
Toward Practical Group Encryption

Laila El Aimani and Marc Joye

Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sevigné Cedex, France

Abstract. A group encryption scheme allows anyone to form a ciphertext for a given group member
while keeping the receiver’s identity private. At the same time, the encryptor is capable of proving that
some (anonymous) group member is able to decrypt the ciphertext and, optionally, that the corresponding
plaintext satisfies some a priori relation (to prevent sending bogus messages). Finally, in case of a dispute,
the identity of the intended receiver can be recovered by a designated authority. In this paper, we abstract a
generic approach to construct group encryption schemes. We also introduce several new implementation
tricks. As a result, we obtain group encryption schemes that significantly improve the state of the art.
Both interactive and non-interactive constructions are considered.

Key words: Group encryption, Canetti-Halevi-Katz paradigm, homomorphic encryption, structure-
preserving signatures, (non)-interactive zero-knowledge.

1 Introduction

Basically, group signature schemes [13] allow a registered group member to conceal her identity when
issuing digital signatures. However, any group signature can be opened by a designated group authority to
reveal the signature’s originator. In a dual way, group encryption schemes [23] provide revocable anonymity
to the ciphertext’s receiver. More specifically, a group encryption scheme is a public-key encryption scheme
augmented with special properties: (1) the receiver’s identity is hidden among the set of group members,
(2) an opening authority is able to uncover the receiver’s identity if need be, and (3) the ciphertext’s originator
is able to convince a verifier that (3-a) the ciphertext can be decrypted by a group member, (3-b) the opening
authority can open the ciphertext and revoke the anonymity, and (3-c) the corresponding plaintext satisfies
some a priori relation.

The additional features enjoyed by group encryption schemes make them suitable for a number of
privacy-aware applications. One of them resides in secure oblivious retriever storage where anonymous
credentials may move between computing elements (computer, mobile unit, etc...). Asynchronous transfer,
which does not require the presence of all devices (subject to the transfer) at the same time, may resort to an
untrusted server for storing temporarily the encrypted credentials. Group encryption can be employed in
implementing such a storage server where it is guaranteed that (1) the server stores well formed encrypted
credentials; (2) the credentials have a legitimate anonymous retriever; (3) if necessary, an authority is able
to pin down the identity of the retriever.

Further scenarios where group encryption can be utilized are described in [23, 12]. It is worth noting
that when the opening functionality is not needed in these applications, one can thrive on a closely related
primitive titled ring encryption [25].

Related work The concept of group encryption was first formalized by Kiayias, Tsiounis, and Yung [23]. They
also provide a modular design to build such schemes along with a concrete instantiation. Their realization
achieves a ciphertext size of 2.4 kB and a well-formedness proof of approximately 70 kB for an 80-bit security
level and a 2−50 soundness error. The main criticism to the proposal lies in entailing interaction with the
verifier in order to prove the validity of the ciphertext. In fact, interaction can be cumbersome in situations
where the encryptor needs to run the proof several times with different verifiers, as this would require
remembering all the random coins used to form the ciphertext.

This shortcoming was addressed in subsequent works. First, Qin et al. [27] suggested a closely related
primitive with non-interactive proofs of well-formedness of the ciphertext using the random oracle idealiza-
tion. Then, Cathalo, Libert, and Yung [12] provided the first non-interactive realization of group encryption
in the standard model. Their ciphertext and proof are also significantly shorter than those of [23] (the
ciphertext size is 1.25 kB and the proof size is 16.125 kB for a 128-bit security level). However, the dark side
of this non-interactive proposal resides in the expensive cost of the proof verification (several thousands of
pairing evaluations) due to the recourse to the Groth-Sahai [21] proof system.

To summarize the state of the art in group encryption, there is on the one hand an interactive proposal
with a rather consequent size of the ciphertext and its proof of well-formedness, but which has the merit
of having an efficient verification of this proof, and on the other hand, there is a non-interactive realization
which significantly reduces the size of the ciphertext and its validity proof, but which is characterized by
its computationally demanding proof verification that renders it fairly impractical.

It is would be nice to combine the best of the two works and come up with a scheme with short ciphertexts
and proofs, and where both the interactive and non-interactive setting are efficiently supported. This is the
main contribution of this paper.

Contributions and underlying ideas We propose a new design strategy for group encryption which significantly
improves the performance. Two main ideas underlay our conception.

First, instead of assembling highly secure components, we start with weaker — and so more efficient —
primitives to get a group encryption scheme secure in a weak sense. The so-obtained scheme is next
converted with a generic transform into a fully-secure group encryption scheme. In addition to efficiency,
starting with weaker components also brings diversity and permits to develop further schemes, under
various security assumptions. As a by-product, we show that the transform used to upgrade the security
in group encryption applies to tag-based encryption and allows also to uplift the security in this primitive
while preserving the verifiability properties.

Second, we encrypt only an alias of the receiver’s public key in order to realize the opening functionality,
leading consequently to important extra savings in both size and computation. In fact, the prior works [23,
12] include in the ciphertext an encryption (using the opening authority’s public key) of the receiver’s
public key in order to implement the opening function. Since a public key often consists of a vector of
group elements, [23, 12] use a CCA secure encryption to encrypt each component of the key. We remark
that such an operation is unnecessary as the public keys are all maintained in a public database. Therefore,
encrypting only an alias of the key (which will be recorded along with the key in the database) is enough
for this functionality. The opening authority needs then to execute the extra step of looking up the database
for the key corresponding to the alias, however we note that the recourse to the opening function is done
only in case of disputes and occurs thus very rarely.

Our new generic construction accepts many practical instantiations which support both interactive and
non-interactive validity proofs. For instance, we get for a 128-bit security level, a concrete realization in the
standard model with a ciphertext size of 0.4 kB, an interactive proof of 1 kB, a non-interactive proof of 2 kB
which requires 325 pairing evaluations (vs 3895 in [12]) for the verification.

Outline of the paper The rest of this paper is organized as follows. The next section formally defines the
syntax and the model of a secure group encryption scheme. Section 3 presents a generic construction to
build group encryption schemes. It also provides a transform to turn a weakly-secure group encryption
scheme into a fully-secure one. Subsequently, sufficient conditions for practical realizations and a detailed
instantiation are described in Section 4. Finally, the paper concludes in Section 5.

2 Group Encryption: Syntax and Security Model

In this section, we review the formal definition of group encryption, as introduced in [23]. We also present
the corresponding security notions.

2

It is useful to introduce some notation. For a two-party protocol between A and B, we represent its exe-
cution as 〈outputA | outputB〉 ← 〈A(inputA),B(inputB)〉(common-input). The security properties are described
through experiments where the adversary is given access to oracles. We writeAoracle(·) to denote that adver-

saryA has access to oracle oracle(·). When a query is not allowed, we use the symbol ¬:Aoracle
¬(some query)(·).

2.1 Syntax

A group encryption scheme consists of the following algorithms/protocols:

setup(1κ) On input a security parameter κ, this probabilistic algorithm generates the public parameters
param of the scheme. Although not always explicitly mentioned, param will serve as an input to all the
algorithms/protocols that follow.

(Gr,R, sampleR) This tuple of algorithms is part of the setup procedure and is needed for verifiability; i.e.,
proving that the decryption of a certain ciphertext satisfies a given relation. In this sense, Gr generates
the key pair (pkR, skR) of the relation R from a security parameter. Similarly to [23, 12], skR can be empty
if the relation R is publicly sampleable (e.g., the Diffie-Hellman relation in bilinear groups). On input
the key pair of the relation R, algorithm sampleR produces a pair (x,w) consisting of an instance x and
a witness w for the relation R. The polynomial-time testing procedure R(x,w) returns 1 iff (x,w) belongs
to the relation based on the public parameter pkR.

keygenE(param) This probabilistic algorithm outputs the key pair (pkE, skE) of the entity E in the system; E
can either be the group manager GM who manages the set of receivers (group members), or the opening
authority OA that recovers the receiver’s identity from a given ciphertext, or a group member User who
receives ciphertexts.

join = 〈JUser(param),GM(skGM)〉(pkGM) This is an interactive protocol between GM and the potential joining
group member JUser. The latter sends her public key pk to GM and prospectively proves the correctness
of her key, whereas GM issues (at the end of the protocol) a certificate certpk that marks the effectiveness
of the user’s membership. GM stores additionally the pair (pk, certpk) in a public directory database.

encrypt(pkGM, pkOA, pk,w, L) On input the respective public keys pkGM and pkOA of GM and OA, the (certified)
public key pk of the receiver, this algorithm encrypts the witness w to produce a ciphertextψ for a certain
label L (which specifies the “context” of the encryption).

prove = 〈P(w, coinsψ),V(param)〉(pkGM, pkOA, pkR, x, ψ, L) This is an interactive protocol between a sender P
(acting as the prover) who has generated the ciphertextψ and any verifierV; in this protocol, the sender
uses the random coins used to produce ψ in order to prove that there is a group member whose key
is registered in database and who is capable of decrypting ψ, under label L, and recovering a witness
w such that (x,w) ∈ R. At the end of the protocol, the verifier outputs 1 if the proof is accepted, and 0
otherwise.

decrypt(sk, ψ, L) On input the private key sk of the group user, this algorithm decrypts the ciphertext ψ,
under label L, and outputs the witness w (or a rejection symbol ⊥).

open(skOA, ψ, L) On input the private key skOA of OA and a ciphertext ψ with corresponding label L, this
algorithm outputs the public key pk under which ψ was created.

Remark 1. As aforementioned, the verifiability of encryption is optional. If verifiability is not desired, the
relation R can be set to the trivial relation that includes any string of fixed size as a witness.

We require the scheme to be correct, that is, to properly offer the desired features for group encryption.
More formally, we require for a group encryption scheme that the following “correctness game” returns 1
with overwhelming probability.

Experiment Expcorrectness(κ)

1. param← setup(1κ); (pkR, skR)← Gr(1
κ); (x,w)← sampleR(pkR, skR);

2. (pkGM, skGM)← keygenGM(1κ, param); (pkOA, skOA)← keygenOA(1κ, param);

3

3. 〈pk, sk, certpk | pk, certpk〉 ← 〈JUser(param),GM(skGM)〉(pkGM);
4. (ψ, coinsψ)← encrypt(pkGM, pkOA, pk,w, L);
5. 〈done | out1〉 ← 〈P(w, coinsψ),V(param)〉(pkGM, pkOA, pkR, x, ψ, L);
6. out2 ← (pk = open(skOA, ψ, L));
7. out3 ← (w = decrypt(sk, ψ, L));
8. If (out1 = out2 = out3 = 1) return 1 else return 0.

2.2 Security model

Message security The message security captures the property that an adversary cannot learn any infor-
mation whatsoever on a message from an encryption of it. Strong security guarantees require that this
holds true even when the adversary has adaptive access to a decryption oracle. For group encryption, it is
also assumed that the adversary may control the group manager and the opening authority, and that he
has access to the prove oracle in the challenge phase. We let IND-CCA denote the corresponding security
notion. There is a weaker notion, denoted IND-sl-wCCA, where the adversary commits to the target label
beforehand (selective-label attacks) and is not allowed to issue decryption queries involving the target label
(weak chosen-ciphertext attacks).

Formally, a group encryption scheme meets the IND-sl-wCCA notion if the success probability of any
polynomial-time adversary A to distinguish among encryptions of a chosen message and of a random
message is at most negligibly better (in security parameter κ) than 1/2 in the experiment that follows. In
this experiment we use the following notation (similar to that in [23, 12].

– decrypt¬(·,L)(sk, ·): is a stateless decryption oracle which is restricted not to decrypt ciphertexts w.r.t. the
label L.

– CHb
ror(1

κ, pk,w, L): is a real-or random challenge oracle that is only queried once. It returns ψ, coinsψ
such that ψ ← encrypt(pkGM, pkOA, pk, certpk,w, L) if b = 1, and ψ ← encrypt(pkGM, pkOA, pk, certpk,w

′, L)
otherwise, where w′ is a random plaintext chosen uniformy in the space of messages of length 1κ. In
both cases coinsψ denote the random coins used to produce ψ.

– proveb
P,P′

(pkGM, pkOA, pkR, x, L, ψ): this a stateful oracle that the adversary can query on multiple occa-

sions. If b = 1, it runs the real proverP (of the proveprocedure) using the private inputs w, coinsψ, pk, certpk

to produce a real proof (the common input being pkGM, pkOA, pkR, x, L, ψ). If b = 0, the oracle runs a sim-
ulator P′ on the same common input pkGM, pkOA, pkR, x, L, ψ, but which is deprived from the private
input w, coinsψ (P′ may have access to pk, certpk), to generate a simulated proof. As pointed in [23, 12],
designing an efficient simulator P′ is part of proving the security property.

Experiment ExpIND-sl-wCCA
A (κ)

1. param← setup(1κ);
2. (aux, pkGM, pkOA, L)←A(param);
3. 〈pk, sk, certpk | aux, pk, certpk〉 ← 〈JUser(param),A(aux)〉(pkGM);

4. (aux, x,w, pkR)←Adecrypt
¬(·,L)(sk,·)(aux); ⊲ Find stage

5. If (x,w) < R then abort;

6. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

ror(1
κ, pk,w, L);

7. b⋆ ←Aprove
b
P,P′

(pkGM ,pkOA,pkR,x,L,ψ),decrypt¬(·,L)(sk,·)(aux, ψ); ⊲ Guess stage

8. If (b = b⋆) return 1 else return 0.

To get the full IND-CCA security level, the above experiment is modified in a way such that:

(i) the adversary is required to select the target label L only at the end of its find stage, and
(ii) the adversary is no longer restricted in its decryption queries (with the sole exception of the pair (ψ, L)

in its guess stage) — in particular, the adversary is allowed to issue decryption queries including the
target label L.

4

Anonymity The notion of anonymity is described in an analogous way and comes with similar variations.
The goal of the adversary is now to distinguish among two possible receivers given the encryption of a same
witness under two different public keys. Of course, the adversary does not control the opening authority
(and so is given the public opening key pkOA).

The formal definition of selective-label anonymity against weak chosen-ciphertext attacks (in short,
ANO-sl-wCCA) follows. The notion of ANO-sl-wCCA is met if the success probability of any polynomial-
time adversary A is at most negligibly better than 1/2. The formal definition of ANO-CCA (anonymity
against chosen-ciphertext attacks) is obtained by modifying the experiment as for the IND-CCA notion (see
above). Similarly to [23, 12], we introduce the following notations:

– open¬(·,L)(skOA, ·): is a stateless opening oracle, for the key pkOA, which is restricted not to open ciphertexts
w.r.t. the label L.

– CHb
anon(pkGM, pkOA, pk0, pk1,w, L): is a challenge oracle that is only queried once. It returns ψ, coinsψ such

that ψ← encrypt(pkGM, pkOA, pkb, certb,w, L) and coinsψ denote the random coins used to produce ψ.
– User(pkGM): is a stateful oracle that simulates two executions of JUser to introduce two honest users in

the group. It uses a string keys where the outputs of the two executions are written.

Experiment ExpANO-sl-wCCA
A (κ)

1. param← setup(1κ); (pkOA, skOA)← keygenOA(1κ, param);

2. (aux, pkGM, L)←A(param); aux←AUser(pkGM),open¬(·,L)(skOA,·)(aux, pkOA);
If keys , (pk0, sk0, certpk0

, pk1, sk1, certpk1
) return 0;

3. (aux, x,w, pkR)←Aopen
¬(·,L)(skOA ,·), decrypt

¬(·,L)(sk0,·), decrypt
¬(·,L)(sk1,·)(aux);

4. If (x,w) < R return 0;

5. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

anon(pkGM, pkOA, pk0, pk1,w, L);

6. b⋆ ←A
proveP(w,coinsψ,pkb ,certpkb

)(pkGM ,pkOA,pkR,x,L,ψ),open¬(·,L)(skOA,·), decrypt
¬(·,L)(sk0,·), decrypt

¬(·,L)(sk1,·)
(aux, ψ);

7. If (b = b⋆) return 1 else return 0.

Soundness In a soundness attack, the adversary creates adaptively the intended group of receivers com-
municating with the genuine group manager. The adversary is successful if it can produce a ciphertext ψ
and a corresponding proof of validity w.r.t. a relation R with a chosen pkR such that (1) ψ is invalid, or (2)
opening ψ results in an invalid public key or a value which is not equal to the public key of any group
member. We adhere to the same formal definition of [23, 12] which we recall in Appendix B.

3 Building Group Encryption Schemes

In this section we present our new strategy to build efficient group encryption schemes. We start by providing
a construction which achieves “weak” security properties from “weakly secure” components. Next, we use
a technique evocative of the Canetti-Halevi-Katz transformation to upgrade the security of the resulting
construction into full-fledged CCA security.

In the rest of this document, and in order to avoid confusion, we use of a dot notation to refer the different
components; for instance, Γ.encrypt() refers to the encryption algorithm of public-key scheme Γ, Σ.pk to the
public key of signature scheme Σ, etc.

3.1 A generic construction

Our construction for group encryption departs from the specific constructions in [23, 12] in encrypting only
an alias to the public key (computed using a function H) instead of encrypting the entire public key. As will
become apparent, such a change drastically reduces the cost and size of the resulting encryption. Moreover,

5

and similarly to [12], it does not include the commitment on the public key (and potentially on its certificate)
in the ciphertext.

Let ΓUser = (keygen, encrypt, decrypt) and ΓOA = (keygen, encrypt, decrypt) be two public-key encryp-
tion schemes with labels. Let further Σ = (keygen, sign, verify) be a signature scheme. We assume that the
message space of Σ includes the public-key space of ΓUser. Finally, let H denote a collision-resistant function
from the public key space of ΓUser to the message space of ΓOA.

The properties required for H to guarantee an efficient prove algorithm/protocol are described in the
next section. The definitions of the different building blocks involved are summarized in Appendix A.

setup(1κ) This algorithm invokes the setup algorithms for the building blocks (namely, ΓUser, ΓOA, and Σ),
and outputs param. The public parameters param are input to all the subsequent algorithms/protocols
and further include the description of a relationR along with a key pair (pkR, skR) necessary for sampling
pairs (x,w) where (x,w) ∈ R and w belongs to the message space of ΓUser. Finally, setup outputs also a
description of a collision-resistant function H which maps elements from the public key space of ΓUser

into elements in the message space of ΓOA.

keygenGM(1κ) This algorithm invokes Σ.keygen(1κ) and outputs (pkGM, skGM) = (Σ.pk, Σ.sk).

keygenOA(1κ) This algorithm invokes ΓOA.keygen(1κ) and outputs (pkOA, skOA) = (ΓOA.pk, ΓOA.sk).

keygenUser(1
κ) This algorithm invokes ΓUser.keygen(1κ) and outputs (pkUser, skUser) = (ΓUser.pk, ΓUser.sk) as a

key pair for the group member User.
join = 〈JUser,GM(skGM)〉(pkGM) The potential joining group member JUser wishing to join the group sends

her public key pkUser (obtained after calling keygenUser) to GM, and the latter replies with the certificate
certpkUser

= Σ.signΣ.sk(pkUser). GM then stores (pkUser,H(pkUser), certpkUser
) in a public directory database. (We

stress that for any two different pkUser and pk′User, the values of H(pkUser) and H(pk′User) will be different.)

encrypt(pkGM, pkOA, pkUser,w, L) This algorithm first produces an encryption ψ1 using ΓUser on w with the
public key pkUser under label L, and then encrypts H(pkUser) in ψ2 using ΓOA under label L with public
key pkOA. The ciphertext consists of the pair (ψ1, ψ2).

prove = 〈P(w, coinsΨ),V(param)〉(pkGM, pkOA, pkR, x, ψ, L) Pwho created the ciphertext ψ = (ψ1, ψ2) uses the
coins used to produce ψ in order to prove toV:

– knowledge of the message underlying ψ1 and that it forms a witness for the instance x w.r.t. the
relation R;

– knowledge of the decryption of ψ2 and that it corresponds to the value of the function H on the
public key under which ψ1 is created;

– knowledge of a certificate on the public key used to create ψ1.

These proofs are detailed in Section 4.

decrypt(skUser, ψ, L) This algorithm parses ψ as (ψ1, ψ2), invokes ΓUser.decrypt on (ψ1, L), and outputs the
result of this decryption, say w, if (x,w) ∈ R, and ⊥ otherwise.

open(skOA, ψ, L) This algorithm parses ψ as (ψ1, ψ2), invokes ΓOA.decrypt on (ψ2, L), then looks up database
for the preimage w.r.t. the function H of such a decryption, and finally outputs the result of this search.

Theorem 1. The construction of § 3.1 yields a group encryption scheme with

1. IND-sl-wCCA message security if ΓUser is a tag-based encryption scheme having indistinguishability of encryp-
tions under selective-tag weak chosen-ciphertext attacks, and prove is zero knowledge.

2. ANO-sl-wCCA anonymity if ΓUser is a tag-based encryption scheme having indistinguishability of keys under
selective-tag weak chosen-ciphertext attacks, ΓOA is a tag-based encryption scheme having indistinguishability of
encryptions under selective-tag weak chosen-ciphertext attacks, and prove is zero knowledge.

3. soundness if the proof underlying prove is sound and the used certification scheme is EUF-CMA secure.

A formal proof is provided in Appendix C.

6

3.2 A Canetti-Halevi-Katz like paradigm for group encryption

Canetti, Halevi, and Katz [10] provide a method that transforms any selective-identity chosen-plaintext
secure identity-based scheme into one with full-fledged chosen-ciphertext security. The transformation,
referred to as the CHK transform, consists in signing the ciphertext, result of encryption with the weakly
secure identity-based encryption scheme, using a one-time signature scheme, wherein the “identity” is
given by the verification key. Later in [7], Boneh and Katz improve the CHK transform using a MAC
instead of a one-time signature; see also [6]. Concurrently, MacKenzie, Reiter, and Yang [26] present a
method for converting a weakly chosen-ciphertext secure tag-based encryption scheme to a fully secure
public-key encryption scheme. Finally, Kiltz [24] combines the ideas of [10, 26, 7] in order to derive chosen-
ciphertext secure public-key encryption schemes from selective-tag weakly chosen-ciphertext secure tag-
based encryption schemes using one-time signatures.

Interestingly and analogously to [24], we can now turn a weakly secure group encryption scheme as per
Theorem 1 into a group encryption scheme with full message security (i.e., IND-CCA) and full anonymity (i.e.,
ANO-CCA). LetGE⋆ be a group encryption satisfying the notions of IND-sl-wCCA and ANO-sl-wCCA. Given
GE⋆, we construct a group encryption scheme GE meeting the strong notions of IND-CCA and ANO-CCA
as depicted in Fig. 1. The conversion uses a one-time signature scheme S = (keygen, sign, verify).

Theorem 2. The group encryption schemeGE obtained from the conversion in Fig. 1 has IND-CCA message-security
and ANO-CCA anonymity ifGE⋆ is IND-sl-wCCA and ANO-sl-wCCA, andS is a strongly secure one-time signature
scheme.

The proof can be found in Appendix D.

GE.encrypt(pkGM, pkOA, pkUser,w,L)

1. (S.pk,S.sk)← S.keygen(1κ);
2. ψ⋆ ← GE⋆.encrypt(pkGM, pkOA, pkUser,w,S.pk);
3. σ← S.sign(S.sk, ψ⋆‖L);
4. Return ψ← (ψ⋆,S.pk, σ).

GE.decrypt(skUser, ψ,L)

1. Parse ψ as (ψ⋆,S.pk, σ);
2. If S.verify(S.pk, ψ⋆‖L) =⊥ then return ⊥;
3. Else return GE⋆.decrypt(skUser, ψ

⋆,S.pk).

Fig. 1. Conversion

Remark 2. This transformation can be also used to upgrade the security in TBE (from st-wCCA to full CCA
indistinguishability and anonymity). In [24], Kiltz suggests to achieve this task via a CCA secure public
key encryption (PKE): first derive a CCA secure PKE from a st-wCCA secure TBE, then identify the pair
“(message,tag)” in the TBE by the message “message‖tag” in the PKE.

Our transform has the merit of preserving the algebraic structure of the message to be encrypted. This
impacts positively the verifiability of the encryption, i.e. proving knowledge of the message underlying
the resulting CCA encryption is as efficient as proving knowledge of the message underlying its st-wCCA
encryption.

7

4 Efficient Instantiations

The sender of the message, in the construction provided in the previous section, is compelled to provide the
following proof in the prove procedure:

PoK = {(pk, certpk,w) : certpk = Σ.signΣ.sk(pk)

ψ1 = Γ
User.encryptpk(w) ∧

ψ2 = Γ
OA.encryptpkOA

(H(pk))

(x,w) ∈ R

} (ψ1, ψ2, Σ.pk, pkOA, x)

where the private input of the prover are the coins used to form ψ1, ψ2 in addition to pk, certpk, and m.
According to whether we want to provide an interactive or a non-interactive prove procedure, the

components underlying the construction have to satisfy different conditions:

Non-interactive setting We can provide a non-interactive zero knowledge (NIZK) prove if the language
defined by this procedure is compatible with the Groth-Sahai proof system [21] (Appendix A.5). In fact, [21]
provides efficient NIZK or NIWI proofs for a number of languages that cover pairing-product equations,
multi-scalar multiplication, and quadratic equations.
In this case, the common reference string (CRS) needs to be part of the setup algorithm. Besides, the private
input of the prover has to consist of only group elements. Moreover, the building blocks, namely Σ, ΓUser,
ΓOA, H, and R need to perform only group or pairing (if bilinear groups are involved) operations on this
private input. For example, we can consider structure-preserving signatures [19, 17, 1] for the certification
scheme Σ, Kiltz’[24] or Cash et al.’s [11](described in Figure 8) encryption schemes for both ΓUser or ΓOA, the
discrete logarithm or the Diffie-Hellman relation for R, and any function H performing group or pairing
operations on the input. Note however that the statments underlying prove that consist of pairing-product
equations need to be of special form (see Appendix A.5) in order to accept zero knowledge proofs (otherwise
provewill be only witness-indistinguishable).

Interactive setting While having a number of useful properties, non-interactive proofs built from Groth-
Sahai’s proof system suffer the high verification cost due to the pairing evaluations in the verification.
Therefore, it would judicious to support the construction in the previous section with an interactive variant
of prove. This will decree different conditions on the building blocks. The essence of these conditions consists
in manipulating the private input, which has to comprise only group elements, through homomorphic maps.

The rest of this section is organized as follows. Subsection 1 will introduce formally the classes of the
different components Σ, ΓUser, ΓOA, H, and R that will lead to an efficient interactive prove. Subsection
2 describes explicitly the interactive prove protocol in case the building blocks are instantiated from the
previously presented classes. Finally, we provide a concrete realization of group encryption in Subsection 3
and compare the resulting performances with the those of the prior proposals [23, 12].

4.1 Building blocks

Definition 1 (The class S of certification/signature schemes). S is the set of all digital signatures Σ for which
there exists a pair of efficient algorithms, convert and retrieve, where convert inputs a verification key vk, a key
pk (to be certified), and a valid signature certpk (w.r.t. vk) on pk, and outputs a tuple (S,R) such that:

1. R is information theoretically independent from certpk and pk. I.e. There exists an algorithm simulate that inputs
a verification key vk from the verification key space and outputs a string statistically indistinguishable from R.

2. There exists an algorithm compute that on the input vk and R, computes a description of a map F : (GS, ∗S) ×
(Gpk, ∗pk)→ (GF, ◦F):

– where (GS, ∗S) and (Gpk, ∗pk) are groups and GF is a set equipped with the binary operation ◦F,

8

– ∀(S, pk), (S′, pk′) ∈ (GS, ∗S) × (Gpk, ∗pk) : F(S ∗S S′, pk ∗pk pk′) = F(S, pk) ◦F F(S′, pk′).

and an I such that F(S, pk) = I.

3. The retrieve algorithm inputs a candidate tuple (S,R, pk) (satisfying the above conditions) and vk, and outputs

a key p̃k and a valid certificate c̃ert
p̃k

on it w.r.t. vk.

Informally, this class includes signature schemes where the signature on a given message can be con-
verted into a “simulatable” part (denoted by R in the definition) that does not reveal any information about
the signature or the message to be signed (denoted by pk), and a “vital” part (denoted by S) such that S and
pk form a preimage, by a homomorphic map F, of some quantity I computed only from R and the public
parameters. The last condition dictated by the retrieve algorithm guarantees the non-triviality of the map
F; given (S,R, pk) satisfying F(S, pk) = I (I computed as prescribed by the definition), one can come up with
a pair of a message and a valid signature on it w.r.t. the same verification key.

Signatures from this class accept efficient proofs of knowledge of a signature/certificate certpk on a hidden
message (pk). In fact, the prover will first convert certpk into (S,R), then reveal R to the verifier, and finally
prove knowledge of the preimage of I (computed as in the definition) via the map F. The last proof can
be efficiently carried out thanks to the homomorphic property of F. Moreover, existence of the retrieve
algorithm guarantees the special soundness (SpS) property of the protocol. Finally, this class accepts many
instantiations for instance the signature in [1]. See Appendix E.1 for the details.

Definition 2 (The classR of relations).R is the set of relationsR such that there exists an algorithm which inputs
an instance x from the set of instances Gx (in addition to the public parameters) and outputs a description of a map
FR : (Gw, ∗w)→ (GR, ◦R):

– where Gw is the set of witnesses which is a group for ∗w, and GR is a set equipped with the binary operation ◦R,
– ∀w,w′ ∈ Gw, : FR(w ∗w w′) = FR(w) ◦R FR(w′).

and an IR such that FR(w) = IR ⇔ (x,w) ∈ R.

Examples of such functions include the discrete logarithm or the Diffie-Hellman function. Likewise, one
can prove knowledge of a witness corresponding to a given instance thanks to the homomorphic property
of FR.

Definition 3 (The class E1 of encryption schemes). E1 is the set of tag-based encryption (TBE) schemes Γ that
have the following properties:

1. The message space Gw and the public key space Gpk are groups with respect to ∗w and ∗pk respectively.

2. Let w ∈ Gw be a message and e its encryption with respect to a tag t under a public key pk. On the common input
pk, w, e, and t, there exists an efficient zero knowledge proof of w being the decryption of e with respect to the key
pk and the tag t. The private input of the prover is the randomness used to produce the encryption e.

3. Given an encryption e of some message under some public key w.r.t. a given tag t, there exists an efficient
algorithm compute which inputs e and outputs a public key pk′ ∈ Gpk, a message w′, and its encryption
e′ = Γ.encryptpk′ (w

′, t), under the key pk′ w.r.t. the same tag t, such that:

– The probability distributions of the random variables pk′ ∈ Gpk and w′ ∈ Gw are indistinguishable from
uniform, where the probability is taken over the ciphertext e, the tag t, and the random coins of compute.

– One can define a group operation ◦e on the set

E = {e′ : (pk′,w′, e′)← Γ.compute(e, t)}

such that Γ.encryptpk′∗pkpk(w′ ∗w w, t) = e′ ◦e e, where w and pk are the message and public key underlying the
encryption e respectively. Moreover, given the randomnesses used to produce e and e′, one can deduce (using
only the public parameters) the randomness used to produce e′ ◦e e on w′ ∗w w under the key pk′ ∗pk pk.

9

The class E1 informally comprises encryption schemes that possess efficient proofs of correctness of
decryption (i.e. proofs that a given ciphertext correctly decrypts to a given message) in addition to being
homomorphic w.r.t. both the message and the public key. This might seem restrictive at a first glance,
however, it turns out that the ElGamal-based family of encryption schemes satisfy nicely the properties
required in the above definition. We note as an illustration the tag-based variant of the modified Cramer-
Shoup scheme [11] described in Figure 3 (we provide the analysis of this class in Appendix E.2).

Definition 4 (The classH of functions).H is the set of functions H : Gpk → GH such that:

– Gpk is a group w.r.t. some binary operation ∗pk, and GH is a set equipped with a binary operation ∗H.
– ∀pk, pk′ ∈ GH : H(pk ∗pk pk′) = H(pk) ∗H H(pk′).

It is natural to require that H(pk) for some public key pk in database identifies pk uniquely; i.e. there are no
different pk and pk′ in database that are mapped to the same value by the function H. In this sense, requiring
H to be collision-resistant seems natural, however we remark that in our application of group encryption,
GM has some control over the public keys she certifies, and therefore may proceed to simple measures (see
the instantiation in Appendix E.3) in case a collision occurs.

Definition 5 (The classE2 of encryption schemes).E2 is the set of tag-based encryption schemes Γ that have the
following properties:

1. The message space is a groupGH w.r.t. some binary operation ∗H and the ciphertext space C is a set equipped with
some binary operation ◦c.

2. Let h ∈ GH be a message and e its encryption with respect to a given key pk and a given tag t. On the common
input pk, t, h, and e, there exists an efficient zero knowledge proof of h being the decryption of e with respect to t
under the key pk. The private input of the prover is the randomness used to produce the encryption e.

3. ∀ h, h′ ∈ GH, ∀ pk, ∀t : Γ.encryptpk(h ∗H h′, t) = Γ.encryptpk(h, t) ◦c Γ.encryptpk(h′, t). Moreover, given the
randomness used to encrypt h in Γ.encryptpk(h, t) and h′ in Γ.encryptpk(h′, t), one can deduce (using only the
public parameters) the randomness used to produce Γ.encryptpk(h, t) ◦c Γ.encryptpk(h′, t) on h ∗H h′.

Examples of encryption schemes in the above class include Kiltz’ [24] and Cash et al.’s [11] (described in
Figure 8) tag-based encryption schemes. In fact, the encryption algorithm in both schemes is homomorphic
w.r.t. the message, and both schemes accept efficient proofs of the correctness of a decryption, namely the
proof of knowledge of discrete logarithms which satisfy known predicates (linear relations). The analysis
of this class is provided in Appendix E.4.

4.2 The prove protocol

In this paragraph, we instantiate the construction in Section 3 with the following constituents:

1. A signature scheme Σ from Class S with key pair (skGM, pkGM), and corresponding function
F : (GS, ∗S) × (Gpk, ∗pk)→ (F(GS ×Gpk), ◦F).

2. An encryption scheme Γ1 from Class E1 with public key space (Gpk, ∗pk), message space (Gw, ∗w), and
with ciphertext subset (E, ◦e) (as defined in Definition 3).

3. A relation R from Class R with instance space Gx and witness space (Gw, ∗w).
4. A function H from ClassH with domain (Gpk, ∗pk) and codomain (GH, ∗H).
5. An encryption scheme Γ2 from ClassE2 with key pair (skOA, pkOA), message space (GH, ∗H), and ciphertext

space (C, ◦c).

Theorem 3. The prove protocol depicted in Figure 2 is an efficient zero knowledge proof of knowledge with the SpS
property.

Theorem 4 (Soundness of the construction in Section 3). The construction in Section 3 is sound if the prove
protocol satisfies the SpS property, and the used certification scheme is EUF-CMA secure.

The proofs are provided in Appendix E.5 and Appendix E.6 respectively.

10

Prover P Verifier V

Compute IR as in Definition 2
Run convert(pkGM, pk, certpk) to get (S,R)
Compute (pk′,w′, e′

1
)← Γ1.compute(e1)

Choose S′
R
←− GS

Compute f ′ = F(S′, pk′)
Compute f ′

R
= FR(w′)

Compute h′ = H(pk′)
Compute e′2 = Γ2.encryptpkOA

(h′)
R, f ′, e′1, f ′

R
, e′2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Compute I as in Definitions 1
b

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b
R
←− {0, 1}ℓ (b ∈N)

zS = S′ ∗S Sb, zpk = pk′ ∗k pkb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

zw = w′ ∗w wb, zh = h′ ∗ hb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK1{e
′
1
◦e eb

1
= Γ.encryptzpk

(zw, t)}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK2{e
′
2 ◦c eb

2 = Γ.encryptpkOA
(zh, t)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if: F(zS, zpk) = f ′ ◦F Ib,
FR(zw) = f ′

R
◦R Ib

R
,

H(zpk) = zh,
PoK1 and PoK2 are valid.

Fig. 2. Proof system for membership to the language {(w, pk, certpk) : e1 = Γ1.encryptpk(w, t) ∧ e2 =

Γ2.encryptpkOA
(H(pk), t) ∧ certpk = Σ.signskGM

(pk) ∧ (x,w) ∈ R} Common input: (e1, e2, t, x, pkOA, pkGM) and
Private input: (w, pk, certpk) and randomness used to produce e1 and e2.

4.3 A concrete realization

In this subsection, we consider bilinear groups with e : G1 ×G2 −→ GT . Moreover, we instantiate this system
with the Λsxdh setting which refers to the case of asymmetric pairings for which the DDH assumption holds
in both G1 and G2.

assume that the DDH assumption holds in both G1 and G2.
We instantiate the construction in Section 3 with the following bricks:

1. The signature scheme from [1]. The scheme signs in particular messages in G4
2.

2. The encryption scheme described in Figure 3 to instantiate both ΓUser and ΓOA. The message space of
both ΓUser and ΓOA is the group G2 (we provide in Appendix F the security analysis of this scheme).

3. The relation R : (x = [X,Y],w) ∈ R ← e(X,Y) = e(g,w), where g is a known generator of G1.

4. The function H mapping an element (X1, . . . ,X4) ∈ G4
2

to
∏4

i=1 Xai

i
, where a1, . . . , a4 are public elements

in Zd (d is order of G2). We provide in Appendix E.3 the analysis of the collision-resistance of H.
5. The one-time signature from [20].

The ciphertext will then comprise 13 group elements, which amounts to 0.4 kB if we consider an
implementation using a 256-bit group size. This is definitely more compact than the realization in [12] (1.25
kB using a 256-bit group order) or [23] (2.5 kB using 1024-bit moduli).

Moreover, the prove procedure can be carried out interactively or non-interactively.
We summarize in this chart the performances of our realization compared to those of [23] and [12] (see

Appendix G and Appendix H for the details).

11

[Setup] Choose a group (G, ·) generated by g with prime order d.

[Key generation] Choose x1, x̃1, x2, x̃2
R
←− Zd then compute Xi ← gxi and X̃i ← gx̃i for i = 1, 2

set pk← {Xi, X̃i}i=1,2 and sk← {xi, x̃i}i=1,2.
[Encryption] For a message m ∈ G and a tag t ∈ Zd:

choose r
R
←− Zd,

compute c1 ← gr, c2 ← (Xt
1
X̃1)r, c3 ← (Xt

2X̃2)r, and c4 = mXr
1
,

set the ciphertext to (c1, c2, c3, c4).
[Decryption] Given a ciphertext c = (c1, c2, c3, c4) and a tag t:

check that c2 = c
tx1+x̃1

1
and that c3 = ctx2+x̃2

1

if it is not the case, return ⊥, otherwise:
compute the plaintext as m← c4c

−x1

1
.

Fig. 3. TBE variant of the Modified Cramer-Shoup [11]

[23] [12] Our scheme
Ciphertext size (kB) 2.5 1.25 0.4

Interactive Proof size (kB) 70 - 1

Non-interactive Proof size (kB) - 16.125 2
Interactive proof verification cost (# of pairings computations) 0 - 14

Non-interactive proof verification cost (# of pairings computations) - 3895 325

Fig. 4. Comparison

Remark 3. There is a technique, called batch verification [2], which reduces the cost of verification of GS
proofs at the expense of soundness. Applying this technique to our non-interactive proof reduces the
required number of pairings to approximately 81 (vs 974 pairings for the proof in [12]). It is also worth-
noting that the group encryption scheme in [12] would only need 1182 (295 using the batch technique)
pairings if instantiated with the certification scheme in [1], which remains still higher than the 325 (81)
pairings required in our proof. Besides, the realization in [23] which has the merit of not requiring any
pairings in its (interactive) proof does comprise however an expensive computation which consists in
repeating 50 times a sub-protocol in order to reduce the knowledge error.

5 Summary and Perspectives

We presented a new security model for group encryption which captures all the required security features
(anonymity, message security and soundness) in a weaker attack model, namely selective-label weak chosen
ciphertext attacks (sl-wCCA). We also proposed a construction for sl-wCCA secure group encryption from
weakly secure components (st-wCCA secure encryption). Our construction departs from the previous
constructions in encrypting only an alias or hash of the recipient’s public key instead of the entire key,
and thus has the merit of avoiding the linear dependency between the key and its encryption. We then
applied a method reminiscent of the Canetti-Halevi-Katz paradigm in order to upgrade the security of the
resulting construction to full adaptive CCA security. This detour made to get fully secure group encryption
allows to use homomorphic (tag-based) encryption as building blocks which impacts positively the prove
procedure. In fact, we define classes of building blocks that lead to group encryption schemes where prove
is an efficient Σ protocol. The advantages of our technique are manifest in the realization we provide as we
achieve efficient and shorter ciphertexts. Moreover, our proofs are also shorter and can be carried out with
or without interaction with the verifier.

12

A future direction of research consists in developing more efficient proofs (interactive or non-interactive)
of knowledge of a certified public key, since this is the main bottleneck in group encryption design. So far, we
resorted to structure-preserving signatures to achieve this goal. One could also envisage further solutions.

Proofs of set membership The public keys along with their certificates are published in a public database.
Therefore, one could simply prove the membership of the public key in question (committed to in a public
value) to this database. Camenisch et al. [8] presented an efficient solution using as sub-protocol the proof
of knowledge of a signature on a hidden message; the instantiation they provide uses Boneh-Boyen [4]’s
signature as the considered messages are 160-bit exponents (further instantiations using [9, 14] signatures
or cryptographic accumulators [9] are also possible). Obviously, if we use this technique in our case, then
we will have again recourse to structure-preserving signatures as the considered messages lie in a group.
Therefore, finding new efficient techniques for set membership proofs, where the set elements lie in a group,
would have a direct impact on group encryption.

Signatures on randomized ciphertexts Blazy et al. [3] introduced a new primitive which allows to, given a
signature on a ciphertext, produce a new ciphertext on the same message along with a fresh signature on
it (the new ciphertext). They give a concrete realization of this primitive using Waters’ [30] signature and
ElGamal’s [16] or the linear encryption [5]. The scheme satisfies a reasonable security notion (difficulty to
come up with a valid signature on an encryption of a new message) under standard assumptions (CDH or
slightly stronger variants), however it suffers the high verification cost (due to the recourse to Groth-Sahai’s
proof system) in addition to the consequent size of the ciphertexts and corresponding signatures.

We could use this primitive in our application of group encryption; GM will publish the public keys
together with their encryptions and signatures on these encryptions using this mechanism. GM will further
publish the coins used to encrypt the public key in order to convince of the well-formedness of the ciphertext.
In this case, the sub-protocol of provewhich proves knowledge of the certified public key will consist of a
randomization of the pair (ciphertext,signature). This solution presents the advantage of having a security
under standard assumptions (compared to the assumptions underlying the proposed structure-preserving
signatures), however, it is afflicted with the expensive aforementioned cost and bandwidth. Therefore, any
significant improvement in this primitive will translate immediately in an improvement in group encryption
design.

References

1. Masayuki Abe, Georg Fuchsbauer, Jen Groth, Kristian Haralambiev, and Miyako Ohkubo. Structure-Preserving
Signatures and Commitments to Group Elements. In T. Rabin, editor, Advances in Cryptology − CRYPTO 2010,
volume 6223, pages 209–236. Springer, 2010.

2. Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien Vergnaud.
Batch Groth-Sahai. In J. Zhou and M. Yung, editors, Applied Cryptography and Network Security (ACNS 2010), volume
6123, pages 218–235. Springer, 2010.

3. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on randomizable cipher-
texts. In D. Catalano et al., editors, Public Key Cryptography − PKC 2011, volume 6571, pages 403–422. Springer,
2011.

4. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In C. Cachin and J. Camenisch, editors,
Advances in Cryptology − EUROCRYPT 2004, volume 3027, pages 56–73. Springer, 2004.

5. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In M. K. Franklin, editor, Advances in
Cryptology − CRYPTO 2004, volume 3152, pages 41–55. Springer, 2004.

6. Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption.
SIAM Journal on Computing, 36(5):1301–1328, 2007.

7. Dan Boneh and Jonathan Katz. Improved efficiency for CCA-secure cryptosystems built using identity-based
encryption. In A. Menezes, editor, Topics in Cryptology − CT-RSA 2005, volume 3027, pages 87–103. Springer, 2005.

8. Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and range proofs. In
J. Pieprzyk, editor, Advances in Cryptology − ASIACRYPT 2008, volume 5350, pages 234–252. Springer, 2008.

13

9. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient revocation of anonymous
credentials. In M. Yung, editor, Advances in Cryptology − CRYPTO 2002, volume 2442, pages 61–76. Springer, 2002.

10. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based encryption. In
C. Cachin and J. Camenisch, editors, Advances in Cryptology − EUROCRYPT 2004, volume 3027, pages 207–222.
Springer, 2004.

11. David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. J. Cryptology,
22(4):470–504, 2009. Earlier version in EUROCRYPT 2008.

12. Julien Cathalo, Benoı̂t Libert, and Moti Yung. Group encryption: Non-interactive realization in the standard model.
In M. Matsui, editor, Advances in Cryptology − ASIACRYPT 2009, volume 5912, pages 179–196. Springer, 2009.

13. David Chaum and Eugène van Heyst. Group signatures. In D. W. Davies, editor, Advances in Cryptology −
EUROCRYPT ’91, volume 547, pages 257–265. Springer, 1991.

14. Benoı̂t Chevallier-Mames and Marc Joye. A practical and tightly secure signature scheme without hash function.
In M. Abe, editor, Topics in Cryptology − CT-RSA 2007, volume 4377, pages 347–356. Springer, 2007.

15. Laila El Aimani. Anonymity from public key encryption to undeniable signatures. In B. Preneel, editor, Progress in
Cryptology − AFRICACRYPT 2009, volume 5580, pages 217–234. Springer, 2009.

16. Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf.
Theory, 31(4):469–472, 1985.

17. G. Fuchsbauer. Automorphic Signatures in Bilinear Groups and an Application to Round-Optimal Blind Signatures.
Cryptology ePrint Archive, Report 2009/320, 2009. http://eprint.iacr.org/.

18. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure against adaptive chosen-
message attacks. SIAM J. Comput., 17(2):281–308, 1988.

19. J. Groth. Homomorphic Trapdoor Commitments to Group Elements. IACR Cryptology ePrint Archive, 2009:7, 2009.
20. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In X. Lai

and K. Chen, editors, Advances in Cryptology − ASIACRYPT 2006, volume 4284, pages 444–459. Springer, 2006.
21. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In N. P. Smart, editor,

Advances in Cryptology − EUROCRYPT 2008, volume 4965, pages 415–432. Springer, 2008.
22. Shai Halevi. A sufficient condition for key privacy. IACR Cryptology ePrint Archive, Report 2005/005, 2005.

http://eprint.iacr.org/.
23. Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Group encryption. In K. Kurosawa, editor, Advances in Cryptology
− ASIACRYPT 2007, volume 4833, pages 181–199. Springer, 2007.

24. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In S. Halevi and T. Rabin, editors, Theory of
Cryptography (TCC 2006), volume 3876, pages 581–600. Springer, 2006.

25. Joseph K. Liu, Patrick P. Tsang, and Duncan S. Wong. Efficient verifiable ring encryption for ad hoc groups. In
R. Molva et al., editors, Security and Privacy in Ad-hoc and Sensor Networks (ESAS 2005), volume 3813, pages 1–13.
Springer, 2005.

26. Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: Definitions, constructions,
and applications. In M. Naor, editor, Theory of Cryptography (TCC 2004), volume 2951, pages 171–190. Springer, 2004.

27. Bo Qin, Qianhong Wu, Willy Susilo, and Yi Mu. Publicly verifiable privacy-preserving group decryption. In M. Yung
et al., editors, Information Security and Cryptology (Inscrypt 2008), volume 5487, pages 72–83. Springer, 2008.

28. Hovav Shacham. A Cramer-Shoup encryption scheme from the linear assumption and from progressively weaker
linear variants. IACR Cryptology ePrint Archive, Report 2007/074, 2007. http://eprint.iacr.org/.

29. Victor Shoup and Rosario Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. J. Cryptology,
15(2):75–96, 2002. Earlier version in EUROCRYPT 1998.

30. Brent Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor, Advances in
Cryptology − EUROCRYPT 2005, volume 3494, pages 114–127. Springer, 2005.

A Building Blocks

A.1 Signature schemes

A signature scheme Σ comprises three algorithms, namely the key generation algorithm keygen, the signing
algorithm sign, and the verification algorithm verify. The standard security notion for a signature scheme
is existential unforgeability under chosen message attacks (EUF-CMA), which was introduced in [18].
Informally, this notion refers to the hardness of, given a signing oracle, producing a valid pair of message
and corresponding signature such that message has not been queried to the signing oracle. There exists

14

also the stronger notion, SEUF-CMA (strong existential unforgeability under chosen message attack), which
allows the adversary to produce a forgery on a previously queried message, however the corresponding
signature must not be obtained from the signing oracle.

A.2 Tag-based encryption (TBE)

Tag-based encryption, also referred to as encryption with labels, was first introduced in [29]. In these
schemes, the encryption algorithm takes as input, in addition to the public key pk and the message m
intended to be encrypted, a tag t which specifies information related to the message m and its encryption
context. Similarly, the decryption algorithm takes additionally to the ciphertext and the private key the
tag under which the ciphertext was created. Security notions are then defined as usual except that the
adversary specifies to his challenger the tag to be used in the challenge ciphertext, and in case he (the
adversary) is allowed to query oracles, then he cannot query them on the pair formed by the challenge
ciphertext and the tag used to form it. There are also weakened security models for this type of encryption
where the adversary specifies the challenge tag before getting the parameters of the scheme, and during the
game, he (the adversary) is not allowed to query the allowed oracles w.r.t. the challenge tag; we talk in this
case about selective tag security. We specify in the following the formal definitions of IND-st-wCCA and
ANO-st-wCCA security for tag-based encryption:

Definition 6 (IND-st-wCCA indistinguishability). Let Γ be a tag-based encryption scheme scheme. Let further
A denote a PPTM. We consider the following random experiment:

Experiment ExpIND−st−wCCA
A (1κ)

1. param← setup(1κ);
2. t←A(param);
3. (sk, pk)← Γ.keygen(param, 1κ);

4. (m0,m1)←Adecrypt
¬(−,t)(sk,.)(pk);

5. b
R
←− {0, 1}; eb ← Γ.encryptpk(mb, t);

6. b⋆ ←Adecrypt
¬(−,t)(sk,.)(eb);

7. If b = b⋆ return 1 else 0.

We define the advantage ofA via:

Advind-st-wCCA
Γ,A (1κ) =

∣∣∣∣∣Pr
[
Expind-st-wCCA−b

Γ,A (1κ) = b
]
−

1

2

∣∣∣∣∣ .

Given (t, qd) ∈ N2 and ε ∈ [0, 1],A is called a (t, ε, qd)-ind-st-wCCA adversary against Γ if, running in time t and

issuing qd decryption queries,A has Advind−st−wCCA
Γ,A (1κ) ≥ ε. The scheme Γ is said to be (t, ε, qd)-ind-st-wCCA secure

if no (t, ε, qd)-ind-st-wCCA adversary against it exists.

Definition 7 (ANO-st-wCCA anonymity). Let Γ be a tag-based encryption scheme scheme. Let furtherA denote
a PPTM. We consider the following random experiment:

Experiment ExpANO−st−wCCA
A (1κ)

1. param← setup(1κ);
2. t←A(param);
3. (sk0, pk0)← Γ.keygen(param, 1κ); (sk1, pk1)← Γ.keygen(param, 1κ)

4. m←Adecrypt
¬(−,t)(sk0,.),decrypt

¬(−,t)(sk1,.)(pk0, pk1);

5. b
R
←− {0, 1}; eb ← Γ.encryptpkb

(m, t);

6. b⋆ ←Adecrypt
¬(−,t)(sk0,.),decrypt

¬(−,t)(sk1,.)(eb);

15

7. If b = b⋆ return 1 else 0.

We define the advantage ofA via:

Advind-st-wCCA
Γ,A (1κ) =

∣∣∣∣∣Pr
[
Expind-st-wCCA−b

Γ,A (1κ) = b
]
−

1

2

∣∣∣∣∣ .

Given (t, qd) ∈ N2 and ε ∈ [0, 1],A is called a (t, ε, qd)-ind-st-wCCA adversary against Γ if, running in time t and

issuing qd decryption queries,A has Advind−st−wCCA
Γ,A (1κ) ≥ ε. The scheme Γ is said to be (t, ε, qd)-ind-st-wCCA secure

if no (t, ε, qd)-ind-st-wCCA adversary against it exists.

A.3 One-time signatures

One-time digital signature schemes can be used to sign, at most, one message; otherwise, signatures can be
forged. A new public key is required for each message that is signed. One-time signature schemes have the
advantage that signature generation and verification are very efficient. This is due to the fact that they rely
on one-way functions without trapdoors. They are, similarly to normal digital signatures, defined by the
key generation algorithm keygen, the signing algorithm sign, and the verification algorithm verify. The
strong security for one-time signatures is defined as follows.

Definition 8. Let Σ = (keygen, sign, verify) be a one-time signature scheme, and letA be a PPTM. We consider
the following random experiment, where κ is a security parameter:

Experiment Exp
strongsecurity
Σ,A

(κ)

1. (pk, sk)← Σ.keygen(κ)
2. (m⋆, σ⋆)←AS(pk)

S : m 7−→ σ = Σ.signsk(m)
3. return 1 if and only if the following properties are satisfied:

– Σ.verifypk[σ⋆,m⋆] = {1}
– (m, σ) , (m⋆, σ⋆) (S is invoked on at most one message m)

We define the success ofA via:

Succ
strong security
Σ,A

(κ) = Pr
[
Exp

strong security
Σ,A

(κ) = 1
]
.

Given t ∈ N and ε ∈ [0, 1], A is said to be a (t, ε) strong adversary against Σ if, running in time t, A has

Succ
strong security
Σ,A

(κ) ≥ ε. The scheme Σ is called (t, ε) strong one-time secure secure if no (t, ε) strong adversary
against it exists.

A.4 Proofs of Knowledge (PoK)

A proof of knowledge is modeled by an interactive proof system, first introduced by Goldwasser, Micali and
Rackoff GoldwasserMicaliRackoff1989. Such a system informally consists of a prover P trying to convince a
verifier V that an instance x belongs to a language L. x refers to the common input whereas (P,V)(x) denotes
the proof instance carried between P and V at the end of which V is (not) convinced with the membership
of the alleged instance x to L:

(P,V)(x) ∈ {Accept,Reject}

P is modeled by a probabilistic Turing machine whereas V is modeled by a polynomial probabilistic Turing
machine. During (P,V)(x), the parties exchange a sequence of messages called the proof transcript.

A proof of knowledge should satisfy completeness which denotes the property of successfully running
the protocol is both parties are honest. A further property required in proofs of knowledge is soundness
notion which captures the inability of a cheating prover P to convince the verifier V with an invalid statement.

16

ZK proofs of knowledge. Let (P,V) be an interactive proof system for some language L. We say that (P,V)
is zero knowledge if for every x ∈ L, the proof transcript (P,V)(x) can be produced by a probabilistic
polynomial-time algorithm (in the size of the input) S with indistinguishable probability distributions.

Σ protocols. A public-coin protocol is a protocol in which the verifier chooses all its messages randomly from
publicly known sets. A three-move protocol can be written in a canonical form in which the messages sent
in the three moves are often called commitment, challenge, and response. The protocol is said to have the
honest-verifier zero-knowledge property (HVZK) if there exists an algorithm that is able, provided the verifier
behaves as prescribed by the protocol, to produce, without the knowledge of the secret, transcripts that are
indistinguishable from those of the real protocol. The protocol is said to have the special soundness property
(SpS) property if there exists an algorithm that is able to extract the secret from two accepting transcripts of
the protocol with the same commitment and different challenges. Finally, a three-move public-coin protocol
with both the HVZK and SpS properties is called a Σ protocol.

A.5 Groth-Sahai’s proof system

The Groth-Sahai (GS) proof system gives efficient non-interactive zero knowledge (NIZK) and non-interactive
witness-indistinguishable (NIWI) proofs for algebraic statements involving elements in groups equipped
with a bilinear map e : G1 ×G2 ← GT (we assume that), e.g.

A pairing-product equation over variables X1, . . . ,Xm ∈ G1 and Y1, . . . ,Yn ∈ G2

n∏

i=1

e(Ai,Yi) ·

m∏

i=1

e(Xi,Bi) ·

m∏

i=1

n∏

j=1

e(Xi,Yi)
γi, j = tT,

for constants A1, . . . ,An ∈ G1, B1, . . . ,Bm) ∈ G1, and Γ = (γi, j) 1 ≤ i ≤ m
1 ≤ j ≤ n

∈ Zm×n
d

, and tT ∈ GT.

A multi-scalar multiplication over variables y1, . . . , ym ∈ Zd and X1, . . . ,Xm ∈ G1

n∏

i=1

A
yi

i
·

m∏

i=1

Xbi

i
·

m∏

i=1

n∏

j=1

X
yiγi, j

j
= T,

for constants A1, . . . ,An ∈ G1, b1, . . . , bm ∈ Zd, Γ ∈ Zm×n
d

, and T ∈ G1. A multi-scalar multiplication
equation over variables in G2 is defined analogously.

A quadratic equation over variables x1, . . . , xm and y1, . . . , yn in Zd

n∑

i=1

ai yi +

m∑

i=1

xibi +

m∑

i=1

n∑

j=1

γi, jxiy j = t,

For constants a1, . . . , an and b1, . . . , bm in Zd, constant matrix Γ ∈ Zm×n
d

, and t ∈ Zd.

The principle of the GS proof system consists in using the setup parameters and the common reference
string (CRS) to commit to the witness components, then generate proof elements that these values commit-
ted to satisfy the equations underlying the statement to be proved. Note that proofs for pairing-product
equations are only (WI) when tT ∈ GT has no particular structure. They can be however transformed into
ZK proofs (at the expense of an additional cost) if tT is equal to 1GT

or its representation as a pairing product
equation is known.

The GS proof system could be instantiated under different (mild) assumptions, in particular the Λsxdh

setting which refers to the case of asymmetric pairings for which the DDH assumptions holds in both G1

and G2.

17

G1 G2 Zd

Variables x ∈ Zd,X ∈ G1 2 0 0
Variables y ∈ Zd,Y ∈ G1 0 2 0
Pairing product equations 4 4 0
- Linear equations:

∏n
i=1 e(Ai,Yi) = tT 2 0 0

- Linear equations:
∏n

i=1 e(Xi,Bi) = tT 0 2 0
Multi-scalar multiplication equations in G1 2 4 0
- Linear equations:

∏n
i=1 A

yi

i
= T1 1 0 0

- Linear equations:
∏n

i=1 X
bi

i
= T1 0 0 2

Multi-scalar multiplication equations in G2 4 2 0
- Linear equations:

∏n
i=1 Y

ai
i
= T2 0 0 2

- Linear equations:
∏n

i=1 B
xi

i
= T2 0 1 0

Quadratic equations in Zd 2 2 0
- Linear equations:

∑n
i=1 ai yi = t 0 0 1

- Linear equations:
∑m

i=1 xibi = t 0 0 1

Fig. 5. Cost of each variable and equation in terms of group elements fromG1,G2, and Zd

Pairing product equations 5m + 3n + 16

Multi-scalar multiplication equations in G1 8m + 2n + 14

Multi-scalar multiplication equations in G2 8n + 2m + 14
Quadratic equations in Zd 8m + 8n + 12

Fig. 6. Number of pairings per proof verification (m and n refer to the number of different types of involved variables -
see [21])

B Soundness of Group Encryption Schemes

The formal definition of soundness involves an oracle reg(skGM, ·) that simulates the group manager GM
and maintains a repository database that maintains the registered public keys along with their certificates.

The space of valid ciphertexts is denoted by L
x,L,pkR,pkGM ,pkOA,pk

ciphertext
and is given by

L
x,L,pkR,pkGM ,pkOA,pk

ciphertext
=
{
encrypt(pkGM, pkOA, pk,w, L) : (x,w) ∈ R and pk ∈ database

}

The space of valid public keys is denoted by L
param

PK
. A group encryption scheme satisfies soundness if for

any polynomial-time adversaryA, the experiment below returns 1 with negligible probability.

Experiment Expsoundness
A (κ)

1. param← setup(1κ);
2. (pkGM, skGM)← keygenGM(1κ, param); (pkOA, skOA)← keygenOA(1κ, param);
3. (aux, pkR, x, ψ, L)←Areg(skGM ,·)(param, pkGM, pkOA, skOA);
4. 〈done | out〉 ← 〈A(aux),V(param)〉(pkGM, pkOA, pkR, x, ψ, L);
5. If (out = 0) return 0;
6. pk← open(skOA, ψ, L);

7. If (pk < database) or (pk < L
param

PK
) or (ψ < L

x,L,pkR,pkGM ,pkOA,pk

ciphertext
) return 1 else return 0.

C Proof of Theorem 1

C.1 Message security

Proof. LetA be a (t, ǫ, qd)-IND-sl-wCCA against the above construction. We will build a (t, ǫ, qd)-IND-st-wCCA
adversary B against ΓUser by using a sequence of games Gamei where the first one corresponds to the

18

standard security game for the IND-sl-wCCA property for group encryption, and the last one corresponds
to the standard game for the IND-st-wCCA security notion for TBE.

In the rest of the proof, Si denotes the event that the experiment in Gamei returns 1.

Game0. B plays the real IND-sl-wCCA security game withA.

Experiment ExpIND-sl-wCCA
A (κ)

1. param← setup(1κ);
2. (aux, pkGM, pkOA, L)←A(param);
3. 〈pk, sk, certpk | aux, pk, certpk〉 ← 〈JUser(param),A(aux)〉(pkGM);

4. (aux, x,w, pkR)←Adecrypt
¬(·,L)(sk,·)(aux); ⊲ Find stage

5. If (x,w) < R then abort;

6. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

ror(1
κ, pk,w, L);

7. b⋆ ←Aprove
b
P,P′

(pkGM ,pkOA,pkR,x,L,ψ),decrypt¬(·,L)(sk,·)(aux, ψ); ⊲ Guess stage

8. If (b = b⋆) return 1 else return 0.

In this game, we use the zero knowledge (ZK) simulator S (of prove since it is ZK by assumption) as
the proverP′. In fact,S is more powerful thanP′ as it (S) can simulate the prover in the standard prove
procedure without knowledge of pk, certpk.

By definition, Pr[S0] = ǫ + 1
2 .

Game1. In this game,B forwards the label L received fromA (in line 2) to her own challenger as a challenge
tag, and receives in return the challenge public key pk. Then, she presents this very public key toA in
line 3 in order to get a certificate.
Clearly Pr[S1] = Pr[S0].

Game2. In this game,B substitutes the decryption oracle in line 4 by her own decryption oracle for ΓUser.B
is able to answer perfectly the decryption queries made byA as they are by definition w.r.t. labels/tags
different from the challenge tag L. Therefore Pr[S2] = Pr[S1].

Game3. In this game, B changes the construction of the challenge in line 6 as follows. Upon receipt of the
pair (x,w) (with (x,w) ∈ R), B chooses a random witness w′ from the message space (as done by the

oracle CHb
ror) and forwards (w0,w1) ← (w′,w) to her own challenger. She receives as a challenge ψb

1
,

which corresponds to the encryption of wb for b
R
←− {0, 1} under the label/tag L using the public key pk. B

further encrypts H(pk) in ψ2 using ΓOA under the challenge label/tag L and hands ψb = (ψb
1
, ψ2) toA as

a challenge. Note that ψb is perfectly indistinguishable from the output of the oracle CHb
ror(1

κ, pk,w, L).
Therefore Pr[S3] = Pr[S2].

Game4. In this game, B substitutes the decryption oracle in line 7 by her own decryption oracle for ΓUser.
Again, B is able to answer perfectly the decryption queries made by A as they are by definition
w.r.t. labels different from L. Moreover, B runs the ZK simulator S of prove instead of the oracle
proveb

P,S
(pkGM, pkOA, pkR, x, L, ψ). Clearly, this modification does not impact the probability space of

S4 due to the zero-knowledge property of prove (the execution of prove using the real prover is
indistinguishable from that using the simulator).
Therefore Pr[S4] = Pr[S3].
Finally, whenA answers b′, R will return the same answer to her challenger. R will succeed in solving
her challenge with advantage at least Pr[S4] − 1

2 = ǫ after making qd queries to her own decryption
oracle. ⊓⊔

C.2 Anonymity

Proof. Let A be a (t, ǫ, qd)-ANO-sl-wCCA attacker against the construction which is assumed to use a
(t, ǫsec, qd)-IND-st-wCCA secure tag-based encryption ΓOA. We will build a (t, ǫ2 − ǫsec, qd)-ANO-st-wCCA
adversary against the underlying encryption ΓUser as follows.

Likewise, we will proceed using a sequence of games Gamei and will denote by Si the event that the
experiment in Gamei returns 1.

19

Game0. B plays the real ANO-sl-wCCA security game of withA.

Experiment ExpANO-sl-wCCA
A (κ)

1. param← setup(1κ); (pkOA, skOA)← keygenOA(1κ, param);

2. (aux, pkGM, L)←A(param); aux←AUser(pkGM),open¬(·,L)(skOA,·)(aux, pkOA);
If keys , (pk0, sk0, certpk0

, pk1, sk1, certpk1
) return 0;

3. (aux, x,w, pkR)←Aopen
¬(·,L)(skOA ,·), decrypt

¬(·,L)(sk0,·), decrypt
¬(·,L)(sk1,·)(aux);

4. If (x,w) < R return 0;

5. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

anon(pkGM, pkOA, pk0, pk1,w, L);

6. b⋆ ←A
proveP(w,coinsψ,pkb ,certpkb

)(pkGM ,pkOA,pkR,x,L,ψ),open¬(·,L)(skOA,·), decrypt
¬(·,L)(sk0,·), decrypt

¬(·,L)(sk1,·)
(aux, ψ);

7. If (b = b⋆) return 1 else return 0.

By definition, Pr[S0] = ǫ + 1
2 .

Game1. In this game, B substitutes the public keys pk0, pk1 in line 2 by those obtained from her own
challenger as challenge keys after having communicated the label L as a challenge tag.B further obtains
the certificates on both pk0, pk1 fromA. Clearly Pr[S1] = Pr[S0].

Game2. In this game, B replaces the decryption oracles in lines 3 and 6 (w.r.t. both keys pk0, pk1) by her
own decryption oracles which accept all decryption queries with labels different from L. Moreover, B
changes the prover P in line 6 by the ZK simulator S of prove. Due to the ZK property of prove, we
have Pr[S2] = Pr[S1].

Game3. In this game,B changes the construction of the challenge in line 5 as follows. Upon receipt of (x,w)
fromA, she will forward it to her own challenger, she obtains in return an encryption ψb

1
of w under pkb

for some b
R
←− {0, 1}.B further produces an encryption ψ0

2
of H(pk0). Finally she hands the pair (ψb

1
, ψ0

2
) to

A as a challenge ANO-sl-wCCA group encryption.

Let Z denote the event where b = 0. Clearly Pr[S3|Z] = Pr[S2|Z]. We claim that any significant distance
between Game3 and Game2 conditioned on the event ¬Z will give rise to a (t, ǫsec, qd) IND-st-wCCA
adversary B′ against ΓOA. In fact, B′ will execute the standard ANO-sl-wCCA game with A with the
exception of substituting the opening oracle in lines 3, 6 by her own decryption oracle for pkOA (the
decryption oracles for pk0, pk1 will be simulated internally as B′ knows the corresponding privates
keys). B′ gives H(pk0),H(pk1) as challenge messages to her ΓOA challenger, and receives an encryption

ψb′

2
, b′

R
←− {0, 1}, of H(pkb′). Let b′′ be the output of B′. b′′ corresponds to the output of Game2 if ψb′

2
encrypts H(pk1), and to the output of Game3 otherwise. By definition:

advIND−st−wCCA
ΓOA (B′) ≥ |Pr[b′′ = b′] −

1

2
|

= |Pr[b′′ = 0, b′ = 0] + Pr[b′′ = 1, b′ = 1] −
1

2
|

=
1

2
|Pr[b′′ = 0|b′ = 0] + Pr[b′′ = 1|b′ = 1] − 1|

=
1

2
|Pr[b′′ = 1|b′ = 0] − Pr[b′′ = 1|b′ = 1]|

=
1

2
|Pr[S3|¬Z] − Pr[S2|¬Z]|

It follows that |Pr[S3] − Pr[S2]| = |Pr[S3|¬Z] − Pr[S2|¬Z]| = 2ǫsec (as Pr[S3|Z] = Pr[S2|Z]).

Now, back to the reduction B. This algorithm will output, to her ΓUser ANO-sl-wCCA challenger, the
output b⋆ returned by A. Note, that B can simulate the opening oracle in lines 3, 6 internally as she
knows skOA.

Clearly advANO-sl-wCCA
ΓUser (B) ≥ Pr[b = 0]|Pr[S3] − 1

2 | ≥
ǫ
2 − ǫsec. ⊓⊔

20

C.3 Soundness

Similarly to the proofs in [23, 12], the soundness of the construction follows as a direct consequence of
the soundness of the prove procedure and the EUF-CMA security of the underlying signature/certification
scheme. We provide further (in Appendix E.6) a simple soundness proof in case the construction is instan-
tiated from the building blocks described in Section 4.

D A Canetti-Halevi-Katz like Paradigm for Group Encryption

D.1 Message security

Proof. Let A be an IND-CCA adversary against GE. We will build from A an IND-sl-wCCA adversary R
against the underlying GE⋆. We proceed by using a sequence of games Gamei where the first one mirrors
the standard game for IND-CCA security for group encryption (GE) whereas the last one corresponds to
that of IND-sl-wCCA security for GE. We will denote by Si the event that the experiment in Gamei returns
1.

Game0. R plays the real IND-CCA security game of GEwithA.

Experiment ExpIND-sl-wCCA
A (κ)

1. param← setup(1κ);
2. (aux, pkGM, pkOA)←A(param);
3. 〈pk, sk, certpk | aux, pk, certpk〉 ← 〈JUser(param),A(aux)〉(pkGM);

4. (aux, x,w, L, pkR)←Adecrypt(sk,·)(aux); ⊲ Find stage

5. If (x,w) < R then abort;

6. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

ror(1
κ, pk,w, L);

7. b⋆ ←Aprove
b
P,P′

(pkGM ,pkOA,pkR,x,L,ψ),decrypt¬(ψ,L)(sk,·)(aux, ψ); ⊲ Guess stage

8. If (b = b⋆) return 1 else return 0.

By definition, Pr[S0] = ǫ + 1
2 .

Game1. R replaces param (in line 1) by those obtained from her own challenger, say C. She further forwards
pkGM and pkOA (obtained from A in line 2) to C. R further chooses a suitable (t, ǫ′) strongly secure
one-time signature scheme S and generates a key pair (S.pk,S.sk). Finally, R presents S.pk to C as a
challenge label.
Clearly, Pr[S1] = Pr[S0] = ǫ + 1

2 .
Game2. In this game, R simulates the decryption oracle decrypt on queries (ψi, Li) (line 4). First parse

ψi as (ψsl−wCCA
i

, vki, σi). If S.verifyvki
(σi, ψ

sl−wCCA
i

‖Li) = 0, then respond with ⊥. Otherwise, two cases

manifest: either vki , S.pk or not. In the first case, R requests the decryption of qi = (ψsl−wCCA
i

, vki) from
her challenger whose answer will be forwarded toA. In the second case R aborts the simulation.
Let F1 be the event corresponding to A submitting a valid ciphertext ψi = (ψsl−wCCA

i
, vki, σi), w.r.t. label

Li, where vki = S.pk. We have Pr[F1] ≤ ǫ′, since R can output (ψsl−wCCA
i

‖Li, σi) as a forgery on S.
Pr[S2] ≥ Pr[S1] Pr[¬F1] ≥ (1 − ǫ′)qd Pr[S1].

Game3. In this game, R changes the construction of the challenge in line 6.A outputs (x,w, pkR), such that
(x,w) ∈ R, along with the challenge label L. At that point,R transfers the former items toC as a challenge,
and receives ψsl−wCCA as a challenge encryption: ψsl−wCCA = GE⋆.encrypt(pkGM, pkOA, pk,wb,S.pk) for

some b
R
←− {0, 1} such that w1 = w and w0 is a random plaintext uniformly chosen from the plaintext

space. Upon receipt of the challenge, R will produce a one-time signature σ on ψsl−wCCA‖L using S.sk.
Finally Rwill hand the triple ψ = (ψsl−wCCA,S.pk, σ) as a challenge encryption.
Note that ψ is a valid IND-CCA challenge for GE. Moreover, R can perfectly handle queries to
proveb

P,P′
(pkGM, pkOA, pkR, x, L, ψ) using her own (external) oracleproveb

P,P′
(pkGM, pkOA, pkR, x, L, ψ

sl−wCCA).

Therefore Pr[S3] = Pr[S2].

21

Game4. In this game, R simulates the decryption oracle decrypt in line 7. Consider the decryption query
qi = [ψi, Li] = [(ψsl−wCCA

i
, vki, σi), Li]. Naturally qi , [ψ, L]. We distinguish two cases of queries. If vki ,

S.pk, then R proceeds as usual using her own decryption oracle. Otherwise, R responds with ⊥ if the
output of S.verifyvki

(σi, ψ
sl−wCCA
i

‖Li) is 0, and aborts otherwise.

Let F2 be the event corresponding to A submitting a valid ciphertext ψi = (ψsl−wCCA
i

, vki, σi), w.r.t. label
Li, where vki = S.pk. We distinguish two cases:

1. If Li = L, and thus ψi , ψ (since qi , (ψ, L)), then we have (ψsl−wCCA
i

, σi) , (ψsl−wCCA, σ). It follows

that (ψsl−wCCA
i

‖Li, σi) , (ψsl−wCCA‖L, σ), which means that (ψsl−wCCA
i

‖Li, σi) is a strong forgery on S.

2. If Li , L, thenψsl−wCCA
i

‖Li , ψ
sl−wCCA‖L. It follows again that (ψsl−wCCA

i
‖Li, σi) , (ψsl−wCCA‖L, σ), which

means that (ψsl−wCCA
i

‖Li, σi) is a strong forgery on S.

Therefore, Pr[S4] ≥ Pr[S3] Pr[¬F2] ≥ (1 − ǫ′)qd Pr[S3]. Finally, whenA answers b′, Rwill return the same
answer to her challenger. Rwill succeed in solving her challenge with advantage at least ǫ(1 − ǫ′)qd .

⊓⊔

D.2 Anonymity

Proof. LetA be an ANO-CCA adversary against GE. We will build fromA an ANO-sl-wCCA adversary R
against the underlyingGE⋆. We proceed similarly to the previous proof by using a sequence of games Gamei

where the first one mirrors the standard game for ANO-CCA security for GE and the last one corresponds
to that of ANO-sl-wCCA security for GE. We will denote likewise by Si the event that the experiment in
Gamei returns 1.

Game0. R plays the real ANO-CCA security game of GEwithA.

Experiment ExpANO-sl-wCCA
A (κ)

1. param← setup(1κ); (pkOA, skOA)← keygenOA(1κ, param);
2. (aux, pkGM)←A(param); aux←AUser(pkGM),open(skOA,·)(aux, pkOA);

If keys , (pk0, sk0, certpk0
, pk1, sk1, certpk1

) return 0;

3. (aux, x,w, L, pkR)←Aopen(skOA,·), decrypt(sk0,·), decrypt(sk1,·)(aux);
4. If (x,w) < R return 0;

5. b
R
←− {0, 1}; (ψ, coinsψ)← CHb

anon(pkGM, pkOA, pk0, pk1,w, L);

6. b⋆ ←A
proveP(w,coinsψ,pkb ,certpkb

)(pkGM ,pkOA,pkR,x,L,ψ),open¬(ψ,L)(skOA ,·), decrypt
¬(ψ,L)(sk0,·), decrypt

¬(ψ,L)(sk1,·)
(aux, ψ);

7. If (b = b⋆) return 1 else return 0.

By definition, Pr[S0] = ǫ + 1
2 .

Game1. R replaces param and (pkOA, skOA) (in lines 1) by those obtained from her own challenger C. She also
forwards pkGM (obtained fromA in line 2) to C. R further generates a key pair (S.pk,S.sk) for a suitable
(t, ǫ′) strongly secure one-time signature scheme S, then presentsS.pk to C as a challenge tag. Finally R
issues the certificates on the challenge keys pk0, pk1 usingA.

Clearly, Pr[S1] = Pr[S0] = ǫ + 1
2 .

Game2. R simulates in this game the decryption and opening oracles in line 3. Decryption queries (ψi, Li)
with respect to pk0 or pk1 are answered as in the message security proof. I.e., first parseψi as (ψsl−wCCA

i
, vki, σi);

if S.verifyvki
(σi, ψ

sl−wCCA
i

‖Li) = 0, then respond with ⊥, otherwise reply with the answer of C to the

decryption query (ψsl−wCCA
i

, vki) (w.r.t. the proper decryption oracle) if vki , S.pk and abort otherwise.
Opening queries (ψi, Li) are answered similarly, namely R first checks the consistence of ψi (validity of
σi on ψsl−wCCA

i
‖Li, w.r.t. vki, where ψi = (ψsl−wCCA

i
, vki, σi)). In case it is not consistent, then respond with

⊥, otherwise R will use her own opening oracle in the case where vki , S.pk and aborts the simulation
in the opposite one.
Similarly, a (decryption or opening) query causing R to abort will naturally lead to a forgery onS. Thus
Pr[S2] ≥ (1 − ǫ′)qd+qo Pr[S1].

22

Game3. In this game, R changes the construction of the challenge in line 5 as follows. A will output
(x,w, L, pkR), such that (x,w) ∈ R, as a challenge toR. This latter will forward the same quantities except L
to her challengerC. She receives as a challenge encryptionψsl−wCCA = GE⋆.encrypt(pkGM, pkOA, pkb,w,S.pk)

where b
R
←− {0, 1}. Construction ofA’s challenge is done in a straightforward manner, namely produce a

one-time signature σ on ψsl−wCCA‖L using S.sk and set ψ = (ψsl−wCCA,S.pk, σ) as a challenge encryption.
It is easy to see that this challenge is a valid GE encryption of w under label L using either pk0 or pk1.
Moreover, R uses her external proveP(w,coins

ψsl−wCCA ,pkb ,certpkb
)(pkGM, pkOA, pkR, x, L, ψ

sl−wCCA) oracle to handle

queries to the proveP(w,coinsψ,pkb,certpkb
)(pkGM, pkOA, pkR, x, L, ψ) oracle. Thus Pr[S3] = Pr[S2].

Game4. In this game, R simulates the decryption and opening oracles in line 6. Let qi = [ψi, Li] =
[(ψsl−wCCA

i
, vki, σi), Li] be a decryption/opening query. Naturally qi , (ψ, L). Likewise we distinguish

two cases. Either vki , S.pk in which case R proceeds as usual using her own decryption/opening
oracles. Or vki = S.pk in which case A aborts (we assume that ψ is consistent since otherwise R can
perfectly simulate the real decryption/opening algorithms by rejecting the ciphertext). Similarly, we
have Pr[S4] ≥ (1 − ǫ′)qd+qo Pr[S3].
Finally, whenA responds with b′, R will forward the same guess to her own challenger. R will succeed
in solving her challenge with advantage at least ǫ(1 − ǫ′)qd+qo .

⊓⊔

E Efficient Instantiations

E.1 The class S of signatures

Fact 1 The signature [1] belongs to the class S.

Proof. Let certpk = (z, r, s, t, u, v,w) be a signature produced on a message pk = (X1, . . . ,Xn) w.r.t. a public
key cpk = {gz, hz, gr, hr, {gi, hi}

n
i=1
}. We apply the SigRand partial randomization algorithm of [1, Subsection

4.4, Partial randomizability] to get the new signature on pk, say cert′
pk
= (z, r′, s′, t′, u′, v′,w′). cert′

pk
has the

following properties:

1. (s′, t′, v′,w′) is information-theoretically independent of certpk and pk. See [1] for further details. Moreover,
we define:

I = [A · e(s′, t′)−1,B · e(v′,w′)−1]

and

F [z, r, u, (X1, . . . ,Xn)] =

e(gz, z) · e(gr, r) ·

n∏

i=1

e(gi,Xi), e(hz, z) · e(hu, u) ·

n∏

i=1

e(hi,Xi)

It is easy to check that:

F
[
(z, r, u) ∗S (z′, r′, u′), (X1, . . . ,Xk) ∗pk (X′1, . . . ,X

′
k)
]
= F [z, r, u, (X1, . . . ,Xn)] ◦F F

[
z′, r′, u′, (X′1, . . . ,X

′
n)
]

where ◦F is the component-wise product in G2
T

, ∗S is the component-wise product in G3
2
, and ∗pk is the

component-wise product in Gn
2
.

We further define convert(cpk, pk, certpk) = SigRand(cpk, certpk) = (z, r′, s′, t′, u′, v′,w′), R = (s′, t′, v′,w′),
and S = (z, r′, u′).

2. Since (z, r′, s′, t′, u′, v′,w′) is itself a signature on pk, then the retrieve algorithm is nothing but the
identity function. ⊓⊔

Theorem 5. The protocol depicted in Figure 7 is a zero knowledge proof of knowledge with the SpS property, for
proving knowledge of a signature, produced using a scheme from Class S on some message.

23

Prover P Verifier V

Run convert(cpk, pk, certpk) to get (S,R) as in Definition 1

Choose (S′, pk′)
R
←− GS ×Gpk

Compute f ′ = F(S′, pk′)
f ′,R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Compute I as in Definition 1
b

←−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b
R
←− {0, 1}ℓ (b ∈N)

(zS, zpk) = (S′ ∗S Sb, pk′ ⋆pk pkb)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if F(zS, zpk) = f ′ ◦F Ib

Fig. 7. Proof system for membership to the language {(certpk, pk) : certpk = Σ.signcsk(pk)} Common input: cpk and
Private input : (certpk, pk)

We first remark that the function F used in the definition of the class S induces a group law in F(GS×Gpk)
for the operation ◦F (actually, the order of F(GS ×Gpk) is the lcm of the orders of bothGS andGpk). Moreover,

we have 1F(GS×Gpk) = F(1GS
, 1Gpk

) and ∀(s, k) ∈ GS ×Gpk: F(s, k)−1 = F(s−1, k−1).

Proof. For completeness, it is clear that if both parties follow the protocol, the prover will always be able to
provide a proof that the verifier will accept.

The protocol satisfies further the special soundness property. In fact, suppose we have for the same (f ′,R)

two accepting answers (zS, zpk) and (zS, zpk) for two different challenges b and b respectively. Then F(zS, zpk) =

f ′ ◦F Ib and F(zS, zpk)) = f ′ ◦F Ib, which leads to F[z−1
S
∗S zS, z

−1
pk
∗pk zpk] = Ib−b (we assume w.l.g. that b > b). This

means that F[z−1
S
∗S zS, z

−1
pk
∗pk zpk]1/(b−b) = I (we assume that both orders of GS and Gpk are prime (powers),

and thus 1/(b − b) (modulo the lcm of both orders) exists). Let (S̃, p̃k) = [(z−1
S
∗S zS)1/(b−b), (z−1

M
∗pk zpk)1/(b−b)].

Applying retrieve to (S̃,R, p̃k) gives a valid certificate (signature) on the key p̃k.
To prove that the protocol is ZK, we provide the following simulator:

1. Run simulate to generate R, and compute I accordingly.

2. Choose (zS, zpk)
R
←− GS × Gpk, then compute f ′ = F(zS, zpk) ◦F I−b̂, for some b̂

R
←− {0, 1}, and send it to the

verifier along with R.
3. Get b from the verifier.
4. If b = b̂, the simulator sends back (zS, zpk). Otherwise, it goes to Step 2 (rewinds the verifier).

The prover’s first message in the protocol is the value of F on a random point (S′, pk′) ∈ GS × Gpk and
so is the simulator’s. Moreover, the distributions of the responses of the prover and of the simulator are
again identical. Finally, we observe that the simulator runs in expected time 2ℓ since the probability of not
rewinding the verifier is:

Pr[b = b̂] =
∑

bi∈{0,1}ℓ

Pr[b = bi, b̂ = bi]

=
∑

bi∈{0,1}ℓ

Pr[b = bi] Pr[b̂ = bi]

= 2−ℓ
∑

bi∈{0,1}ℓ

Pr[b = bi]

= 2−ℓ

Adjusting ℓ to a factor logarithmic in the security parameter ensures that the simulator will run in
expected polynomial time. ⊓⊔

24

E.2 The Class E1 of TBE

Fact 2 The scheme described in Figure 3 belongs to the class E1.

Proof. 1. The message space is G and the key space is G4.
2. Given a message m and its encryption e = (e1, e2, e3, e4) w.r.t. a key pk and a tag t, one can efficiently prove

knowledge of this statement using the randomness used to produce c; the proof of equality of discrete
logarithms.

3. Given a ciphertext e = (e1, e2, e3, e4) produced on some message w under some key pk w.r.t. a given tag t:

(a) Generate some random sk′ = {x′
i
, x̃′

i
}i=1,2

R
←− Z4

d
and some random message m′

R
←− G

(b) Compute pk = {X′
i
, X̃′

i
}i=1,2 ← {g

x′
i , gx̃′

i }i=1,2.

(c) Compute the ciphertext e′ as (gr, (X′t1X̃′
1
)r, (X′t2X̃′2)r,w′X′r1),

(
{X′ri , (X̃

′
i
)r}

i=1,2
← {c

x′
i

1
, c

x̃′
i

1
}i=1,2

)
.

It is easy to see that both pk′ and w′ are random.
4. Moreover the set E = {e′ : (pk′,w′, e′)← Γ.compute(e)} is obviously equal to {c1} ×G

3, on which we define
the following operation ◦e:

(c1, a, b, c) ◦e (c1, a
′, b′, c′) = (c1, a · a

′, b · b′, c · c′)

E is naturally a group operation w.r.t. ◦e with identity (c1, 1G, 1G, 1G) and inverse element for (c1, a, b, c)
the element (c1, a

−1, b−1, c−1). Moreover the ciphertext e′′ = e′ ◦e e is an encryption of w ·w′ under the key

pk′ · pk = (X1X′
1
, X̃1X̃′

1
,X2X′2, X̃2X̃′2) w.r.t. the same tag t. Finally, the randomness used to produce e is the

same used to produce e′ and e′′. ⊓⊔

Prover P Verifier V
Compute IR as in Definition 2

Compute (pk′,w′, e′1)← Γ1.compute(e1, t)
Compute f ′ = F(pk′) and
Compute f ′

R
= FR(w′)

e′
1
, f ′, f ′

R
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b

R
←− {0, 1}ℓ (b ∈N)

zpk = pk′ ∗pk pkb, zw = w′ ∗w wb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{e′1 ◦e eb
1 = Γ1.encryptzpk

(zw, t)}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if PoK is valid,
f ′ ◦F f b = F(zpk),
and FR(zw) = f ′

R
◦R Ib

R

Fig. 8. Proof system for membership to the language {(w, pk) : e1 = Γ1.encryptpk(w, t) ∧ f = F(pk) ∧ (x,w) ∈ R}
Common input: (e1, t, f , x) and Private input: (w, pk) and randomness used to produce e1.

Remark 4. The presence of the map F in Figure 8 is needed to bind the public key underlying the encryption
e1 to a specific value. Presence of the relation R adds a further constraint on the decryption of e1.

Theorem 6. Let Γ1 be an encryption scheme from the above class E1. Let further F be a homomorphic function with
domain the key space of Γ1. Let finally R be a relation from Class R. The protocol depicted in Figure 8 is a zero
knowledge proof of knowledge with the SpS property.

25

Proof. We first note that 1E = Γ1.encrypt1Gpk
(1Gw

, t) (E is the set underlying Γ1, see Definition 3), and

[Γ1.encryptpk(w, t)]−1 = Γ1.encryptpk−1 (w−1, t).

Completeness is straightforward. For the SpS property, we assume that we have for the same commitment

(e′
1
, f ′, f ′

R
) two accepting answers (zpk, zw) and (zpk, zw) (along with the corresponding proofs PoK and PoK)

for two different challenges b and b respectively. We have thereby:

– f ′ ◦F f b = F(zpk) and f ′ ◦F f b = F(zpk).

– FR(zw) = f ′
R
◦R Ib

R
and FR(zw) = f ′

R
◦R Ib

R
.

– e′
1
◦e eb

1
= Γ1.encryptzpk

(zw, t) and e′
1
◦e eb

1
= Γ1.encryptzpk

(zw, t), provided both PoK and PoK are sound.

This leads to f = F[(z−1
pk
∗pk zpk)1/b−b], and e1 = Γ1.encrypt[(z−1

pk
∗pkzpk)1/b−b]

[(z−1
w ∗w zw)1/b−b, t], and (x, z−1

w ∗w z
1/b−b
w) ∈

R.
For the zero-knowledgeness, we describe the following simulator:

1. Generate uniformly a random challenge b̂
R
←− {0, 1}ℓ. Run Γ1.compute on (e1, t) to get (zpk, zw, e

′′
1

) ∈ Gpk ×

Gw×E. Compute e′
1
= e′′

1
◦e e−b̂

1
, f ′′ = F(zpk), and f ′′

R
= FR(zw). Finally, send (e′

1
, f ′ = f ′′◦F f−b̂, f ′

R
= f ′′
R
◦R I−b̂

R
)

to the verifier.
2. Get b from the verifier.
3. If b = b̂, the simulator sends back (zpk, zw), and simulates the proof PoK for e′′

1
being the encryption of zw

under zpk w.r.t. the tag t (the proof is simulatable since it is zero knowledge by assumption). Otherwise,
it goes to Step 2 (rewinds the verifier).

The prover’s first message is always an encryption of a random message w′ w.r.t. t under a random
public key pk′ in addition to the value of F on pk′, and the value of FR on w′. The simulator’s first message

is also an encryption of a random message zw ∗w w−b̂ w.r.t. t under a random public key zpk ∗pk pk−b̂, the

value of the function F on the same key, and the value of FR on the same random message. Since b̂ is chosen
uniformly at random from {0, 1}ℓ, then the probability that the simulator does not rewind the verifier is 2−ℓ,
and thus the simulator runs in expected polynomial time if ℓ is logarithmic in the security parameter. Finally,
the distributions of the answers of the prover and of the simulator are the same (both answers comprise

random values (zpk, zw) in Gpk ×Gw and a proof that zw is the decryption of e′
1
◦e eb̂

1
w.r.t. t under the key zpk).

We conclude that above proof is zero knowledge. ⊓⊔

E.3 Instantiation of the classH

Let (G, ·) be a group, denoted multiplicatively, with prime order d. Let further a1, . . . , an be elements in Zd,
where n is some integer. We consider the following map:

H : Gn −→ G

(X1, . . . ,Xn) 7−→

n∏

i=1

Xai

i

It is easy to see that Gn is a group where the group operation, say ⊙, is the component-wise product.
Moreover for every (X1, . . . ,Xn) and (X′

1
, . . . ,X′n) in Gn, we have:

H[(X1, . . . ,Xn) ⊙ (X′1, . . . ,X
′
n)] = H(X1, . . . ,Xn) ·H(X′1, . . . ,X

′
n)

Let pk = (X1, . . . ,Xn) ∈ Gn be a public key from database. We assume that Xi = gxi

i
, i = 1 . . .n, where the

gi’s are known generators of G and (x1, . . . , xn) denotes the private key sk corresponding to pk. Let further g
be a known generator of G. We denote by logg gi the discrete logarithm of gi in base g.

26

Let E denote the event that corresponds to having two different pk and pk′ that map to the same value by H.
Occurrence of the event E translates in having the multivariate polynomial (defined over Zd):

P(y1, . . . , yn) =

n∑

i=1

ai logg(gi)yi

evaluate to zero at the point (x1 − x′
1
, . . . , xn − x′n), where sk = (x1, . . . , xn) and sk′ = (x′

1
, . . . , x′n) are the private

keys corresponding to pk and pk′ respectively. If one of the private keys sk or sk′ is random, then the event
E has probability 1

d of occurrence according to Schwartz-Zippel lemma:

Lemma 1 (Schwartz-Zippel). Let P be a non-zero affine multivariate polynomial in Zd[X1, . . . ,Xn], where d is
prime. We have:

Pr
x1,...,xn

R
←−Zd

[P(x1, . . . , xn) = 0] ≤ 1/d.

⊓⊔

To force the private keys sk to be random, GM can proceed to a systematic randomization of the corresponding
pk as follows: upon receipt of pk = (X1, . . . ,Xn) from the group member, GM computes the new key as

Xi ← Xri

i
, i = 1 . . .n, for a randomly selected vector r = (r1, . . . , rn)

R
←− Zn

d
. The corresponding private key can

be computed once GM publishes the vector r.

E.4 The Class E2 of TBE

Prover P Verifier V

Choose pk′
R
←− Gpk

Compute f ′ = F(pk′)
Compute h′ = H(pk′)

Compute e′2 = Γ2.encryptΓ2 .pk(h′, t)
(f ′, e′2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

b
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Choose b

R
←− {0, 1}ℓ (b ∈N)

zh = h′ ∗H hb, zpk = pk′ ∗k pkb

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

PoK{e′2 ◦c eb
2 = Γ2.encryptΓ2.pk(zh, t)}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Accept if: F(zpk) = f ′ ◦F f b,
H(zpk) = zh,
and PoK is valid.

Fig. 9. Proof system for membership to the language {(h, pk) : e2 = Γ2.encrypt(h, t) ∧ h = H(pk) ∧ f = F(pk)}
Common input: (f , e2, t, Γ2.pk) and Private input: (h, pk) and randomness used to produce e2.

Theorem 7. Let Γ2 be a tag-based encryption scheme from Class E2. Let further F be a homomorphic map and H
denote a map from ClassH. We assume that both maps have for domain the message space of Γ2. The protocol depicted
in Figure 9 is a zero knowledge proof of knowledge, with the SpS property.

Proof. To prove this theorem, we first remark that the encrypt algorithm, with respect to a given public key
pk, induces a group law on the ciphertext space C.

Completeness is straightforward. For the SpS property, we assume that we have for the same commitment

e′2 two accepting answers (zh, zpk) and (zh, zpk) (along with the corresponding proofs PoK and PoK) for two

different challenges b and b respectively. We have:

27

– F(zpk) = f ′ ◦F f b and F(zpk) = f ′ ◦F f b.
– H(zpk) = zh and H(zpk) = zh.

– e′
2
◦c eb

2
= Γ2.encryptpkOA

(zh, t) and e′
2
◦c eb

2
= Γ2.encryptpkOA

(zh, t), provided both PoK and PoK are sound.

This leads to e2 = Γ2.encryptpkOA
[(z−1

h
∗H zh)1/b−b, t], f = F[(z−1

pk
∗pk zpk)1/b−b], and H[(z−1

pk
∗pk zpk)1/b−b] = z−1

h
∗H

zh)1/b−b.
For the zero-knowledgeness, we describe the following simulator:

1. Generate uniformly a random challenge b̂
R
←− {0, 1}ℓ and a random zpk

R
←− Gpk. Then compute zh = H(pk),

f ′ = F(zpk) ◦F f−b̂, and e′2 = Γ2.encryptΓ2.pk(zh, t) ◦c e−b̂
2 . And finally send (f ′, e′) to the verifier.

2. Get b from the verifier.
3. If b = b̂, the simulator sends back (zh, zpk) and runs the proof PoK for e′2 ◦c eb

2 being the encryption of zh

w.r.t. t (with the randomness used to produce Γ2.encryptΓ2.pk(zh, t) as private input). Otherwise, it goes
to Step 2 (rewinds the verifier).

The distribution of the messages of the prover and of the simulator is the same. Moreover, the probability

that the simulator does not rewind the verifier is 2−ℓ, since b̂ is chosen uniformly at random from {0, 1}ℓ. We
conclude then that above proof is perfectly zero knowledge as the simulator runs in expected polynomial
time if ℓ is logarithmic in the security parameter. ⊓⊔

E.5 Proof of Theorem 3

Proof. The protocol depicted in Figure 2 is a parallel composition of the protocols given in Figures 7 & 8 & 9.
Therefore, completeness and the SpS property follow in straightforward way. Likewise, the ZK knowledge
simulator of the protocol is a parallel composition of the ZK simulators of the mentioned protocols, which
concludes the proof. ⊓⊔

E.6 Proof of Theorem 4

We first note the following remark.

Remark 5. If the function F is not second-preimage resistant, i.e. given (S, pk), then one can find a different

pair (S̃, p̃k) such that F(S̃, p̃k) = F(S, pk), then one can existentially forge certificates given any valid certificate
and corresponding key. In fact, the adversary can compute from the valid certificate, say certpk and key pk the

tuple (S,R) such that F(S, pk) = g(cpk,R). Then call the retrieve algorithm on (S̃, p̃k,R) in order to compute

a certificate c̃ert
p̃k

on p̃k.

Proof. The proof is similar to that of [23, Theorem 3.1] except that we use in our case the SpS property of
prove instead of the extractability and binding property of the commitment. LetA be a soundness adversary
against the construction. We build an adversaryR against the signature scheme underlying the construction
as follows.
R gets the signature scheme public parameters, generates further the remaining parameters for the

construction, and finally submits these to A. R further uses her signing oracle in order to issue valid
certificates on the public keys presented byA.

Due to the SpS property (which implies soundness) of prove, the only possibility forA is to successfully
carry out prove for pk < database.R can then use the knowledge extractor (described in the proof of Theorem

5) in order to extract a pair (S̃, p̃k) satisfying F(S̃, p̃k) = F(S, pk) = I. If p̃k , pk, then according to Remark 5,
we can build an EUF-CMA forger against the construction, otherwise we call retrieve on (S,R, pk) in order
to extract the certificate, say certpk, on pk. Since pk < database, then R never requested his challenger for a
signature on pk and thus (certpk, pk) forms a valid existential forgery on the signature scheme.

28

F Security Analysis of the Encryption Scheme in Figure 3

F.1 The Twin Diffie-Hellman problem

The Twin Diffie-Hellman problem was introduced in [11] as a slight modification to the original Diffie-
Hellman (DH) problem which is as hard as the ordinary DH problem, even given access to a corresponding
decision oracle. It is defined as follows.

Let G be a prime-order cyclic group generated by some g. Let further dh further denotes the Diffie-
Hellman function (it inputs (X,Y) ∈ G2 and returns Z such that (g,X,Y,Z) is Diffie-Hellman quadruple). The
Twin DH function is defined as follows

2dh:
G

3 → G2

(X1,X2,Y)→ (dh(X1,Y),dh(X1,Y))

Cash et al. define further a corresponding twin DH predicate:

2dhp(X1,X2, Ŷ, Ẑ1, Ẑ2) := 2dh(X1,X2, Ŷ)
?
= (Ẑ1, Ẑ2).

Finally the Strong Twin Diffie-Hellman assumption states that distinguishing the two distributions (X1 ,X2,Y,dh(X1,Y))
and (X1,X2,Y,Z) for random X1,X2,Y,Z ∈ G is hard even in the presence of a decision oracle for the predicate

2dhp(X1,X2,−,−,−) which on input (Ŷ, Ẑ1, Ẑ2)) returns 2dhp(X1,X2, Ŷ, Ẑ1, Ẑ2).

Theorem 8. The DDH assumption holds if and only if the Strong Twin DDH assumptions holds.

The proof is given in [11].

F.2 Indistinguishability

Theorem 9. The encryption scheme in Figure 3 is IND-st-wCCA secure under the Strong Twin Diffie-Hellman
assumption.

Proof. The proof is similar to that of Theorem 7 in [11]. We consider a sequence of games Gamei and we
denote by Si the event corresponding to Gamei returning 1.

Game0 We consider the standard game played with a (t, ǫ, qd)-IND-st-wCCA attackerA.

Experiment ExpIND−st−wCCA
A (1κ)

1. (G, d, g)← setup(1κ);
2. t←A(param);

3. sk = (x1, x̃1, x2, x̃2)
R
←− Z4

d
;

4. pk = (X1, X̃1,X2, X̃2))← (gx1 , gx̃1 , gx2 , gx̃2);

5. (m0,m1)←Adecrypt
¬(−,t)(sk,.)(pk);

6. r← Zd b
R
←− {0, 1}; eb ← (gr, (Xt

1
X̃1)r, (Xt

1
X̃1)r);

7. b⋆ ←Adecrypt
¬(−,t)(sk,.)(eb);

8. If b = b⋆ return 1 else 0.
By definition, Pr[S0] = ǫ + 1

2 .
Game1 We change in this game the generation of the key in Lines 3. and 4. as follows:

3. x1, x2, a1, a2
R
←− Zd;

4. pk← (X1, X̃1,X2, X̃2) = (gx1 ,X−t
1

ga1 , gx2 ,X−t
2

ga2));

We change further the decryption oracle decrypt¬(−,t)(sk, .) in Lines 4. and 6. as follows. For a ciphertext

(Ŷ, Ẑ1, Ẑ2, Ĉ) w.r.t. a tag t⋆ , t, compute Z̄i = (Ẑ/
i
Ŷai

i
)1/(t̂−t) for i = 1, 2. Then, check the consistency of the

ciphertext by checking if

Ŷx1 = Z̄1 and Ŷx2 = Z̄2

If the ciphertext is consistent, then output m = C · Z̄−1
1

as a decryption.
Clearly Pr[S1] = Pr[S0].

29

Game2 Consider a Strong Twin Diffie-Hellman adversary R with instance (Y,X1,X2,Z). R will execute
Game1 with the following changes:

3. a1, a2
R
←− Zd;

4. pk← (X1,X
−t
1

ga1 ,X2,X
−t
2

ga2);
Furthermore, the simulation of the decryption oracle in Lines 4 and 6 is done using the 2dhp oracle

(provided for R). Actually, the oracle is invoked on the input (X1,X2, Ŷ, Z̄1, Z̄1) to check the consistency

of the queried ciphertext (Ŷ, Ẑ1, Ẑ2, Ĉ) (with Z̄i = (Ẑ/
i
Ŷai

i
)1/(t̂−t) for i = 1, 2) since R does not know x1 and

x2.
Again we have Pr[S2] = Pr[S1].

Game3 In this game, B plugs further her instance (Y,X1,X2,Z) in the challenge ciphertext as follows:

5. b
R
←− {0, 1} eb ← (Y,Ya1 ,Ya2 ,mbZ);

If we denote by T the event corresponding to Z = dh(X1,Y), then we clearly have Pr[S3|T] = Pr[S2|T].
R will simply forward the result of the outcome of Game3 to his challenger. We have:

Adv(R) =

∣∣∣∣∣Pr[Game3(1κ) = 1 ∧ T] + Pr[Game3(1κ) = 0 ∧ ¬T] −
1
2

∣∣∣∣∣

=
1

2
|Pr[Game3(1κ) = 1|T] + Pr[Game3(1κ) = 0|¬T] − 1|

=
1

2
|Pr[S3|T] + Pr[Game3(1κ) = 0|¬T] − 1|

=
1

2

∣∣∣∣∣Pr[S0|T] −
1
2

∣∣∣∣∣

=
Adv(A)

2

The last but one equation is due to Pr[S3|T] = Pr[S2|T] and Pr[S2] = Pr[S1] = Pr[S0] = Pr[S0|T].
Moreover, if ¬T occurs, then Z is random in G, and so is mbZ which is consequently independent of mb.
Then the probability that the output of Game3 equals zero is exactly 1

2 . ⊓⊔

F.3 Anonymity

Here, we extend the result of [22, 15] which derives anonymity from indistinguishability in public key
encryption schemes, to tag-based encryption schemes.

LetΓ be a tag-based encryption scheme given by the three algorithms Γ.keygen, Γ.encrypt, andΓ.decrypt.
Let further M and C denote the message and ciphertext space of Γ respectively. We stress that C depends
solely on the considered security parameter and not on a particular key. We consider the following property:

Property A Let κ be a security parameter. Let further t be a fixed tag, and (pk, sk) be an output of Γ.keygen.
Consider the uniform distribution on M. Then, the distribution on C corresponding to the random variable

Γ.encryptpk(m, t) where m
R
←− M, is indistinguishable from uniform.

It is clear that the scheme in Figure 3 satisfies easily Property A as a for a fixed key (X1, X̃1,X2, X̃2) and

a fixed tag the encryption of a random message m is a random ciphertext (gr, (Xt
1
X̃1)r, (Xt

2
X̃2)r,mXr

1
) in the

ciphertext space (due to the randomness of r).

Theorem 10. Let Γ be tag-based encryption scheme which has Property A. Let further (t, qd) ∈ N2 and ǫ ∈ [0, 1]. Γ
is (t, ǫ, qd)-ANO-st-wCCA secure if it is (t, ǫ2 , qd)-IND-st-wCCA secure.

Proof. We proceed in this proof using the game-hopping technique which considers a sequence of games;
the first one mirrors that of an anonymity adversary whereas the last one corresponds to the standard
indistinguishability game. We denote by Si the event that Gamei returns 1.

Game0. We consider the standard game played with a (t, ǫ, qd)-ANO-st-wCCA attackerA.

30

Experiment ExpANO−st−wCCA
A (1κ)

1. param← setup(1κ);
2. t←A(param);
3. (sk0, pk0)← Γ.keygen(param, 1κ); (sk1, pk1)← Γ.keygen(param, 1κ)

4. m0 ←A
decrypt¬(−,t)(sk0,.),decrypt

¬(−,t)(sk1,.)(pk0, pk1);

5. b
R
←− {0, 1}; eb ← Γ.encryptpkb

(m0, t);

6. b⋆ ←Adecrypt
¬(−,t)(sk0,.),decrypt

¬(−,t)(sk1,.)(eb);
7. If b = b⋆ return 1 else 0.

By definition, Pr[S0] = ǫ + 1
2 .

Game1. In this game, we change Line 5 by 5. m1
R
←− M; b

R
←− {0, 1}; eb ← Γ.encryptpk0

(mb, t);
and Line 7. by
7. If b⋆ = 0 return 1 else 0.
If we denote by Z the event corresponding to b = 0, then we clearly have Pr[S1|Z] = Pr[S0|Z].
Now, consider the following IND-st-wCCA adversary R against Γ who executes Game1 as follows; R
replaces param by those got from her challenger, and forwards to this latter the tag t. She further sets
pk0 to her challenge public key, and simulates the oracle decrypt¬(−,t)(sk0, .) in Lines 4 and 6 by her
own decryption oracle (the simulation is perfect as she is allowed to query any ciphertext w.r.t. any tag
different from t). Finally, she generates m1 internally and pass both m0 and m1 to her challenger to get
in response the challenge eb that she gives toA. If the output of Game1 is 1, then Rwill output b′ = 0 to
her challenger, otherwise she will respond with b′ = 1.

By definition adv(R) =
∣∣∣Pr[b′ = b] − 1

2

∣∣∣:

Adv(R) =

∣∣∣∣∣Pr[b′ = b] −
1

2

∣∣∣∣∣

=

∣∣∣∣∣Pr[Game1(1κ) = 1 ∧ b = 0] + Pr[Game1(1κ) = 0 ∧ b = 1] −
1

2

∣∣∣∣∣

=
1

2
|Pr[Game1(1κ) = 1|Z] + Pr[Game1(1κ) = 0|¬Z] − 1|

=
1

2
|Pr[S1|Z] + Pr[Game1(1κ) = 0|¬Z] − 1|

=
1

2

∣∣∣∣∣Pr[S0|Z] −
1
2

∣∣∣∣∣

=
Adv(A)

2

The last but one equation is justified by the fact that conditioned on the event Z, the two events S0 and
S1 are identical. Moreover, we have Pr[Game1(1κ) = 0|¬Z] = 1

2 by virtue of Property A if b = 1, then eb

is a random element in C, and with overwhelming probability it is not an encryption of m0 under either
keys. Finally, we have Pr[S0|Z] = Pr[S0|¬Z] = Pr[S0] = adv(A) + 1

2 . ⊓⊔

G Analysis of the prove Procedure in the Realization in 4.3

Interactive proof The interactive version of prove is that obtained by instantiating the protocol depicted
in Figure 2 with the previously mentioned bricks. This results in a commitment comprising two elements
from (G1×G2)2 (for R), two elements fromGT (for f ′), one element fromGT (for x′), and eight elements from
G2 (for the encryptions e′

1
and e′2), which totals 15 group elements. The response comprises three elements

from G2 (for zS), four elements from G2 (for zpk), one element from G2 (for zh), and one element in G2 (for
zm). It further comprises two proofs of equality of discrete logarithms where each needs two elements in
G2, a challenge, and one element from the exponent group, say Zd (d is G2’s order). Therefore the total

31

communication cost amounts to 30 group elements in addition to 3ℓ, where 2−ℓ is the soundness error, say
1 kB if we use a 256-bit group size and we consider a soundness error of 2−50. This is again significantly
smaller than 16.125 kB required for [12] (using the same group order bit-size) or 70 kB required for [23]
(achieving the same soundness error).

Non-interactive proof We recall again the equations underlying prove (the variables are emphasized by a
bold font):

A = e(gz, z)e(gr, r
′)e(s′, t′)

4∏

i=1

e(gi,Xi) (1)

B = e(hz, z)e(gu,u
′)e(v′,w′)

4∏

i=1

e(hi,Xi) (2)

(C1,C2,C3,C4) = (gk, (Yt
1Y3)k, (Yt

2Y4)k,hYk
1) (3)

h =

4∏

i=1

Xi
ai (4)

(D1,D2,D3,D4) = (gℓ, (X1
tX3)ℓ, (X2

tX4)ℓ,mX1
ℓ) (5)

e(P,m) = x (6)

The equations involve 11 variables (z, r′, u′,X1,X2,X3,X4, k, h, ℓ,m)and thus will increase the size of the
proof by 22 group elements. Equations (1) and (2) costs two group elements each (linear pairing equation).
Equation (3) comprises four sub-equations; the first three cost one group element each (linear equation) and
the last one costs 6 group elements (multi-exponentiation equation). Equation (4) costs 6 group elements
(multi-exponentiation equation). Equation (5) comprises four sub-equations, the first one costs 1 group
element, and the last three ones cost 6 elements each. Finally Equation (6) costs 2 group elements. The
overall size of prove amounts then to 22+ 2+ 2+ 3+ 6+ 6+ 1+ 3 · 6+ 2 = 62 group elements, say 2 kB versus
16.125 kB [12] (using the same group order bit-size, namely 256-bit size).

The verification cost in terms of pairing computations is computed as follows. Equation (1) costs 5 ·0+3 ·
6+ 16 = 34 pairings. Equation (2) costs similarly 34 pairings. Equation (3) comprises four sub-equations: the
first three ones need 8 · 0+ 2 · 1+ 14 = 16 pairings each; the last sub-equation demands 8 · 1+ 2 · 1+ 14 = 24;
so to say Equation (3) needs 3 · 16 + 24 = 72 pairings. Equation (4) needs 8 · 5 + 2 · 0 + 14 = 54 pairings.
Equation (5) comprises four sub-equations; the first one needs 2 + 14 = 16 pairings and the last three costs
8 · 2 + 2 · 1 + 14 = 32 pairings each. Finally Equation (6) needs 5 · 0 + 3 · 1 + 16 = 19 pairings each. The total
cost adds up to 34 + 34 + 72 + 54 + 16 + 3 · 32 + 19 = 325 pairings.

H Analysis of the prove Procedure in [12]

The authors in [12] use Shacham [28]’s scheme to encrypt the witness (which is a Diffie-Hellman key), Kiltz
[24]’encryption scheme to encrypt the receiver’s key, and finally they use a certification scheme they develop
in the same paper in order to certify the receivers keys.

32

More precisely, the equations underlying the prove procedures are (the variables are emphasized by a
bold font)

e(Ci,1, f) = e(f1,Di,1)e(f3,1,Di,1) i = 1 . . .6 (1)

e(Ci,2, f) = e(f2,Di,2)e(f3,2,Di,3) i = 1 . . .6 (2)

e(Ci,3, f) = e(Xi ·Di,1 ·Di,2, f)e(f3,3,Di,3) i = 1 . . . 6 (3)

e(S1, Ω · S1) = A (4)

e(S2, u) = e(g,S3) (5)

e(S4, g) = e(u0,S2) ·

n∏

i=1

(e(ui,1,S5,i,1) · e(ui,2,S5,i,2) · e(ui,3,S5,i,3)) (6)

e(S5,i,j, g) = e(Ci,j,S2) i = 1 . . . 6, j = 1 . . .3 (7)

(Vi,1,Vi,2,Vi,3,Vi,4,Vi,5) =
(
Y

wi,1

1
,Y

wi,2

2
, (gtY3)wi,1 , (gtY4)wi,2 ,Xi · g

wi,1+wi,2

)
i = 1 . . .6 (8)

(U1,U2,U3,U4,U5) =
(
gr

1, g
s
2, g

r+s,W · X5
rX6

s, (X1X3
α)r · (X2X4

α)s
)

(9)

e(X,Y) = e(g,W) (10)

Equation (1) comprises 6 sub-equations, each involves 3 variables, thus it requires 6(12 · 3 + 27) = 378
pairingd. Similarly equation (2) requires 378 pairings. Equation (3) contains 6 sub-equations each involves
5 variables thus it requires 6(12 · 5 + 27) = 522 pairings. Equations (4) and (5) both involve two variables
and thus require 12 · 2 + 27 = 51 pairings each. Equation (6) involves 20 variables and thus requires
12·20+27 = 267 pairings. Equation (7) comprise 18 sub-equations, each involves 3 variables, thus the equation
needs 18(12 ·3+27) = 1134. Equation (8) comprises 6 sub-equations, each sub-equation comprises itself three
sub-equations, where the first two involve one variable (the exponent) thus require 9 · 1 + 12 · 0 + 27 = 36
pairings each, whereas the third one comprise two variables (one exponent and one group element) thus
needs 9 · 2 + 12 · 1 + 27 = 57. Thus Equation (8) requires 6(36 + 36 + 57) = 774. Equation (9) comprises five
sub-equations: the first two involves one variable each and thus require 9 ·1+12 ·0+27 = 36 pairings each; the
third one involves two variables and thus requires 9 ·2+12 ·0+27 = 45; the fourth one involves two exponent
variables and three group element variables thus needs 9 · 2 + 12 · 3 + 27 = 81; finally the fifth sub-equation
involves two exponent variables and four group elements variables thus needs 9 · 2 + 12 · 4 + 27 = 93. Thus
equation (9) needs 291 pairings. Finally equation (10) involves one variable and thus requires 12 ·1+ 27 = 49
pairings.

The overall prove requires then 3895 pairing computations.

33

