
Fast Embedded Software Hashing

Dag Arne Osvik∗

EPFL IC IIF LACAL, Station 14, CH-1015 Lausanne, Switzerland
dagarne.osvik@epfl.ch

Abstract. We present new software speed records for several popular hash func-
tions on low-end 8-bit AVR microcontrollers. Target algorithms include widely de-
ployed hash functions like SHA-1 and SHA-256 as well as the SHA-3 (second round)
candidates Blake-32 and Skein-256. A significant aspect of our implementations is
that they reduce the overall resource requirements, improving not only execution
time but also RAM footprint and sometimes ROM/Flash memory footprint at the
same time, providing the best memory/performance trade-offs reported so far. We
believe that our results will shed new light on the ongoing SHA-3 competition, and
be helpful for the final stage of the competition.

1 Introduction

Cryptographic hash functions are one of the most widely used cryptographic primitives
for security applications. They have been extensively deployed over the last few decades,
especially after digital signatures became more and more popular. Moreover, many other
“ancillary” applications, including hash-based message authentication codes, pseudo ran-
dom number generators and key derivation functions, make use of cryptographic hash
functions as their main underlying primitive.

To meet the requirements for such sensitive applications, a myriad of hash functions
have been developed and (some of them) standardized, such as MD4 [18], MD5 [19], SHA-
0, SHA-1 [20] and the SHA-2 [20] family, with various output lengths ranging from 128 to
512 bits. These hash functions all tend to be quite fast on modern processor architectures,
in particular workstations (with 32 or 64-bit CPUs). Compared to their sister primitive
blockciphers, these hash functions are much faster for the same input length. As a result,
this has established the common belief that a hash function should be efficient, in partic-
ular fast; yet being fast is necessarily related to being lightweight in terms of underlying
operations, which turned out to cause quite dramatic consequences for security.

That having been said, these widely deployed hash functions share another rather un-
expected property as well. Namely, starting from 2004, collisions have been successfully
found for MD4 [18], MD5 [19], and SHA-0; moreover, several algorithms for SHA-1 colli-
sions, requiring less than the expected amount of work, have been published without yet
being able to provide collisions. Nevertheless, it is widely believed that SHA-1 is broken
and should not be used in sensitive applications requiring collision resistance (preimage
attacks seem beyond practical reach with current technology); this leads to the question
of whether the younger members of the SHA family will share the same destiny.

Despite the lack of any practical (or even theoretical) attack on any member of the
newer SHA-2 family, this erosion of trust led NIST to decide to develop a new algorithm.
For this purpose, a public competition [15] was announced by the NIST to develop a new
cryptographic hash algorithm intended to replace the current SHA-2 standard [20]. The
main reason they mentioned was that “a successful collision attack on an algorithm in
the SHA-2 family could have catastrophic effects for digital signatures.” The new hash
algorithm will be called SHA-3 and will be subject to a Federal Information Processing

∗ Supported by Microsoft Innovation Cluster for Embedded Software project



Standard (FIPS) as done for the Advanced Encryption Standard (AES) [4]. The compe-
tition officially started in late 2008 with submissions from all over the world including
contributors from academia, industry and government institutions. As a result, 64 propos-
als were received, of which 51 met the minimum submission requirements and became the
first round candidates.

In summer 2009 the number of candidates for the second round was cut down to a more
manageable size of 14 by eliminating the ones having major security or performance flaws.
Indeed, as reported in the competition announcement: “NIST expects SHA-3 to have a
security strength that is at least as good as the hash algorithms currently specified in FIPS
180-2, and that this security strength will be achieved with significantly improved efficiency.”
Note however that despite suffering from minor security issues, some of the high-performing
candidates survived for the second round [14]; this clearly shows the importance of efficiency
in the evaluation procedure. The total number of candidates was reduced to five finalists
in December 2010 [16], and the new hash function standard will be announced in 2012.

Although standard workstations are stated as the reference platforms by NIST (to eval-
uate the software performance), they also stress that it is preferable if “the algorithm can
be implemented securely and efficiently on a wide variety of platforms.” For this purpose,
several papers have been published (e.g. [10,11]) showing improved software performance
results for SHA-3 candidates on architectures ranging from standard workstations to smart-
cards and exotic platforms like GPUs and Cell BE.

Microcontrollers are one of the key components of embedded systems with applications
in all of the major electronics markets, including the automotive industry, home appli-
ances, home entertainment, industrial automation, mobile electronics and wireless sensor
networks. They are mainly utilized instead of general purpose CPUs for space, power and
cost saving reasons. It is expected that the microcontroller market will continue to grow
rapidly in the near future. Indeed, this market is estimated [8] to reach a value of USD 16
billion for 2011, with an expected 9% annual revenue growth over the next five years.

It is not difficult to see the need for cryptography in embedded processors and lightweight
applications. AES has attracted a lot of attention from the community due to its high per-
formance on such devices. Moreover, it is believed to be one of the reasons that Rijndael
was selected as AES performing superior to the other AES contestants on similar ubiq-
uitous platforms. Motivated by this fact, this work investigates the case for the currently
used hash functions SHA-1/SHA-256 and some of the SHA-3 candidates on Atmel’s 8-bit
AVR microcontroller family.

The reasons for chosing this particular platform are straightforward: it is a popular
architecture in real-life applications; the hardware is cheap and easily available; it is easy to
develop programs for it using freely available development tools; and our target algorithms
had already been implemented on the same architecture, making the contributions of this
work easy to evaluate.

2 Target Algorithms

Ideally, one would aim to implement all relevant algorithms with all possible improvements
on the same architecture to get a good overall benchmark. However, this is no easy feat.
Indeed, just to make a single efficient implementation one needs to invest a significant
amount of effort. Nevertheless, we have selected several target algorithms for which we can
make substantial improvements over older performance results.

Our first target algorithms are two members of the SHA family: SHA-1 and SHA-256.
Their inclusion is straightforward given their influence in the practical world, where the
former is one of the most deployed hashing algorithms and the latter is the currently
suggested standard. They are also the benchmark against which the SHA-3 candidates are
measured.

2



One might argue that SHA-1 will soon retire and any performance improvement for
SHA-1 is pointless. However, it is still preimage resistant, and many protocols for lightweight
cryptography employing hash functions require only preimage resistance [3,5,6,21], making
SHA-1 a sound candidate for such applications. We also show in this work that its resource
requirements are quite competitive.

Regarding SHA-3 candidates, on the other hand, our selection process was more com-
plex given the 14 candidates at that time, but in the end we decided to start this part of our
work with BLAKE-32 and Skein-256. These two algorithms are among the five candidates
that went on to become finalists.

3 Target Platform

For our work targeting low-end embedded systems we chose Atmel’s AVR family of 8-bit
microcontrollers. This family is widely used in embedded systems, is quite easy to program
using GNU tools, and provides a relatively simple architecture in which we can explore
tradeoffs between code size and execution speed.

Important features of the architecture include 32 registers of 8 bits each, mostly single-
cycle execution of instructions, 16-bit pointer registers and addressing modes with pre-
decrement or post-increment of the pointer value, separate program and data memories
(Harvard architecture), hardware stack support, memory-mapped registers, and relative
and indirect calls (rcall/icall) and branches (rjmp/ijmp).

The results from most instructions are written back to an input register, like on x86
processors. The stack pointer is a separate pair of registers and not part of the general-
purpose register file, making it possible to use all 32 general-purpose registers for program
data in fully reentrant (and interrupt safe) code.

AVRs with more memory than can be addressed with 16 address bits have support
for extending the address, but we are not using this feature. Note that RAM can be very
small, in some chips even not present apart from the register file, while program memory
is comparatively large and useful for lookup tables with constant data.

The X, Y and Z registers consist of one pair of 8-bit registers each, overlapping the
top 6 registers of the register file. One useful result of this is that for an aligned 256-byte
lookup table, we can keep the upper half of the address in the high register and use the
low register as index register without any further address computations.

There are optional instructions for loading and storing data in program memory; hence
AVR processors that implement them have a modified Harvard architecture, but only the
Z register may be used for addressing in this memory. Memory addressing with a 6-bit
unsigned displacement is possible, but only with the Y and Z registers, and not for program
memory. This turned out to prevent an optimization of SHA-1 for which we would need
two pointers with displacement and a third to address program memory. The Z register is
also the only one that may be used for indirect calls and branches.

Another interesting feature is the memory mapping of the 32 registers at the beginning
of the address space, making it possible to write very simple and tiny loops for things like
reading a block of data into registers.

Conditional branches are limited to a 7-bit signed displacement, which means a simple
inner loop is limited to 64 instructions, including the branch instruction itself.

4 Approach

We first give an informal overview of our approach to developing our implementations. No
strict development methodology has been followed. Instead we have tried to combine the
necessary creative freedom with sound software engineering.

3



To achieve maximum performance we need access to low-level features of the processor
architecture, which we only get at the assembler level. However, we can use macros and
higher-level languages to create assembly code, and in our work we have used both M4, C
macros and regular C programs for this purpose. The tools help us make the code more
readable and easy to debug, but our particular choice of languages is simply a matter of
availability and personal preferences.

When creating an efficient implementation, we first need to understand in detail the
inner workings of the algorithm, and find out which computations are strictly necessary.
Then we can combine this with what instructions, registers and addressing modes are
available on a given processor architecture to find efficient ways of performing the com-
putations. Already at this stage we take into account possibilities like free permutations
through renaming of registers, reordering of loads and stores, or changing data layout in
memory.

Note that in this work we are looking at how to make high-performance software im-
plementations while avoiding excessive resource (RAM/ROM) requirements. That is, we
aim for good speed/memory trade-offs, giving higher priority to running time and RAM
footprint than ROM footprint (code size). Hence we do not take into account any specific
hard limits or costs that could be constraining a real-world application, although our heav-
ier weighting of RAM use than ROM use is due to RAM typically being about an order
of magnitude smaller than ROM in embedded devices. Other interesting data points for
performance trade-offs for these algorithms would include maximizing performance while
keeping RAM and ROM use close to the minimum possible.

Given our priorities, we start by optimizing for straight-line code, without any loops
or function calls. As always in performance optimization, we focus first and foremost our
attention and efforts on the most time-consuming part, like the round function of a hash
algorithm or block cipher.

Next we look at how to minimize the footprint of our code in RAM and ROM, while
minimizing the resulting increase in run time. This involves e.g. identifying opportunities for
sharing code between different iterations of a round function and moving their differences to
short entry point stubs which load round constants into registers before jumping or falling
through to the shared code of the function. Obviously, the more frequently a particular
part of the code will be executed, the more memory we are willing to spend to keep that
part of the code fast.

Once we have worked out how to implement the algorithm, it is time to write the
actual code, compile it, and run it on the targeted hardware. For assembly programs in
particular it is very useful to have code that shows us the entire (relevant part of the) state
of the processor, and compare the actual state with the corresponding state of a reference
implementation. This way we gradually build the new implementation while checking that
the code really does what it is supposed to do.

5 Implementations

5.1 SHA-1

SHA-1 is considered broken[22,7], but remains a popular hash function. The SHA-1 algo-
rithm uses a word size of 32 bits and produces a message digest of 160 bits. Just as with
the older MD5 the input message m is processed in blocks of 512 bits after initial padding.

All the individual message blocks go through two parts; first each 512-bit block is
expanded to 2560 bits (80 words of 32 bits). This message expansion is done by computing
the recurrence relation

wi =

{
mi if 0 ≤ i ≤ 15,
(wi−3 ⊕ wi−8 ⊕ wi−14 ⊕ wi−16) <<< 1 if 16 ≤ i ≤ 79

4



for each block, where wi and mi denote the ith word of the expansion and the message
respectively. Next, this expanded block goes through 80 rounds, one round per word, of
the following recurrence relations:

ei+1 = di
di+1 = ci
ci+1 = bi <<< 30
bi+1 = ai
ai+1 = (ai <<< 5) + fi(bi, ci, di) + ei + ki + wi

where the ki are a set of fixed values (one for every 20 rounds), and the fi are defined as
follows:

fi(X,Y, Z) =


(X ∧ Y )⊕ (X̄ ∧ Z), 0 ≤ i ≤ 19,
X ⊕ Y ⊕ Z, 20 ≤ i ≤ 39,
(X ∧ Y )⊕ (X ∧ Z)⊕ (Y ∧ Z), 40 ≤ i ≤ 59,
X ⊕ Y ⊕ Z, 60 ≤ i ≤ 79.

Note that for rounds 0 through 19 the fi perform a select operation (bitwise “if X then Y
else Z”), and for rounds 40 through 59 they compute the majority function.

Observe that the words of the expanded message (wi) are used in order of increasing
index. Therefore, once wi−16 has been used by the compression function, we can always
replace wi−16 by wi, eliminating the need for extra storage for the expanded message. We
can freely choose how many used message words to update in one go, and for our AVR
implementation we have chosen to update all 16 at once. This allows the message expansion
to be implemented as a very straightforward function, without any runtime computation
of where to find the input words for the recurrence relation.

With the expansion performing 16 updates in one go, it only needs to be called four
times, making function call overhead relatively insignificant. The expansion starts by saving
part of the round function state to the stack, freeing up registers so that we can reduce
the number of loads per iteration of the recurrence relation as follows. We enter the loop
with wi−16 and wi−15 already in registers, then load and xor each of wi−3, wi−8 and wi−14
into wi−16. Finally we rotate the result, store it as the new wi, and prepare for the next
iteration by copying (in registers) wi−15 over wi−16 and wi−14 (the one we loaded last)
over wi−15.

ijmprjmpicallrcallreturn

sh
a1

_
co

m
p
ress

Ch

Maj

x1

x2

xor

common

ex
p
an

sio
n

Fig. 1. Control flow of our SHA-1 implementation.

5



Most of the computations for the round function are the same for all rounds, and for
half of them (20-39 and 60-79) everything apart from the round constant is the same.
To account for the differences we split the computations into 4 functions (Ch, x1, Maj
and x2), one for each group of 20 consecutive rounds. The functions x1 and x2 only differ
in the round constant used, so their only task is to load the appropriate round constant
before jumping to xor, which computes fi before jumping to the common code (common).
Functions Ch and Maj also load round constants, compute fi and then jump to common.
Finally, common completes the round function computation and then either continues by
jumping back to the starting point of the current round function with an indirect jump, or
returns to the core compression function. The address for the jump is put in the Z register
by the compression core and used for an indirect call to the round function, then kept and
reused for the indirect jump during round function iterations. The entire internal control
flow of the core of our SHA-1 implementation is illustrated in Figure 1.

5.2 SHA-256

The SHA-256 algorithm is one of the four hash functions of the SHA family published
after SHA-1, collectively known as SHA-2. Cryptanalysis over the last years [9,13] has not
revealed any real weakness. However, researchers are wary due to SHA-2 having the same
overall structure as the other members of its family.

Like SHA-1, SHA-256 is designed for a word size of 32 bits, and processes its input
message in blocks of 512 bits, with padding at the end to ensure the total input length is
a multiple of 512 bits. Each of the blocks is then expanded to 2048 bits (64 words of 32
bits) before it is processed by the compression function. First the 512 bits of the message
block are divided into words named w0 . . . w15. Then w16 . . . w63 are computed as follows:

σ0,i = (wi−15 >>> 7)⊕ (wi−15 >>> 18)⊕ (wi−15 >>> 3)
σ1,i = (wi−2 >>> 17)⊕ (wi−2 >>> 19)⊕ (wi−2 >>> 10)
wi = wi−16 + σ0,i + wi−7 + σ1,i

Next the extended message block (w0 . . . w63) goes through 64 iterations of the following
round function:

τ0,i = (ai >>> 2)⊕ (ai >>> 13)⊕ (ai >>> 22)
Maji = (ai ∧ bi)⊕ (ai ∧ ci)⊕ (bi ∧ ci)
t2,i = τ0,i + Maji
τ1,i = (ei >>> 6)⊕ (ei >>> 11)⊕ (ei >>> 25)
Chi = (ai ∧ bi)⊕ (āi ∧ ci)
t1,i = hi + τ1,i + Chi + ki + wi

(hi+1, gi+1, fi+1, ei) = (gi, fi, ei, di + t1,i)
(di+1, ci+1, bi+1, ai) = (ci, bi, ai, t1,i + t2,i)

where Maj and Ch represent the (results from) majority and choice operations.
Unlike SHA-1, SHA-256 uses a different constant value (ki) for each round. A natural

approach to handling this is to put the constants in a table, and load them one by one as
needed, and this part of the round function code can always be the same. To support this
approach we would need memory to store the 64 constants of four bytes each, as well as a
pointer to the current element in the table of constants. If this table were to reside in the
Flash memory of the AVR, we would be forced to keep the pointer in the Z register, while
to be able to keep the pointer in the X or Y registers we would need to spend valuable
RAM to store the table.

The big state of the round function, as large as the entire register file of AVR processors,
means we cannot keep it all in registers while leaving room for computations and any
necessary pointers. Instead we keep only the a and e values (eight bytes total) in registers
and the rest in temporary storage on the stack, loading and storing them as needed.

6



In the end the combinations of constraints led us to a design with a fully unrolled main
loop performing a sequence of calls to functions, with the Y and Z registers being used for
the message block and temporary state. The round constants are embedded in the code
of the unrolled main loop, removing the need for a separate table and pointer to them. In
effect we embed the constant table in the code and use the instruction pointer to load its
elements.

Round function computations are split into the following functions:

f0 : Load b, c, f, g. Compute t2 and τ1 + Ch.
f1 : Load wi−16, wi−15, wi−7, wi−2. Compute wi.
f2l : Load wi, fall through to f2.
f2 : Load d and h. Compute a and e.

In the first 16 rounds, which use w0, . . . , w15 directly, we call f2l to load wi before
proceeding with f2. For the remaining 64 rounds we use f1 to compute wi before calling f2.
When wi has been computed it is written to the position of wi−16, as wi−16 is not needed
for the computation of any later values. The computation of wi differs depending on the
relative positions of wi−16, wi−15, wi−7 and wi−2, as these wrap around to the beginning
of the message block whenever they reach the end.

return

rcall, last 48 rounds

rcall, first 16 rounds

f1

f0

rjmp

rcall, all 64 rounds

f1_a0
f1_a
f1_b0

f1_c0
f1_c
f1_d

f1_b

f0_0
f0_1
f0_2
f0_3
f0_4
f0_5
f0_6
f0_7

f2l_0

f2l_1

f2l_2

f2l_3

f2l_4

f2l_5

f2l_6

f2l_7

f2_1

f2_2

f2_3

f2_4

f2_5

f2_6

f2_7

f2_0

f2

sh
a2

5
6

_
co

m
p

ress

Fig. 2. Control flow for each group of sixteen rounds of our SHA-256 implementation.

Control flow of the core of our SHA-256 implementation is illustrated in Figure 2.
Sixteen rounds of the core compression function are shown, each round making a sequence of
function calls (using rcall) to the various entry points of f0, f1 and f2. From each entry point
we jump (rjmp) or fall through to the shared code, which ends with a return instruction
transferring control back to the core. For brevity we only show sixteen of the 64 unrolled
rounds; differences are indicated with dotted and dashed lines.

7



Our implementation leaves one pointer register (without displacement support) that
can be used as a constant pointer, allowing us to copy constants to the stack e.g. every 1,
2, 4, 8 or 16 rounds and removes the need for full unrolling of sha256 compress. Since we
are using a pointer to the state we can also further share code for f0 and f2 in much the
same way we have done for the key expansion code. We estimate that these improvements
(which we have not implemented) can reduce the total code size (including the table of
constants) to about 2 kilobytes, with very little slowdown but up to 64 bytes extra RAM
needed, and more complex control flow.

5.3 BLAKE

BLAKE[1] is one of the five finalist candidates for the new SHA-3 standard. Like SHA-1
and SHA-256, BLAKE processes its input as a sequence of 512-bit message blocks after
adding padding. However, unlike SHA-1 and SHA-256, the BLAKE compression function
has no message block expansion, just permuted reuse of 32-bit words of the message block.
This is somewhat similar to MD5, but with ten instead of four permutations. All operations
work on 32-bit values throughout the algorithm.

The BLAKE-32 compression takes four input values; the 256-bit chaining value h, the
512-bit message block m, the 128-bit salt s and the 128-bit counter t. From these values
and sixteen 32-bit constants c0, . . . , c15 a new 256-bit chaining value h′ is computed.

The internal state ν is initialized as follows:
ν0 ν1 ν2 ν3
ν4 ν5 ν6 ν7
ν8 ν9 ν10 ν11
ν12 ν13 ν14 ν15

←


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t1 ⊕ c5 t0 ⊕ c6 t1 ⊕ c7


Next the BLAKE round function is applied ten times, each round consisting of

G0(ν0, ν4, ν8, ν12), G1(ν1, ν5, ν9, ν13), G2(ν2, ν6, ν10, ν14), G3(ν3, ν7, ν11, ν15),
G4(ν0, ν5, ν10, ν15), G5(ν1, ν6, ν11, ν12), G6(ν2, ν7, ν8, ν13), G7(ν3, ν4, ν9, ν14),

where each Gi(a, b, c, d) performs this sequence of computations for round r:

a← a+ b+ (mσr(2i) ⊕ cσr(2i+1))
d← (d⊕ a) >>> 16
c← c+ d
b← (b⊕ c) >>> 12
a← a+ b+ (mσr(2i+1) ⊕ cσr(2i))
d← (d⊕ a) >>> 8
c← c+ d
b← (b⊕ c) >>> 7

The functions σr are ten permutations of the sequence {0, . . . , 15}. Apart from σ0 being
the identity permutation, these are all random-looking, preventing us from optimizing our
implementation based on patterns inside them. Note that G0, . . . , G3 are independent and
can be performed in parallel (and hence in any order we may wish), and the same holds
for G4, . . . , G7.

Finally the new chaining value h′ is computed from the initial state h, the salt s and
the internal state ν:

h′0 ← h0 ⊕ s0 ⊕ ν0 ⊕ ν8
h′1 ← h1 ⊕ s1 ⊕ ν1 ⊕ ν9
h′2 ← h2 ⊕ s2 ⊕ ν2 ⊕ ν10
h′3 ← h3 ⊕ s3 ⊕ ν3 ⊕ ν11
h′4 ← h4 ⊕ s0 ⊕ ν4 ⊕ ν12
h′5 ← h5 ⊕ s1 ⊕ ν5 ⊕ ν13
h′6 ← h6 ⊕ s2 ⊕ ν6 ⊕ ν14
h′7 ← h7 ⊕ s3 ⊕ ν7 ⊕ ν15

8



BLAKE has the nice (but not so obvious) property that we can reorder its computations
in a way that allows us to get performance close to that of a straight-line implementation
while reducing code size significantly. We decided to split the computations of the BLAKE
round in three major parts:

f0 : Load cσr(2i). Shared: xor with mσr(2i+1).
f1 : Load cσr(2i+1). Shared: xor with mσr(2i).
g : Store output from gi−1, load input for gi. Shared: perform the rest of Gi.

In our implementation the gi share most (656 bytes) of their code, and we use eight
function entry points to execute the small amount of code that differs, followed by a jump
(or fall-through) to the shared code. We also use sixteen function entry points for each of
f0 and f1, one for each of the constants c0, . . . , c15. Total code size for g, f0 and f1 is 1008
bytes.

returnrjmprcall, fixedrcall, variable

g_0
g_1
g_2
g_3
g_4
g_5

g_7
g_6

f1
_
0
, ..., f1

_
1
5

f0
_
0
, ..., f0

_
1
5

f0

f1

g

b
lak

e_
co

m
p
ress

Fig. 3. Control flow of a single round of our BLAKE implementation. The variable rcall
arrows change their destination in every round.

Given these 40 function entry points, we can program each application of Gi as a series
of three function calls – one to f0σr(2i+1), one to f1σr(2i), and one to gi – with two pointer
adjustments as needed to allow f0 and f1 to read the correct message word. Due to the
complexity of the σ permutations we have unwound the entire top level (“blake compress”)
of the round function code. Still, with at most five instructions (ten bytes) per application

9



of Gi, the code size of blake compress for the ten rounds in BLAKE-32 is relatively modest
at 756 bytes.

The control flow of one round of our BLAKE implementation is illustrated in Figure 3.
The variable rcall arrows are permuted according to the σr permutations; only the first
round is performed exactly as depicted.

Again, like for SHA-256, we have discovered further enhancements to our implementa-
tion of BLAKE. By adjusting the state pointer between applications of the various Gi, we
can share more of their code, while keeping the runtime cost very low. The reason we can
do this is easily seen from the very simple patterns in Table 1. The skewed indices simply

i state elements modified by Gi

standard skewed

0 0 4 8 12 0 4 8 12
1 1 5 9 13 0 4 8 12
2 2 6 10 14 0 4 8 12
3 3 7 11 15 0 4 8 12

4 0 5 10 15 0 5 10 15
5 1 6 11 12 0 5 10 11
6 2 7 8 13 0 5 6 11
7 3 4 9 14 0 1 6 11

Table 1. Standard and skewed indices of BLAKE state

have i mod 4 subtracted from them. The first four lines are identical in the column with
skewed indices, meaning that their code for loading and storing state words can also be
identical. The last four also have a lot in common, although they are all different; they
can utilize two sequences of code, one handling elements 15, 10, 5 and 0, and one handling
elements 1, 6 and 11, in that order, with one entry point for each element and each falling
through to the next in its sequence. The pseudo-assembler code in Table 2 illustrates how
to write this. Together with the same setup for writing elements back to the state, and the

lc: load element 0
load element 4
load element 8
load element 12
return

ld15: load element 15
ld10: load element 10
ld5: load element 5
ld0: load element 0

return
ld1: load element 1
ld6: load element 6
ld11: load element 11

return
Table 2. Compact code for loading BLAKE state using a moving state pointer

necessary adjustments of the state pointer, we can then perform the necessary loading and
storing with only the above 11 loads and stores, compared to the 32 in our current code.
According to our calculations, this would let us save 298 bytes of code, need 2 extra bytes

10



of RAM (one more level of function calls) and 98 more cycles per block (about 3 cycles per
byte).

5.4 Skein

Skein[2] is another SHA-3 finalist candidate, and uses a tweakable block cipher called
Threefish as its mixing function. The round function design of Threefish is even simpler
than those of the old SHA algorithms, and its main part, the MIX function, consists only
of 64-bit addition, rotation and exclusive-or operations. All operations work on 64-bit
values throughout the algorithm. As we have only targeted 256-bit Skein in this work, we
only describe Threefish-256 and can simplify our notation accordingly (refer to the Skein
specification document for the complete version).

Threefish-256 is a block cipher taking as inputs a 256-bit plaintext, a 256-bit key and a
128-bit tweak value, producing a 256-bit ciphertext as output. A round consists of two MIX
functions, each applied to one half of the state, and then a swapping of words between the
two halves. Every four rounds a round key is added to the full state. Rotation constants
applied in the MIX function repeat every 8 rounds. In total 72 rounds are performed, or 9
times the 8 rounds of computation depicted in Figure 4, plus an addition of the round key
after the last round.

<<< <<< 4023

<<< <<< 5752

<<< <<< 2258

<<< <<< 3232

<<< <<< 3325

<<< <<< 1246

<<< <<< 1614

<<< <<< 37 5

Fig. 4. Threefish-256 quad-rounds; even (qr0) on the left, odd (qr1) on the right. The
dotted-line box shows the contents of one MIX function, and the dashed-line box contains
one round. Before each quad-round a round key (ks,0, . . . , ks,3; not shown) is added to the
intermediate state.

11



The size of the internal chaining variables of Threefish exactly match the size of the
general-purpose register file, and the round function computations do not need any tempo-
rary variables (apart from the carry flag). This allows us to keep the entire state in registers
during the quad-round functions, removing all need for loading or storing data between
individual rounds. The rest of the state of the function is stored on the stack and in 5 fixed
RAM locations during those quad-round computations. Using fixed memory locations al-
lows faster instructions to be used for loading and storing data, but also makes the code
non-reentrant. This means that a call to the compression function can not be stopped in
the middle of execution to make way for another thread of execution that would then also
call the compression function. However, there is nothing preventing the use of multiple
simultaneous hash contexts. Also, as long as no interrupt code uses the same memory lo-
cations, our implementation remains interrupt safe. It is possible to avoid non-reentrancy
at moderate cost by storing to the stack instead, but we have not investigated the exact
cost of doing this.

The Threefish-256 key schedule is based on the 256-bit key (k0, . . . , k3) and the 128-
bit tweak (t0, t1). From these values two more are computed: t2 = t0 ⊕ t1 and k4 =
C240⊕k0⊕k1⊕k2⊕k3, where C240 is a constant (the decimal number 240 encrypted with
AES-128 under the all-zero key) used to ensure that the extended key (k0, . . . , k4) cannot
be all zero. Finally, the round keys are computed as follows:

ks,0 = ks(mod 5)

ks,1 = ks(mod 5) + ts(mod 3)

ks,2 = ks(mod 5) + t(s+1)(mod 3)

ks,3 = ks(mod 5) + s

where s is the round number divided by 4, as Threefish only applies a round key for every
4 rounds of mixing.

As we can see from this, all the k0, . . . , k4 and t0, t1, t2 are used multiple times. Com-
puting all the ks,i|s ∈ {0, . . . , 9}, i ∈ {0, . . . , 3} and storing them in a lookup table would
be relatively simple and fast, but would also require 320 bytes of RAM. On the other
extreme, computing k4 and t2 on the fly every time we need them would not require any
extra storage apart from register spills, but would waste computing time. The solution we
chose is somewhere inbetween, extending the storage for the Skein context structure to
also include k4 and t2. Keeping all of the k, t and plaintext values in the context structure
means we can use a single pointer to access them all, without having to first copy them to
the stack. This keeps register pressure down (no need for multiple pointers), saves stack
space, and saves the time required for copying data to the stack. The only downside is that
the context structure itself is expanded from 80 to 96 bytes, which could be a problem in
an application needing to keep many simultaneous contexts.

The resulting code for Skein has the very simple control flow shown in Figure 5; this
flow is the simplest among all implementations presented in this paper. The complexity of
Skein is mostly in details like memory and register allocation and how precisely to perform
the word rotations. One little optimization detail is that it is not necessary to perform
the addition of the round number as part of the round key addition for round 0. This is
illustrated by the first call to qr0 skipping its first part.

Like for SHA-256 and BLAKE, our Skein implementation also has room for further
improvements, and in this case it is relatively trivial. Note that each of the quad-round
functions gets called only once, and that they all end with a jump to the corresponding
common code. Each of those calls can be replaced with the code that is now being called,
followed by a call (not jump) to the common code, and the jump instruction is then no
longer needed, saving two bytes and two cycles for each of the 18 jumps in the current
code. The resulting very simple control flow is shown in Figure 6.

12



returnrcall rjmp

qr1

sk
ein

_
co

m
p

ress

qr0

Fig. 5. Control flow of our Skein implementation

returnrcall

qr1

qr0sk
ein

_
co

m
p

ress

Fig. 6. Control flow of further optimized Skein implementation

13



6 Results

Table 3 lists our results (for actual running code) together with the best results we have
found for other implementations, while Table 4 provides a list of relative improvements.
In the cases where we only implemented the compression functions, only the speed and
RAM footprint numbers are directly comparable, and we only give an upper bound on the
relative improvement in code size.

Algorithm Reference Time RAM ROM Notes
(cycles/byte) (bytes) (bytes)

SHA-1 [17] 579 198 1022
SHA-1 New 177 122 1352

SHA-256 [17] 783 416 1598
SHA-256 New 335 158 2720

Blake-32 [17] 1115 245 6684
Blake-32 [10] 324 251 1804
Blake-32 New 263 206 2076 cf only

Skein-256 [12] 300 201 3200
Skein-256 New 287 123 2464 v1.2, cf only

Table 3. Speed of compression functions (cf)

Algorithm Time RAM ROM Notes

SHA-1 3.27 1.62 0.76
SHA-256 2.34 2.63 0.59
Blake-32 1.23 1.22 < 0.87 cf only
Skein-256 1.045 1.63 < 1.30 cf only

Table 4. Relative improvements (> 1 is improvement)

We have shown that it is possible to increase the speed not only of the latest SHA-3
candidates, which in some cases have been the subject of significant optimization efforts,
but also the much older SHA-1 and SHA-256 functions. These have been around since 1995
and 2001, respectively, and the AVR architecture was originally developed in 1996. Still,
after these have been around for a decade or more, we were surprised to find that it was
possible to get the large speedup factors in Table 4 for SHA-1 and SHA-256 compared to
the best previous assembler implementations for which performance numbers are publically
available.

The techniques we have employed are as far as we know not new themselves, but it
seems like they have not previously been applied to this extent in implementations of
cryptographic hash functions.

Our improved implementations of the older SHA-1 and SHA-256 standards mean that
on the AVR architecture it is unlikely that SHA-3 will achieve NIST’s stated goal of at
least as good security as the older SHA functions while delivering significantly improved
efficiency.

On the other hand, the graphs of control flows in our implementations are much simpler
for the SHA-3 candidates, and we also achieved much lower relative speedups in these cases,
despite the much shorter time people have had to study them. This combination suggests
that programmers will have an easier time optimizing their implementations of these new
algorithms, a useful feature for the future SHA-3 standard.

14



References

1. BLAKE website. http://131002.net/blake/.
2. Skein website. http://www.skein-hash.info.
3. The PHOTON Family of Lightweight Hash Functions. In Advances in Cryptology - CRYPTO

2011 - 31st Annual Cryptology Conference, volume 6841, page 219, 2011.
4. Advanced Encryption Standard (AES). National Institute of Standards and Technology

(NIST), FIPS PUB 197, U.S. Department of Commerce, November 2001. http://www.csrc.
nist.gov/publications/fips/fips197/fips-197.pdf.

5. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia. Quark: A
Lightweight Hash. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 1–15. Springer, 2010.

6. Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
and Yannick Seurin. Hash Functions and RFID Tags: Mind the Gap. In Elisabeth Oswald and
Pankaj Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages
283–299. Springer, 2008.

7. Christophe De Cannière and Christian Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284
of Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

8. Electronics.ca Publications. http://www.electronics.ca/presscenter/articles/1364/1/

Microcontroller-Market-Forecasted-to-Reach-Over-16-billion-worldwide-In-2011-/

Page1.html.
9. Henri Gilbert and Helena Handschuh. Security Analysis of SHA-256 and Sisters. In Mitsuru

Matsui and Robert J. Zuccherato, editors, Selected Areas in Cryptography, volume 3006 of
Lecture Notes in Computer Science, pages 175–193. Springer, 2003.

10. Stefan Heyse, Ingo von Maurich, Alexander Wild, Cornel Reuber, Johannes Rave,
Thomas Poeppelmann, and Christof Paar. ”Evaluation of SHA-3 Candidates for
8-bit Embedded Processors”. The Second SHA3 Candidate Conference, 2010.
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/

HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf.
11. Joppe W. Bos and Deian Stefan. Performance Analysis of the SHA-3 Candidates on Ex-

otic Multi-core Architectures, 2010. http://www.ee.cooper.edu/~stefan/pubs/conference/
ches2010.pdf.

12. Jörg Walter. Fhreefish (Skein implementation) website. http://www.syntax-k.de/projekte/
fhreefish/.

13. Florian Mendel, Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Analysis
of Step-Reduced SHA-256. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture
Notes in Computer Science, pages 126–143. Springer, 2006.

14. NIST. Announcement of Second Round SHA-3 Candidates. http://csrc.nist.gov/groups/
ST/hash/sha-3/Round2/documents/Email_Announcing_Round2_Candidates.pdf.

15. NIST. Announcing Request for Candidate Algorithm Nominations for a New Cryptographic
Hash Algorithm (SHA-3) Family. http://csrc.nist.gov/groups/ST/hash/documents/FR_

Notice_Nov07.pdf.
16. NIST. The SHA-3 Finalists. http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/

documents/Email_Announcing_Finalists.pdf.
17. Daniel Otte. AVR-Crypto-Lib, 2009. http://www.das-labor.org/wiki/Crypto-avr-lib/en.
18. R. Rivest. The MD4 Message-Digest Algorithm. RFC 1320 (Informational), April 1992.
19. R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April 1992.
20. ”Secure Hash Standard”. National Institute of Standards and Technology, NIST FIPS PUB

180-3, U.S. Department of Commerce, October 2008.
21. Adi Shamir. SQUASH - A New MAC with Provable Security Properties for Highly Constrained

Devices Such as RFID Tags. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in
Computer Science, pages 144–157. Springer, 2008.

22. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In
Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages
17–36. Springer, 2005.

15

http://131002.net/blake/
http://www.skein-hash.info
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.electronics.ca/presscenter/articles/1364/1/Microcontroller-Market-Forecasted-to-Reach-Over-16-billion-worldwide-In-2011-/Page1.html
http://www.electronics.ca/presscenter/articles/1364/1/Microcontroller-Market-Forecasted-to-Reach-Over-16-billion-worldwide-In-2011-/Page1.html
http://www.electronics.ca/presscenter/articles/1364/1/Microcontroller-Market-Forecasted-to-Reach-Over-16-billion-worldwide-In-2011-/Page1.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/papers/HEYSE_EvaluationSHA-3Candidatesfor8-bitProcessors.pdf
http://www.ee.cooper.edu/~stefan/pubs/conference/ches2010.pdf
http://www.ee.cooper.edu/~stefan/pubs/conference/ches2010.pdf
http://www.syntax-k.de/projekte/fhreefish/
http://www.syntax-k.de/projekte/fhreefish/
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Email_Announcing_Round2_Candidates.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/documents/Email_Announcing_Round2_Candidates.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_Announcing_Finalists.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_Announcing_Finalists.pdf
http://www.das-labor.org/wiki/Crypto-avr-lib/en

	Fast Embedded Software Hashing
	Dag Arne Osvik

