Automatically Verified Mechanized Proof of
One-Encryption Key Exchange

Bruno Blanchet
INRIA, Ecole Normale Sigrieure, CNRS
Paris, France
blanchet@di.ens.fr

Abstract—We present a mechanized proof of the password- Unfortunately, a security result should be considered with
based protocol One-Encryption Key Exchange (OEKE) using care. As explained above, it consists of a theorem which
the computationally-sound protocol prover CryptoVerif. OEKE giates that under a precise intractability assumption a spe
is a non-trivial protocol, and thus mechanizing its proof o - .
provides additional confidence that it is correct. This case C'f'c_: s_ecumy model _(goals and means of the adversary) is
Study was also an Opportunity to imp|emen’[several importam SatISfled. The I’eductlon constitutes the prOOf Of the thﬂore
extensions of CryptoVerif, useful for proving many other Weaknesses can appear at several steps: the intractability
protocols. We have indeed extended CryptoVerif to supporthe assumption can be too strong, or even wrong; the security
computational Diffie-Hellman assumption. We have also addk model might not correspond to the expected security level:
support for proofs that rely on Shoup’s lemma and additional - N ’
game transformations. In particular, it is now possible to nsert the reduction may not be tight; and the proof can_ be erro-
case distinctions manually and to merge cases that no longer Neous. Because of more and more complex security models
need to be distinguished. Eventually, some improvements i@ and proofs, most of them are never (double)-checked.
been added on the computation of the probability bounds for A famous example is the OAEP construction [6] that
attacks, providing better reductions. In particular, we improve has been proven to achieve chosen-ciphertext security. But
over the standard computation of probabilities when Shoups . .)
lemma is used, which allows us to improve the bound given because of ar_nb@uous security models in the early 90s, there
in a previous manual proof of OEKE, and to show that the ~ Was no real difference between the so-called IND-CCA1 and
adversary can test at most one password per session of the IND-CCAZ2 security levels. As a consequence, the proof was
protocol. In this paper, we present these extensions, wittheir pelieved to achieve the IND-CCA2 level, until Shoup [7]
application to the proof of OEKE. All steps of the proof, both gypihited a counter-example. Fortunately, a complete fproo
automatic and manually guided, are verified by CryptoVerif. for IND-CCA2 has quickly been provided [8]. A machine-

Keywords-Automatic proofs, Formal methods, Provable se- checked proof has later been provided [9].

curity, Protocols, Password-based authentication As suggested by Halevi [10], computers could help
in verifying proofs. This paper follows this path, with
|. INTRODUCTION computationally-sound computer-aided proof and verifica-

tion of cryptographic protocols.

Since the beginning of public-key cryptography, more Related Work:Various methods have been proposed for
and more complex security notions have been definedeaching Halevi's goal. Following the seminal paper by
with protocols getting also more intricate. Initially, anlp Abadi and Rogaway [11], many results show the soundness
time without attack was a good argument in favor of theof the Dolev-Yao model with respect to the computational
security of a scheme. But some schemes took a long timmodel, which makes it possible to use Dolev-Yao provers
before being broken. A famous example is the Chor-Rivesin order to prove protocols in the computational model
cryptosystem [1], [2], which took more than 10 years to be(see, e.g., [12], [13], [14], [15], [16] and the survey [17])
totally broken [3]. Nowadays, the lack of attacks is no lange However, these results have limitations, in particular in
considered as a security validation, and provable secisrity terms of allowed cryptographic primitives (they must dgtis
a requirement for any new proposal. strong security properties so that they correspond to Dolev

The basic idea of provable security consists in reducing &ao style primitives), and they require some restrictions o
well-known hard problem to an attack, in the complexity protocols (such as the absence of key cycles). A tool [18]
theory framework. Such a reduction guarantees that awas developed based on [12] to obtain computational proofs
efficient adversary against the cryptosystem could be condsing the formal verifier AVISPA, for protocols that rely on
verted into an efficient algorithm against the hard problempublic-key encryption and signatures.

First security proofs were essentially theoretical, pdow) Several frameworks exist for formalizing proofs of pro-
polynomial reductions only. But “exact security” [4] or tocols in the computational model. Backes, Pfitzmann ,and
“concrete security” [5] asked for more efficient reductions Waidner [19], [20] designed an abstract cryptographialifpr

and showed its soundness with respect to computationalready been used to prove several cryptographic protocols
primitives, under arbitrary active attacks. This framekvor and also primitives [50]. This tool extends considerably
has been used for a computationally-sound machine-checkesrly work by Laud [51], [52] which was limited either to
proof of the Needham-Schroeder-Lowe protocol [21], [22].passive adversaries or to a single session of the protocol.
Canetti [23] introduced the notion of universal composabil More recently, TSahhirov and Laud [53], [54] developed a
ity. With Herzog [24], they show how a Dolev-Yao-style tool similar to CryptoVerif but that represents games by
symbolic analysis can be used to prove security propertiedependency graphs. It handles public-key and shared-key
of protocols within the framework of universal compos- encryption and proves secrecy properties; it does not geovi
ability, for a restricted class of protocols using public- bounds on the probability of success of an attack.

key encryption as only cryptographic primitive. Then, they Contributions: In this paper, we use the tool CryptoVerif
use the automatic Dolev-Yao verification tool ProVerif [25] in order to prove the password-based key exchange protocol
for verifying protocols in this framework. Process calculi One-Encryption Key-Exchange (OEKE) [55], a variant of
have been designed for representing cryptographic gamekncrypted Key Exchange (EKE) [56]. This is a non-trivial
such as the probabilistic polynomial-time calculus of [26] case study, since EKE was not proved correct before 2003,
and the cryptographic lambda-calculus of [27]. Logics havelO years after its publication. This mechanized proof pro-
also been designed for proving security protocols in thevides additional confidence that the protocol OEKE is se-
computational model, such as the computational varianture. More precisely, we have shown that OEKE guarantees
of PCL (Protocol Composition Logic) [28], [29] and CIL the secrecy of the session key and the authentication of the
(Computational Indistinguishability Logic) [30]. Canietit client to the server. The proof combines manually-guided
al. [31] use the framework of time-bounded task-PIOAsand automatic steps, as detailed in Section IV. With the

(Probabilistic Input/Output Automata) to prove securitpp manual proof indications included in the CryptoVerif input
tocols in the computational model. This framework makesfile, the runtime of CryptoVerif version 1.14 for this proof
it possible to combine probabilistic and non-determigisti was 3 s on an Intel Core i5 2.67 GHz (4 cores).
behaviors. These frameworks can be used to prove security This case study was also an opportunity for implementing
properties of protocols in the computational sense, butgixc several extensions of CryptoVerif, useful for proving many
for [24] which relies on a Dolev-Yao prover, they have not other protocols. Here are these extensions:

been automated up to now, as far as we know.

Several techniques have been used for directly mechaniz-
ing proofs in the computational model. Type systems [32],
[33], [34], [35] provide computational security guarargee
For instance, [32] handles shared-key and public-key en-
cryption, with an unbounded number of sessions, by relying
on the Backes-Pfitzmann-Waidner library. A type inference
algorithm is given in [36]. In another line of research, a-spe
cialized Hoare logic was designed for proving asymmetric
encryption schemes in the random oracle model [37], [38].

The tool CertiCrypt [39], [40], [41], [42], [9] enables
the machine-checked construction and verification of cryp-
tographic proofs by sequences of games [43], [44]. It relies
on the general-purpose proof assistant Coq, which is widely
believed to be correct. EasyCrypt [45] generates CertiCryp
proofs from proof sketches that formally represent the se-
guence of games and hints, which makes the tool easier to
use. Nowaket al. [46], [47], [48] follow a similar idea by
providing Coq proofs for several cryptographic primitives

Independently, we have built the tool CryptoVerif [49]
to help cryptographers, not only for the verification, but
also by generating the proofs by sequences of games [43],
[44], automatically or with little user interaction. Thergas
are formalized in a probabilistic polynomial-time process
calculus. CryptoVerif provides a generic method for speci-
fying security properties of many cryptographic primisvét
proves secrecy and authentication properties. It alsoigesv
a bound on the probability of success of an attack. It has

« CryptoVerif's specification mechanism for assumptions

on primitives did not support the computational Diffie-
Hellman (CDH) assumption, needed for proving OEKE
and many important protocols. We have extended it
to support CDH (Section IlI-D). This extension also
allowed us to prove a signed Diffie-Hellman protocol,
in a fully automatic way.

We have extended CryptoVerif to be able to apply
Shoup’s lemma [43], by introducing events and later
bounding their probability. We improve over the stan-
dard computation of probabilities, for applications of
Shoup’s lemma, by avoiding to count several times
probabilities that in fact correspond to the same runs.
This allows us to obtain better probability bounds
than [55] and to show that the adversary can test at most
one password per session of the client or the server,
which is the optimal result. This improvement applies
both to CryptoVerif proofs and to manual proofs, and
it is not specific to the OEKE protocol (Section I1V-A).
Additional game transformations were also needed for
manually introducing case distinctions or for merg-
ing cases. We have implemented these transformations
(Sections IV-A and IV-C).

Password-based protocols require a careful computation
of the probability of an attack, since one aims to
compute how many passwords the adversary can test
by interacting with the protocol. We have improved
CryptoVerif in this respect (Section 1V-D).

Outline: We recall the protocol OEKE in the next section. Client U Server S
Section Il presents the CryptoVerif model of the protocol, _— B
and Section IV presents its proof. We conclude in Section V pw pw
The appendices give background on CryptoVerif and addit accept < false accept < false
tional details. The tool CryptoVerif and the input and outpu terminate < false terminate <« false
files can be found at http://www.cryptoverif.ens.fr/OEKE/ R R

Notations: |S| denotes the cardinal of the st #O v b1 U X y&ha—1
denotes the number of calls to oracke X+—g* —————Y <« g¥

*
Il. THE OEKE PrROTOCOL Y « Dy (Y™) <S’—Y Y* Epu(Y)

Password-authenticated key exchange protocols allow twp Ky «Y* Kg + XV
parties that share a low-entropy common secret (a password)/v < U||S[| X [|Y[| Kv
to agree on a common high-entropy secret key thereafter Auth + H1(My)
used with symmetric primitives, such as symmetric encryp sky < Ho(My)
tion for privacy and message authentication codes for ay- accept « true Auth Ms « U||S|X||Y|Ks
thentication. The goal of such a protocol is to guarantee thg Auth 2 7 (M)
secrecy of the resulting common key between the two partic- it true_acée ¢ f_ true
ipating players. Furthermore, the protocol should sucdked i ' 2y]‘\)4
and only if the two players actually share the same password, _ s <_ o(My)
which guarantees the identity of the partner to both of terminate < true terminate < true

them. Because of the Iow-entropy, an active adversary W“l:igure 1. An execution oDEKE, run by clientU and serverS. The
succeed in impersonating a party to the other one with nonsession key isk = Ho (U||S|| XY |Y®) = Ho(U||S||I XY | XY).
negligible probability by successive password guessesh Su

an on-line dictionary attack is unavoidable. However, one

should guarantee that this is the best attack: one actizekatt
allows the adversary to test and thus eliminate at most on

password,. and not more. Ngmely, p.assive attacks should nBE\ssive eavesdroppings (passive attacks), and, asking
(computationally) leak any information about the passwordhash-queries ang. encryption/decryption queries, to make

One definitely wants to prevent off-line du_:tlonary attacks_ a server instance accept with no terminating client partner
where after a few active attacks and possibly many passive

. o o IS bounded by
ones the collected information is enough to eliminate many

passwords, and thus accelerate impersonation from the on-Nu +2Ns

within time ¢, and with less thanNy sessions with a
glient, Ng sessions with a server (active attacks) &g

+ 3qp, x SUCCEM (') + peo
line dictionary attack. N n G () +Peot
The first password-authenticated key exchange protocol,, .. Dol = (2¢e + 2Ny + 3Ng +3Np)? ¢ + 4N,
has been proposed by Bellovin and Merritt [56], the En- ° 2(q — 1) 20 +1

crypted Key Exchange (EKE). This is basically a Diffie- where/; is the length of the output g, and’ < ¢+ (Ny +
Hellman key exchange where the two flows are encrypteq\, o

ith _ X h ino th 4 v + Np +ge+1) - Texp, With 7o, denoting the computation
with a symmetric encryptlon scheme, using the passwor e for an exponentiation if.! FurthermoreSuccg’h(t)
secret key. Several variants have thereafter been proposeég]

. notes the maximal success probability an adversary can
such as AuthA [57]. _The_One-Encrypnon K_ey EXCh"’,‘ngegain within timet against the computational Diffie-Hellman
protocol (OEKE) studied in [55] is the particular variant

here th 41 Vi ted under th roblem inG. Similarly, no adversary can distinguish the
where the second Tiow only IS encrypted under the l3"’153\’\'()r§’ession key from a random key with advantage greater than
and the first player proves his knowledge of the passwor

with an additional key confirmation flow. Figure 1 provides 2Ny +4Ng + 81 x SUCCE (1) + 2peon.

a description of this OEKE protocol, which guarantees tlien N

authentication and key secrecy, under the assumptions th@he proofs basically show that the unique way for the ad-
‘Ho and?{, are random oracles, thétandD are respectively versary to gain something (against both client authendinat
the encryption and decryption of an ideal cipher, and thaand secrecy of the session key) is to correctly guess the
G is a finite group of prime ordeg, with generatorg, in password, by either sendingra that is really an encryption
which the computational Diffie-Hellman problem is hard under the correct password, or using the correct password to
(see the definition in Section 11I-D), as proven in [55].

If the paSSWOi‘dpw is chosen among a finite dictionary 1In [55], they use as parameter the numgerof interactions with the
d of size N . d with th if distributi parties, instead of the numbers of sessidhsandNg. It is straightforward
passwd Ot size N equipped with the uniform distribution, 4, recompute the probabilities to ués and Ny instead, and this yields

their proof shows that the probability for any adversary,a more precise evaluation.

decryptY* and compute the authenticatduth. One could variableslV” and all distinguisher® that run in time at most
hope to prove that the former event, denotettrypt, is tp, | Pr[C[G] : D] — Pr[C[G’] : D]| < p(C,tp).

bounded byNU /N and the latter event, denotédith, is) o] - .
bounded byNS/N. But, because of the way probabilities This definition formalizes that the probability that algbms
are computed when one uses Shoup’s lemma [43], some and D distinguish the gamesr and G’ is at most

factor appears to theVU + NS)/N main term. p(C,tp). The probabilityp typically depends on the runtime
of C' and D, but may also depend on other parameters, such
I1l. M ODELING OEKE IN CRYPTOVERIE as the number of queries to each oracle madebyrhat

_) . is why p takes as arguments the whole algoritlithand
In this section, we present the model of the protocol given,o rintime of D. WhenV is empty, we writeG ~, G’
. y ~p .

as input to CryptoVerif. We first recall some basic ideastherefore, we obtain a sequence of indistinguishable games
behind CryptoVerif, and then present the model itself: the, ~ v G~V Gy... G ~
Gy .Gy

. : o 0 Ry, ~,. Gn, Which implies
security assumptions on the pnr_muves, the model of the o z;}:r . G- Inthe last game/,,, the desired security
protocol, and the security properties that we want to prove R

4 !)Property is proved by direct inspection of the game, without
The complete CryptoVerif model, and the reusable library,qing any computational assumption. For example, to bound
that provides the definitions of cryptographic primitivean

_) the probability that an event is executed, event does
be found at http://www.cryptoverif.ens.fr/OEKE/. not occur at all in the last game, $[C[Gn] : ¢ = 0,

hence the probability of executingin the initial game is
_ _ Pr[C[Go] 1 e] < (p1+ -+ +pn)(C,e).

CryptoVerif builds proofs by sequences of games [43], The game transformations used by CryptoVerif can be
[44]. It starts from the initial game given as input, which split into two categories:
represents the protocol to prove in interaction with an
adversary. Then, it transforms this game step by step using a
set of predefined game transformations, such that each game {,a3sformations. These transformations do not rely on
is indistinguishable from the previous one. any security assumption on primitives.

More formally, a gameG' interacts with an adversary , cryptographic transformations, which rely on a security

A. Review of CryptoVerif

« syntactic transformations, which are used by Cryp-
toVerif to simplify games and to prepare cryptographic

represented by @ontextC', and we denote by’[G] the assumption on a primitive. These security assumptions
combination of ¢ and G. During execution,C[G] may are themselves formalized as indistinguishability prop-
execute events, collected in a sequeficand finally returns ertiesL ~, R, which are given as input to CryptoVerif

a resulta, either a bitstring or the special valadort when and need to be proved manually. They are proved

the game has been aborted. These events and result can be gnce for each primitive and can then be reused in

used to distinguish games, so we introduce an additional many protocols. We present such equivalences for the
algorithm, adistinguisherD that takes as input the sequence primitives used in OEKE below.

of events€ and the result, and returngrue or false. An CryptoVerif uses these equivalences to perform proofs
example of distinguisher i®). defined byD. (&, a) = true by reduction automatically. It detects that a gathean

if and only if e € £: this distinguisher detects the execution be written as a context' that calls the oracles of,
of evente. We will denote the distinguishdp. simply bye. thatis,G ~¢ C[L] by purely syntactic transformations,
More generally, distinguishers can detect various progeert and builds a gamé&’ such thatC[R] ~Y G’ by purely
of the sequence of events executed by the game and of syntactic transformations is the simulator usually
its resulta. We denote byD v D', D A D', and =D the defined for reductions. Froth ~,, R, we can infer that
distinguishers such thaDvD')(€,a) = D(E,a)VD' (€, a), C[L] =Y, C[R] whereV is a subset of the variables of
(DAD')E a) = D a) AD'(€,a), and (-D)(€,a) = C and p'(C",tp) = p(C'[C[]],tn). Indeed, ifC" is
-D(&,a), whereV is the logical disjunction/ the logical the adversary against[L] ~Y, C[R], the adversary
conjunction, and— the logical negation. We denote by againstL ~, R is C'[C][]]. Tﬁerefore,G z}\)/ G’ and

Pr[C|G] : D] the probability that”[G] executes a sequence
of events€ and returns a resudt, such thatD(&, a) = true.
A context C' is acceptable foiG with public variables B. The Random Oracle Model

V' when it can read directly the variables 6f that are The random oracle model was introduced in [58] to
in V, and it makes no other access to variables@f model hash functions. It was encoded in CryptoVerif
AT o . TV \ .
indistinguishability as an equivalence~, G" L1 % 40eq)|hashoutput| R1 WhereL; and R, are defined in
Figure 2. This model is not specific to OEKE. The hash
Definition 1 (Indistinguishability) We write G zz‘f G’ function hash takes as input a key of typgey and the
when, for all contextg” acceptable fo€z andG’ with public bitstring to hash of typéiashinput and returns a result of

CryptoVerif can transforn@ into G'.

L, = foreachih < nh do k pil key;
(foreach i < n do
OH(« : hashinput) := return (hash(k, z)) |
foreach ieq < neq do
Oeq(z’ : hashinput,r’ : hashoutput) :=
return (v = hash(k, z')))

R, = foreach ih < nh do
(foreach i < n do OH(z : hashinput) :=
find [unique] v < n suchthat
defined(z[u], r[u]) A xz = z[u]
then return (r{u])
elser & hashoutput; return (r) |
foreach ieq < neq do
Oeq(a’ : hashinput,r’ : hashoutput) :=
find[unique] « < n suchthat
defined(z[u], r[u]) A 2’ = x[u]
then return (v’ = r[u])
else return(false))

Figure 2. Random oracle model

type hashoutput. The key models the choice of the hash
function. The key must be chosen once and for all at th
beginning of the game for each hash function, and the gal
must include a hash oracle, which allows the adversary t
compute hashes. For each hash function indexed by nh,
the gamed.; and R; define two oraclesDH and Oeq:

e In Ly, OH(z) returns the image of by hash(k,-).
This oracle can be called at most times for each
hash function, and its calls are indexedbg [1, n], as
defined byforeachi < n do. We can replace this oracle
with a random oracle, that is, an oracle that return
a fresh random number when it is called with a new

argument, and the previously returned result when it

is called with the same argument as in a previous call
Such a random oracle is implementediin as follows.
Like all variables defined unddéoreach : < n, z is in
fact an array indexed by, so thatxz[u] represents the
value ofz in the u-th call to OH. The find construct
looks for an index: such thatc[u] andr[u] are defined,
andx = x[u], that is, the current argument 6H is the
same as the argument in theth call, and if we find
one, then we return the result of theth call, r[u].
Otherwise, we return a fresh random number

The oracleOeq aims to optimize the treatment of
comparisons with the result of the hash function, an
operation that appears frequently. Iy, the oracle
Oeq(z’,r") compares”” with hash(k,z’). In Ry, this
comparison is replaced with a lookup in previous
calls to the hash function. I’ was already given
as argument tohash(k,-), in the u-th call @’
x[u]), thenhash(k, z’) is r[u], so we compare’ with

m

Enique

r[u]. Otherwise,x’ was never given as argument to
hash(k,-), so hash(k,2’) is a fresh random number,
and it is equal tor’ with probability 1/|hashoutput|.
We eliminate this case iRy, so the result of the
comparisonr’ = hash(k,z’) is replaced withfalse
and the probability of distinguishind; from R; is
at most#0eq/|hashoutput|, where#0eq denotes the
total number of calls t®eq.

We can notice that there exists at most arthat can satisfy
the condition offind in OH in R;. Indeed, suppose that
uy # ug are such thatr|u;], ru;], x[us], rlus] are defined
andz = z[u;] = x[uz]. Suppose that the que®H with

1 = uy is called beforeOH with i = us. (The other case
is symmetric.) Thus, when executing the quédid with

i = wug, x[ur] andrfu;] are defined and:[uz] = z[uq],
so thefind succeeds withu = wuy, S0 r[ug] will not be
defined (sincer is defined only in theelse branch of the
find). Contradiction. Thereforey is unique. Following a
similar reasoningy is also unique inNOeq in Ry. That is
why the finds in R; are marked[unique]. Formally, the
modifier [unique] means that, in case several choices satisfy
the condition offind, an eventNonUnique occurs and the
game is aborted. As we have shown, the evniUnique

diever occurs iRy, so the modifiefunique] does not alter

e equivalencel; ~.4oeq/|hashoutput) F21- The modifier
| allows additional transformations find, which are
correct only when there never exist several choices thaemak
the condition of thdind succeed. These transformations are
detailed in Appendix E-B.

The novelties with respect to [50] are the use of keyed
hash functions, the oracl@eq, and the modifiefunique].
We believe that using keyed hash functions leads to a better

Smodeling of random oracles, for several reasons:

« In the random oracle model, the adversary cannot
evaluate the hash function by himself, without calling
the random oracle. With the key, this is natural, since
the adversary does not have the key, whereas in the
absence of key, this is counterintuitive: the adversary
should be able to reproduce the algorithmhof

In the absence of key, the transformation/gfinto R,
above replaces a deterministic functibrwith a prob-
abilistic one, since the results are chosen randomly in
the right-hand side. The key removes this discrepancy:
with the key, the hash oracle is also probabilistic in the
left-hand side thanks to the choice of the key.

The transformation of.; into R, above is correct only
when it is applied to all occurrences af simultane-
ously. In the absence of key, this has to be enforced by
an additional constraint on the transformation. With the
key, this is naturally enforced, since all occurrences of
the key need to be encoded as calls to the oracles of
L, for the transformation to be performed.

« Finally, keyed hash functions are used in the mod-

L, = foreach ick < nck do ck ¥id cipherkey;
(foreach ie < ne do Oenc(me : blocksize, ke : key) := return (enc(ck, me, ke)) |
foreach id < nd do Odec(md : blocksize, kd : key) := return (dec(ck, md, kd)))

Ry, = foreach ick < nck do
(foreach ie < ne do Oenc(me : blocksize, ke : key) :=
find[unique] j < ne suchthat definedme[j], ke[j], re[j]) A me = me[j] A ke = ke[j] then return (re[j])
@ k < ne suchthat definedrd[k], md[k], kd[k]) A me = rd[k] A ke = kd[k] then return (md[k])

elsere & blocksize; return (re) |

foreach id < nd do Odec(md : blocksize, kd : key) :=
find[unique] j < ne suchthat definedme[j], ke[j], re[j]) A md = re[j] A kd = ke[j] then return (me[j])
@ k < nd suchthat defined rd[k], md[k], kd[k]) A md = md[k] A kd = kd[k] then return (rd[k])

elserd & blocksize;return (rd))

Figure 3. Ideal cipher model

eling of other assumptions on hash functions, sucHme = rd[k]) using the same keyké = kd[k]) and, if
as collision resistance. By always using keyed hastwe find one, we return the corresponding ciphertextk].
functions, we can easily change the assumption on th®therwise, we return a fresh random ciphertext This
hash function without changing its interface. definition does not yield random permutations, because the

Designing CryptoVerif specifications of primitives recesr random choices ofe and rd may collide with each other
some expertise. That is why the specifications for mos@nd With previous values ofie and md. Let us consider
common cryptographic primitives are grouped in a reusabl& 9amert; obtained fromR; by excluding such collisions.
library. Therefore, CryptoVerif users generally do not éay BY adapting the reasoning used for the random oracle model

to design such specifications. in Section IlI-B, we can show that, iR5, there never exist
several choices gf/k that satisfy the conditions of tHands
C. The Ideal Cipher Model in Oenc and Odec, so thesdinds can be marke¢unique]

. . . without modifying their behavior. The ganie, is perfectly
The ideal cipher model [59] models block ciphers byindistinguishable fromR), and R, can be distinguished

saying that encryption and decryption are two randon‘hom Ry with probability at mosi, (the probability of the

permutations, inverse of each other. This can be encodeg,jisions excluded ink}), so the adversary can distinguish
in CryptoVerif similarly to the random oracle model: we L, from R, with probability at mosips

replace encryption and decryption with lookups in previous

encryption/decryption queries; if a previous query masche D. The Computational Diffie-Hellman Assumption
we return the previous result; otherwise, we return a fresh

random number. This is modeled by the equivalebgex,,, A classical intractability assumption in asymmetric cryp-
R, where L, and R, are defined in Figure 3 ang, = tography is the hardness of the Diffie-Hellman problem: let
(#0enc + #0dec)(#0enc + #0dec — 1)/|blocksize|. The ~ us be given a groufiz of prime orderg, with a generatbor
encryption and decryption functions map bitstrings of typeg. and two random elementst = ¢* and B = ¢

blocksize to bitstrings of typeblocksize; they take two keys With a,b € [1,q — 1], computeCDH,4 (A, B) = ¢*. The
as additional arguments: the standard encryption/deiorypt Computational Diffie-Hellman (CDH) assumption claims
key of typekey, but also a key of typeipherkey that models that for any polynomial-time adversayt, Succg" (A) =
the choice of the scheme itself (like the key of the hashPr[A(G, g, 4, B) = CDHy(A, B)] is negligible. More gen-
function in Section 11I-B). The game&. and R, define erally, we noteSuccg"(t) the maximal success probability
two oraclesOenc and Odec, respectively the encryption for any adversaryd within time ¢.

and decryption oracles. s, they call the encryption and This assumption can be written in CryptoVerif as follows:
decryption functions. IrR,, they are replaced with lookups
in previous encryption/decryption queries. For instarioe,
oracle Oenc, we look for a previous encryption query of (OA() ::./eXp(%a) | OB() := exp(g, b) |
the same cleartextnfe = me[j]) under the same key foreach ¢’ < n’ do ODDH(z : G) :=
(ke = ke[j]) and, if we find one, we return the same z = exp(g, mult(a, b)))

ciphertext re[j]. We also look for a previous decryption ~#ODDHxSuccs® (t+(n+#O0DDH)Te)

guery that has returned as cleartext the cleartext to ehcryp foreachi <n doa ¥i2 Zb ¥i2 Z;

foreachz'gndomiz;bﬁz;

L3 = foreach ia < na do ol Z; (

OA() :=return (exp(g, a)) |
Oa() :=return (a) |
foreach iaDDH < naDDH do
ODDHa(m : G,j < nb) :=
return (m = exp(g, mult(b[j],a)))) |
foreach ib < nb do b & Z; (
OB() := return (exp(g, b)) |
Ob() :=return (b) |
foreach «bDDH < nbDDH do
ODDHb(m : G,j < na) :=
return (m = exp(g, mult(a[j],0))))

R3 = foreach ia < na do a & Z; (

OA() :=return (exp(g, a)) |
Oa() := let ka : bitstring = mark in return (a) |
foreach «aDDH < naDDH do
ODDHa(m : G,j < nb) :=
find u < nb suchthat defined kb|u], b[u])
A blj] = blu] then
return (m = exp(g, mult(b[j], a)))
else if definedka) then
return (m = exp(g, mult(b[j], a)))
else return(false)) |
foreach ib < nb do b yil Z;(
OB() := return (exp(g, b)) |
Ob() :=let kb : bitstring = mark in return (b) |
foreach ibDDH < nbDDH do
ODDHb(m : G,j < na) :=
(symmetric ofODDHa)

Figure 4. Computational Diffie-Hellman assumption

by the indistinguishability between the two games pregknte
in Figure 4. In these two games, one generatesxponents

a, nb exponent$ and the adversary (any context) has access
to various oraclesDA andOB that return the group elements
associated ta, resp.b; Oa andOb that return the exponents

a and b themselves; and Diffie-Hellman decisions oracles
ODDHa and ODDHb that check whether the adversary
correctly solved a Diffie-Hellman problem with the above
generated elements. Basically, the difference between the
two games is in the answers of the decision oracles: in
the first game they answer correctly, while in the second
game, they answefalse if the adversary did not ask for
any of the two exponents. Unless the adversary can break
the Diffie-Hellman problem, and then ask correct Diffie-
Hellman decision queries, the two executions are perfectly
indistinguishable. In more detail, i3, the variableka

is defined if and only if the oracl®a has been called
and thus the exponent has been asked by the adversary.
All variables and oracles defined undereach ia < na

are implicitly indexed byia, so thatka[ia] is defined if
and only if aia] has been asked by the adversary. The
variable kb plays the same role fds. The oracleODDHa
computes the equality test, = g°[“®lil when b[;j] has
been asked by the adversary, i®b[j] is defined, ora[ia)

has been asked by the adversary, kelia] (abbreviated
ka) is defined. Otherwise, it return@lse. The condition
“kb[j] is defined” is encoded as:b[u] is defined for some

u such thath[u] = b[4]" (defined kb[u], blu]) A b[j] = blu]),
because CryptoVerif allows to reference a variablg| in
defined conditions in the right-hand side of an equivalence
only when its indicesi are a prefix of the indices looked
up by find, so a reference téb[j] would not be allowed.
We can refer tob[j] without including it in a defined

condition because it also occurs in the left-hand side of the
equivalence, so CryptoVerif knows that it must be defined.
That is why the conditiomefined kb[u], b[u]) A b[j] = bu]
is accepted by CryptoVerif.

In Appendix B-A, we formally prove thal; ~,, Rs,
that is, no adversary can distinguish the two garmhg¢sand
R3, within time ¢, with advantage greater than

ps = (#ODDHa + #ODDHb)
x max(1, 7.4#0a) x max(1,7.4#0b)
x SuccE" (t + (na + nb + #0DDHa + #ODDHb)7e).

(OA() := exp(g; a) | OB() := exp(g, b) |
foreach i’ <n' do ODDH(z : G) := false)

The typeZ represent$l, ¢ — 1], that is, the groufZ;; mult
is the product in that group(represents the groufy
without its neutral element; anekp is the exponentiation
G x Z — G. These two games define three oracl@g
and OB return the exponentialg® and g° respectively, and
the oracleODDH checks whether its argumentis equal
to ¢?° in the left-hand side while it always returfisise in
the right-hand side. The adversary can distinguish these twThe proof technique consists in guessing the two elements
games if and only if it can provideasuch that: = ¢°*, that ~ andb that will be involved in the critical decisional Diffie-
is, it breaks the CDH assumption. However, in CryptoVerif, Hellman query (but with Coron’s improvement [60]), and
this model requires that and b be chosen one after the then to guess the critical query, hence the fagt@DDHa+
other under the samfareach: while this is true in some #ODDHb.

cryptographic schemes such as ElGamal, this is not true for For this equivalence to be supported by CryptoVerif, we
most protocols: as in OEKE, andb are chosen by different had to implement two extensions:

protocol participants that can each execute several sessio , OraclesODDHa andODDHb take as argument an array
Therefore, we need a more general model, which is given index j, which was not supported.

« In typical usages of the CDH assumption in proto- U||S|| X || Y _u| K _u. These oracles are implicitly indexed by

cols, g% is often an argument of a hash function iU, so that they can be writte@C1[iU], OC2[iU]. (This

in the random oracle model. The transformation thatindex is omitted in CryptoVerif code for readability.) The

comes from the random oracle model, presented iradversary can call the oracles with any index it likes in the

Section l1I-B, transform$ash(... g ...) into lookups order it likes, except that, obviousi®C2[iU] can be called

that compareg®® with previous arguments ofash. only if OC1[:U] has been called before with the sanié.

These comparisons = ¢%°, which occur in conditions This gives the adversary full control over the network.

of find, are themselves transformed irftod using the We represeniVS sessions of the server in a similar way.

CDH assumption. We therefore end up withfiad The NU sessions of the client and th&¥S sessions of

inside the condition of &ind, which was not supported. the server model active attacks. Additionally, we repréesen
In addition to the modeling of the CDH assumption itself, NP sessions of the protocol in which the adversary just
our model of Diffie-Hellman key agreements includes furthereavesdrops messages without altering them. In order to
properties, such as commutativity and injectivity of saver represent such sessions, we simply compute and output their
functions. They are formally defined in Appendix B-B. We transcript. They model passive attacks. Since we are con-
stress that our above modeling is not specific to the OEKBidering dictionary attacks against a password-authetetic
protocol. We have also used it to prove a signed Diffie-key exchange protocol, it is important to distinguish paessi
Hellman key exchange, and we believe that it can be usesessions/attacks from active ones against the honestrplaye
for proving many other protocols.

E. The Protocol ltself F. Security Properties

If we consider a general configuration with several clients Qur goal is to prove that OEKE is a secure key exchange
and servers, each client-server pair shares a differest pasthat provides unilateral (explicit) authentication. (OEK
word, and there is no other secret shared initially. Theesfo guarantees client authentication but not server authentic
different client-server pairs have no common secret, so Weéion.) To do that, we follow the ideas of [61, Section 7.2]:
can encode a single cliebt and a single serve$ that wish instead of proving semantic security of the key and au-
to talk to each other; the other clients and servers, whichhentication, we prove secrecy of the key on the client
may be corrupted, and the interactions @fand S with side and a slightly stronger authentication property. This
other clients and servers are included in the adversarg Thiiechnique avoids the burden of considering partnering when
model supports static corruptions; dynamic corruptions$ an proving secrecy of the key and still implies authenticated
forward secrecy properties are left for future work. key exchange [61, Proposition 4]: intuitively, authertica

The protocol model first chooses random kéy# and guarantees that a key of the server is also a key of a client.
hk1 to model the choice of the hash function® (i.e. Ho) ~ Authentication is modeled by correspondence propertigs [6
and hl (i.e. H,) respectively and a keyk to model the of the form “if some event occurs, then some other event oc-
choice of the ideal cipher scheme. It also randomly choosegurred”. There are still two differences with respect to][61
a passworgw in the typepasswd. Then, it makes available
hash oracles forh0 and hl, encryption and decryption
oracles, as well as oracles that represent the client and the
server. As an example, we detail the code for the client:

o [61] considers mutual authentication, while we consider
unilateral authentication, so we remove the correspon-
dence that guaranteed authentication of the server.

« In[61], each protocol participant may interact with hon-

foreach iU < NU do est participantsl{{ and S here) but also with dishonest
0C1() == & Z; X + exp(g, z); return (U, X); participants, and in the latter situation, the exchanged
0C2(=S, Ystar_u: G) := Y_u + dec(ck, Ystar_u, pw); key is published when the participant accepts. As
K_u + exp(Y_u,z); mentioned in Section IlI-E, in OEKE, we need not code
auth_u + h1(hk1,concat(U,S, X, Y _u, K_u)); explicitly for U and.S interacting with other clients and
sk_u : hash0 < hO(hk0,concat(U,S, X, Y _u, K_u)); servers, so the output of the exchanged key disappears.
return (auth_u) Taking into account these points, we add events to record
This code modelsVU sessions of the client, indexed by that the participants accept or terminate:

iU. Each session defines two oracle€1 and OC2. OC1 « eventacceptU(U, X, S, Ystar_u, auth_u, sk_u) when
takes no argument and returns the first message of the the client accepts (lineatcept « true” of the client
protocol U, X computed as specified in Figure DC2 in Figure 1, that is, before the last line in the code of

takes as argument the second message of the protocol Section IlI-E).

S, Ystar_u received by the client and returns the third « event termS(U, X_s,S, Ystar, auth_s, sk_s) when
one auth_u. It also computes the shared ke¥_wu. In the server terminates (linetérminate < true” of the
this code,concat(U,S, X, Y_u, K_u) is the concatenation server in Figure 1).

and we prove that the resulting process preserves the gecreather words, each session of the server that accepts with
of sk_u and satisfies the correspondences transcriptU, X, S, Ystar,a and shared key: corresponds
inj-event(termS(U, X, S, Ystar, a, k)) = to a distinct _session of the client that accepts with the
. (1) same transcript and same key. It corresponds to the au-
inj-event(acceptU(U, X, 3, Ystar, a, k)) thentication of the client. The keyworihj-event is used
evenitermS(U, X, S, Ystar, a, k)) A (2y in Cryptoverif to require injective correspondences, that
eventacceptU(U, X, S, Ystar,a,k')) = k = k' is, acceptU has been executed at least as many times

with public variables{sk_u}. A variant of [61, Proposi- as termS, and not only once. The correspondence (2)

tion 4] allows us to conclude one-way authenticated keyM€ans that when eventermS(U. X, S, Ystar, a, k) and

!/ _ !/
exchange. Next, we define secrecy and correspondences. 2<cePtU(U, X, S, Ystar, a, k') have been executed,= k',
Intuitively, the secrecy ofsk_u means that the keys that is, if a client and a server have the same transcript,

sk_u of all sessions of the client are indistinguishable fromthen they share the same key. These correspondences are

independent random keys. Formally, secrecy is defined agroved “with public variat_)les{sk_u}", that is, thgy hold
follows: even when the adversary is allowed to accéss: directly.

Formally, we write€ F ¢ = ¢ when the sequence of events
Definition 2 (Secrecy) Assume that the variable of type & satisfies the correspondenge=- ¢. (This is formally
T is defined inG' under a singldoreachi < n. The gamez defined in [61].) For instancé, - inj-event(termS(U, X, S,
preserves the secrecy afup to probabilityp when, for all ~ Ystar,a, k)) = inj-event(acceptU(U, X, S, Ystar, a, k)) if
contextsC' acceptable folG | R, without public variables and only if, for each evenscceptU(...) in &, there is a
that do not contairs andS, Pr[C[G | R,] : S] — Pr[C[G | distinct eventtermS(...) in & with the same arguments as

R;] :S] < p(C) where the eventacceptU(...).

R, =00():=b yil bool; return ;
(foreachi’ <n’ do O(u : [1,n]) :=
if defined(x[u]) then
if b then return(z[u]) else

Definition 3 (Correspondence) The gameG satisfies the
correspondence) = ¢ with public variablesV up to

probability p if and only if, for all contextsC' acceptable
for G with public variablesV' that do not contain events,

find v’ < n’ suchthat definedy[u'], u[u]) A PriCIO] : D] < »(C). whereD(E.a) = (£ =
ufu'] = u then return (y[u']) else HelQ]: D < p(C), (£,0) =(EV Y= 9).
y & T;return (y) IV. PROVING OEKEIN CRYPTOVERIF
| O'(b" : bool) :=if b=V’ then eventS; abort In the previous section, we have presented the formal-
else eventS; abort) ization of the protocol given as input to CryptoVerif. In

this section, we explain how CryptoVerif proceeds with the

proof. Some parts of the proof are automatic, some are

We define the secrecy of with the Real-or-Random model guided by the user. The commands for guiding CryptoVerif

of [63]: in R,, we choose a random bit and provide the can be given interactively, which allows one to see the

oracleO that the adversary can use to perform several testurrent game and understand what should be done next, or

queries onz[u]: if b = 1, the test query returngul; if b =0, inaproof {...} declaration in the CryptoVerif input file, so

it returns a random valug (the same value if the same query that CryptoVerif can then run on its own. The input file pre-

x[u] is asked twice). Finally, the adversary should guess thegented at http://www.cryptoverif.ens.frfOEKE/ includesh

bit b: it calls oracleO’ with its guessh’ and, if the guess a declaration. We stress that, even with manual guidanke, al

is correct, then everfi is executed, and otherwise, evént game transformations are verified by CryptoVerif, so that

is executed. The probability of getting some information onone cannot perform an incorrect proof.

the secret is the difference between the probabilit$ ahd _ ’

the probability ofS. (When the game always runs oracle A+ APPlying Shoup’s Lemma

O', we havePr[C[G | R,] : S] = 1 - Pr[C[G | R,] : S], The first step of the proof is to introduce the events

so the advantage of the adversanyPig§C|[G | R,] : S — Auth andEncrypt, which correspond to cases in which the

Pr[C[G | R.] : S] = 2Pr[C[G | R,] : S] — 1, which is adversary succeeds in testing a password and were also used

a more standard formula.) As shown in [63], the Real-or-in the manual proof of [55].

Random model is stronger than the Find-Then-Guess model By Shoup’s lemma [43], ifG’ is obtained fromG by

used in [55], which allows a single test query and severalnserting an event and modifying the code executed after

reveal queries. (Reveal queries always return theapdl) e, the probability of distinguishing”’ from G is bounded by
The correspondence (1) means that each execution difie probability of executing: for all contextsC' acceptable

event termS(U, X, S, Ystar,a, k) corresponds to a dis- for G andG’ (with any public variables) and all distinguish-

tinct execution of eventcceptU(U, X, S, Ystar,a,k); in ers D, |Pr[C[G] : D] — Pr[C|G'] : D]| < Pr[C[G'] : e].

00,0,0', b, ,u,u',y, S, andS do not occur inG.

Hence,Pr[C[G] : D] < Pr[C[G'] : e] + Pr[C[G'] : D]. We by Lemma 1, whilePr[C[Gy] : eo] < 2p(C,tp) by the
improve over this computation of probabilities by consider standard computation, so we have gained a factor 2.

ing e and D simultaneously instead of making the sum of For secrecy, the advanta@e[C[G | R,] : S| — Pr[C[G |
the two probabilitiesPr[C[G] : D] < Pr[C[G'] : D Ve]. R,] : 5] introduces a factor 2 in the probability: @ ~}*!

G, thenPr[C[G | R,] : S] — Pr[C[G | R.] : S] < 2p(C[[] |
R.),ts) + (Pr[C[G’ | R, : S] — Pr[C[G’ | R.] : S]), since

ts = ts. The next lemma avoids this factor 2 for probabilities
of events:

Lemma 1 LetC be a context acceptable fé¥ and G’ with
public variablesV'.

1) If G’ differs from G only whenG’ executes ever,

thenPr[C[G] : D] < Pr[C[G"] : DV e]. Lemma 2 Let C' be a context acceptable faf and G’

2) If G differs from G’ only whenG executes event i nplic variablesV. Let the distinguishersD, D’ be

Nﬁnuniq“e a:)ndD_ = (DfOAﬁNonU'ﬁiq”e)velv' -Ven disjunctions of events; \ ...V e, such that we abort just
where we abort just after executing eveRls....en, after executing each;. Let AdvS<"™ (C, D) — Pr[C[G |

thenPr|C[G] - D] < Pr[CG'] - D]. R.]: SV D] — Pr[C[G | R.] : SV NonUni
mE - mE que].
3 IF G~y G then PrC[G] = D] < p(Citp) + 1) If G’ differs from G only when G’ executes
Pr[C[G"] : D). _only _
4) Pr[C[G] : DV D'] < Pr[C[G] : D] + Pr[C[G] : D']. evente and we abort just after executing, then

AdvET™Y (C, D) < Advgs™¥ (C, D V e).

2) If G differs fromG’ only whenG execute®onUnique,
then Advr™™? (C, D) < Adves™ (C, D).

3) If G =) G, then Advy™*¥(C,D) < 2p(C[[] |

This lemma, and Lemma 2 below, are proved in Ap-
pendix C. In order to bound the probability that a distin-
guisher Dy returns true for some gam&,, we consider

any contextC' acceptable forG, with public variablesy’ Ry],t) + Advg ™ (C, D) where t = max(tsyp,
and that does not contain events, and bolmC[Gy] : t5\NonUnique)-

Doy A =NonUnique] which is equal toPr[C[Go] : Do) 4) AdvgY(C, DV D') < AdvET™ (C, D) + Pr[C[G |
because ndind[unique] occurs in the initial game. For R,]: D'].

each game transformation, we assume that the introduced5) If CryptoVerif proves the secrecy af in gameG,
variables are fresh, so th& remains acceptable for all thenPr[C[G | R.] : S] = Pr[C[G | R.] : S|, so

games of the sequence. We can then apply Lemma 1 for Advsc‘f”ecy(C,D) < Pr[C[G | R,] : D].

each game transformation. Points 1, 2, and 3 of this lemma) o

allow us to handle several events simultaneously, as long as IN order to prove secrecy of in the initial gameGo,

the proof uses the same sequence of games to bound th&{F boung PrClGo | Re] : S| — Pr[ClGo | R.]
probabilities. Point 2 is useful for transformations thalyr S| = Advg ™ (C, false), by applying Lemma 2 for each
on the uniqueness of the values that satisfy the conditiong@me transformation. When we apply points 4 and 5 of
of find, detailed in Appendix E-B: these transformationsthis lemma, we use bounds on the probabilities of events,
preserve the behavior of the game wi@nioes not execute Pr[C[G | R.| : D'] and Pr(C[G | R,] : D] respectively,
event NonUnique. The distinguisherD is always of the Which can be established using Lemma 1. (They can be
desired form(Dy A ~NonUnique) Ve; V. .. Ve, because we Written Pr(C[G | R,] : (false A =NonUnique) v D], so they
start from Dy A ~NonUnique and add events introduced by aré of the form required by point 2 of Lemma 1.) These
Shoup’s lemma using point 1; we abort immediately afterProbabilities are not mulﬂphed by 2, S0 we improve over
these events. When the proof uses different sequences Hté Standard computation of probabilities for secrecy.
games to bound the probabilities of events, we use point 4 These improvements are implemented in CryptoVerif but
of the lemma to bound each probability separately anddlS0 apply to manual proofs. For instance, by applying this
compute the sum. The standard computation of probabilitie§esult to the manual proof of OEKE [55], we obtain that

corresponds to always applying point 4. the probability for any adversary to make a server instance
For example, suppose that we want to bound the proba';_\ccept with no terminating client partner is bounded by

bility of eventeg in Gy, G differs from G onIy_whenGl Ny + Ng Syecsth ,

executes evertt, G; =, G2, andG» executes neithery nor N + gnSuccg (') + Peou

e. Suppose for simplicity that niind [un_ique] occurs, so that h o (2¢e + 2Ny + 3Ns + 3Np)? g2 + 2Ng

NonUnique never occurs. Lemma 1 yield&[C[Gy] : eo] < WIth p,y = 2q—1) St

Pr[C[G1] : eo V€] < p(C\tegve) + Pr[C[Ga] : eg V€] = o)

p(C, te,ve). The standard computation of probabilities yields @nd that no adversary can distinguish the session key from
Pr[C[Go] : eo] < Pr[C[Gi] : eo] + Pr[C[Gy] : ¢] < @ random key with advantage greater than

p(C,te,) +p(C,te). The runtimetp of D is essentially the Ny + Ng Succssh 4 .

same foreg, e, andeg V e, s0 Pr[C[Go] : eo] < p(C,tp) TN T dwucce (") + 2PCon

10

with the notations of Section Il. (The detailed computation
is in Appendix D.) For both properties, the first term
of the probability X-t%s shows that the adversary can
test at most one password for each interaction with the
client or the server, which is the optimal result, while the
standard evaluation of probabilities given in Section dlgts
Nu£2Ns for the first property andXE4%s for the second
one. Similar improvements could also be obtained for the
AuthA protocol [55, Section 4.1] and for the forward secrecy
property [55, Appendix D].

1) Inserting eventsin order to introduce events, we have
implemented a new game transformation in CryptoVerif;
insert_event ¢ o insertsevente; abort at program poinbd.

The program poinb is an integer, which can be determined
using the commansghow_game occ: this command displays
the current game with the corresponding lale} at each
program point. The commanshow_game occ also allows
one to inspect the game, for instance to know the names
of fresh variables created by CryptoVerif during previous
transformations. Program points and variable names may
depend on the version of CryptoVerif; this paper uses
CryptoVerif 1.14. CryptoVerif cannot guess where events
should be introduced, so the commaingsert_event must
be manually given to the tool.

We have also defined a commatdsert o ins which

to h1 with lookups in the previous queries td. All
gueries tohl in the protocol have an argument of the
form concat(z1’, z2', 23’ z4’, x5"). When comparing
this query to a query in the hash oracle, the compari-
son hiz = concat(z1’, 22, 28", 24’ ,25') can then be
simplified as follows:

— If hl(hiz) was computed in thein branch
of the introducedlet, the comparison becomes
concat(xl,22,23,24,25) = concat(zl’, 22,
3’ x4’ x5'), thatis,zl =21’ A... ANx5 = 15'.

— If h1(h1z) was computed in thelsebranch of this
let, the comparison becomdsise, becausehlz
cannot be of the formoncat(...), since thein
branch would have been taken in that case.

« cryptorom(hl) applies the equivalendg, ~,, R; of

Figure 2, designated brpm for Random Oracle Model,
to the hash functioml: it transforms calls tch1 into
lookups in the previous queries td, as outlined in
Section 111-B.

3) Event Auth: Next, we introduce evenAuth: This
event corresponds to the case in which the group element
X received by the server (denoted_s) does not come
from the client, the authenticataruth received by the server
(denotedzuth_s) comes from a hash query by the adversary,

and authentication still succeeds. To be able to introchise t

adds instructionns at the program poind. The instruction
ins can for instance be a test, in which case all branches
of the test will be copies of the code that follows program

point o (so that the semantics of the game is unchanged). It

can also be an assignment or a random generation of a fresh X

variable. In all cases, CryptoVerif checks that this instian
preserves the semantics of the game, and rejects it with an
error message if it does not.
2) Transformations foh1: Atthe beginning of the proof,
we transform the game using the random oracle assumption
for h1l. This transformation helps us make a program point
appear at which we will next insert an event. Before actually
performing this transformation, we first introduce a case
distinction that leads to a simpler game after applying the
random oracle assumption:
« By commandinsert 261 “let concat(z1, 22, z3, 24,
z5) = hlz in”, we introduce det in the hash oracle for
h1. As the result, this hash oracle becon@31(h1x :
bitstring) := let concat(z1,z2, z3,24,25) = hiz in
return (h1(hk1, hiz)) else return(hl(hk?,hiz)): the
meaning of thislet construct is that, ifa1z is of the
form concat(z1, 22,23, x4,25), then thein branch
is taken withz1,z2, 23, z4,25 bound to their value
(which is uniquely determined because the length of the
fields of the concatenation is fixed); otherwise, #ise
branch is taken. Thus, we distinguish cases depending
on whetherhiz is of the form concat(...) or not.

event, we first make the program point appear, at which this
event will be inserted:

o insert 179 “find j < NU suchthat defined X [j]) A

[j]] = X_s then” inserts a test after receiving the
authenticator in the server, to distinguish the case in
which X_s comes from the clientX_s = X|[j] for
somey).

insert 341“find jh < ¢qH1 suchthat definedz1 [jh],
22[jh], 23[jh], 24 [jh], hash1[R) A(U = o1 [jh]) A(S =
22[jh]) A(X _s = z8[jh]) A(Y = z4[jh]) A (auth_s =
hashy[jh]) then” inserts a test, in thelsebranch of the
previous one, to detect when authentication succeeds
with an authenticatoruth_s that comes from a hash
query made by the adversary. The result of that hash
query is hashy[jh] and its arguments arei [jh], . ..,
z5[jh]. We purposely do not test that the 5-th argument
of the hash query is the expected one. This avoids
computing an exponentiatiosxp(X_s, y) where X _s
comes from the adversary andis a secret exponent,
thus removing a query tOb in the CDH equivalence.
insert_event Auth 384 inserts the event itself in the
then branch of the previous test.

Finally, simplify cleans up the obtained game. The
elsebranch of thdind jh inserted above is removed: in
that branch, authentication always fails so the protocol
executes nothing.

In the next trar!Sformatlon* Wh|Ch_ applles the random 2|n CryptoVerif 1.14, the variabléash1 is in fact named@11_r_134.
oracle assumption tbl, we are going to replace calls We have renamed it thash; for readability.

11

4) EventEncrypt: Next, we introduce the evelihcrypt: random value independently of the value &, so
This event corresponds to the case in which the value Yp is also used only in comparisons with previous

Y™* received by the client (denotetlstar_u) comes from encryption/decryption queries.
an encryption query of the adversary under the correct « The value ofY in the server is also a fresh random
password. As above, we have to prepare this insertion: group element; it is used in the test that decides whether
« crypto icm(enc) applies the equivalence that repre- !0 €xecute everkuth and in comparisons with previous
sents the Ideal Cipher Model, designated iby, to encryption/decryption queries.

the encryption schemenc: it replaces calls to encryp- We have implemented new game transformations in Cryp-
tion/decryption with lookups in previous queries, astoVerif, detailed in Appendix E, to handle this situation:

outlined in Section I11-C. « move array X delays the generation of a random value
o insert_event Encrypt 633 inserts the everEncrypt X until the point at which it is first used.
when the lookup in previous encryption/decryption merge_arrays i1 ... Lin, ---, Tml - - - Lmn MErGESs
queries that comes from the decryption dbtar_u the variables:;1, . . ., z;, into a single variable:;; for
succeeds with an encryption query of the adversary. eachj < m. Each variabler;; must have a single
5) Transformations foh0: We proceed foh0 similarly definition. For eachj < n, the variablesz;i,...,
to what we did forh1 at the beginning of the proof: x;» must have the same type and indices of the same
e insert 1251 “let concat(z01, z02, 03, x04,x05) = typg._They must n_Ot be defined for the Same_ Vall'_'e of
hoz in” distinguishes cases depending on whether the ~ their indices (that isz;x and;,» must be defined in
argumenth0z of the hash oracle foi0 is of the form different branches off or find whenk 7 &), so that
concat(...) or not. they can be merged into a single array.
« crypto rom(h0) applies the random oracle assumption ¢ merge_branches merges branches dfandfind when
to h0 (Section 11I-B). they execute the same code.
Using these transformations, we can eliminate the random
B. Automatic Steps number generations faY” as outlined at the beginning of

After distinguishing cases fdr0 andh1 and introducing this section. We consider the three generations af turn.
events, we can use the automatic proof strategy of CrypFor each of these generations, we first appye array
toVerif, by commandauto. Basically, this strategy consists to the corresponding variable, to delay its generation. For
in applying all possible cryptographic transformationsnie OEKE, this has the effect of generating it in the decryption
ing from equivalenced ~, R) and simplifying the game oracle available to the adversary. So, in this oracle, we end
after each such transformation. When the transformationgp with two possibilities of generating a fresh result, the o
fail, they advise syntactic transformations that could enak that comes from the delayed generation¥afsay Y’, and
them succeed; these transformations are executed and tHe one that corresponds to the situation in which the query
cryptographic transformation is then retried [49, Sectpn is really a fresh decryption query, say,. We would like

More precisely, in our case, CryptoVerif renames several0 merge these two cases bgrge branches. However,
variables and simplifies terms, in order to be able to applyrerge_branches does not succeed directly: we first need to
the CDH assumption (Section I11-D). Details are provided inmerge the two variablel; andY” into a single variable by
Appendix F. After these transformations, no automatic stefrerge_arrays Yy Y’, then we can applyerge_branches.

can be performed’ so the automatic proof stops. In the case of the value d&f in the server, we additionally
need to rewrite the condition that triggers the evAnth
C. Reorganizing Random Number Generations for merge_branches to succeed. This is done by a few

We end up in a situation in which random valuesYoare =~ Manual commands, checked correct by CryptoVerif. In this
generated, but are used only in comparisons with previouBrocess, the evertuth is renamed intAuth2. These steps
queries. We would like to delay or remove these randonfre detailed in Appendix F.
number generations. This situation occurs at three pIaces:D_ The Final Computation of Probabilities

« When Y _u (the value ofY in the client) is a fresh

random group elementuth_u and K_u are also fresh
random values, independently of the value Bf u,
so Y_u is used only in comparisons with previous

In the obtained game, the evertath2 and Encrypt are
guarded by the following conditions (variables have been
renamed for readability):

encryption/decryption queries. (foreach iU < NU do...
« The value ofY in the passive eavesdropping®p, find[unique] je < ¢F suchthat definedre[je], ke[je]) A
is a fresh random group element; the encryptioh Ystar_u = re[je] A pw = ke[je] then eventEncrypt...)

of Y is thus also a fresh random group element by| (foreach iS < NS do...
the ideal cipher model, and the hash queries return a find jh’ < gqH1,jd < ¢D suchthat definedz1 [jh'],

12

z2[jh'), x3[jh'], x4 |jh'], hashi[jh'], m[jd], kd[jd], that OEKE preserves the secrecyséf u up to probability
rd[jd]) A m[jd] = Y_star AU = x1[jh'] A

. . . . N N
S = z2[jh'| A X_s = z8[jh'] A rd[jd] = 24 [jh'] A M + (2qHO + 3¢H]1)Succg;h(t’) o,
auth_s = hashy [jh'] A kd[jd] = pw then |passwd|
eventAuth2...) | ... and satisfies the correspondences (1) and (2) with public

variables{sk_u} up to probability
So, in order to bound the probabilities of these events, we
just have to eliminate collisions between the passward NS+ NU + (4HO + 6qH1)Succ°dh(t’) Ty
and the encryption and decryption keys[je] and kd|[jd]. |passwd| ¢ cott

The colisons onp are ot slmmatod sutomatcaly by "METSY = +(QuH0-+3ull1 4D+ INU-+2NP NS
P Y DY and the terms inp”,, come from elimination of collisions

CryptoVerif because the typpasswd of pw is declared o een hashes and between group elemefis:< (NS +
V\/I[th_annotat|f()np$s§wor% This annotation aII(.)wsllmgnuaI NU + qHI x NU + qH1%)/|hash1| + (¢D x NU x NP +
eflmlrl}at_lon oFco isions gt prer:/ents automatic e |r|n|0at hNU2 % NP+ gD x NU x NS+ NU? x NS+2qH1 x NP+
o e oS0 e oL e I sy NP+ 108 NS - NP 05 2501 0P >
i y 9€ NU + 9NU x NS + 7NS x ¢D + 6NP x gD + 10NS x

probability bound. NP +12.5NU? +2¢D x qF + gH1 x NU +2¢H0 x NU +

We have to evaluate the probability of these collisions. A4NU x ¢D+3NU x ¢E+1.5¢E>*+6NS+10NU)/|G|. The
naive evaluation considers that one makes at mMtstx ¢£ main term in this probability i NS + NU)/|passwd|: the
comparisonspw = kelje] (there areNU sessions of the adversary can test at most one password per session with the
client and the condition ofind is evaluated at mosg~ client or the server (active attack), which is the best bound
times) and similarly at mosVS x gH1 x ¢D comparisons we can hope. In contrast, [55] yields a bound of at most 4
kd[jd] = pw, which yields the probabilitf NU x qF + passwords per session. In Section IV-A, by applying our im-
NS x gH1 x qD)/|passwd|. A slightly more clever way is provement of the computation of probabilities to the manual
to notice thatpw = ke[je] contains as only indeye < qF, proof of [55], we obtained the same first term as CryptoVerif,
so at mostgE distinct comparisons are performed (thereand even better second and third terms. CryptoVerif obtains
are at mostgE distinct encryption keys), and similarly at a second term larger than in Section IV-A because it counts
most gD distinct comparisongd|jd] = pw, which yields several Diffie-Hellman queries, which in fact correspond to
the probability(¢F + ¢D)/|passwd|. This is not satisfactory the same query, and because the CDH assumption does not
yet, because the encryption and decryption queries can Heenefit from the improvement of Lemma 2, points 4 and 5:
performed by the adversary without interacting with thethe probability of breaking CDH is taken into account using
protocol, sogE and ¢D can be large. So we have extendedLemma 2, point 3, so it is multiplied by 2.
CryptoVerif to improve this probability bound. We startifino
the most naive evaluatio’WU x ¢E and try to eliminate V. CONCLUSION
each factor. We can eliminat& U as shown above, but
we can also eliminateE: for each session of the client
Ystar_u is fixed; since Ystar_u = re[je], re[je] is also
fixed. By eliminating collisions onre, there is a uniquge
that can make the comparisdristar_u = re[je] succeed,
so a uniqueje for which the comparisorpw = ke[je]
is performed. Similarly, the comparisoii[jd] = pw is
performed at most once for each session of the serve
Thus we obtain the probabilityNU + NS)/|passwd|. To

We have proved the security of OEKE using the tool
’ CryptoVerif. This proof provides additional confidencettha
the protocol is correct. Moreover, we have improved the
probability bound given in [55]: we have shown that the
adversary can test at most one password per session with
the client or with the server, which is the optimal result.
OEKE is a non-trivial case study, which is interesting on
[ts own. It was also an opportunity to implement many
. o extensions to CryptoVerif, which will be useful for proving
know which factors we should preferably eliminate, we many other protocols. We have already used the model of

f\hnrlottstqu and gD with n;)nlnt(itr]actlve, Wh|chd.means . CDH to prove a signed Diffie-Hellman protocol. We plan to
at the adversary can perform the corresponding que”eé?pply these extensions to other protocols, such as IKEv2 or
without interacting with the protocol, s@F and ¢D will

typically be larger than other bounds. Therefore, the boun SH, which also rely on Diffie-Hellman. Our improvement
: ’ ' f th tati f probabilities is al f | inte
(NU + NS)/|passwd| is better thar(F + ¢D)/|passwd|, e computation of probabilities is also of general ingtr

S0 CryptoVerif returns the former and applies to manual proofs as well as CryptoVerif proofs.
' AcknowledgmentsWe thank David Pointcheval for his
CryptoVerif then concludes that the evertiscrypt and advice and help during this project. This work was partly
Auth2 can be executed with probability at mogNU + supported by the ANR project ProSe (decision number
NS)/|passwd| in the last game. Finally, CryptoVerif shows ANR-2010-VERS-004-01).

13

(1]

(2]

(3]

(4]

(5]

(6]

[7] V. Shoup, “OAEP reconsidered,Journal of Cryptology

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

B. Chor and R. L. Rivest, “A Knapsack type public key cryp-
tosystem based on arithmetic in finite fields,"@RYPTO'84
ser. LNCS, vol. 196. Springer, 1985, pp. 54-65.

H. W. Lenstra Jr., “On the Chor-Rivest knapsack crypsesy
tem,” Journal of Cryptologyvol. 3, no. 3, pp. 149-155, 1991.

S. Vaudenay, “Cryptanalysis of the Chor-Rivest crypgs

[1

8]

tem,” in CRYPTO'98ser. LNCS, vol. 1462. Springer, 1998, [19]

pp. 243-256.

M. Bellare and P. Rogaway, “The exact security of digital
signatures: How to sign with RSA and Rabin,” BEURO- [
CRYPT'96 ser. LNCS, vol. 1070. Springer, 1996, pp. 399—
416.

20]

K. Ohta and T. Okamoto, “On concrete security treatment o [21]

signatures derived from identification,” iIBRYPTQ’98 ser.
LNCS, vol. 1462. Springer, 1998, pp. 354—369.

M. Bellare and P. Rogaway, “Optimal asymmetric encryp- [22]

tion,” in EUROCRYPT'94ser. LNCS, vol. 950.
1994, pp. 92-111.

Springer,

vol. 15, no. 4, pp. 223-249, 2002.

E. Fujisaki, T. Okamoto, D. Pointcheval, and J. SternSAR
OAEP is secure under the RSA assumptioddurnal of
Cryptology vol. 17, no. 2, pp. 81-104, 2004.

G. Barthe, B. Grégoire, S. Z. Béguelin, and Y. Lakhnech
“Beyond provable security. Verifiable IND-CCA security of
OAEP,” in CT-RSA 2011ser. LNCS, vol. 6558. Springer,
2011, pp. 180-196.

S. Halevi, “A plausible approach to computer-aidedptoy
graphic proofs,” Cryptology ePrint Archive, Report 200511
2005, http://eprint.iacr.org/.

M. Abadi and P. Rogaway, “Reconciling two views of cryp-
tography (the computational soundness of formal encryp-
tion),” Journal of Cryptology vol. 15, no. 2, pp. 103-127,

(23]

(24]

(25]

(26]

2002. [27]
V. Cortier and B. Warinschi, “Computationally soundjtae-
mated proofs for security protocols,” BSOP’05 ser. LNCS,
vol. 3444. Springer, 2005, pp. 157-171. [28]

R. Janvier, Y. Lakhnech, and L. Mazaré, “Completing th
picture: Soundness of formal encryption in the presence
of active adversaries,” IESOP’05 ser. LNCS, vol. 3444.

Springer, 2005, pp. 172-185. [29]
H. Comon-Lundh and V. Cortier, “Computational sounste

of observational equivalence,” i@CS’08 ACM, 2008, pp.
109-118. [30]

M. Backes, D. Hofheinz, and D. Unruh, “CoSP: A general
framework for computational soundness proofs, dg8S’09
ACM, 2009, pp. 66-78.

V. Cortier and B. Warinschi, “A composable computatbn
soundness notion,” ICCS’11 ACM, 2011, pp. 63-74.

14

(31]

[17] V. Cortier, S. Kremer, and B. Warinschi, “A survey of

symbolic methods in computational analysis of cryptogimaph
systems,"Journal of Automated Reasoningpl. 46, no. 3—4,
pp. 225-259, 2011.

V. Cortier, H. Hordegen, and B. Warinschi, “Explicamdom-
ness is not necessary when modeling probabilistic encryp-
tion,” in ICS 2006 ser. ENTCS, vol. 186. Elsevier, 2006,
pp. 49-65.

M. Backes, B. Pfitzmann, and M. Waidner, “A composable
cryptographic library with nested operations,” {DCS’'03
ACM, 2003, pp. 220-230.

M. Backes and B. Pfitzmann, “Symmetric encryption inra-si
ulatable Dolev-Yao style cryptographic library,” @SFW’04
IEEE, 2004, pp. 204-218.

C. Sprenger, M. Backes, D. Basin, B. Pfitzmann, and
M. Waidner, “Cryptographically sound theorem proving,” in
CSFW'06 |EEE, 2006, pp. 153-166.

C. Sprenger and D. Basin,
protocol-model abstractions,” ihlCS'08
3-17.

“Cryptographically-sound
IEEE, 2008, pp.

R. Canetti,
paradigm for cryptographic protocols,” FOCS'01
2001, pp. 136-145.

“Universally composable security: A new
IEEE,

R. Canetti and J. Herzog, “Universally composable sgiicb
analysis of cryptographic protocols (the case of encryptio
based mutual authentication and key exchange),” Crypyolog
ePrint Archive, Report 2004/334, 2004, available at http:/
eprint.iacr.org/2004/334.

B. Blanchet, “Automatic proof of strong secrecy for sety
protocols,” in IEEE Symposium on Security and Privacy
2004, pp. 86-100.

J. C. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague
“A probabilistic polynomial-time calculus for the analgsbf
cryptographic protocols,Theoretical Computer Scienceol.
353, no. 1-3, pp. 118-164, 2006.

D. Nowak and Y. Zhang, “A calculus for game-based séguri
proofs,” in ProvSec 2010ser. LNCS, vol. 6402. Springer,
2010, pp. 35-52.

A. Datta, A. Derek, J. C. Mitchell, V. Shmatikov, and MuT
ruani, “Probabilistic polynomial-time semantics for a fmeol
security logic,” inICALP’05, ser. LNCS, vol. 3580. Springer,
2005, pp. 16-29.

A. Datta, A. Derek, J. C. Mitchell, and B. Warinschi, “@e
putationally sound compositional logic for key exchange
protocols,” inCSFW’'06 |IEEE, 2006, pp. 321-334.

G. Barthe, M. Daubignard, B. Kapron, and Y. Lakhnech,
“Computational indistinguishability logic,” i€CS’10 ACM
Press, 2010, pp. 375-386.

R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Linch,
O. Pereira, and R. Segala, “Time-bounded task-PIOAs: A
framework for analyzing security protocols,” DISC'06, ser.
LNCS, vol. 4167. Springer, 2006, pp. 238-253.

[32] P. Laud, “Secrecy types for a simulatable cryptogrephi [47] ——, “On formal verification of arithmetic-based crypto

library,” in CCS’05 ACM, 2005, pp. 26-35.

[33] P. Laud and V. Vene, “A type system for computationally

secure information flow,” inFCT’05, ser. LNCS, vol. 3623.
Springer, 2005, pp. 365-377.

[34] G. Smith and R. Alpizar, “Secure information flow with

random assignment and encryption,” WMSE’'06 2006, pp.
33-43.

[35] J. Courant, C. Ene, and Y. Lakhnech, “Computationally
sound typing for non-interference: The case of determinist
encryption,” inFSTTCS'07 ser. LNCS, vol. 4855. Springer,

2007, pp. 364-375.

[36] M. Backes and P. Laud, “Computationally sound secrecy

proofs by mechanized flow analysis,” @CS'06 ACM,
2006, pp. 370-379.

[37] J. Courant, M. Daubignard, C. Ene, P. Lafourcade, and
Y. Lakhnech, “Towards automated proofs for asymmetric[52]

encryption schemes in the random oracle modelC®S’08
ACM, 2008, pp. 371-380.

[38] ——, “Automated proofs for asymmetric encryption,” in [53]

Concurrency, Compositionality, and Correctneser. LNCS,
vol. 5930. Springer, 2010, pp. 300-321.

[39] G. Barthe, B. Grégoire, and S. Zanella, “Formal ceggifion
of code-based cryptographic proofs,” ROPL'09. ACM,
2009, pp. 90-101.

[40] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,[55]
“Formal certification of EIGamal encryption. A gentle intro

duction to CertiCrypt,” inFAST 2008 ser. LNCS, vol. 5491.
Springer, 2009, pp. 1-19.

[41] S. Z. Béguelin, B. Grégoire, G. Barthe, and F. Olméetfmr-
mally certifying the security of digital signature scherhés
IEEE Symposium on Security and PrivacyEEE, 2009, pp.
237-250.

[42] S. Z. Béguelin, G. Barthe, S. Heraud, B. Grégoire, and
D. Hedin, “A machine-checked formalization of sigma-

protocols,” inCSF'1Q IEEE, 2010, pp. 246—260.

[43] V. Shoup, “Sequences of games: a tool for taming complex [58]
ity in security proofs,” Cryptology ePrint Archive, Report

2004/332, 2004, available at http://eprint.iacr.org/332.

[44] M. Bellare and P. Rogaway, “The security of triple erutign

and a framework for code-based game-playing proofs,” in
EUROCRYPT 20Q6ser. LNCS, vol. 4004. Springer, 2006,

pp. 409-426.

[45] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,
“Computer-aided security proofs for the working cryptegra

pher,” in CRYPTO 20112011, to appear.

[46] D. Nowak, “A framework for game-based security prabfs,
in ICICS 2007 ser. LNCS, vol. 4861. Springer, 2007, pp.

319-333.

15

graphic primitives,” inICISC 2008 ser. LNCS, vol. 5461.
Springer, 2008, pp. 368-382.

R. Affeldt, D. Nowak, and K. Yamada, “Certifying asseiynb
with formal cryptographic proofs: the case of BBS,” in
AVoCS’09 ser. Electronic Communications of the EASST,
vol. 23, 2009.

B. Blanchet, “A computationally sound mechanized rofor
security protocols,”IEEE Transactions on Dependable and
Secure Computingvol. 5, no. 4, pp. 193-207, 2008.

B. Blanchet and D. Pointcheval, “Automated securitpqis
with sequences of games,” ®RYPTO 2006ser. LNCS, vol.
4117. Springer, 2006, pp. 537-554.

P. Laud, “Handling encryption in an analysis for secunfer-
mation flow,” in ESOP’03 ser. LNCS, vol. 2618. Springer,
2003, pp. 159-173.

——, “Symmetric encryption in automatic analyses fonfio
dentiality against active adversaries,”[lBEE Symposium on
Security and Privacy2004, pp. 71-85.

I. TSahhirov and P. Laud, “Application of dependenaphs
to security protocol analysis,” iTGC'07, ser. LNCS, vol.
4912. Springer, 2007, pp. 294-311.

P. Laud and |. T8ahhirov, “A user interface for a game-
based protocol verification tool,” iffAST2009 ser. LNCS,
vol. 5983. Springer, 2009, pp. 263-278.

E. Bresson, O. Chevassut, and D. Pointcheval, “Securit
proofs for an efficient password-based key exchange,” in
CCS’03 ACM, 2003, pp. 241-250.

S. M. Bellovin and M. Merritt, “Encrypted key exchange:
Password-based protocols secure against dictionarykaftac
in IEEE Symposium on Security and PrivacjyEEE, 1992,
pp. 72-84.

M. Bellare and P. Rogaway, “The AuthA protocol
for password-based authenticated key exchange,” Mar.
2000, contributions to IEEE P1363. Available from
http://grouper.ieee.org/groups/1363/.

——, “Random oracles are practical: A paradigm for dasig
ing efficient protocols,” inCCS'93 ACM, 1993, pp. 62-73.

M. Bellare, D. Pointcheval, and P. Rogaway, “Autheatéx
key exchange secure against dictionary attacksEWRO-
CRYPT 2000ser. LNCS, vol. 1807. Springer, 2000, pp.
139-155.

J.-S. Coron, “Security proof for partial-domain hasinsiture
schemes,” ICRYPTO 2002ser. LNCS, vol. 2442. Springer,
2002, pp. 613-626.

B. Blanchet, “Computationally sound mechanized psoof
correspondence assertions,"@$F'07. IEEE, 2007, pp. 97—
111, extended version available as ePrint Report 2007/128,
http://eprint.iacr.org/2007/128.

[62] T. Y. C. Woo and S. S. Lam, “A semantic model for M,V = terms

authentication protocols,” iIfEEE Symposium on Research i replication index
in Security and Privacy1993, pp. 178-194. x[My, ..., My] variable access
) f(My,....My) function application
[63] M. Abdalla, P.-A. Fouque, and D. Pointcheval, “Passivor
based authenticated key exchange in the three-party géttin £'C ::= find condition
IEE Proceedings Information Securjtyol. 153, no. 1, pp. term
27-39, 2006. z[i] : T+ M;FC assignment
[64] V. Shoup, “Lower bounds for discrete logarithms and re- if defined(My, ..., M) A M
lated problems,” iEUROCRYPT'97ser. LNCS, vol. 1233. then FC else FC’ conditional
Springer, 1997, pp. 256-266. find[unique?] (DT, ujili] < nj1, ..., wim, [i] < njm,
APPENDIXA. suchthat defined M;i, ..., Mj;,) A FC;
BASIC DEFINITIONS AND PROPERTIES then F'C7;) else FC array lookup
This appendix recalls and sometimes adapts the definitiong ::= oracle definitions
of the basic concepts used by CryptoVerif. In CryptoVerif, 0 nil
games are represented in a process calculus. A similar Q| Q’ parallel composition
calculus was presented in detail in [49], using channels foreachi < n do @ n parallel copies
instead of oracles and asymptotic security instead of exact newOracle O; Q restriction for oracles
security. The syntax of this calculus is recalled in Figure 5 Of{'](zlﬁ'] 2Ty, ... ,ka : Tx) := P oracle definition
This calculus uses parameters, denotechbwhich rep-
resent integer values. This calculus also uses types, etdanotp T R oracle body _
by T, corresponding to subsets éftstring U { L} where ali] & T5P random choice
bitstring is the set of all bitstrings and. is a special zfi] : T < M; P assignment
symbol. We say that a type isrge when its cardinal is if defined(My,..., M) N M
large enough so that we can harmlessly eliminate collisions then P else P’ conditional
between random values of this type. Particular types are find[unique?] (], wjifi) < nj, ... 7ujmj[z~'] < N,
predefined:bool = {true,false}, wherefalse is 0 andtrue suchthat defined M;1, ..., M) A FC;
is 1; bitstring; bitstring, = bitstring U { L }; [1,n] where then P;) else P array lookup
n is a parameter. (We consider integers as bitstrings without evente(My, ..., M,,); P event
leading zeroes.) (21[i] : T, ..., xp[i) : Tw) < oracle call
The calculus also uses function symbglsEach function O[My,...,M](Ny,...,Ng); P else P’
symbol comes with a type declaratign 77 x. .. xT,, — T, return (Ny,..., N); Q return
and represents a function from-tuples of bitstrings orl end end
in Ty x ... x T, to a bitstring or_L. Particular functions abort abort
are predefined, and some of them use the infix notation;
M = N for the equality testM +# N for the inequality test € = contexts
(both taking two values of the same tyfpeand returning a] hole .
value of typebool), M V N for the boolean orM A N for clQ parallel composition
the boolean and;) for the boolean negation (taking and QlC parallel composition

returning values of typéool). newOracle O; C restriction for oracles

In this calculus, terms represent computations on bit-
strings. The replication index is an integer which serves
in distinguishing different copies of a replicated process
foreach i < n do Q. (Replication indices are typically

Figure 5. Syntax of the process calculus

used as array indices.) The variable acced, ..., M,,] define new oracles. (An oracle definitiof follows the

returns the content of the cell of indic@$,, ..., M,, of the return(Ny,..., Ny) instruction.)

m-dimensional array variable. The function application The nil oracle definition O defines no oracl®; | Q' is

f(My,..., M,,) returns the result of applying functiohto the parallel composition of) and Q’: it makes available
Mq,...,M,,. both oracles defined i) and inQ’; foreach: < n do

The calculus distinguishes two categories of processesepresents: copies of@ in parallel, each with a different
oracle definitions) consist of a set of definitions of or- value ofi € [1,n]. The construchewOracle O;Q hides
acles, while oracle bodie® describe the content of an oracleO outsideQ: oracleO can be called only inside€).

oracle definition. Oracle bodies perform some computation§he oracle definitiorO[i|(z1[i] : Th,...,zx[i] : Tk) == P
and return a result. After returning the result, they maydefines an oracl®), taking arguments:, ..., x; of types

16

Ty, ..
body P, wherei denotes a tuplé, ..., i,,.

The random choice:[i] Er.p chooses a new random
number uniformly inT, stores it inz[i], and executes

., Ty respectively, and computed as described in oraclehat a certain program point has been reached, with certain

values of the arguments of the event. They do not influence
the execution of the rest of the process.

The oracle call(z1[i] : T1,...,xr[i] : Th) < O[M;,

P. Function symbols represent deterministic functions, so -, MiJ(N1,...,Ni); P else P’ calls oracleO[M, ...,

all random numbers must be chosen by & 7. The
assignmentc[:] : T <- M; P stores the bitstring value of
M (which must be inT) in z[i] and execute$.

Next, we explain the array lookufind (EB;.”:l uji[i] <
M1y e ey Ujmy [’L~] < Njm; suchthat definedel, ceey Mjlj)
A FCj then P;) else P. The order and array indices on

tuples are taken component-wise, so for instange}i] <

-y Uim; 1] < nym, can be abbreviated;[i] < nj.

UZIEE
A simple example is the followingfind « < n suchthat
defined(z[u]) A z[u] = a then P’ else P tries to find an
index v such thatr[u] is defined and:[u] = a, and when
such awu is found, it executes”’ with that value ofu;
otherwise, it execute®. In other words, thisind construct
looks for the valuez in the arrayz, and whena is found,
it stores inu an index such that[u] = a. More generally,
find u1[i] < ni,...,umli] < nm, suchthat defined M,
..., M) N FC then P’ else P tries to find values of
u,..., U, for which My, ..., M, are defined and'C is
true. In case of success, it execufes In case of failure,
it executesP. This is further generalized te» branches:
find (@;nzl ujl[z'] < i1y Ujmy [Z] < Njm; suchthat
definedM;1,...,Mj;,;) A FC; then P;) else P tries to
find a branchj in [1,m] such that there are values of;,
ooy Wi, fOr which Mjy, ..., My, are defined and’C) is
true. In case of success, it executs In case of failure
for all branches, it executeB. More formally, it evaluates
the conditionsdefinedM;1, ..., Mj;,) A FC; for eachj
and each value Ofi;i[i],. .., wjm,[i] N [1,nj1] x ... %
[1,m;m,]. If none of these conditions igrue, it executes

P. Otherwise, it chooses randomly with (almost) uniform

probability onej and one value ofiji[i], . .., u;m, [i] Such
that the corresponding condition is true, and executgs

(When the number of possibilities is not a power of 2, a
probabilistic bounded-time Turing machine cannot choos
these values exactly with uniform probability, but it can
choose them with a probability distribution as close as 1) in every definition ofO[iy, ..

we wish to uniform.) Optionally, one may add[anique]
modifier to find, represented in Figure 5 bjunique?].

énvariant 1 (Single definition for oracles) The

M;] with argumentsVy, . .., Ni. When this oracle returns a
result byreturn (N7, ..., N;,), this result is stored in [i],
xk/[Nz'] and the process executés When the oracle
O[M,, ..., M;] terminates byend, the process executé.
(Returning a result byeturn corresponds to the normal
termination of the oracleD, while terminating withend
corresponds to abnormal termination.) Finally, the irsstru
tion abort aborts the game: the whole game terminates
immediately and returns the special vahlsrt.

To lighten notations, A true and defined) A may be
omitted in conditions off andfind. Moreover,else end a
trailing 0, or a trailingend may be omitted. Types may be
omitted when they can be inferred.

The current replication indicest a certain program point
in a process aré,...,i,, when the considered program
point is underforeach iy < n; do ...foreach i,, <
n, do . We abbreviate:[iy, ..., i, by x wheniy, ... i,
are the current replication indices, but it should be kept in
mind that this is only an abbreviation. Similarly, an oracle
definition Oli1,...,im](...) := P underforeach i; <
n, ...foreach i,, < n,, is abbreviatedO(...) P.
Variables and oracles defined unfimeach must be indexed
by the current replication indices: for examfitgeach i; <
ny do ...foreach i, < n,, do ...z[i1,...,im] T +

We require somevell-formedness invariant® guaran-
tee that several definitions of the same oracle cannot be
simultaneously available, that bitstrings are of theireotpd
type, and that arrays are used properly (that each cell of an
array is assigned at most once during execution, and that
variables are accessed only after being initialized). Fdlym
we require the following invariants:

process
Qo satisfies Invariant 1 if and only if

., im] IN Qp, the indices
i1,...,4, Of O are the current replication indices at
that definition, and

When this modifier is present and there are several values of 2) two different definitions of the same oradlein Qo

Jrujili], ..., ujm,[i] such that the corresponding condition

is true, we execute the evelbnUnique and abort the game.

The find conditions F'C can themselves contain not only
terms but also assignments, conditionals, and array laakup

The processf defined(Ms,...,M;) A M then P else
P’ is syntactic sugar fofind suchthat defined My, ...,
M;) A M then P elseP'.

The constructevent e(M;, ..., M,,); P executes the
evente(M, ..., M,,), then execute®. Events just record

17

are in different branches of find (or if).

Invariant 1 guarantees that each oracle is defined at most
once for each value of its indices. (Indeed, item 2 shows
that only one definition of each oracle can be available for
given indices in each trace.)

Invariant 2 (Single definition for variables) The process
Qo satisfies Invariant 2 if and only if

1) in every definition ofz[iy, ..., i,] in Qo, the indices
i1,...,14, Of z are the current replication indices at
that definition, and

2) two different definitions of the same variahtan Qg
are in different branches of find (or if).

which set of bitstrings may appear at each point of the
protocol.

These invariants are checked by the prover for the ini-
tial game and preserved by all game transformations. We
suppose that all games satisfy these invariants.

o)))) We use a context’ to represent an adversary. A context
Similarly to tr_]e prgwous_mvanant, Invariant 2 guaraistee g 5 process with a hole. In this paper, we consider only
that each variable is assigned at most once for each valugajuation contexts, generated by the grammar given at the
of its indices. bottom of Figure 5. A context' is put around a procesg

by C[Q)]. This construct means thék is put in parallel with
Invariant 3 (Defined variables) The process), satisfies some other proces3’ contained inC, possibly hiding some
Invariant 3 if and only if every occurrence of a variable oracles defined irnQ, so that, when considering’[C[Q]],
accesse[My, ..., My] in Qo is either C' cannot call these oracles.

« syntactically under the definition of[My,..., M,,] A context(C' is said to beacceptablefor @ with public

(in which caseMy,...,M,, are in fact the current variablesV if and only if the common variables &f and()
replication indices at the definition af); are inV, andC[Q)] satisfies the well-formedness invariants.

« or in adefined condition in afind construct; We nameDstart the oracle called to start the experiment.

« Or in FC} or P; in a process of the fornfind ~ We denote byPr[Q : D] the probability that, for some
(EBT:/; @;[i] <7 suchthat defined M/, ..., M)A sequence of events and bitstringa, when oracleDstart()
FC’ then P;) else P where for somek < I, is called,Q executes exactly the sequen€gin the same
z[My, ..., M, is a subterm of\1], ; order, and returns the result, such that the algorithm

e Orin F'C} or FCj; in afind condition of the form D(Vf/’ a()j retl:rnts) true.) the set of variabl
find (@] < 7 suchthat definedr).... e denote byvar(Q) (resp.var(C)) the set of variables

) , _ of the process) (resp. context).
Mjlj) A FCj then FC?) else F'C Wher/e for some The following lemma is a straightforward consequence of
k <l;, x[Mi,...,My,] is a subterm oﬂ\/ljk.

Definition 1:

Invariant 3 guarantees that variables can be accessed only v

when they have been initialized. It checks that the definitio Lemmav3_ D @~y @

of the variable access is either in scope (first item) or 2) ~p IS ‘s/ym/metnc.l v o v

checked by thelefined condition of afind (last two items). 3 IfQ=, Q" andQ’ ~, Q" then@ ~,, , Q".

A variable access that does not correspond to the first item 4) If @ ~,” @’ and C'is a context acceptable fap and

of Invariant 3 is called ararray accessWe furthermore Q" with public variablesV, thenC[Q] ~,, C[Q’],

require the following invariant. where p'(C’,tp) = p(C'[C[]];tp) and V' C V' U
var(C).

Invariant 4 (Variables defined in find conditions) The APPENDIXB.

pro_cessQo sat|s_f|_es Invariant 4 if and only if the variables THE COMPUTATIONAL DIFFIE-HELLMAN ASSUMPTION
defined in conditions ofind have no array accesses.)
A. Proof of the Reduction

This invariant did not appear in previous versions of the First, let us rephrase the two games:
calculus because conditions Ghd were restricted to be 1. the adversary is allowed to query

terms. :
. « for group elements, via oracle®A and OB:
We use a type system (see [49, Appendix A]) to check OA[Z.?():; Erovides ag® element for a random,;

that bitstrings of the proper type are passed to each fumctio (at mostna queries), andB[j]() provides ag’s

and that array indices are used correctly. element for a randorh, (at mostnb queries);

« for discrete logarithms, via oraclé3a and Ob:
Oali]() outputsa,; (at most#0a < na queries),
Ob[j]() outputsb; (at most#0b < nb queries);

. for Diffie-Hellman decisions, via ODDHa
and ODDHb oracles: ODDHalé|(m,j) checks
whetherm = g¢%% (at mostnaDDH queries
for each a, at most #0DDHa queries total),

Invariant 5 (Typing) The procesg), satisfies Invariant 5
if and only if it is well-typed.

We require the adversary to be well-typed. This requirement
does not restrict its computing power, because it can always
define type-cast functiong : T — T' to bypass the type
system. Similarly, the type system does not restrict thescla
of pl’OtOCOlS that we consider, since the protocol may contai 3The argumentfi] between brackets is implicit in the CryptoVerif syntax
type-cast functions. The type system just makes explicitind corresponds to the replication index.

18

ODDHb][j](m,i) checks whetherm = g%
(at most nbDDH queries for eachh, at most
#ODDHb queries total). We can thus combine
them into DDH(m,a;,b;) queries (at most
Gddh = #ODDHa + #0DDHb < na - nb queries)
which check whethem = g%,

G2: the adversary is allowed to query

« OA and OB oracles, that answer as above;
« Oa andOb oracles, that answer as above;
« for DDH(m, a;, b;), Diffie-Hellman decisions, or-

As a consequence, the two games differ if for dbBH
query,m = g% but neithera; or b; has been asked for
an Oa or Ob query. In this case, with probability, p,, both
v =1 andéj =1:

m=Z x XPiyigibi,

If the two above games differ with probability then such

a critical DDH query happens with probability, since our
simulation is perfectly indistinguishable from the second
game and such a critical query is the unique event that makes

acle. But in this game, the correct answer is giventhe two games different.

if either a; or b; has been askegeforefor anOa
or Ob query. Otherwise, the answer ifalse’.

We thus insist on the fact that the 2 games differ on

DDH(m, a;, b;) Diffie-Hellman decisions queries, if neither
a; nor b; has been askebeforefor an Oa or Ob query. In
the first game, the answer is the correct one; in the seco
game, the answer is alwayflse’.

Let us be given £DH tuple (X = ¢*,Y = ¢¥) for which
we want to compute = ¢®¥. And we provide a simulator
A for these games:

« For the queryOA[i], one chooses a random hit with
biasp,, and a random scalar; & Z,, and setsd; =
X7ig®i. This makesu; = «; + v, and thusa; = oy

« For the queryOBJ;], one chooses a random bit with
biasp,, and a random scalat; £ Zq, and setsB; =
Y% gPi. This makesh; = j3; + d;z, and thusb; = 3;
if 6; =0;

« For the quenali], with probabilityl —p,, v; = 0, and
then the correct answer; can be sent. However, with
probability p, on the current:, the simulation fails;

« Forthe quenOblj], with probabilityl —ps, §; = 0, and
then the correct answet; can be sent. However, with
probability p, on the currend, the simulation fails.

Since there are at mos#Oa Oa queries and#0Ob Ob
queries, with probability at least —p,)#92 (1 —p,)#©P, the
simulation does not fail, and is perfectly indistinguislkeab
from the real oracle®©A, OB, Oa, and Ob. Let us now
consider theDDH Diffie-Hellman Decision queries, and the

Let us randomly choosé betweenl and ¢qqn, and bet
that thek-th DDH query is the first critical one, which is
true with probabilitye/qqqn. Furthermore, with probability
(1 — pa)#©2(1 — py)#OPp,py, the simulation did not fail
and the criticalDDH query leads to the expectéf] value,

Ry computingZ = m/XPiYy g This means that our

simulator A achievesSuccy"(A) > (1 — p,)#°2(1 —
P5) PP, 1pe /qaan, and is bounded b)‘BUCCgh(t + (na +
nb + qddh) Texp)

Qddh X SUCCgh (t + (TLCL +nb+ Qddh)Texp)

9
- (1 = pa)#02(1 — pp)#Ppaps
Note that, two cases appear for the functions (1 —z)™:
o if n =0, then the maximum is 1, far = 1;
o if n > 1, then the maximum is greater than?/n >
1/74n, forx =1/(n+1).
By choosingp, = 1/(#0a+ 1) andp, = 1/(#0b+ 1) in
the latter case, we gé/(1 —p,)#°?p, < max(1,7.4#0a)
and1/(1 — pp)#°Pp, < max(1,7.4#0b), so

¢ < (##ODDHa + #0DDHb) x
max(1,7.4#0a) x max(1,7.4#0b) x
SuccE" (¢ 4 (na + nb 4+ #ODDHa + #ODDHb)7ey).

One could use Shoup’s amplification technique [64] to
eliminate the factorxODDHa + #ODDHb, but at a com-
putational cost: one runs the attack twice with differemra
domizations of the CDH instance, and looks for a collision
in the two executions: if the attack succeeded twice, we have
a collision on the correct answer; if the attack fails onbe, t

simulation of the answers when no failure happens duringollision probability is negligible.

Oa and Ob simulation: for anyDDH(m, a;, b;),
« if one of thea; or b; has been asked & or Ob-query

B. Additional Modeling

(and did not lead to a failure), which means that either In the CryptoVerif implementation, the equivalence

v = 0 or §; = 0, then one can either test whether
m = (g%)® or not, or whethem = (¢%)” or not,

L3 ~,, Rs additionally contains three proof strategy in-
dications, which we have omitted in Figure 4:

and provide the correct answer. This leads to a perfect « In R3, we use the symboéxp’ instead ofexp, al-

simulation of theDDH oracle;

« otherwise, one can safely answéslse’, which leads
to a perfect simulation of thBDH oracle in the second
game. However, it differs from the first game oracle if
m = g%,

19

though the two symbols represent the same function
on bitstrings. This technique avoids infinite loops: if
we usedexp in Rz, R3 would be an instance of3,

so the transformation of.5 into R3 could be applied
again on R3, leading to an infinite loop. By using

exp’, we prevent applying the transformation again on
occurrences that have already been transformed.

In L3, the oraclesOa and Ob are marked with the
integer ‘{3]”. CryptoVerif tries to use oracles with the
lowest mark first. (No mark means [0].) Here, the goal
is to make sure thag® is obtained by callingDA and
not by callingOa to obtaina and then computing®
(and similarly for¢®® obtained by callingODDHa or
ODDHb rather thanOa and Ob). Indeed, if Oa is
called, then the CDH assumption on thatcan no
longer be applied. Therefore, CryptoVerif should use
OA, OB, ODDHa, or ODDHb rather thanOa or Ob
where possible, hence we giv@a and Ob a higher
mark than the other oracles.

In Ls, the oracleODDHa is marked[useful_change].
This prevents the application of the transformation of
Ls into Rs when the initial game can be encoded
without callingODDHa. Indeed, the transformation has
a useful effect only wherODDHa or ODDHb are
called and, by symmetry, we can require td2DHa

is called.

Moreover, we use the following properties. The multipli-
cation mult is commutative and we have the following
equalities:

Va: G,Nx: Z,Vy: Z,

exp(exp(a, x),y) = exp(a, mult(z,y)) ®)
Vo:Z,Vy:Z,(exp(g,z) = exp(g,y)) = (z=y) (4)
Vo Z,Vy: Z,(exp'(g,2) = exp'(g,y)) = (v =y) (5)
Vo : Z,Ny: 2,y : Z, (6)

(mult(z,y) = mult(z,y") = (y = y')

The commutativity ofmult combined with (3) shows that
(g%t = g® = gb* = (g")?, the standard equality that

(6), and (7) allow CryptoVerif to simplify equalities betese
exponentials.

If we choose uniformlyz in Z and compute®, the result
is a uniformly distributed group element, so we have the
equivalence

foreachi < n do z & Z; OX() := return (exp(g, x))
~foreachi < n do X & G; OX() :=return (X).
(8)
We have a similar equivalence fexp’. Although equiva-
lences are symmetric, CryptoVerif always applies them from
left to right, replacing the code of oracles in the left-hand

side with the corresponding code in the right-hand side. For
this reason, we state the symmetric equivalence explicitly

foreachi < n do X & G; OX() :=return (X)
~y [manual] 9)
foreachi < n do z & Z; OX() := return (exp(g, x)).
However, this equivalence is applied only manually, as
indicated by[manual]; otherwise, it would yield an infinite
loop by applying alternatively (8) and (9). We use the
following more restricted form for automatic proofs

foreachi <n do X ¥id G;
(OX() :=return (X) |
foreachi’ < n’ do OXm(m : Z)
[useful_change] := return (exp(X, m))) (10)
~q foreachi < n doz & 7
(OX() := return (exp(g,)) |
foreachi’ < n’ do OXm(m : Z) :=
return (exp(g, mult(xz, m)))).

shows that the client and the server compute the same kayhich can be applied only whei is used as argument of
in the Diffie-Hellman key exchange. Equations (4) and (5)exp.

express the injectivity okxp and exp’ respectively. They
hold becausg is a generator of the group of orderq and
x,y € [1,q — 1]. Equation (6) is obtained by dividing the
equality vy = xy’ by x in the groupZ;.

The statement

collision 21 & Z;x2 £ Z;x3 £ Z; x4 ¥id Z;
return (mult(z1, 22) = mult(z3, 24))
~1/|z| return (false).

(7)

means that, wherl, z2, 23, z4 are uniformly randomly
and independently chosen g4, except with probability
1/]1Z|, one can replacenult(z1,22) = mult(z3,z4) with
false. Indeed,mult(z1, 22) = mult(z3,z4) if and only if
xl x x2/x3 = x4 so the probability ofmult(z1,22) =
mult(x3, z4) is the probability of choosing am in Z equal
to a givenz1 x x2/x3, that is,1/|Z|. The formulas (4), (5),

20

APPENDIXC.
PROOFS OFLEMMAS 1 AND 2

Proof of Lemma 1: For Property 1, ifC[G’] does
not executee and D returns false, thei[G] behaves like
C[G'] sinceC[G] andC[G’] differ only whene is executed,
so D also returns false on the execution GfG]. Hence
Pr[C[G’] : =(D Ve)] < Pr[C[G] : =D]. Property 1 follows.

For Property 2, if C[G] satisfies D (Do A
—NonUnique) Ve; V...V e, thenC[G] does not execute
NonUnique: this is clear by definition whe@'[G] satisfies
Dy A —=NonUnique; when it satisfiese; V...V e,, C[G]
also does not executdonUnique because one aborts imme-
diately after the eventsy, ..., ¢, and afterNonUnique, So
these events are pairwise incompatible. Hed&dgehaves as
G when(C'[(] satisfiesD. HencePr[C[G] : D] < Pr[C[G'] :
D).

Property 3 is an immediate consequence of Definition 1. Therefore,Pr[C[G | R,] : S] = Pr[C[G | R;] : S]. Since

Property 4 is obvious. B we abort immediately after each eve$ites,...,e,, S is
Proof of Lemma 2: Property 1: By Lemma 1 (Prop- incompatible withes,...,e,, SO

erty 1),Pr[C[G | R;] : SVD] < Pr[C[G’ | R;] : SVDVe]. .
Moreover, if C[G’ | R,] executesS or NonUnique, C[G" | PriClG | Ra]: SV D]
R,] does not execute (since we abort immediately aft€g = Pr[C[G | Ry]: S| + Pr[C[G | R.] : D]
NonUnique, ande), so C[G | R,| behaves likeC[G’ | R,], Hence
thus C[G | R.] also execute$§ or NonUnique. Therefore,

— Secrecy
Pr[C[G' | R:] : SV NonUnique] < Pr[C[G | R,] : Advg; ™ (C, D)

SV NonUnique]. Property 1 follows. =Pr[C[G | Ry : S| + Pr[C[G | R,] : D]
Property 2: We have — Pr[C[G | R;] : SV NonUnique]
Pr[C[G | R.] : =(S V NonUnique)] < Pr[ClG | Rs] : D]
< Pr[C[G" | R, : =(S v NonUnique)] u

APPENDIXD.
IMPROVED COMPUTATION OF PROBABILITIES FOR THE
MANUAL PrROOF OFOEKE

since, whenG does not execut8 nor NonUnique, a for-
tiori, it does not execut®lonUnique, so G’ behaves as&;.

Therefore,
_ To illustrate the use of our improved computation of prob-
— Pr[C[G | Ry] : SV NonUnique] abilities of Section IV-A, we apply it to the manual proof of
< —Pr[C[G’ | R,] : SV NonUnique] OEKE [55]. We just recall the structure of the proof and the
computation of probabilities, and refer the reader to [%8] f
Moreover, details of the proof. Let us consider the proof of semantic

) y) security [55, Section 3.2]. The proof starts from a game
PriCIG | Ra] : SV D] < Pr(ClG" | Re] - SV D Gy that represents the OEKE protocol, in which we define
since. whenG executesS or an event inD. it does not @ test-query that returns either the session key or a random

executeNonUnique (because one aborts immediately after Value, depending on the value of a bian event executed
S, the events inD, and NonUnique), so G’ behaves as. when the adversary guesséscorrectly, and an even$

Property 2 follows. executed when the adversary guesses the wrong value of
Property 3: Lett = max(tsyp, tsynonuniase)- BY defini- b The_probablhty that the adversa_@_? guess_esb correctly
tion of indistinguishability q in Go is Pr[C[Go] :], the probability that it guesses the

' wrong value oft is Pr[C[Gy] : S| and the advantage of the
Pr[C|G | Rz]: SV D] adversan(' in distinguishing the session key from a random

<p(C[[]| Ral,t) + Pr[C[G’ | Ry] : SV D] key is Adva¢_(C) = Pr[C[Gy] : S] — Pr[C[Go] : S].

The proof then proceeds as follows. The gahds trans-

and formed into games7,, G2, G3, by eliminating collisions,

Pr[C[G’ | R.] : SV NonUnique] such that
< p(C[[]| Rs],t) + Pr[C[G | R,] : S V NonUnique] Gom 2 Gi Aageg Gs %2q§+q§+ 2 Gs
2(q—1) 2(q—1) o1 1T
So where ¢s is the number of involved server instances,

is the number of encryption/decryption querigsg, is the
number of hash querie$, is the length of the output of
H1, q is the order ofG.

Then G35 is transformed intoG4 by inserting event

gameG, it shows that only a certain set of variables dependd="c"YPt: Game Gy is transformed intoGs by excluding
on value ofz, but the output messages and the control-flowfraces in which a correct_authentlcator is guesse_d, so that
do not depend om. Hence an execution af[G | R,] that Ga Rls Gf”_ Where- Ns '_S the number of seSS|on§ of
calls oracleO’ (defined in Definition 2) in whichh = 1 the serverS interacting with the adversary. Gant; is
sends the same messages and has the same valjeasf ~transformed intoG by inserting eventAuth’, and G is
the executions with the same random choices except thifansformed intoG; by inserting evenAskH. Finally, one
b =0, y[i] has the value of[u[i]], andz takes any value. evaluates the probability of the various events in gaiie
The execution withb = 1 executesS if and only if the N

. . = . v
executions withh = 0 executeS. Pr[C[G7] - Encrypt] < —+

AdVETY (C, D) < 2p(C[[] | R, t) + Adves™ (C, D)

Property 4 is obvious.
Property 5: When CryptoVerif proves the secrecyrah

21

Ns Similarly, for unilateral authentication [55, Section B.&e

Pr[C[G7] : Auth’] <
wdh use an evenfAuth executed when the adversary submits
Pr[C[G7] : AskH] < g, Succg™" (t') an authenticator accepted by the server and built by the
Pr[C[G7] : S] = Pr[C[G+] : §] adversary itself, so the probability for an adversaryto
make a server instance accept with no terminating client

where the password in chosen in a dictionary of si¥e partner is

Ny is the number of sessions of the cliefit interacting
with the adversaryNs is the number of sessions of the AdvE 2™ (C) = Pr[C[Go) : Auth]
serversS interacting with the adversari{p is the number of

sessions between the cligitand servelS that the adversary We obtain similarly by Lemma 1

i N,
pgsswely eav_esdroplé,g tc+(NU+N_5+Np+qe_+1)TG, _ Pr[C[Go] : Auth] < peono + TS +
with ¢. denoting the number encryption/decryption queries 24t
asked by the adversary ang denoting the computation Pr[C[G7] : Auth V Encrypt VV Auth’ V AskH]

time for an exponentiation iffs.

From this proof, we can bound the advantdgis?¢_(C)
in Go. Let Advg;®(C, D) = Pr[C[G] : SVD]=Pr[C[G] : S| py| i@y : Auth lencrypt < Nu Ns anSucc (¢)
as in Lemma 2. (Here7 already includes the test queries, V Auth” v AskH N N
so we need not compose witR, in parallel; the event so

NonUnique never occurs, so we omit it.) By Lemma 2,

Since G; never executes eveduth,

N, N,
% + gnSuccEN (') +

(2 + 2Ny + 3Ns + 3Np)? g7 +2Ng
2(g—1) 2+l

APPENDIXE.
NEW GAME TRANSFORMATIONS

Ad c— auth(c) S

Voeke

AdVas. (C) = AdvEe(C, false)

oeke

< 2pconio + Advake(C false) (Lemma 2, Point 3)

a7 qsqe +2q§+q% qa
2(¢—1) ¢—-1 2(¢g—1) 2h+Hl

Wherepcoll() =

Adve (C)

oeke

The CryptoVerif proof of OEKE requires new game
< 2coo + AdvES(C, Encrypt) (Point 1) transformations that we have implemented. We first describe
these games transformations, then summarize the proof

2Ng ake .
< 2pcouo + 47— + Advg 7+ (C, Encrypt) (POINt3) iself. For a better understanding, we recommend reading
< ooy + NS 2Ng n Advake(O Encrypt V Auth’) Appendix A before reading this appendix.

20 (Point 1) A. The transformatiomove array

2Ns ake , The transformatiomove array X delays the generation
< 2peotio + —7 + AdvgZ(C, Encrypt V Auth’ V AskH) ot 4 random valueX until the point at which it is first used.

(Point 1) This transformation is implemented as a particular case of a

< poutio + S 2Ng 4+ Pr[C[Gy] : Encrypt V Auth’ v AskH] cryptographic transformation by the following equivalenc

20 (Point 5) foreachi < n do X ¥id T;

9Ns Ny Ng wa (foreach iX < nX do OX() := return (X) |
< 2pcotto + —7— o0 + N + N + qnSuccg " (t') foreach ieq < neq do Oeq(X’: T) :=

return (X’ = X))
Moreover, R s0eq)| | [manuall
qg + 2¢sqe + zqg 4 qg q}2I foreach: < n do
Deotio = 20q — 1) ol +1 (foreach iX < nX do OX() :=
(2¢¢ + gs)? ¢ find [unique] j < nX suchthat definedY[j])
2(q— 1) 2li+1 fthen r:e;urrl(Y[j])delsé)eY(i T;Tr;aturn (Y) |
2 2 oreach zeq < neq do Oeq : =
< (2¢e + 2Ng(+_3117)5 +3Np) 25’% find[unique] j < nX suchthat definedY[j])
9 then return (X’ = Y'[j]) else return(false))
sinceqs < g. + Ny + Ng + N, andgs < Ng + Np. So

where T is the type of X. Two oracles are defined)X
Ny + Ns and Oeq. In the left-hand sideOX returns the randonk
N itself. In the right-hand side)X uses a lookup to test if the
(2¢e + 2Ny +3Ns +3Np)? ¢? +2Ng random value was already generated; if yes, it returns the
g—1 + ol previously generated random valli¢;j]; if no, it generates a

Advi.(C) <

oeke

+ gnSuccE (') +

22

fresh random valu&”. Transforming the left-hand side into
the right-hand side therefore moves the generation of the
random numberX to the first call toOX, that is, the first
usage ofX. The oracléDeq provides an optimized treatment
of equality testsX’ = X: when the random valug was
not already generated, we retutrise instead of generating
a fresh X, so we exclude the case that’ is equal to a
fresh X. This case has probability/|T| for each call to
Oeq, so the probability of distinguishing the two games is
#0eq/|T|. (Notice that, similarly to the reasoning done in
Section llI-B for the Random Oracle Model, there never
exist several choices of that satisfy the conditions of the
finds in the right-hand side of this equivalence, so tHimks
can be markedunique] without modifying their behavior.)

B. Extensions of simplification

We have also extended simplification with the following
transformations:

1) If some then branches of afind[unique] execute
the same code as thelse branch (up to renaming

of variables defined in these branches and that do 5) We reorganize 4ind|

not have array accesses), and the variables bound in
the condition of thesé¢hen branches have no array
accesses, then we remove thésen branches.

Indeed, thesehen branches have the same effect as
the else branch. The hypotheses are needed for the
following reasons:

o The renamed variables must not have array ac-
cesses because renaming variables that have ar-
ray accesses requires transforming these array
accesses. The transformatioerge_arrays pre-
sented in Section E-C below can rename variables
with array accesses.

« The variables bound in conditions of the removed
branches must not have array accesses, because
removing the definitions of these variables would
modify the behavior of the array accesses.

2) If all branches ofif or find execute the same code
(up to renaming of variables defined in these branches
and that do not have array accesses), and the variables
bound in the conditions of thihen branches have no
array accesses, then we replace that find with its
elsebranch.

The

branch of afind[unique]: we transform

k
find [unique] (5 [@; < 7y suchthat ¢;
-

" then P;) elseP

where P;; = find[unique] (@f,':la;, < 7
suchthat ¢/, then Pj,) else P’ into

find [unique] (D

) o ﬁj < ’ij suchthat Cj
J=1..k,j7#jo '
then P;)
k/
~ ~ ~/ ~/ /
@ (@j’:l Uj, < Mgy, Us < My suchthat c;, A ey

then P},)

else findunique] u,;, < 7, suchthat c;,
then P’ else P

We advise renaming the variables;, to distinct
names, since they now have multiple definitions. This
transformation cannot be performed whenfihds are
not unique because it might change the probability of
taking each branch.

unique] that occurs in a condi-
tion of afind: we transform

_ k
find[unique?] (@ 1ﬂj < n; suchthat ¢;
J:
then P;) elseP

where ¢;, = defined M) A find[unique]
(EBf/Zl af, < 0l suchthat ¢}, then M) else
false into

find [unique?] (@

. . 45 <7y suchthat ¢
J=1..k,j#jo

then P;)

k/

® (@ L TGy < ﬁjolﬂ;/ < 7}, suchthat

defined M) A ¢}, A M, then Pj,)
elseP
indication [unique?] corresponds to either
[unique] or empty. Thefind is marked[unique] after

transformation if the outefind was [unique] before
transformation.
For all these transformations, the correctness proof
shows that, when the initial game does not execute event

In this transformation, we ignore the array accesse®NonUnique, the transformed game behaves in the same way

that occur in the conditions of thand under consid-

as the initial game. We can then apply point 2 of Lemmas 1

eration, since these conditions will disappear after theand 2 to bound the probability of attack.

transformation.

3) If one of thethen branches of dind|[unique] always
succeeds, we keep only that branch.
Indeed, the other branches are never taken:fitied
aborts when there are several choices.

4) We reorganize dind[unique] that occurs in ahen

23

The transformatiomerge_arrays x1;

Tml ---
variablex;; for eachj < m. Each variabler;;, must have a

single definition. For each < n, the variables;q, . ..

C. The transformatiomerge_arrays

LTiny « -«

ZTmn Merges the variables;;, . .., z;, into a single

y Ljn

must have the same type and indices of the same type. They P{zx/zj1,j = 1l..m} execute the same

must not be defined for the same value of their indices (that code up to renaming of variables defined in
is, x5, andx;;» must be defined in different branchesibf P, or P{z;i/z51,j7 = 1..m} and that do not
or find whenk # k). The arrayse;i, ..., x;, are merged have array accesses.

into a single array:;; for eachj < m. The transformation — if I(k) does not exist, then we show that
proceeds as follows: FBr{zjk/zj1,j = 1..m} can in fact not be

o If, for eachk < n, z1; is defined abover;; for all
1 < j < m, we introduce a fresh variabte defined by
by < mark just after the definition of1;. We callb;, a
branch variable it is used to detect that;, has been

executed, because its condition cannot hold: the
variables of M{z;;./x;1,j = 1..m} cannot
be simultaneously defined dd{x;;/xj1,7 =
1...m} cannot hold.

defined:z;;,[M] is defined before the transformation If the transformation above fails and we have in-

if and only if 2, [M] andb,[M] are defined after the troduced branch variables, we replace each condition

transformation, and;; [M] after the transformation is defined(z;x [M]) with defined(z;, [M], by [M]).

equal toz;; [M] before the transformation. If the transformation above fails and we have not
« For eachfind that requires that some variableg, are introduced branch variables, the whalerge_arrays

defined, we leave the branches that do not require the ~ transformation fails.
definition ofz ;. unchanged and we try to transform the ¢ The definition of z;, is renamed tox;; and each
other branche$'B; = 1, < 7; suchthat defined M;) A reference tor;;[M] is renamed tac;; [M].

M, then P, as follows.

1)

2)

3)

D. The transformatiomerge_branches

The transformatiomerge_branches extends again the
first two extensions of simplification mentioned in Ap-
pendix E-B. Instead of applying these transformations to
a singlefind at a time, merge_branches applies them
globally to allfinds of the game for which the simplification
is possible. As a consequence, one can ignore array accesses
to all variables in conditions ofind that will be removed,
so more transformations are enabled.

We require that, for each there exists a distinct
k such that thedefined condition of FB; refers

to z;;, for somej but not tox ;- for any otherk’.
(Otherwise, the transformation fails.) We denote
by i(k) the value ofl that corresponds té.

We choose a “target” branct'Br = a <
7 suchthat definedM) A M then P: if the
defined condition of some brancl#'B; refers to
xz; for some j, we choose that branclB;.
Otherwise, we choose any bran@B; and re- APPENDIXF.

name its variables:;, to x;;. We require that THE PROOF INCRYPTOVERIF
the references;; [M] to the variables:;; in the A |nitial configuration

defined condition of the target branch all have the
same indices\/. If the transformation succeeds,
we will replace all branche#'B,; with the target
branch.

First, we configure CryptoVerif to iterate the
simplification of games at most 3 times, by
set maxIterSimplif = 3, instead of at most twice
The branchFBr after transformation is equiv- by default, The comple?qty .O.f th_e mtermed_late games of

OEKE requires more simplifications than in many other

alent to branches®;_, FBr{zji/xj1,j = , I A
1...m} before transformation. We show that thesefexamples. One can also iterate simplification until a fixpoin

branches are equivalent to the brancif. is reached, which is slightly slower but works for all
examples.
For eachk < n,

—if (k) exists, then we show that B. EventsAuth andEncrypt
FBr{zji/xj1,j = 1l..m} is equivalent As explained in Section IV-A, we manually introduce
to FBy. Let I = I(k). We first eventsAuth and Encrypt and distinguish cases in hash
rename the variablesy; of FB; to the functions.
variables o of the target branch. For)
simplicity, we still denote byFB;, = @ < C- Automatic Steps
f; suchthat definedM;) A M; then P; the Then, we can use the automatic proof strategy of Cryp-
obtained branch. Then we show that, if the toVerif, by commancdiuto. Basically, this strategy consists
variables ofM; are defined, then the variables in applying all possible cryptographic transformationsnte
of M{xzjx/z;1,j = 1..m} are defined, and ing from equivalenced =, R) and simplifying the game
conversely; M; = M{zk/xj1,7 = 1l..m} after each such transformation. When the transformations
(knowing the equalities that hold fail, they advise syntactic transformations that could enak
at that program point), and P, and them succeed; these transformations are executed and the

24

cryptographic transformation is then retried [49, Sectdn

This

automatic strategy performs the following transforma

tions:

1)

2)

3)

4)

5)

6)

It renames each occurrencelof « to a distinct name.
Indeed, as part ofrypto icm(enc), the definition of
K_u has been copied once for each possible origin
of Y_u (a previous encryption/decryption query, or a
fresh Y_u if no previous query matches). After this
renaming, simplification can simplify many tests of
the form K_u = K_s that appeared as a result of
the transformation of the hash functions; it uses the
values of K_u and K_s as well as properties (4), (6),
and (7).

Using equivalence (10) twice, it replaces the genera-
tion of a fresh group element with the generation

of an exponent and the computatioX < exp(g,)

as a result of decryption when no previous encryp-
tion/decryption query matches, in the decryption ora-
cle and in the client.

It removes assignments on the copiegsofu created

in step 1 above, ok _s (the key of the server), and
Kp (the key used in passive eavesdroppings), thus
replacing these variables with their values everywhere
in the game.

It can then apply the CDH assumption (Section IlI-D).
The oraclesOa and Ob are in fact not used in this
example (the code that would use them has been
removed by introducing events), so the situation is
particularly simple: expressions of the form
exp(g, mult(alé],b[j])) are replaced witHalse.
At this point, CryptoVerif can bound the probability

of breaking all desired properties (secrecy séf «,
correspondences (1) and (2)). However, the obtained
bound depends on the probability of executing the
eventsAuth and Encrypt which are not eliminated

yet, so the proof continues in order to eliminate these
events.

Using the version of equivalence (8) fexp’, we
replace the computation oéxp’(g,z) for a fresh
random 2 with the generation of a random group
elementX, for the result of the decryption oracle and

for the computations oftp and Xp (the values oft”

and X in passive eavesdroppingdj, (in the server), .
Y_u and X (in the client).

After these transformations, no automatic step can be per-
formed, so the automatic proof stops.

D. Reorganizing random number generations

Using manually guided transformations, we can eliminate

the random number generations #6r We consider the three
generations ol” in turn.

First, Y, (the value of Y in the client), when
it is a fresh random group element. This variable

25

is now named@6_X_416, so we use the com-
mandmove array "@Q6_X_416” to delay its gener-
ation. The game is automatically simplified after this
command, which reorganizésd constructs. Before
move array, Q6_X_416 is used in the following
ways:

1) to compare it with the argument of encryption
queries in the encryption oracle. This usage is
transformed using oracl®eq of the transforma-
tion move array; no random value is generated.
as a result of decryption queries in the decryption
oracle. This usage is transformed using oracle
OX; the generation ofd6_X_416 in the client

is replaced with a generation G¢f2_Y_/18 in
the decryption oracle.

as a result of the decryption quetyc(Y™*, pw) in

the client. That result is unused, §o06_X_416
appears only in aefined condition, which Cryp-
toVerif leaves unchanged.

2)

3)

Therefore, in the decryption oracle, when the result
was not generated before, we have two cases: ei-
ther the result was in fact ary,, whose genera-
tion has been delayed, and it is now generated as
@2_Y_418, or the query is really a fresh decryp-
tion query, and the result is name@6_X_412.

We would like to merge these two cases. However,
merge_branches does not succeed directly because
these variables have array accesses, so we first ap-
ply merge_arrays "Q@Q6_X_412” "Q2_Y _418” to
merge@2_Y_/18 into Q6_X_/412. Furthermore, in
some branches that we would like to merge, some
random number generations are not ordered in the
same way: in the client, the authenticator named
@711_r_130 is generated sometimes before and some-
times after the shared keyt_u. We need to make
sure that they are in the same order in all branches for
merge_branches to succeed. This is done by the trans-
formation move binder @717 _r_180, which moves
definitions of @17_r_130 as much as possible down-
wards in the game. Then, we applg¢rge_branches
successfully.

Second, the value df in passive eavesdroppinggp.

This variable is now name@6_X_413. We proceed
similarly, using move array "Q6_X_413”, then
merge the delayed6_X_413 named@Q2_Y_/25

into the result of decryption@6_X_412 by
merge_arrays "Q6_X_4127 "Q2_Y_4257, and
finally apply merge_branches.

Third, the value of Y in the server, now

named Q6_X_415. We again proceed similarly,

using move array "@Q6_X_4157, then merge
the delayed Q6_X_415 named Q2_Y_432
into the result of decryption”@6_X_412” by

merge_arrays "Q6_X_4127 "Q2_Y _432”. We
cannot applymerge_branches directly because the
condition that triggers the eveiuth,

find @Qi_435 < ¢D, jh < gH1 suchthat
defined(@i_437[Qi_435), x1[jh], z2[jh], 3jh],

w4 [jh], @6_X_412]@i_{35],@11_r_134[jh]) A
@i_437[@i_435) = iS AU = 21 [jh] A
S = z2[jh] A X_s = z3[jh] A
o/ [jh] = @6_X_412[Qi_435] A
auth_s = @11 _r_134[jh] then

(11)

refers to the variable@i_/37 which is defined in
the condition of afind whose branches we would
like to merge; this merging is not possible because it
would make the definition of@i_4387 disappear. So
we manually rewrite the condition (11) to remove the
reference tagQi_437. By

insert 121 “find jh' < qH1,jd < ¢D

suchthat defined =1 [jh], 2[jh'], z3[ih'],

e), @ 11_r_134), mljd), kdljd],

Q6_X_412[4d]) A m[jd] = Q8_re_161 A

U=zxl[jh]) NS =z2[jh']) A X_s = x3[jh'] A

w4 [jh'] = Q6_X_412[jd] A

auth_s = @Q11_r_134[jh'] A kd[jd] = pw then”
(12)

we insert a test just above tliad (11). The variables
jh and @i_435 of the find (11) are renamed tgh’
and jd respectively in (12) (without change in the
meaning), and the conditio®i_437[Qi_435] = iS

of (11), that is,@i_437[jd] = iS is replaced with
mljd] = Q8_re_161 A kd[jd] = pw in (12). In the
considered game, the variabfei_j/37 is defined in

a find with condition m = Q8_re_161[Qi_437] A

kd = pw, so whenQi_/37[jd] is defined, we have
mljd] = Q8_re_161[Qi_437[jd]] AN kd[jd] = pw;
when @i_437[jd] = iS, we obtain exactly the condi-
tion of (12), knowing that the indexS can be omitted
because it is the index of the replication above the
find (12). Explained another way, thind of (12)
looks for a hash query indexed by’ and a decryption
query indexed byjd, such that the adversary has
decrypted the value ot"™* generated by the server,
@8_re_161, under the correct passwopdy, obtaining
@6_X_412[jd] (which is then the correct value of
Y) using that decryption query, and then has passed
a value (U,S, X_s,@6_X_/12[jd],_) to the hash
query, obtaining the correct authenticateuth_s =
@11_r_134[jh']. This corresponds exactly to the situ-
ation in which the adversary authenticates to the server

26

by guessing the password. After the command (12), by
insert_event Auth2 184, we insert the evenhuth2

in the then branch of thefind of (12). CryptoVerif
can show that the condition (11) implies the condition
of (12), so in theelsebranch of (12), the condition (11)
never holds, hence by simplificatios inplify), we
remove thaklsebranch. Simplification also merges the
cases ofind, without an explicimerge_branches. At

this point, eventAuth does not occur in the current
game. The event&ncrypt and Auth2 are eliminated
and their probabilities are bounded as explained in
Section IV-D. (The variable®8_re_161,Q8_re_167,
@11_r_134, and@Q6_X_412 have been renamed to
Y _star, re, hashy, andrd respectively there.)

