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Authors have proposed the approach to increase performance of software implementation of finite field 
multiplication algorithm, for 32-bit and 64-bit platforms. The approach is based on delayed carry mechanism of 
significant bit in sum accumulating. This allows to avoid the requirement of taking into account the significant bit carry 
at the each iteration of the sum accumulation loop. The delayed carry mechanism reduces the total number of additions 
and gives the opportunity to apply the modern parallelization technologies. 
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I. INTRODUCTION 
The cryptographic transformations with public key has passed a long way since their 

introduction by Diffie and Hellman [1] to modern cryptosystems on algebraic curves, but the only 
things remains unchanged - operations in the number field ( )pGF . The integer multiplication takes the 
special place in number field operations, see fig. 1. Among the important problems of future 
development public key cryptosystems is the increasing of performance of software and hardware 
implementation. One of the approaches to the improvement cryptosystems performance is an 
increasing of performance of finite field arithmetics to be exact the multiplication. 
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Fig. 1. Operation hierarchy of elliptic curve cryptosystem 
It should be noted that the problem of the speed-up of arithmetic operation in number fields was 

deeply investigated by many scientists that is testified by significant number of publications in this 
area [2-8]. Except the arithmetic operations algorithms, are of interest the approaches to the 
architecture of the software libraries [9-18] with field operations, which allows decreasing 
significantly the overheads on fields operations in whole. 

Publication analysis [2-7], allows to extract the most effective multiplication algorithms Comba 
[2, 3] and Karatsuba [3, 8, 10]. However, the Comba algorithm shows better results in performance 
tests (benchmark) of software implementations on modern platforms [3-9]. In article [8] describes the 
Karatsuba-Comba multiplication (KCM) algorithm for the RISC processors. The KCM algorithm is 
an interesting symbiosis of Comba and Karatsuba algorithms, where Karatsuba algorithm is used for 
the machine word multiplication only. As a result, the main goal of this article is a suggesting 



approaches to increase the effectiveness of software implementation of finite field ( )pGF  number 
multiplication (squaring) via a well-known Comba algorithm [2, 3, 8]. Among other things, such kind 
of investigations is evoked by the need to confirm the performance of software implementations of 
well-known algorithms with continuous development of modern 32-bit and 64-bit platforms. It is 
significant that during last ten years the direction of the multi-core processors and multiprocessor 
systems has been developed [8, 9]. 

II. MULTIPLICATION ALGORITHM-PROTOTYPE DESCRIPTION AND ITS MODIFICATION 
The Comba algorithm [2] based on a main loops p. 2, p. 3 and nested loops p. 2.1, p.3.1. In the low 
level of hierarchy, in loops p. 2.1and p. 3.1 computes 64-bit integer product ( )( )64uv  which splits on 
two 32-bit integer ( )32u  and ( )32v . 

The sum accumulation occurs in 32-bit temporary variables 0r , 1r  and 2r , on each iterations p. 2.1.2, 
p. 2.1.3. 

The final result assignment and temporary variables 0r , 1r  and 2r  changing, occurs on each 
iteration on p. 2.2. 

Algorithm. Comba’s integer multiplication 

Input: integers ( )pba GF∈, , 32=w , an w2
log= . 

Output: bac ⋅=  

1. ( ) 032
0 ←r , ( ) 032

1 ←r , ( ) 032
2 ←r . 

2. For 0←k , 12 −< nk , ++k  do 
2.1. For 0←i , ni < , ++i  do 
2.1.1. For 0←j , nj < , ++j  

2.1.1.1. If ( )kji ==+  

2.1.1.1.1. ( )( ) ( ) ( )323264
ji bauv ⋅← . 

2.1.1.1.2. ( ) ( ) ( )3232
0

32
0 vrr +← , ( ) ( ) ( ) carryurr ++← 3232

1
32

1 , 0←carry . 

2.1.1.1.3. ( ) ( ) carryrr +← 32
2

32
2 , 0←carry . 

2.2. ( ) ( )32
0

32 rck ← , ( ) ( )32
1

32
0 rr ← , ( ) ( )32

2
32

1 rr ← , ( ) 032
2 ←r . 

3. ( ) ( )32
0

32
12 rc n ←− . 

4. Return ( )c . 

Consider the main drawbacks of Comba’s algorithm: 

• In nested loops p. 2.1 and p. 3.1 there is a sum accumulation with carry in 32-bit temporary 
variables 0r , 1r  and 2r , p. 2.1.2, p. 2.1.3 and p. 3.1.2, p. 3.1.3:  
2.1.2. ( ) ( ) ( )3232

0
32

0 vrr +← , ( ) ( ) ( ) carryurr ++← 3232
1

32
1 , 0←carry .  

2.1.3. ( ) ( ) carryrr +← 32
2

32
2 , 0←carry .  

In this case there are 3 additions of 32-bit integer (includes 2 additions with carry), 3 
assignments 32-bit variables 0r , 1r  и 2r . The sum accumulation with carry takes place in 
each iteration of loop p. 2.1. 



• In nested loops p. 2.1 and p. 3.1, for the sum accumulation, for 32-bit variables 0r , 1r  and 

2r the transfers are considered, using the assembler code for the implementation of addition 
operation with carry. That in turn doesn’t allow to pair and parallelize [11], as a result we 
observe an ineffective processor resource using. 

• Loops p. 2 and p. 3 cannot be effectively parallelized due to high internal linkage code 
because of carry consideration. 

Algorithm does not take into account a possibility of using modern processors support of 64-bit 
operations. 
It is easy to obtain a computational complexity for the Comba’s algorithm: 
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where 32
assignI  - an assignment operation of 32-bit integers, 32

addI  - an addition operation of 32-bit 

integers, 32
mulI  - a multiplication operation of 32-bit integer. 

Fig. 2 illustrates the drawbacks of algorithm for 3=n  and its impact on computational 
complexity of algorithm. 

In upper part of figure there are two big numbers a  and b represented by three 32-bit integers 
( )012 ,, aaaa =  and ( )012 ,, bbbb = , where ia  and ib  have a machine word bit size. Algorithm 

iterations are presented under the solidus. It should be noted that algorithm Comba implements long 
multiplication technique, known from school, with small difference: the multiplier part ia  ni ,1=  

multiply on all parts of other multiplier jb  nj ,1= , in case of fulfillment the condition ( )kji ==+  
(in columns). 



 

Fig. 2. Graphic interpretation of Comba algorithm 

Such approach does not lead to strings addition (multiplication of intermediate results) as a long 
multiplication, but to columns addition. That allows to find a part of resulting product ic  (under the 
solidus). As shown in the fig. 2, each multiplication is accompanied by the sum accumulation with a 
carry. 

The computational complexity for 3=n , will be: 
( )++++= 32323232 63194 assignaddmulassign

Comba
mul IIIII  32323232 2797820 addmulassignassign IIII ++=+ . 

Now let’s consider the approaches suggested by the authors  addressed to eliminate the 
drawbacks: 

• The modern 32-bit processors effectively implement the addition operations of 32-bit and 
64-bit integers, using 64-bit or 32-bit commands. That allows to implement a carry 
accumulation by addition of 32-bit variables in 64-bit variable-accumulator, that save the 
carry accounting and correction requirements after the addition with variables 0r , 1r  and 2r . 
An accumulated carry will be accounted in the final iterations of the loops in p.2 and p.3. 

• Modern processors have multi-core architecture; that allows them to execute several 
instruction flows at the same time. This property brings to parallel execute of iterations in 
loop p.2 and p.3 by the OpenMP library [11-13]. 

Following notations are to be introdused: through ( )64t  will symbolized 64-bit variables, and 
through ( )32t  - 32-bit variables; operation ( )

( )( )64
32hi t  extracts 32 the most significant bits in 64-bit 

variable, and operation ( )
( )( )64

32low t  extracts 32 the least significant bits in 64-bit variable. 



Algorithm. Modified Comba’s integer multiplication 
Input: целое ( )pba GF∈, , 32=w , an w2

log= , 12 −= nnk . 
Output: bac ⋅=  
1. ( ) 064

0 ←r , ( ) 064
1 ←r , ( ) 064

2 ←r . 
2. For 0←k , nk < , ++k  do 
2.1. For 0←i , kj ← , ki ≤ , ++i , −−j  do 
2.1.1. ( )( ) ( ) 323264

ji bauv ⋅← . 

2.1.2. ( ) ( ) ( )3264
0

64
0 vrr +← , ( ) ( ) ( )3264

1
64

1 urr +← . 
2.2. ( ) ( )

( )
( )( )64

032
64

1
64

1 hi rrr +← , ( ) ( )
( )

( )( )64
132

64
2

64
2 hi rrr +← . 

2.3. ( )
( )

( )( )32
032

32 low rck ← , ( )
( )

( )( )32
132

64
0 low rr ← , ( )

( )
( )( )32

232
64

1 low rr ← , ( ) 064
2 ←r . 

3. For nk ← , 1←l , nkk < , ++k , ++l  do 
3.1. For li ← , lkj −← , ni < , ++i , −−j  do 
3.1.1. ( )( ) ( ) 323264

ji bauv ⋅← . 

3.1.2. ( ) ( ) ( )3264
0

64
0 vrr +← , ( ) ( ) ( )3264

1
64

1 urr +← . 
3.2. ( ) ( )

( )
( )( )64

032
64

1
64

1 hi rrr +← , ( ) ( )
( )

( )( )64
132

64
2

64
2 hi rrr +← . 

3.3. ( )
( )

( )( )32
032

32 low rck ← , ( )
( )

( )( )32
132

64
0 low rr ← , ( )

( )
( )( )32

232
64

1 low rr ← , ( ) 064
2 ←r . 

4. ( )
( )

( )( )32
032

32 low rcnk ← . 
5. Return ( )c . 

It is not difficult to get a computational complexity of modified Comba algorithm: 
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where 32
assignI  - an assignment operation of 32-bit integers, 64

assignI  - an assignment operations of 

64-bit integers, 32
addI  - an addition operation of 32-bit integers, 32|64

addI  - an addition operation of 32-bit 
and 64-bit integers, 32

mulI  - a multiplication of 32-bit integers. 
Fig. 3, 4 illustrate the algorithm 2 for 3=n ; computational complexity for this case will be: 

3232|643264. 528927 assignaddmulassign
CombaMod

mul IIIII +++= . 
 



 

Fig. 3. Graphic interpretation of loop 2 in Modified Comba algorithm 
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Fig. 4. Graphic interpretation of loop 3 in Modified Comba algorithm 

Comparison with the other algorithms. For the relevant comparison of attained results, the 
authors reviewed well-known software math libraries [14-24] for public key cryptography. 
According to the review results the software library GMP was chosen as an etalon [14]. It should be 
noted that GMP uses Karatsuba multiplication algorithm for the integer multiplication [2]. The 
comparison of software implementations will be carrying out by comparing average time execution 
of software implementation of Comba, modified Comba algorithms and implemented in GMP library 
for one million iterations. 

The performance measurement of algorithm software implementation is proposed to be 
conducted for the fields from [25], except ( )82pGF  field. These fields recommended for the usage 
in cryptographic application for the different security levels provisioning. In table 1 we will indicate 
the brief definition of fields and prime modules. 



Fields for which perfmormance measurements are made  Table 1 

Field Prime modulo 
GF(p82) 5000000000000000008503491 
GF(p164) 24999999999994130438600999402209463966197516075699 
GF(p192) 6277101735386680763835789423 176059013767194773182842284081 
GF(p224) 26959946667150639794667015087019630673557916260026308143510066298881 

GF(p256) 1157920892103562487626974469494075735300861434152903141955336313088670 
97853951 

GF(p320) 4271974071841820164790042159200669057836414062331724137933565193825968 
686576267080087081984838097 

GF(p384) 3940200619639447921227904010014361380507973927046544666794690527962765  
939911326356939895 6308152294913554433653942643 

GF(p521) 
6864797660130609714981900799081393217269435300143305409394463459185543 
1833976553942450577463332171975329639963713633211138647686124403803403 
72808892707005449 

The proposed modified algorithm Comba and its prototype – algorithm Comba have been 
implemented in C++, compiled with Microsoft Visual Studio 2010 in Release Win32 configuration 
with Maximize Speed parameter and SSE2 instruction support. 

The etalon library GMP v4.1.2 compiled with Microsoft Visual Studio .NET but instrumental 
application compiled with Microsoft Visual Studio 2010 in Release Win32 configuration with 
Maximize Speed parameter and SSE2 instruction support. 

Tested by mainstream mobile platform with Intel Core i3 350M CPU and desktop platform with 
Intel Pentium Dual Core E5400. 

Performance measurement timings for the different algorithms, implementations and CPU are 
shown in Table 2. 

Running time of multiplication software implementation without modulo reduction        Table 2 

Field Time, µs 
Core i3 Pentium Dual Core 

Mod. Comba Comba GMP4.1 Mod. Comba Comba GMP4.1 
GF(p82) 0,075 0,120 0,121 0,0687 0,119 0,125 
GF(p164) 0,21 0,393 0,4 0,209 0,363 0,407 
GF(p192) 0,276 0,393 0,41 0,289 0,363 0,414 
GF(p224) 0,343 0,69 0,549 0,364 0,59 0,522 
GF(p256) 0,422 0,875 0,638 0,456 0,744 0,648 
GF(p320) 0,6973 1,278 0,97 0,686 1,053 0,969 
GF(p384) 0,961 1,75 1,38 0,94 1,45 1,36 
GF(p521) 1,63 2,8 2,663 1,486 2,41 2,643 

As can be seen from the timing in Table 2, the proposed modification of the algorithm Comba 
allowed to reach the advantage of 1.5 times above the GMP. Classical implementation of algorithm 
Comba appeared to be the slowest, that is confirmed by the theoretical estimation (contains a larger 
number of addition and assignment operations). In addition, proposed software implementations of 
multiplication algorithms arreared to be more efficient on Dual Pentium CPU with higher frequency 
then on Core i3 CPU with several instruction streams. These implementations of multiplication 
algorithms do not support parallelization, thus a more powerful multicore CPU Core i3 with 4 
instructions processing flows was not able to realize its full potential. 
Conclusions. Following the results of the research next conclusions can be drawn: 



1. Proposed approach of delayed carry, allows to increase the performance of software 
implementation of Comba integer multiplication algorithm by 1.5-2 times and surpass the 
performance of the popular math library GMP v4.1.2,  average by 1.5 times. 

2. Modified multiplication Comba algorithm is more preferred than Karatsuba algorithm [2] 
which used in GMP library, because implementation of modified Comba algorithm is faster than 
Karastuba [2] implementation in GMP for the modern hardware platform (32 & 64-bit). 

3. Delayed carry mechanism allows to apply different parallelization techniques to the modified 
Comba algorithm, for example OpenMP [28], Intel Threading Blocks [30], OpenCL [29]. 

Recently, the microprocessors development is directed at increasing the number of instruction 
processing flows. Thus suitable algorithms should be developed for perspective microprocessors 
should develop for efficient parallelization implementation by perspective micro. 

nVidia company, proposes GPU with more than 256 cores and suitable CUDA Toolkit [27] 
which allows to implement valid multithread applications. A great part of attention is pied already to 
this direct and this article is another illustration [9]. A further research course will focus on 
investigation and effective parallelization of algorithms for arithmetic operations with integers. 
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