Some Intuition. Notice that a direct modification of the Boneh-Boyen IBE scheme [6] following the structure
of the Boneh et al. KDM-CPA scheme [9] leads to an insecure scheme, due to the fact that the master secret
key x ∈ {0, 1}` can be trivially recovered from its representation gxT . In fact, in the direct translation the
user-keys would have been sk[id] = (gd1 , gd2) with gd1 = gxgF(id)t and gd2 = gt, where t ∈R Z`q (ciphertexts
would be changed accordingly). In such a case, an adversary that obtains a single user-key sk[id] can compute
e(gd1 , g) = gxT ·e(gF(id), gt) on the one hand, and e(gF(id), gd2) = e(gF(id), gt) on the other hand. The adversary
thus recovers gxT , which leads to the recovery of master secret key, since x ∈ {0, 1}`. For this reason we are

forced to “hide” t even more, by multiplying it with the matrix S̃ ∈ GL`(Zq). This makes scheme description
and security proofs more intricate, for example because some care must be taken regarding the invertibility
and the probability distribution of such matrices S̃ ∈ GL`(Zq), when master public keys are rerandomized.

The definition of the function F(id) as a polynomial with degree qe is necessary in order to be able to
reply qe encryption queries. Finally, the fact that the coefficients of this polynomial are `× ` matrices will be
improved to `× 2 matrices in the improved scheme Γ2, in Section 4.3. The dimension ` comes from the ideas
in the KDM-CPA scheme in [9]. The dimension 2 comes from the fact that we are using (symmetric) pairing
groups G and the security of our scheme relies on the hardness of the Rank problem in G, which is easy if the
rank is 1.

Affine functions. Let us define the set of affine functions F = {f : T n → GT }, where T is the set
of master secret keys. Let SK1, . . . , SKn ∈ G`T be n secret keys generated by Γ0.Mkgibp(). Following the

notation in [9], for every n`-vector u = (ui) over Zq, every n`-vector s ∈ Gn`T and every scalar H ∈ GT , let
fu,H(s) = H ·

∏
i=1,...,n` s

ui
i ∈ GT . Then, F = {fu,H : Gn`T → G}u∈Zn`q ,H∈GT .

Additionally, since the algorithm Γ0.Ukgibp(SK, id) can be seen as an affine function from G` to G2`, we

obtain uKDM-sID-CPA security [2] with respect to the set of affine functions from G2n` to GT . Alas, this is is
only a restricted form of uKDM-sID-CPA security, since in particular we can not encrypt the j-th selection
function (sk[id1], . . . , sk[idn]) 7→ sk[idj], as sk[idj] ∈ G2`.

Additional Properties of Γ0. As in [9] some extra properties of the scheme will be used in the security
proof. Here we will consider the notion of half-ciphertext as a ciphertext (gc1 , ∅, c) that is not ID-enabled but
still can be decrypted directly from the master key.

Master Decryption. A half-ciphertext (gc1 , ∅, c) can be directly decrypted from msk = gxT by running
m = master-dec(gc1 , ∅, c)msk, c, c̃, e) = c · e(gc1 , gx), where x is extracted component by component from
the master secret key gxT .

Master Public Key Rerandomization. The master public key PK = (gΨ, gF(·), gF̃(·), gS̃, g−Psix
T) can

be rerandomized into another random master public key PK ′ = (gΨ′ , gF′(·), gF̃′(·), gS̃′ , (g−Ψx
T)′) for the same

master secret key SK, with the same probability distribution as the output of the key generation algorithm

conditioned to SK. Indeed one can define gS̃′ = gS̃R, gΨ′ = gLΨ, gF′(·) = gF(·)RgQ(·) S̃R, gF̃′(·) = gL F̃ (·)gΨQ(·)

and (g−Ψx
T)′ = g−LΨx

T , for a random (matrix) polynomial Q(·) =
∑qe

j=0Qjid
j , where Q0, . . . ,Qqe ∈R Zq`×`,

and random matrices L ∈R GL`+1(Zq) and R ∈R GL`(Zq). Notice that S′j = (Sj + QjS̃)R and Ψ̃′j =

L(Ψ̃j + ΨQj), for j = 0, . . . , qe. With overwhelming probability 1 − 1/(q − 1), the resulting S′qe is an in-
vertible matrix4, and PK ′ is a valid public key. We will write it as PK ′ = PK-rand(PK; L,R,Q(·)).
Any half-ciphertext valid for PK is also valid for PK ′, and both decrypt to the same plaintext. Further-
more, any ciphertext (gc1 , gc2 , c) valid for a message m, identity id and master public key PK can be
converted into another one, PK-rand-ciph((gc1 , gc2 , c); L,R,Q(·)) = (gc1 , gc2gc1Q(id), c), valid for m, id
and PK ′. Similarly, any user secret key sk[id] = (gd1 , gd2) generated with PK can be transformed into
PK-rand-user(gd1 , gd2 ; L,R,Q(·)) = (gd1gQ(id)d2 , gd2) which is valid for PK ′.

Ciphertext Rerandomization. A ciphertext (gc1 , gc2 , c) for an identity id and master public key PK
can be easily rerandomized into another ciphertext (gc

′
1 , gc

′
2 , c′) = enc-rand(PK, id, gc1 , gc2 , c; r) of the

same message, identity and public key as gc
′
1 = grΨgc1 , gc

′
2 = grtF(id)gc2 and c′ = g−rΨxT c, for a random

r ∈R Z`+1
q .

Secret Key Encryption. The i-th bit xi of the master secret key can be encrypted (without knowing
it) for an identity id by rerandomizing the self-referring half-ciphertext self-ref(i) = (gc1 , ∅, 1GT) such that
gc1 = (1G , . . . , g, . . . , 1G), where the only element different from 1G = g0 is in the i-th position of gc1 .

Ciphertext Homomorphism. Since, for a fixed identit,y decryption (both user and master) is a linear map
between Zq-vector spaces, ciphertexts can be combined to obtain a new ciphertext of a linear combination
of the corresponding plaintexts. Indeed, given k encryptions Ci = (gc1,i , gc2,i , ci) of plaintexts mi ∈ GT ,
i = 1, . . . , k, under the same master public key and identity, the ciphertext

C =

(
k∏
i=1

(gc1,i)λi ,
k∏
i=1

(gc2,i)λi ,
k∏
i=1

cλii

)

is an encryption of m =
k∏
i=1

mλi
i under the same master key and identity, for any scalars λi ∈ Zq. The same

can be applied to half-ciphertexts.

Reencryption. Assume two different master secret keys SK = gxT and SK ′ = gx
′

T are related by a known
bijective affine transformation, given by an invertible matrix M ∈ GL`(Zq) and a column shift vector
µ ∈ Z`q by x′ = Mx + µ. Then a ciphertext (gc1 , gc2 , c) for an identity id and master public key PK =

(gΨ, gF(·), gF̃(·), gS̃, g−Ψx
T) for SK SK can be reencrypted into another ciphertext reencr-ciph(gc1 , gc2 , c; M,µ) =

(gc1M−1
, gc2 , c · e(gc1 , g−M−1µ)) for the same identity and plaintext, and for a new master public key PK ′ =

reencr-PK(PK; M,µ) = (gΨM−1
, gMF(·), gF̃(·), gS̃, g−Ψx

T · e(gΨ, g−M−1µ)) corresponding to SK ′. The same
applies to half-ciphertexts. Moreover, any extracted user key (gd1 , gd2) for SK, PK and identity id can be
converted into another valid user key reencr-user((gd1 , gd2); M,µ) = (gMd1+µ, gd2) for SK ′, PK ′ and the
same identity.

Observe that for every binary vector a ∈ {0, 1}` there exists a bijective affine transformation that maps any
binary vector x into the componentwise XOR, a⊕ x, and it is given by a diagonal matrix M with diagonal
1 − 2a and a shift vector µ = a. Since XOR-ing is an involution, the direct and inverse transformations
are equal. Hence M−1 = M and −M−1µ = µ, and we can write reencrXOR-ciph(gc1 , gc2 , c; M,µ) =

(gc1M, gc2 , c · e(gc1 , gµ)) and reencrXOR-PK(PK; M,µ) = (gΨM, gMF(·), gF̃(·), gS̃, g−Ψx
T · e(gΨ, gµ))5. It is

4 Indeed, for fixed invertible matrices R, Sqe and S̃, the map Qqe 7→ (Sqe + Qqe S̃)R is a bijection. Therefore S′qe is a uniformly

random square matrix, and it is invertible with probability q−`
2

|GL`(Zq)| > 1− 1/(q − 1).
5 reencrXOR-user is defined exactly as reencr-user.

easy to see that the composition of two affine transformations (M1,µ1), (M2,µ2) corresponding to the XOR
masks is the affine transformation (M1M2,µ1 ⊕ µ2).

ID-Enabling of Half-Ciphertexts. Any half-ciphertext (gc1 , ∅, c) can be completed into a ciphertext
for the same master public key, message and identity id, if some extra information W is given, through
enable-half(PK, id,W, gc1 , ∅, c) = (gc1 , gc2 , c). Indeed, if the matrix W ∈ Zq`×` such that F(id) = WS̃ is
given, then gc2 = gc1W.

ID-Transform. Given a polynomial transformation of the identities, P (id) =
∑k

i=0 piid
i where p0, . . . , pk ∈

Zq and pk 6= 0, a master public key PK for the scheme Γ0(qe) can be transformed into another one PK ′

for the scaled scheme Γ0(kqe) so that the secret key remains unchanged, and any ciphertext or user key
valid for the identity P (id) under PK in Γ0(qe) is still valid for the identity id under PK ′ in Γ0(kqe).

Indeed, PK ′ = id-transf(PK;P) = (gΨ, g(F◦P)(·), g(F̃◦P)(·), gS̃, g−Ψx
T), where the (matrix) coefficients of the

compositions g(F◦P)(·) and g(F̃◦P)(·) can be easily computed from the coefficients gSj , gΨ̃j and pi. Notice that
the resulting public key does not follow the right probability distribution and it must be rerandomized with
PK-rand.

4.2 (n, qe)-mKDM-sID-CPA Security of Γ0

In this section we prove that our basic scheme, Γ0(qe), is mKDM-sID-CPA secure with respect to the set of
affine functions F . The proof consists of two steps: firstly we prove that Γ0(1) achieves mKDM-ssID-CPA
security under the Decisional Linear assumption, and then we prove that nqe-mKDM-ssID-CPA security of
Γ0(1) implies (n, qe)-mKDM-sID-CPA security in the case of Γ0(qe). We stress here that in all the security
reductions of the paper, the involved execution times satisfy the tight relations t′ ≤ t + O(n · qe · `3) and
t′′ ≤ t+O(n · qe · `3), taking the cost of a scalar multiplication in G as one time unit. We omit these relations
and the technical details from here on, for simplicity, and just write t, t′, t′′.

Theorem 2. Γ0(1) is qe-mKDM-ssID-CPA secure under the assumption that the Decisional Linear problem
is hard. In particular, AdvKDM-ssID-CPA(Γ0(1), λ, `, qe; t) ≤ 4 (d1.71 log2 `e+ 1) AdvDLin(G; t′) + 8 ·
2−λ.

We use in the proof of Theorem 2 the following technical result about the indistinguishability of different
distributions of matrices, all of them related to the set of solutions of the matrix equation AY = XB for
fixed A and B.

Lemma 7. Given a pairing group (G,GT , e(·, ·)) of prime order q, where q is λ-bits long, a generator g of G
and the parameter `, and assuming the Rank problem is hard, then the following probability distributions of

the variables (gΨ, gS, gΨ̃, gS̃, gz), where (Ψ,S, Ψ̃, S̃, z) ∈ Zq(`+1)×` × Zq`×` × Zq(`+1)×` × Zq`×` × Z`q given as
uniform distributions under the restrictions given below are polynomially indistinguishable.

D0: ΨS = Ψ̃S̃; rank(Ψ) = rank(Ψ̃) = rank(S) = rank(S̃) = `; ∃x ∈ {0, 1}`, z = S̃S−1x.
D5: ΨS = Ψ̃S̃; rank(Ψ) = rank(Ψ̃) = `; rank(S) = rank(S̃) = `− 1; Span(Ψ) 6= Span(Ψ̃).

Proof. Consider the following intermediate probability distributions of the variables (gΨ, gS, gΨ̃, gS̃, gz) given
as uniform distributions under the following restrictions.

D1: ΨS = Ψ̃S̃; rank(Ψ) = rank(S̃) = 2; rank(S) = rank(Ψ̃) = `; ∃x ∈ {0, 1}`, z = S̃S−1x.
D2: ΨS = Ψ̃S̃; rank(Ψ) = rank(S̃) = 2; rank(S) = rank(Ψ̃) = `.
D3: ΨS = Ψ̃S̃; rank(Ψ) = rank(Ψ̃) = rank(S) = rank(S̃) = `.
D4: ΨS = Ψ̃S̃; rank(Ψ) = rank(Ψ̃) = `; rank(S) = rank(S̃) = `− 1; Span(Ψ) = Span(Ψ̃).

We will show that every probability distribution D0, . . . , D5 is indistinguishable from the previous one. For
any PPT algorithm A let us call Ωi to the event that A(X) = 1 where X is sampled from Di, and let
AdvDi,Dj = |Pr[Ωi]− Pr[Ωj]|.

Distributions D0 to D3 share the property S ∈ GL`(Zq). Therefore, there exists a unique T ∈ Zq`×`

such that S̃ = TS and Ψ = Ψ̃T. Moreover, the same happens with D4, but for a different reason. Indeed,
as Ψ and Ψ̃ are full-rank matrices such that Span(Ψ) = Span(Ψ̃), then by Lemma 5 there also exists a
unique T ∈ GL`(Zq) such that Ψ = Ψ̃T. Therefore, Ψ̃S̃ = ΨS = Ψ̃TS, which implies S̃ = TS because

left-multiplication by Ψ̃ is an injective map.
However, rank(T) = ` in distributions D0 and D3, while rank(T) = 2 in D1 and D2. Therefore, any

distinguisher of D0 and D1 can be used to solve the Rank(G, `, `, 2, `) problem with the same advantage and
essentially the same running time, since given gT, where T ∈R Zq`×`;r for either r = 2 or r = `, one can

choose random S ∈R GL`(Zq), Ψ̃ ∈R Zq`×`;` and x ∈R {0, 1}` and complete the tuple (gΨ̃T, gS, gΨ̃, gTS, gTx)
which is distributed exactly as D0 when r = ` and D1 when r = 2. The same argument applies to D2 and
D3 by simply taking z ∈R Z`q. Therefore,

AdvD0,D1 ≤ AdvRank(G, `, `, 2, `), AdvD2,D3 ≤ AdvRank(G, `, `, 2, `)

Moreover, any distinguisher of D3 and D4 can be used to solve the Rank(G, `, `, ` − 1, `) problem in a
similar way. This time we start with gS, where S ∈R Zq`×`;r for either r = ` − 1 or r = `, and we take

T ∈R GL`(Zq), Ψ̃ ∈R Zq`×`;` and z ∈R Z`q to complete the tuple (gΨ̃T, gS, gΨ̃, gTS, gz), which is distributed
exactly as D3 when r = ` and D4 when r = `− 1. Therefore,

AdvD3,D4 ≤ AdvRank(G, `, `, `− 1, `)

To compare distributions D1 and D2 we will use the Leftover Hashing Lemma (Lemma 1). According to its
corollary given in Appendix 2.1 the probability distribution of (W,Wx) for W ∈R Zq2×`;2 and x ∈R {0, 1}`
is 1/q-close to the uniform distribution in Zq2×`;2 × Z`q, as ` > 4 log q. Since in distributions D1 and D2,

T ∈R Zq`×`;2, then by Lemma 4 for each T there exists V ∈ Zq`×2;2 and W ∈ Zq2×`;2 such that T = VW.
Moreover, if V and W are uniformly distributed, so is T = VW. Therefore, from W and x one can build

the tuple (gΨ̃VW, gS, gΨ̃, gVWx) distributed as D1, if V ∈R Zq`×2;2, S ∈R GL`(Zq) and Ψ̃ ∈R Zq`×`;`, but it
follows distributions D2 when replacing VWx by a vector z ∈R Z`q. Thus,

AdvD1,D2 ≤ 1/q

Remark 1. Actually, taking ` > 3 log q leads to AdvD1,D2 ≤ 1/
√
q which is enough because this is the

complexity of the generic baby-step giant-step algorithm that solves the discrete logarithm problem and
hence any interesting problem in the group G. In addition, the matrix T (or W) is computationally hidden
in the tuple and there is some hope that a computational indistinguishability result exists that would avoid
the use of the Leftover Hashing Lemma and then decrease the value of `.

Finally, the indistinguishability of D4 and D5 requires a more elaborated reduction. From a matrix gM

such that M ∈R Zq(`+1)×(`+1);r with either r = ` or r = ` + 1, a distinguisher chooses W ∈R Zq(`−1)×`;`−1,
R, R̃ ∈R GL`(Zq) and z ∈ Z`q, and completes the tuple (gΨ, gS, gΨ̃, gS̃, gz) as follows. It parses gM =

g(M
′|m|m̃) where m, m̃ are the last two columns of M, and similarly R = (R′ | r) and R̃ =

(
R̃′ | r̃

)
. Then

it takes gΨ = g(M
′|m)R−1

, gΨ̃ = g(M
′|m̃)R̃−1

, S = R′W and S̃ = R̃′W.
If rank(M) = `+ 1 then it is easy to see that Ψ̃ and Ψ are uniformly distributed matrices in Zq(`+1)×`;`

such that Span(Ψ̃) 6= Span(Ψ). Indeed Span(Ψ) ∩ Span(Ψ̃) = Span(M′), while Span(Ψ) = Span (M′ |m)
and Span(Ψ̃) = Span (M′ | m̃). Is is easy to see that the equation ΨS = Ψ̃S̃ implies that R−1S and R̃−1S̃
are the same matrix with its last row set to 0. Then the above expressions for S and S̃ follow, and the
probability distribution of the tuple is exactly D5.

On the other hand, assume for a while rank(M) = rank (M′ |m) = rank (M′ | m̃) = `. Therefore,
Span(Ψ) = Span (M′ |m) = Span (M′ | m̃) = Span(Ψ̃) and hence by Lemma 5 there exists a (unique)
matrix T ∈ GL`(Zq) such that Ψ = Ψ̃T. Then, equation ΨS = Ψ̃S̃ implies S̃ = TS, so S̃ is completely

determined from Ψ, Ψ̃ and S. Observe that now the tuple exactly follows distribution D4.

However, rank (M′ |m) = rank (M′ | m̃) = ` does not hold for all matrices in Zq(`+1)×(`+1);`. Indeed, by
a simple counting argument6, it happens to a random M ∈R Zq(`+1)×(`+1);` with probability at least 1− 2/q.
Therefore,

AdvD4,D5 ≤ AdvRank(G, `+ 1, `+ 1, `, `+ 1) + 2/q

and summing up

AdvD0,D5 ≤ 2AdvRank(G, `, `, 2, `) + AdvRank(G, `, `, `− 1, `)+
+AdvRank(G, `+ 1, `+ 1, `, `+ 1) + 3/q

By using Proposition 1 we can write

AdvD0,D5 ≤ (2 d1.71 log2 `e+ 2) AdvDLin(G) + 3/q

ut

Let us now proceed with the actual proof of Theorem 2. The proof is structured as a sequence of
games played by a challenger C and an qe-mKDM-ssID-CPA adversary A, ranging from perfect simula-
tion to perfect hiding of the target plaintexts. Games 0-b, b ∈ {0, 1}, are exactly the two experiments

ExpKDM-ssID-CPA
b,Γ0(1)
A (λ, `, qe). Let us denote as Ωi,b the event that A outputs b′ = 1 in Game i-b, and

let Advi = |Pr[Ωi,0]− Pr[Ωi,1]|. Notice that in the scheme Γ0(1), qe is not explicitly used and F(id) = S0+idS1

and F̃(id) = Ψ̃0 + idΨ̃1.

Game 1-b: C receives as input the parameters ibp = (λ, `, q,G, g,GT , gT , e(·, ·)) and some input parameters D =

(gΨ, gS1 , gΨ̃1 , gS̃, gz) whose probability distribution is the uniform distribution in the subset of Zq(`+1)×` ×
Zq`×`×Zq(`+1)×`×Zq`×`×Z`q defined by the restrictions ΨS1 = Ψ̃1S̃, rank(Ψ̃1) = rank(Ψ) = `, rank(S1) =

rank(S̃) = ` and S1S̃
−1
z ∈ {0, 1}`. Let m = 1GT be a fixed message. For a bit b ∈ {0, 1} the description of C

follows.

1. Setup. C parses ibp = (λ, `, q,G, g,GT , gT , e(·, ·)) and D = (gΨ, gS1 , gΨ̃1 , gS̃, gz) as defined above, and
sends ibp to the adversary A. Then S receives the identity id? selected by A.

2. Initialization. C generates and sends to A a master public key PK = (gΨ, gF(·), gF̃(·), gS̃, g−Ψx
T), without

knowing the corresponding secret key SK = gxT ∈ GT
`, as follows. gS0 = gWS̃−id?S1 , gΨ̃0 = gΨW−id?Ψ̃1 ,

for a random W ∈ Zq`×`, and g−Ψx
T = 1/e(gΨ̃1 , gz). As usually, gF(id) = gS0+idS1 and gF̃(id) = gΨ̃0+idΨ̃1 .

Observe that F(id?) = WS̃ and F̃(id?) = ΨW.

3. Encryption Queries. When A asks an encryption query f , where f ∈ F , if b = 0, C proceeds as follows.

Assume f(SK) = f(gxT) = gλ0T ·
(
gx1T
)λ1 · . . . · (gx`T)λ` . The challenger C computes the half-encryptions of

all secret key bits under PK, Cj = self-ref(j) for all j = 1, . . . , ` and the half-encryption of gT , C0 =
(g0, ∅, gT). Now, C combines all half-encryptions, component by component, to obtain a half-encryption of
f(SK) as (informally) C = Cλ00 ·C

λ1
1 ·. . .·C

λ`
` . Finally, C outputs enc-rand(PK, id?, enable-half(pk, id?,W, C); r),

for a random r ∈R Z`+1
q . Otherwise, if b = 1 C outputs Enc(PK, id?, gT ; r), for a random r ∈R Z`+1

q .

Remark 2. It is easy to see that (when b = 0) the resulting ciphertext is C = (gλ+rΨ, g(λ+rΨ)W, gλ0T ·
g−rΨxT), where λ = (λ1, . . . , λ`).

6
∣∣∣Zq(`+1)×(`+1);`

∣∣∣ = q`+1−1
q−1

∣∣∣Zq(`+1)×`;`
∣∣∣ (being the first factor the number of subspaces of dimension ` in Z`+1

q , and the second

factor the number of generating sets of a given subspace with cardinality `+ 1) while the above condition holds for a number

of matrices equal to (q`− q`−1)
∣∣∣Zq(`+1)×`;`

∣∣∣ (where the first factor is the number of choices of m̃ for each choice of (M′ |m)).

Thus the probability is q`−1(q−1)2

q`+1−1
≥ 1− 2

q
.

4. Private key Queries. When A asks a user’s private key query id, where id 6= id? then C answers with
(gd1 , gd2), computed as

gd1 = gF(id)t · g−
1

id−id?Wz gd2 = gS̃t · g−
1

id−id? zG

where t ∈R Z`q.
5. Final guess. C outputs the bit b′ ∈ {0, 1} sent by A.

It is straightforward to check that Game 0-b and Game 1-b are identical. Therefore,

Adv0 = Adv1

Game 2-b: This game only differs from Game 1-b in the probability distribution of the inputs of C. Now the
restrictions are ΨS1 = Ψ̃1S̃, rank(Ψ̃1) = rank(Ψ) = `, rank(S1) = rank(S̃) = `−1 and Span(Ψ) 6= Span(Ψ̃1),
which implies Span(Ψ) ∩ Span(Ψ̃1) = Span(ΨS1) = Span(Ψ̃1S̃). There is no restriction on z. As the inputs
of C in both games match the distributions in Lemma 7,

|Adv2 −Adv1| ≤ 4 (d1.71 log2 `e+ 1) AdvDLin(G) + 6/q

On the other hand we will see that Ψ̃1z 6∈ Span(Ψ) with probability 1− 1/q, and that this is enough to
perfectly hide the plaintexts contained in the ciphertexts returned by the encryption oracle to the adversary.

Given a nonzero vector u ∈ ker(Ψ>) and any subspace V such that Z`+1
q = ker(Ψ>)⊕ V , any (column)

vector r ∈ Z`+1
q can be uniquely written as r = v+µu, where v ∈ V and µ ∈ Zq. Actually, if v and µ are chosen

uniformly at random, then r is uniformly distributed in Z`+1
q . On the other hand, each ciphertext returned by

the encryption oracle can be written as (gc1 , gc1W, c) where c1 = λ>G+r>Ψ and c = gλ0T ·g
−r>Ψx
T = gλ0−r

>Ψ̃1z
T .

But r>Ψ = v>Ψ + µu>Ψ and u>Ψ = (Ψ>u)> = 0. Thus, the first two components of the ciphertext do
not depend on µ. However, r>Ψ̃1z = v>Ψ̃1z + µu>Ψ̃1z, and u>Ψ̃1z 6= 0 with probability 1 − 1/q, which

implies that c does depend on µ. Indeed, v>Ψ̃1 = 0 would imply ker(Ψ>) = ker(Ψ̃
>
1), which contradicts

Span(Ψ) 6= Span(Ψ̃1)
7. Moreover, u>Ψ̃1z = 0 can only happen if z lies on a specific (` − 1)-dimensional

subspace of Z`q, which occurs with probability 1/q.

Game 3-b: The only difference from Game 2-b is that the third component e of the challenge ciphertexts are
taken at random in GT . From the above explanation,

|Adv2 −Adv3| ≤ 2/q

as every ciphertext in Game 2-b uses its own random value µ. Obviously in Game 3-b all plaintexts are
perfectly hidden to the adversary and

Adv3 = 0

Summing all up

AdvKDM-ssID-CPA
Γ0(1)
A (λ, `, qe; t) = Adv0 = Adv1 ≤

≤ Adv2 + 4 (d1.71 log2 `e+ 1) AdvDLin(G; t′) + 6/q ≤

≤ 4 (d1.71 log2 `e+ 1) AdvDLin(G; t′) + 8 · 2−λ

This completes the proof of Theorem 2.

7 As Span(Ψ) is the orthogonal subspace (ker(Ψ>))⊥, and similarly Span(Ψ̃1) = (ker(Ψ̃
>
1))⊥, then if the two kernels are equal

so are Span(Ψ) and Span(Ψ̃1).

Theorem 3. If Γ0(1) is nqe-mKDM-ssID-CPA secure then Γ0(qe) is (n, qe)-mKDM-sID-CPA secure. In
particular, AdvKDM-sID-CPA(Γ0(1), λ, `, n, qe; t) ≤ 2n·2−λ+AdvKDM-ssID-CPA(Γ0(qe), λ, `, nqe; t

′).

Proof. Let An be an adversary against (n, qe)-mKDM-sID-CPA security of Γ0(qe). We show how to build
another adversary A1 against nqe-mKDM-ssID-CPA security of Γ0(1), which uses An as a subroutine and
has essentially the same advantage and running time.

Let Game 0-b, b ∈ {0, 1}, be the experiment ExpKDM-sID-CPA
b,Γ0(qe)
An (λ, `, n, qe) played by An and

a challenger Cn. Let us denote as Ωi,b the event that An outputs b′ = 1 in Game i-b, and let Advi =
|Pr[Ωi,0]− Pr[Ωi,1]|. Notice that an inequality |Pr[Ωi,b]− Pr[Ωi+1,b]| < ε implies |Advi −Advi+1| < 2ε.

In Game 1-b the public and secret keys are generated in a completely different way. The challenger Cn is

divided into two entities: A challenger C1 playing the experiment ExpKDM-ssID-CPA
b,Γ0(1)
A1

(λ, `, nqe) and
a simulator S which adapts the experiment to An. The simulator S works as follows:

1. Setup. S parses ibp = (λ, `, q,G, g,GT , gT , e(·, ·)) received from C1. Then S forwards ibp to An, selects an
identity id? and sends it to C1. Eventually, S receives from An nqe selected identities I? = (id11, . . . , id

qe
n).

2. Initialization. After receiving a master public key PK = (gΨ, gF(·), gF̃(·), gS̃, g−Ψx
T) from C1, S generates

n independent master public keys PK1, . . . , PKn, without knowing the corresponding secret keys, as
follows.
For each k = 1, . . . , n, S chooses a XOR mask ak ∈R {0, 1}`. Let (Mk,µk) be the corresponding affine
transformation. The k-th master public key is set to

PKk = PK-rand(id-transf(reencrXOR-PK(PK; Mk,µk);P
(k)); Lk,Rk,Q

(k)(·))

where for any k = 1, . . . , n, Lk ∈R GL`+1(Zq), Rk ∈R GL`(Zq), Q(k)(id) =
∑qe

j=0 Q
(k)
j idj is a random

(matrix) polynomial of degree at most qe, as described in PK-rand, and P (k)(id) = id?+
∏qe
j=1(id− id

j
k).

With probability at least 1− n/(q− 1), all PKk are valid master public keys for unknown random secret
keys, related in a known way. Now S stores Mk,µk,Lk,Rk,Q

(k), P (k) and sends all PKk to An.

Remark 3. One can show that the public key elements are given by the equations

gΨ(k)
= gLkΨMk , gS̃

(k)

= gS̃Rk ,
(
g−Ψx
T

)(k)
= g−LkΨx

T · e(gΨ, gµk)Lk

gF(k)(id) = g(MkF(P (k)(id))+Q(k)(id)S̃)Rk

gF̃
(k)

(id) = gLk(F̃(P (k)(id))+ΨMkQ
(k)(id))

Moreover, if (gd1 , gd2) is a valid secret key for PK and id(k) = P (k)(id) then (gMkd1+µk · gQ(k)(id)d2 , gd2)
is a valid secret secret key for PKk and id, and a ciphertext (gc1 , gc2 , c) valid for PK and id(k) = P (k)(id)

decrypts to the same plaintext as (gc1Mk , gc2 · gc1MkQ
(k)(id), c · e(gc1 , gµk)) for PKk and id. On the other

hand, observe that P (k)(idjk) = id?, for all k = 1, . . . , n and j = 1, . . . , qe.

3. Encryption Queries. When An asks an encryption query (k, f), where f ∈ F , S proceeds as follows.

Let us denote SKk = gx
(k)

T for k = 1, . . . , n. Assume f(SK1, . . . , SKn) = gλ0T ·
(
g
x
(1)
1
T

)λ11
· . . . ·

(
g
x
(n)
`
T

)λn`
.

Since x(k) = ak ⊕ x, then one can write x
(k)
j = akj ⊕ xj = akj + (1− 2akj)xj . Therefore S can efficiently

compile f as an affine function f̃ of x. Now S queries its own encryption oracle on (k, f̃), obtaining an
encryption (gc1 , gc2 , c) under PK and identity id?, that is also valid for PKk and idjkk , where jk counts

the queries made for k. So S simply has to reencrypt this ciphertext under PKk and identity idjkk and
send the resulting

PK-rand-ciph(reencrXOR-ciph(gc1 , gc2 , c; Mk,µk); Lk,Rk,Q
(k)(·))

4. Private key Queries. When An asks a user’s private key query (k, id), where id 6∈ {id1k, . . . , id
qe
k }, S

forwards the query to its own oracle, asking a user’s private key for identity P (k)(id), which is different from
id?. If the oracle answer is (gd1 , gd2), then S computes and sends PK-rand-user(reencr-user(gd1 , gd2 ; Mk,µk);
Lk,Rk,Q

(k)(·))
5. Final guess. Output the bit b′ ∈ {0, 1} sent by An.

The simulation is perfect except when the keys are not correctly generated (because of PK-rand),
which happens with negligible probability at most n/(q − 1). Therefore, |Adv0 −Adv1| ≤ 2n/(q − 1) and

AdvKDM-sID-CPA
Γ0(qe)
An (λ, `, n, qe) = Adv0 ≤ 2n/(q−1)+Adv1 ≤ 2n·2−λ+AdvKDM-ssID-CPA

Γ0(1)
A1

(λ,
`, nqe) ut

Corollary 2. From Theorems 2 and 3, we obtain

AdvKDM-sID-CPA(Γ0(qe), λ, `, n, qe; t) ≤ 2(n+ 4)2−λ + 4 (d1.71 log2 `e+ 1) AdvDLin(G; t′)

Note that the loss factor in the reduction is constant with respect to the number n of master keys
and the number qe of allowed queries. The factor only grows logarithmically on the security parameter `.
One disadvantage of our schemes is that the size of the public key is proportional to qe. When the CHK
transformation is applied to our IBE schemes together with Mohassel’s one-time signature scheme [25], the
resulting public key schemes achieve KDM-CCA security, with a reduction loss factor that does not depend
on n nor qe. In contrast, the loss factor in the security reduction for the KDM-CCA secure scheme in [13] is
linear in the number qe of encryption queries.

4.3 Improving Efficiency, Γ2

In this section, the size of the master public key of Γ0(qe) is (drastically) reduced without any noticeable
effect in the security of the scheme. The resulting scheme Γ2(qe) is described below.

Γ2.Stp(1λ): identical to Γ0.Stp(1λ), which leads to ibp = (λ, `, q,G, g,GT , gT , e(·, ·)), where still ` > 4λ.

Γ2.Mkgibp(): PK = (gΨ, gF(·), gF̃(·), gS̃, g−Psix
T) and SK = gxT , where x ∈R {0, 1}`, Ψ ∈R Zq2×`;2, S̃ ∈R

Zq`×2;2, F(id) = T(id)S̃ ∈ Z`×2q , F̃(id) = ΨT(id) ∈ Z2×`
q for a random (matrix) polynomial T(id) =∑qe

j=0 Tjid
j , with T0, . . . ,Tqe−1 ∈R Zq`×` and Tqe ∈ GL`(Zq). Clearly, ΨF(id) =

mathbftF (id)S̃ holds again.

Γ2.Ukgibp(SK, id): for an identity id the secret key sk[id] = (gd1 , gd2) ∈ G`×G` is generated as gd1 = gx·gF(id)t

and gd2 = gS̃t, where t ∈R Z2
q and gx is computed component by component from SK = gxT . The user can

verify the validity of the secret key by checking the equation g−Ψx
T · e(gΨ, gd1) = e(gtF(id), gd2).

Γ2.Encibp(PK, id,m): to encrypt a message m ∈ GT for an identity id and master public key PK, a row
vector r ∈R Z2

q is chosen and the ciphertext C = (gc1 , gc2 , c) ∈ G` × G` × GT is computed as gc1 = grΨ,

gc2 = grtF(id) and c = m · g−rΨxT . The ciphertext fulfils the equation e(gc1 , gF(id)) = e(gc2 , gS̃).

Γ2.Decibp(sk[id], c): let C = (gc1 , gc2 , c) be a ciphertext for an identity id. The user who owns sk[id] =
(gd1 , gd2) recovers m = c · e(gc1 , gd1)/e(gc2 , gd2).

The main differences with respect to Γ0 are in Γ2.Mkgibp(), because now the (matrix) polynomials F(·), F̃(·)
are generated in a slightly different way, and all matrices in PK have now 2` elements, instead of `2 or `2 + `
elements in Γ0. This means the length of PK is reduced by a factor `/2 > 2λ.

Theorem 4. Under the assumption that the Rank problem is hard, if Γ0(qe) is (n, qe)-mKDM-sID-CPA se-
cure then Γ2 is also (n, qe)-mKDM-sID-CPA secure. In particular, AdvKDM-sID-CPA(Γ2(qe), λ, `, n, qe; t) ≤
4 d1.71 log2(`+ 1)e AdvDLin(G; t′) + 4n · 2−λ + AdvKDM-sID-CPA(Γ0(qe), λ, `, n, qe; t

′′)

To prove this theorem, we define a new scheme Γ1, which can be seen as an intermediate step between Γ0
and Γ2. With respect to Γ0, the number of rows of both Ψ and the (matrix) coefficients of F̃(·) is reduced
from `+ 1 to 2, and the size of g−Psix

T is reduced accordingly. The main difference with respect to Γ2 is that

the number of columns of both S̃ and the (matrix) coefficients of F(·) is reduced from ` in Γ1 to 2 in Γ2.

Γ1.Stp(1λ): identical to Γ0.Stp(1λ).

Γ1.Mkgibp(): as in Γ0(qe), PK = (gΨ, gF(·), gF̃(·), gS̃, g−Psix
T) and SK = gxT , where S̃ ∈R GL`(Zq), x ∈R {0, 1}`

and the (matrix) coefficients of F(·) are S0, . . . ,Sqe−1 ∈R Zq`×`, Sqe ∈R GL`(Zq). But now Ψ ∈R Zq2×`;2,
g−Psix
T ∈ GT 2 and F̃(·) is computed accordingly. Namely, Ψ̃j = ΨSjS̃

−1
∈ Zq2×` for j = 0, . . . , qe, so that

ΨF(id) = F̃(id)S̃.

Γ1.Ukgibp(SK, id): identical to Γ0.Ukgibp(SK, id).

Γ1.Encibp(PK, id,m): to encrypt a message m ∈ GT for an identity id ∈ Zq, a row vector r ∈R Z2
q is chosen

and the ciphertext C = (gc1 , gc2 , c) ∈ G`×G`×GT is computed as gc1 = grΨ, gc2 = grtF(id) and c = m·g−rΨxT .

The ciphertext fulfils the equation e(gc1 , gF(id)) = e(gc2 , gS̃), so its consistency with respect to identity id
can be publicly verified.

Γ1.Decibp(sk[id], c): identical to Γ0.Decibp(sk[id], c).

The proof of Theorem 4 directly follows from Propositions 3 and 4 below.

Proposition 3. Under the assumption that the Rank problem is hard, if Γ0(qe) is (n, qe)-mKDM-sID-CPA
secure then Γ1(qe) is also (n, qe)-mKDM-sID-CPA secure. In particular,

AdvKDM-sID-CPA(Γ1(qe), λ, `, n, qe; t) ≤ 2 d1.71 log2(`+ 1)eAdvDLin(G; t′) + 2n · 2−λ+

+AdvKDM-sID-CPA(Γ0(qe), λ, `, n, qe; t
′′)

Proof. The proof is also structured as a sequence of games played by a challenger C1 and an (n, qe)-mKDM-
sID-CPA adversary A1 against Γ1(qe). Games 0-b, b ∈ {0, 1}, are exactly the two (n, qe)-mKDM-sID-CPA
security games defined in section 3.1. Let us denote as Ωi,b the event that A1 outputs b′ = 1 in Game i-b,
and let Advi = |Pr[Ωi,0]− Pr[Ωi,1]|. We will show in the last game a (n, qe)-mKDM-sID-CPA adversary A0

against Γ0(qe) with essentially the same advantage and running time.

Game 1-b: The challenger C1 generates the n independent master keys PK1, . . . , PKn and SK1, . . . , SKn in
a different but almost equivalent way. C1 generates n independent master public and secret keys for Γ0(qe)
instead of Γ1(qe). Then, it picks some random matrices H ∈R Zq(`+1)×(`+1);2 and L1, . . . ,Ln ∈R Zq2×(`+1);2,

and computes the master public keys for Γ1(qe) by just replacing gΨ(k)
and gΨ̃

(k)
j respectively with gLkHΨ(k)

and gLkHΨ̃
(k)
j , for j = 0, . . . , qe. Finally,

(
g−Psix
T

)(k)
= e(g−Ψ(k)

, gx
(k)

) is replaced with e(g−LkHΨ(k)
, gx

(k)
).

Observe that C1 needs to know gΨ(k)
and the coefficients gΨ̃

(k)
j (which it learns from the key generation

of Γ0(qe)). User key queries are handled as in Game 0-b, but the way target ciphertexts are computed is

changed. Namely, each ciphertext (gc1 , gc2 , c) is computed as gc1 = gr
′HΨ(k)

, gc2 = g
r′H

(∑qe
j=0mathbftPsi

(k)
j idj

)
and c = m · g−r′HPsi(k)x(k)

T , where now r′ ∈R Z`+1
q .

Let us see that with overwhelming probability the generated keys are valid keys for Γ1(qe) and with the

same distribution as in Game 0-b. Actually, it suffices to check whether gLkHΨ(k)
has the right distribution,

since the other elements in the master public key are generated exactly the same way as in Game 0-b.

Observe that rank(LkHΨ(k)) = 2 with probability at least 1 − 1/(q − 1),8 and the randomness in Lk and
Ψ(k) guarantees the uniformity of the resulting matrix in Zq2×`;2, and its independence of the other elements
in the master public keys. Indeed, by Lemma 3, Lk could be computed from a fixed L ∈ Zq2×(`+1);2 as
Lk = UkLVk, where Uk ∈R GL2(Zq) and Vk ∈R GL`+1(Zq). And similarly Ψ(k) = WkΨXk, where Ψ ∈
Zq`+1×`;`, Wk ∈R GL`+1(Zq) and Xk ∈R GL`(Zq). Therefore, for each choice of Vk, L, H, Wk, Ψ such that
rank(LVkHWkΨ) = 2, due to the randomness in Uk and Xk, LkHΨ(k) is uniformly distributed in Zq2×`;2.

Furthermore, rank(LkH) = rank(H) = 2 implies Span(H>L>k) = Span(H>). Therefore, the probability
distributions of rLkH for r ∈R Z2

q and r′H for r′ ∈R Z`+1
q are the same, and the simulation of the encryption

oracle is perfect (assuming rank(LkHΨ(k)) = 2 as above). Then, |Adv0 −Adv1| ≤ 2n/(q − 1).

Game 2-b: The same as Game 1-b but now H ∈ GL`+1(Zq). From Games 1-b and 2-b one can build a
distinguisher for Rank(G, `+ 1, `+ 1, 2, `+ 1) problem. Therefore,

|Adv1 −Adv2| ≤ 2 d1.71 log2(`+ 1)eAdvDLin(G)

Game 3-b: The same as Game 2-b but now H = I`+1 (that is, H is removed). However, Games 2-b and 3-
b are identical, since the distribution of keys and ciphertexts remain unchanged. Indeed, the public key

elements are now computed as gLkΨ
(k)

, gLkΨ̃
(k)
j and e(g−LkΨ

(k)
, gx

(k)
). The target ciphertexts (gc1 , gc2 , c) are

computed exactly as in Γ0(qe). In other words, gc1 = gr
′Ψ(k)

, gc2 = gr
′ F̃

(k)
(id) and c = m · g−r′Psi(k)x(k)

T ,
where r′ ∈R Z`+1

q . Thus, stepping from Game 2-b to Game 3-b is just replacing LkH with Lk and r′H with
r′. Therefore, Adv2 = Adv3.

Game 4-b: In this game, a challenger C plays with an adversary A0 against the scheme Γ0(qe), which uses A1

as a subroutine. Basically, A0 picks random matrices L1, . . . ,Ln ∈R Zq2×(`+1);2 and forwards all the messages

in either direction, except that the master public key elements gΨ(k)
, gF̃

(k)

and
(
g−Psix
T

)(k)
are respectively

replaced with gLkΨ
(k)

, gLkF̃
(k)

and
(
g−LkPsix
T

)(k)
. Notice that A0 does not use any secret key, and the user

key and encryption queries by A1 are directly answered by the oracles given to A0. Therefore,

Adv4 = AdvKDM-sID-CPA
Γ0(qe)
A0

(λ, `, n, qe)

Since Games 3-b and 4-b are also identical, Adv3 = Adv4. and

AdvKDM-sID-CPA
Γ1(qe)
A1

(λ, `, n, qe) = Adv0 ≤ 2 d1.71 log2(`+ 1)eAdvDLin + 2n/(q − 1) + AdvA0 ≤

= 2 d1.71 log2(`+ 1)eAdvDLin(G, t′) + 2n · 2−λ + AdvKDM-sID-CPA
Γ0(qe)
A0

(λ, `, n, qe)

ut

The following proposition (and its proof) verbosely follows the previous one.

Proposition 4. Under the assumption that the Rank problem is hard, if Γ1(qe) is (n, qe)-mKDM-sID-CPA
secure then Γ2(qe) is also (n, qe)-mKDM-sID-CPA secure. In particular,

AdvKDM-sID-CPA(Γ2(qe), λ, `, n, qe; t) ≤ 2 d1.71 log2 `eAdvDLin(G; t′) + 2n · 2−λ+

+AdvKDM-sID-CPA(Γ1(qe), λ, `, n, qe; t
′′)

8 rank(LkHΨ(k)) = 2 if and only if Span(L>k) ∩ ker(H>) = {0} and Span(H>) ∩ ker((Ψ(k))>) = {0}, which are independent

outcomes. By a counting argument, the probability of the first outcome is q2`−2(q2−1)(q2−q)
(q`+1−1)(q`+1−q) > 1− q−1 − q−2, while the second

is q`+1−q2
q`+1−1

> 1− q−(`−1). Thus, if ` ≥ 4 the product is greater than 1− 1
q−1

.

Proof. The proof is also structured as a sequence of games played by a challenger C2 and an (n, qe)-mKDM-
sID-CPA adversary A2 against Γ2(qe). Games 0-b, b ∈ {0, 1}, are exactly the two (n, qe)-mKDM-sID-CPA
security games defined in section 3.1. Let us denote as Ωi,b the event that A2 outputs b′ = 1 in Game i-b,
and let Advi = |Pr[Ωi,0]− Pr[Ωi,1]|. We will show in the last game a (n, qe)-mKDM-sID-CPA adversary A1

against Γ1(qe) with essentially the same advantage and running time.

Game 1-b: The challenger C2 generates the n independent master keys PK1, . . . , PKn and SK1, . . . , SKn in
a different but almost equivalent way. C2 generates n independent master public and secret keys for Γ1(qe)
instead of Γ2(qe). Then, it picks some random matrices H ∈R Zq`×`;2 and R1, . . . ,Rn ∈R Zq`×2;2, and

computes the public keys for Γ2 by just replacing the elements gS̃
(k)

and gS
(k)
j respectively with gS̃

(k)
HRk and

gS
(k)
j HRk , for j = 0, . . . , qe. Observe that C2 needs to know gS̃

(k)

and all the coefficient matrices gS
(k)
j (which

it learns from the key generation of Γ1(qe)). Encryption queries are handled as in Game 0-b, but the way
user keys are computed is changed. Namely, user key (gd1 , gd2) for identity id and master public key PKk is

computed as gd1 = gx
(k) · g

(∑qe
j=0 S

(k)
j idj

)
Ht′

and gd2 = gS̃
(k)

Ht′ , where now t′ ∈R Z`q. Still C2 needs the master

secret keys gx
(k)

T .
Let us see that with overwhelming probability the generated keys are valid keys for Γ2(qe) and with the

same distribution as in Game 0-b. Actually, it suffices to check whether gS̃
(k)

HRk has the right distribution,
since the other elements in the master public keys are generated in an equivalent way as in Game 0-b. Indeed,

for every j = 0, . . . , qe − 1 one can define Tj
(k) = Sj

(k)(S̃
(k)

)−1 ∈ Zq`×`, and Tqe
(k) = Sqe

(k)(S̃
(k)

)−1 ∈
GL`(Zq), which are independent and uniformly distributed. Therefore, Ψ̃j

(k)
= Ψ(k)Tj

(k) and S
(k)
j HRk =

T
(k)
j S̃

(k)
HRk, for all j.

Observe that rank(S̃
(k)

HRk) = 2 with probability at least 1− 1/(q− 1),9 and the randomness in Rk and

S̃
(k)

guarantees the uniformity of the resulting matrix in Zq`×2;2, and its independence of the other elements
in the master public keys. Indeed, from Lemma 3 Rk could be computed from a fixed R ∈ Zq`×2;2 as Rk =

UkRVk, where Uk ∈R GL`(Zq) and Vk ∈R GL2(Zq). And similarly S̃
(k)

= WkS̃, where S̃,Wk ∈R GL`(Zq).
Therefore, for each choice of Uk, R, H, and S̃ such that rank(S̃HUkR) = 2, due to the randomness in Vk

and Wk, S̃
(k)

HRk is uniformly distributed in Zq`×2;2.
Furthermore, rank(HRk) = rank(H) = 2 implies Span(HRk) = Span(H). Therefore, the probability

distributions of HRkt for t ∈R Z2
q and Ht′ for t′ ∈R Z`q are the same, and the simulation of the user key

generation oracle is perfect (assuming rank(S̃
(k)

HRk) = 2 as above). Then, |Adv0 −Adv1| ≤ 2n/(q − 1).

Game 2-b: The same as Game 1-b but now H ∈ GL`(Zq). From Games 1-b and 2-b one can build a distinguisher
for the Rank(G, `, `, 2, `) problem. Therefore,

|Adv1 −Adv2| ≤ 2 d1.71 log2 `eAdvDLin(G)

Game 3-b: The same as Game 2-b but now H = I` (that is, H is removed). However, Games 2-b and 3-b are
identical, since the distribution of keys and ciphertexts remain unchanged. Indeed, the public key elements

are now computed as gS̃
(k)

Rk and gF(k)Rk , and user secret keys (gd1 , gd2) are computed exactly as in Γ1(qe);

namely, gd1 = gx
(k) · gF(k)(id)t′ and gd2 = gS̃

(k)
t′ , with t′ ∈R Z`q. Thus, stepping from Game 2-b to Game 3-b

is just replacing HRk by Rk and Ht′ by t′. Therefore, Adv2 = Adv3.

Game 4-b: In this game, a challenger C1 plays with an adversary A1 against the scheme Γ1(qe), which uses A2

as a subroutine. Basically, A1 picks random matrices R1, . . . ,Rk ∈R Zq`×2;2 and forwards all the messages in

either direction, except that the master public key elements gS̃
(k)

and gF(k)(·) are respectively replaced with

9 rank(S̃
(k)

HRk) = rank(HRk) since S̃
(k)

is invertible, and rank(HRk) = 2 if and only if Span(Rk) ∩ ker(H) = {0}. By a

counting argument, the probability of that outcome is q2`−4(q2−1)(q2−q)
(q`−1)(q`−q) > 1− q−1 − q−2 > 1− 1

q−1
.

gS̃
(k)

Rk and gF(k)(·)Rk . Notice that A1 does not use any secret key, and the user key and encryption queries
by A2 are directly answered by the oracles given to A1. Therefore,

Adv4 = AdvKDM-sID-CPA
Γ1(qe)
A1

(λ, `, n, qe)

Since Games 3-b and 4-b are also identical, Adv3 = Adv4. and

AdvKDM-sID-CPA
Γ2(qe)
A2

(λ, `, n, qe) = Adv0 ≤ 2 d1.71 log2 `eAdvDLin(G) + 2n/(q − 1) + AdvA1 ≤

= 2 d1.71 log2 `eAdvDLin(G) + 2n · 2−λ + AdvKDM-sID-CPAΓ1

A1(qe)
(λ, `, n, qe)

ut

5 Open problems

We enumerate some problems for future work. Probably the most prominent is to build mKDM-sID-CPA
secure IBE schemes where the master public key and ciphertext sizes do not depend on the number of challenge
queries qe. Alternatively, user-key dependent chosen plaintext secure IBE schemes where the master public
key, ciphertext and user key sizes do not depend on the number of challenge queries n is also an interesting
research direction [2].

Finally finding an efficient IND-CCA encryption scheme under a static assumption whose security reduc-
tion does not depend on the number of challenge queries remains an open question.

References

1. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational soundness of formal encryp-
tion). J. Cryptology, 15(2):103–127, 2002.

2. Jacob Alperin-Sheriff and Chris Peikert. Circular and kdm security for identity-based encryption. In PKC 2012. To appear,
available at www.cc.gatech.edu/grads/j/jmas6/pubs/kdm-ibe.pdf.

3. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure encryption
based on hard learning problems. In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 595–618. Springer, 2009.

4. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In Bart Preneel, editor, EUROCRYPT, volume 1807 of LNCS, pages 259–274. Springer, 2000.

5. John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of key-dependent messages.
In Kaisa Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography, volume 2595 of LNCS, pages 62–75. Springer,
2002.

6. Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random oracles. In Cachin and
Camenisch [12], pages 223–238.

7. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In Matthew K. Franklin, editor, CRYPTO, volume
3152 of LNCS, pages 41–55. Springer, 2004.

8. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In Joe Kilian, editor, CRYPTO,
volume 2139 of LNCS, pages 213–229. Springer, 2001.

9. Dan Boneh, Shai Halevi, Michael Hamburg, and Rafail Ostrovsky. Circular-secure encryption from decision diffie-hellman.
In David Wagner, editor, CRYPTO, volume 5157 of LNCS, pages 108–125. Springer, 2008.

10. Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing with short ciphertexts and private keys.
In Serge Vaudenay, editor, EUROCRYPT, volume 4004 of LNCS, pages 573–592. Springer, 2006.

11. Zvika Brakerski and Shafi Goldwasser. Circular and leakage resilient public-key encryption under subgroup indistinguisha-
bility - (or: Quadratic residuosity strikes back). In Tal Rabin, editor, CRYPTO, volume 6223 of LNCS, pages 1–20. Springer,
2010.

12. Christian Cachin and Jan Camenisch, editors. Advances in Cryptology - EUROCRYPT 2004, International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027
of LNCS. Springer, 2004.

13. Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks. In Antoine Joux, editor, EUROCRYPT, volume 5479 of LNCS,
pages 351–368. Springer, 2009.

14. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with optional
anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT, volume 2045 of LNCS, pages 93–118. Springer, 2001.

15. Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. In Eli Biham, editor,
EUROCRYPT, volume 2656 of LNCS, pages 255–271. Springer, 2003.

16. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In Cachin and
Camenisch [12], pages 207–222.

17. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended abstract). In STOC, pages 542–552.
ACM, 1991.

18. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.
19. Matthew Green and Susan Hohenberger. Practical adaptive oblivious transfer from simple assumptions. In Yuval Ishai,

editor, TCC, volume 6597 of LNCS, pages 347–363. Springer, 2011.
20. Dennis Hofheinz. Circular chosen-ciphertext security with compact ciphertexts. Cryptology ePrint Archive, Report 2012/150,

2012. http://eprint.iacr.org/.
21. Dennis Hofheinz and Dominique Unruh. Towards key-dependent message security in the standard model. In Nigel P. Smart,

editor, EUROCRYPT, volume 4965 of LNCS, pages 108–126. Springer, 2008.
22. Fabien Laguillaumie, Pascal Paillier, and Damien Vergnaud. Universally convertible directed signatures. In Bimal K. Roy,

editor, ASIACRYPT, volume 3788 of LNCS, pages 682–701. Springer, 2005.
23. Tal Malkin, Isamu Teranishi, and Moti Yung. Efficient circuit-size independent public key encryption with kdm security. In

Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of LNCS, pages 507–526. Springer, 2011.
24. Alfred Menezes and Nigel Smart. Security of signature schemes in a multi-user setting. Des. Codes Cryptography, 33:261–274,

November 2004.
25. Payman Mohassel. One-time signatures and chameleon hash functions. In Alex Biryukov, Guang Gong, and Douglas R.

Stinson, editors, Selected Areas in Cryptography, volume 6544 of LNCS, pages 302–319. Springer, 2010.
26. Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Shai Halevi, editor, CRYPTO, volume 5677

of LNCS, pages 18–35. Springer, 2009.
27. Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In

Joan Feigenbaum, editor, CRYPTO, volume 576 of LNCS, pages 433–444. Springer, 1991.
28. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.

