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Abstract—We present a mechanized proof of the password-
based protocol One-Encryption Key Exchange (OEKE) using
the computationally-sound protocol prover CryptoVerif. OEKE
is a non-trivial protocol, and thus mechanizing its proof
provides additional confidence that it is correct. This case
study was also an opportunity to implement several important
extensions of CryptoVerif, useful for proving many other
protocols. We have indeed extended CryptoVerif to support the
computational Diffie-Hellman assumption. We have also added
support for proofs that rely on Shoup’s lemma and additional
game transformations. In particular, it is now possible to insert
case distinctions manually and to merge cases that no longer
need to be distinguished. Eventually, some improvements have
been added on the computation of the probability bounds for
attacks, providing better reductions. In particular, we improve
over the standard computation of probabilities when Shoup’s
lemma is used, which allows us to improve the bound given
in a previous manual proof of OEKE, and to show that the
adversary can test at most one password per session of the
protocol. In this paper, we present these extensions, with their
application to the proof of OEKE. All steps of the proof, both
automatic and manually guided, are verified by CryptoVerif.

Keywords-Automatic proofs, Formal methods, Provable se-
curity, Protocols, Password-based authentication

I. I NTRODUCTION

Since the beginning of public-key cryptography, more
and more complex security notions have been defined,
with protocols getting also more intricate. Initially, a long
time without attack was a good argument in favor of the
security of a scheme. But some schemes took a long time
before being broken. A famous example is the Chor-Rivest
cryptosystem [1], [2], which took more than 10 years to be
totally broken [3]. Nowadays, the lack of attacks is no longer
considered as a security validation, and provable securityis
a requirement for any new proposal.

The basic idea of provable security consists in reducing a
well-known hard problem to an attack, in the complexity
theory framework. Such a reduction guarantees that an
efficient adversary against the cryptosystem could be con-
verted into an efficient algorithm against the hard problem.
First security proofs were essentially theoretical, providing
polynomial reductions only. But “exact security” [4] or
“concrete security” [5] asked for more efficient reductions.

Unfortunately, a security result should be considered with
care. As explained above, it consists of a theorem which
states that under a precise intractability assumption a spe-
cific security model (goals and means of the adversary) is
satisfied. The reduction constitutes the proof of the theorem.
Weaknesses can appear at several steps: the intractability
assumption can be too strong, or even wrong; the security
model might not correspond to the expected security level;
the reduction may not be tight; and the proof can be erro-
neous. Because of more and more complex security models
and proofs, most of them are never (double)-checked.

A famous example is the OAEP construction [6] that
has been proven to achieve chosen-ciphertext security. But
because of ambiguous security models in the early 90s, there
was no real difference between the so-called IND-CCA1 and
IND-CCA2 security levels. As a consequence, the proof was
believed to achieve the IND-CCA2 level, until Shoup [7]
exhibited a counter-example. Fortunately, a complete proof
for IND-CCA2 has quickly been provided [8]. A machine-
checked proof has later been provided [9].

As suggested by Halevi [10], computers could help
in verifying proofs. This paper follows this path, with
computationally-sound computer-aided proof and verifica-
tion of cryptographic protocols.

Related Work:Various methods have been proposed for
reaching Halevi’s goal. Following the seminal paper by
Abadi and Rogaway [11], many results show the soundness
of the Dolev-Yao model with respect to the computational
model, which makes it possible to use Dolev-Yao provers
in order to prove protocols in the computational model
(see, e.g., [12], [13], [14], [15], [16] and the survey [17]).
However, these results have limitations, in particular in
terms of allowed cryptographic primitives (they must satisfy
strong security properties so that they correspond to Dolev-
Yao style primitives), and they require some restrictions on
protocols (such as the absence of key cycles). A tool [18]
was developed based on [12] to obtain computational proofs
using the formal verifier AVISPA, for protocols that rely on
public-key encryption and signatures.

Several frameworks exist for formalizing proofs of pro-
tocols in the computational model. Backes, Pfitzmann ,and
Waidner [19], [20] designed an abstract cryptographic library
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and showed its soundness with respect to computational
primitives, under arbitrary active attacks. This framework
has been used for a computationally-sound machine-checked
proof of the Needham-Schroeder-Lowe protocol [21], [22].
Canetti [23] introduced the notion of universal composabil-
ity. With Herzog [24], they show how a Dolev-Yao-style
symbolic analysis can be used to prove security properties
of protocols within the framework of universal compos-
ability, for a restricted class of protocols using public-
key encryption as only cryptographic primitive. Then, they
use the automatic Dolev-Yao verification tool ProVerif [25]
for verifying protocols in this framework. Process calculi
have been designed for representing cryptographic games,
such as the probabilistic polynomial-time calculus of [26]
and the cryptographic lambda-calculus of [27]. Logics have
also been designed for proving security protocols in the
computational model, such as the computational variant
of PCL (Protocol Composition Logic) [28], [29] and CIL
(Computational Indistinguishability Logic) [30]. Canetti et
al. [31] use the framework of time-bounded task-PIOAs
(Probabilistic Input/Output Automata) to prove security pro-
tocols in the computational model. This framework makes
it possible to combine probabilistic and non-deterministic
behaviors. These frameworks can be used to prove security
properties of protocols in the computational sense, but except
for [24] which relies on a Dolev-Yao prover, they have not
been automated up to now, as far as we know.

Several techniques have been used for directly mechaniz-
ing proofs in the computational model. Type systems [32],
[33], [34], [35] provide computational security guarantees.
For instance, [32] handles shared-key and public-key en-
cryption, with an unbounded number of sessions, by relying
on the Backes-Pfitzmann-Waidner library. A type inference
algorithm is given in [36]. In another line of research, a spe-
cialized Hoare logic was designed for proving asymmetric
encryption schemes in the random oracle model [37], [38].

The tool CertiCrypt [39], [40], [41], [42], [9] enables
the machine-checked construction and verification of cryp-
tographic proofs by sequences of games [43], [44]. It relies
on the general-purpose proof assistant Coq, which is widely
believed to be correct. EasyCrypt [45] generates CertiCrypt
proofs from proof sketches that formally represent the se-
quence of games and hints, which makes the tool easier to
use. Nowaket al. [46], [47], [48] follow a similar idea by
providing Coq proofs for several cryptographic primitives.

Independently, we have built the tool CryptoVerif [49]
to help cryptographers, not only for the verification, but
also by generating the proofs by sequences of games [43],
[44], automatically or with little user interaction. The games
are formalized in a probabilistic polynomial-time process
calculus. CryptoVerif provides a generic method for speci-
fying security properties of many cryptographic primitives. It
proves secrecy and authentication properties. It also provides
a bound on the probability of success of an attack. It has

already been used to prove several cryptographic protocols,
and also primitives [50]. This tool extends considerably
early work by Laud [51], [52] which was limited either to
passive adversaries or to a single session of the protocol.
More recently, Tšahhirov and Laud [53], [54] developed a
tool similar to CryptoVerif but that represents games by
dependency graphs. It handles public-key and shared-key
encryption and proves secrecy properties; it does not provide
bounds on the probability of success of an attack.

Contributions: In this paper, we use the tool CryptoVerif
in order to prove the password-based key exchange protocol
One-Encryption Key-Exchange (OEKE) [55], a variant of
Encrypted Key Exchange (EKE) [56]. This is a non-trivial
case study, since EKE was not proved correct before 2003,
10 years after its publication. This mechanized proof pro-
vides additional confidence that the protocol OEKE is se-
cure. More precisely, we have shown that OEKE guarantees
the secrecy of the session key and the authentication of the
client to the server. The proof combines manually-guided
and automatic steps, as detailed in Section IV. With the
manual proof indications included in the CryptoVerif input
file, the runtime of CryptoVerif version 1.14 for this proof
was 3 s on an Intel Core i5 2.67 GHz (4 cores).

This case study was also an opportunity for implementing
several extensions of CryptoVerif, useful for proving many
other protocols. Here are these extensions:

• CryptoVerif’s specification mechanism for assumptions
on primitives did not support the computational Diffie-
Hellman (CDH) assumption, needed for proving OEKE
and many important protocols. We have extended it
to support CDH (Section III-D). This extension also
allowed us to prove a signed Diffie-Hellman protocol,
in a fully automatic way.

• We have extended CryptoVerif to be able to apply
Shoup’s lemma [43], by introducing events and later
bounding their probability. We improve over the stan-
dard computation of probabilities, for applications of
Shoup’s lemma, by avoiding to count several times
probabilities that in fact correspond to the same runs.
This allows us to obtain better probability bounds
than [55] and to show that the adversary can test at most
one password per session of the client or the server,
which is the optimal result. This improvement applies
both to CryptoVerif proofs and to manual proofs, and
it is not specific to the OEKE protocol (Section IV-A).

• Additional game transformations were also needed for
manually introducing case distinctions or for merg-
ing cases. We have implemented these transformations
(Sections IV-A and IV-C).

• Password-based protocols require a careful computation
of the probability of an attack, since one aims to
compute how many passwords the adversary can test
by interacting with the protocol. We have improved
CryptoVerif in this respect (Section IV-D).
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Outline: We recall the protocol OEKE in the next section.
Section III presents the CryptoVerif model of the protocol,
and Section IV presents its proof. We conclude in Section V.
The appendices give background on CryptoVerif and addi-
tional details. The tool CryptoVerif and the input and output
files can be found at http://www.cryptoverif.ens.fr/OEKE/.

Notations: |S| denotes the cardinal of the setS. #O
denotes the number of calls to oracleO.

II. T HE OEKE PROTOCOL

Password-authenticated key exchange protocols allow two
parties that share a low-entropy common secret (a password)
to agree on a common high-entropy secret key thereafter
used with symmetric primitives, such as symmetric encryp-
tion for privacy and message authentication codes for au-
thentication. The goal of such a protocol is to guarantee the
secrecy of the resulting common key between the two partic-
ipating players. Furthermore, the protocol should succeedif
and only if the two players actually share the same password,
which guarantees the identity of the partner to both of
them. Because of the low-entropy, an active adversary will
succeed in impersonating a party to the other one with non-
negligible probability by successive password guesses. Such
an on-line dictionary attack is unavoidable. However, one
should guarantee that this is the best attack: one active attack
allows the adversary to test and thus eliminate at most one
password, and not more. Namely, passive attacks should not
(computationally) leak any information about the password.
One definitely wants to prevent off-line dictionary attacks,
where after a few active attacks and possibly many passive
ones the collected information is enough to eliminate many
passwords, and thus accelerate impersonation from the on-
line dictionary attack.

The first password-authenticated key exchange protocol
has been proposed by Bellovin and Merritt [56], the En-
crypted Key Exchange (EKE). This is basically a Diffie-
Hellman key exchange where the two flows are encrypted
with a symmetric encryption scheme, using the password as
secret key. Several variants have thereafter been proposed,
such as AuthA [57]. The One-Encryption Key Exchange
protocol (OEKE) studied in [55] is the particular variant
where the second flow only is encrypted under the password,
and the first player proves his knowledge of the password
with an additional key confirmation flow. Figure 1 provides
a description of this OEKE protocol, which guarantees client
authentication and key secrecy, under the assumptions that
H0 andH1 are random oracles, thatE andD are respectively
the encryption and decryption of an ideal cipher, and that
G is a finite group of prime orderq, with generatorg, in
which the computational Diffie-Hellman problem is hard
(see the definition in Section III-D), as proven in [55].
If the passwordpw is chosen among a finite dictionary
passwd of sizeN equipped with the uniform distribution,
their proof shows that the probability for any adversary,

Client U Server S

pw pw

accept← false accept← false

terminate← false terminate← false

x
R
← [1, q − 1] y

R
← [1, q − 1]

X ← gx
U,X
−−−−−→ Y ← gy

Y ← Dpw (Y
⋆)

S, Y ⋆

←−−−−− Y ⋆ ← Epw (Y )

KU ← Y x KS ← Xy

MU ← U‖S‖X‖Y ‖KU

Auth← H1(MU )
skU ← H0(MU )

accept← true
Auth
−−−−−→ MS ← U‖S‖X‖Y ‖KS

Auth
?
= H1(MS)

if true, accept← true

skS ← H0(MS)

terminate← true terminate← true

Figure 1. An execution ofOEKE, run by clientU and serverS. The
session key issk = H0(U‖S‖X‖Y ‖Y x) = H0(U‖S‖X‖Y ‖Xy).

within time t, and with less thanNU sessions with a
client, NS sessions with a server (active attacks) andNP

passive eavesdroppings (passive attacks), and, askingqh
hash-queries andqe encryption/decryption queries, to make
a server instance accept with no terminating client partner
is bounded by

NU + 2NS

N
+ 3qh × SucccdhG (t′) + pcoll

with pcoll =
(2qe + 2NU + 3NS + 3NP )

2

2(q − 1)
+
q2h + 4Ns

2ℓ1+1

whereℓ1 is the length of the output ofH1 andt′ ≤ t+(NU+
Ns+NP +qe+1) ·τexp, with τexp denoting the computation
time for an exponentiation inG.1 Furthermore,SucccdhG (t)
denotes the maximal success probability an adversary can
gain within timet against the computational Diffie-Hellman
problem inG. Similarly, no adversary can distinguish the
session key from a random key with advantage greater than

2NU + 4NS

N
+ 8qh × SucccdhG (t′) + 2pcoll .

The proofs basically show that the unique way for the ad-
versary to gain something (against both client authentication
and secrecy of the session key) is to correctly guess the
password, by either sending aY ⋆ that is really an encryption
under the correct password, or using the correct password to

1In [55], they use as parameter the numberqs of interactions with the
parties, instead of the numbers of sessionsNU andNS . It is straightforward
to recompute the probabilities to useNS andNU instead, and this yields
a more precise evaluation.
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decryptY ⋆ and compute the authenticatorAuth. One could
hope to prove that the former event, denotedEncrypt, is
bounded byNU /N and the latter event, denotedAuth, is
bounded byNS/N . But, because of the way probabilities
are computed when one uses Shoup’s lemma [43], some
factor appears to the(NU +NS )/N main term.

III. M ODELING OEKE IN CRYPTOVERIF

In this section, we present the model of the protocol given
as input to CryptoVerif. We first recall some basic ideas
behind CryptoVerif, and then present the model itself: the
security assumptions on the primitives, the model of the
protocol, and the security properties that we want to prove.
The complete CryptoVerif model, and the reusable library
that provides the definitions of cryptographic primitives,can
be found at http://www.cryptoverif.ens.fr/OEKE/.

A. Review of CryptoVerif

CryptoVerif builds proofs by sequences of games [43],
[44]. It starts from the initial game given as input, which
represents the protocol to prove in interaction with an
adversary. Then, it transforms this game step by step using a
set of predefined game transformations, such that each game
is indistinguishable from the previous one.

More formally, a gameG interacts with an adversary
represented by acontextC, and we denote byC[G] the
combination ofC and G. During execution,C[G] may
execute events, collected in a sequenceE , and finally returns
a resulta, either a bitstring or the special valueabort when
the game has been aborted. These events and result can be
used to distinguish games, so we introduce an additional
algorithm, adistinguisherD that takes as input the sequence
of eventsE and the resulta, and returnstrue or false. An
example of distinguisher isDe defined byDe(E , a) = true

if and only if e ∈ E : this distinguisher detects the execution
of evente. We will denote the distinguisherDe simply bye.
More generally, distinguishers can detect various properties
of the sequence of eventsE executed by the game and of
its resulta. We denote byD ∨ D′, D ∧ D′, and¬D the
distinguishers such that(D∨D′)(E , a) = D(E , a)∨D′(E , a),
(D ∧ D′)(E , a) = D(E , a) ∧ D′(E , a), and (¬D)(E , a) =
¬D(E , a), where∨ is the logical disjunction,∧ the logical
conjunction, and¬ the logical negation. We denote by
Pr[C[G] : D] the probability thatC[G] executes a sequence
of eventsE and returns a resulta, such thatD(E , a) = true.

A context C is acceptable forG with public variables
V when it can read directly the variables ofG that are
in V , and it makes no other access to variables ofG.
(This is more formally defined in Appendix A.) We define
indistinguishability as an equivalenceG ≈V

p G′:

Definition 1 (Indistinguishability) We write G ≈V
p G′

when, for all contextsC acceptable forG andG′ with public

variablesV and all distinguishersD that run in time at most
tD, |Pr[C[G] : D]− Pr[C[G′] : D]| ≤ p(C, tD).

This definition formalizes that the probability that algorithms
C and D distinguish the gamesG and G′ is at most
p(C, tD). The probabilityp typically depends on the runtime
of C andD, but may also depend on other parameters, such
as the number of queries to each oracle made byC. That
is why p takes as arguments the whole algorithmC and
the runtime ofD. WhenV is empty, we writeG ≈p G

′.
Therefore, we obtain a sequence of indistinguishable games
G0 ≈

V
p1

G1 ≈
V
p2

G2 . . . Gn−1 ≈
V
pn

Gn, which implies
G0 ≈

V
p1+...+pn

Gn. In the last gameGn, the desired security
property is proved by direct inspection of the game, without
using any computational assumption. For example, to bound
the probability that an evente is executed, evente does
not occur at all in the last game, soPr[C[Gn] : e] = 0,
hence the probability of executinge in the initial game is
Pr[C[G0] : e] ≤ (p1 + · · ·+ pn)(C, e).

The game transformations used by CryptoVerif can be
split into two categories:

• syntactic transformations, which are used by Cryp-
toVerif to simplify games and to prepare cryptographic
transformations. These transformations do not rely on
any security assumption on primitives.

• cryptographic transformations, which rely on a security
assumption on a primitive. These security assumptions
are themselves formalized as indistinguishability prop-
ertiesL ≈p R, which are given as input to CryptoVerif
and need to be proved manually. They are proved
once for each primitive and can then be reused in
many protocols. We present such equivalences for the
primitives used in OEKE below.
CryptoVerif uses these equivalences to perform proofs
by reduction automatically. It detects that a gameG can
be written as a contextC that calls the oracles ofL,
that is,G ≈V

0 C[L] by purely syntactic transformations,
and builds a gameG′ such thatC[R] ≈V

0 G′ by purely
syntactic transformations.C is the simulator usually
defined for reductions. FromL ≈p R, we can infer that
C[L] ≈V

p′ C[R] whereV is a subset of the variables of
C and p′(C′, tD) = p(C′[C[ ]], tD). Indeed, ifC′ is
the adversary againstC[L] ≈V

p′ C[R], the adversary
againstL ≈p R is C′[C[ ]]. Therefore,G ≈V

p′ G′ and
CryptoVerif can transformG into G′.

B. The Random Oracle Model

The random oracle model was introduced in [58] to
model hash functions. It was encoded in CryptoVerif
in [50]. We improve this model by using the equivalence
L1 ≈#Oeq/|hashoutput| R1 whereL1 andR1 are defined in
Figure 2. This model is not specific to OEKE. The hash
function hash takes as input a key of typekey and the
bitstring to hash of typehashinput and returns a result of
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L1 = foreach ih ≤ nh do k R
← key ;

(foreach i ≤ n do
OH(x : hashinput) := return (hash(k, x)) |

foreach ieq ≤ neq do
Oeq(x′ : hashinput , r′ : hashoutput) :=

return (r′ = hash(k, x′)))

R1 = foreach ih ≤ nh do
(foreach i ≤ n do OH(x : hashinput) :=

find[unique] u ≤ n suchthat
defined(x[u], r[u]) ∧ x = x[u]

then return(r[u])

elser R
← hashoutput ; return (r) |

foreach ieq ≤ neq do
Oeq(x′ : hashinput , r′ : hashoutput) :=

find[unique] u ≤ n suchthat
defined(x[u], r[u]) ∧ x′ = x[u]

then return(r′ = r[u])
else return(false))

Figure 2. Random oracle model

type hashoutput . The key models the choice of the hash
function. The key must be chosen once and for all at the
beginning of the game for each hash function, and the game
must include a hash oracle, which allows the adversary to
compute hashes. For each hash function indexed byih ≤ nh,
the gamesL1 andR1 define two oracles,OH andOeq:

• In L1, OH(x) returns the image ofx by hash(k, ·).
This oracle can be called at mostn times for each
hash function, and its calls are indexed byi ∈ [1, n], as
defined byforeachi ≤ n do. We can replace this oracle
with a random oracle, that is, an oracle that returns
a fresh random number when it is called with a new
argument, and the previously returned result when it
is called with the same argument as in a previous call.
Such a random oracle is implemented inR1 as follows.
Like all variables defined underforeach i ≤ n, x is in
fact an array indexed byi , so thatx[u] represents the
value ofx in the u-th call to OH. The find construct
looks for an indexu such thatx[u] andr[u] are defined,
andx = x[u], that is, the current argument ofOH is the
same as the argument in theu-th call, and if we find
one, then we return the result of theu-th call, r[u].
Otherwise, we return a fresh random numberr.

• The oracleOeq aims to optimize the treatment of
comparisons with the result of the hash function, an
operation that appears frequently. InL1, the oracle
Oeq(x′, r′) comparesr′ with hash(k, x′). In R1, this
comparison is replaced with a lookup in previous
calls to the hash function. Ifx′ was already given
as argument tohash(k, ·), in the u-th call (x′ =
x[u]), thenhash(k, x′) is r[u], so we comparer′ with

r[u]. Otherwise,x′ was never given as argument to
hash(k, ·), so hash(k, x′) is a fresh random number,
and it is equal tor′ with probability 1/|hashoutput |.
We eliminate this case inR1, so the result of the
comparisonr′ = hash(k, x′) is replaced withfalse
and the probability of distinguishingL1 from R1 is
at most#Oeq/|hashoutput |, where#Oeq denotes the
total number of calls toOeq.

We can notice that there exists at most oneu that can satisfy
the condition offind in OH in R1. Indeed, suppose that
u1 6= u2 are such thatx[u1], r[u1], x[u2], r[u2] are defined
and x = x[u1] = x[u2]. Suppose that the queryOH with
i = u1 is called beforeOH with i = u2. (The other case
is symmetric.) Thus, when executing the queryOH with
i = u2, x[u1] and r[u1] are defined andx[u2] = x[u1],
so the find succeeds withu = u1, so r[u2] will not be
defined (sincer is defined only in theelse branch of the
find). Contradiction. Therefore,u is unique. Following a
similar reasoning,u is also unique inOeq in R1. That is
why the finds in R1 are marked[unique]. Formally, the
modifier [unique] means that, in case several choices satisfy
the condition offind, an eventNonUnique occurs and the
game is aborted. As we have shown, the eventNonUnique

never occurs inR1, so the modifier[unique] does not alter
the equivalenceL1 ≈#Oeq/|hashoutput | R1. The modifier
[unique] allows additional transformations offind, which are
correct only when there never exist several choices that make
the condition of thefind succeed. These transformations are
detailed in Appendix E-B.

The novelties with respect to [50] are the use of keyed
hash functions, the oracleOeq, and the modifier[unique].
We believe that using keyed hash functions leads to a better
modeling of random oracles, for several reasons:

• In the random oracle model, the adversary cannot
evaluate the hash function by himself, without calling
the random oracle. With the key, this is natural, since
the adversary does not have the key, whereas in the
absence of key, this is counterintuitive: the adversary
should be able to reproduce the algorithm ofh.

• In the absence of key, the transformation ofL1 intoR1

above replaces a deterministic functionh with a prob-
abilistic one, since the results are chosen randomly in
the right-hand side. The key removes this discrepancy:
with the key, the hash oracle is also probabilistic in the
left-hand side thanks to the choice of the key.

• The transformation ofL1 intoR1 above is correct only
when it is applied to all occurrences ofh simultane-
ously. In the absence of key, this has to be enforced by
an additional constraint on the transformation. With the
key, this is naturally enforced, since all occurrences of
the key need to be encoded as calls to the oracles of
L1 for the transformation to be performed.

• Finally, keyed hash functions are used in the mod-
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L2 = foreach ick ≤ nck do ck
R
← cipherkey ;

(foreach ie ≤ ne do Oenc(me : blocksize, ke : key) := return (enc(ck ,me, ke)) |
foreach id ≤ nd do Odec(md : blocksize , kd : key) := return (dec(ck ,md , kd)))

R2 = foreach ick ≤ nck do
(foreach ie ≤ ne do Oenc(me : blocksize , ke : key) :=

find[unique] j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧me = me[j] ∧ ke = ke[j] then return(re[j])
⊕ k ≤ ne suchthat defined(rd [k],md [k], kd [k]) ∧me = rd [k] ∧ ke = kd [k] then return(md [k])

elsere R
← blocksize; return (re) |

foreach id ≤ nd do Odec(md : blocksize , kd : key) :=
find[unique] j ≤ ne suchthat defined(me[j], ke[j], re[j]) ∧md = re[j] ∧ kd = ke[j] then return(me[j])
⊕ k ≤ nd suchthat defined(rd [k],md [k], kd [k]) ∧md = md [k] ∧ kd = kd [k] then return(rd [k])

elserd
R
← blocksize ; return (rd))

Figure 3. Ideal cipher model

eling of other assumptions on hash functions, such
as collision resistance. By always using keyed hash
functions, we can easily change the assumption on the
hash function without changing its interface.

Designing CryptoVerif specifications of primitives requires
some expertise. That is why the specifications for most
common cryptographic primitives are grouped in a reusable
library. Therefore, CryptoVerif users generally do not have
to design such specifications.

C. The Ideal Cipher Model

The ideal cipher model [59] models block ciphers by
saying that encryption and decryption are two random
permutations, inverse of each other. This can be encoded
in CryptoVerif similarly to the random oracle model: we
replace encryption and decryption with lookups in previous
encryption/decryption queries; if a previous query matches,
we return the previous result; otherwise, we return a fresh
random number. This is modeled by the equivalenceL2 ≈p2

R2 whereL2 and R2 are defined in Figure 3 andp2 =
(#Oenc+#Odec)(#Oenc+#Odec− 1)/|blocksize|. The
encryption and decryption functions map bitstrings of type
blocksize to bitstrings of typeblocksize; they take two keys
as additional arguments: the standard encryption/decryption
key of typekey , but also a key of typecipherkey that models
the choice of the scheme itself (like the key of the hash
function in Section III-B). The gamesL2 and R2 define
two oraclesOenc and Odec, respectively the encryption
and decryption oracles. InL2, they call the encryption and
decryption functions. InR2, they are replaced with lookups
in previous encryption/decryption queries. For instance,for
oracleOenc, we look for a previous encryption query of
the same cleartext (me = me[j]) under the same key
(ke = ke[j]) and, if we find one, we return the same
ciphertext re[j]. We also look for a previous decryption
query that has returned as cleartext the cleartext to encrypt

(me = rd [k]) using the same key (ke = kd[k]) and, if
we find one, we return the corresponding ciphertextmd [k].
Otherwise, we return a fresh random ciphertextre. This
definition does not yield random permutations, because the
random choices ofre and rd may collide with each other
and with previous values ofme and md . Let us consider
a gameR′

2 obtained fromR2 by excluding such collisions.
By adapting the reasoning used for the random oracle model
in Section III-B, we can show that, inR′

2, there never exist
several choices ofj/k that satisfy the conditions of thefinds
in Oenc andOdec, so thesefinds can be marked[unique]
without modifying their behavior. The gameL2 is perfectly
indistinguishable fromR′

2, and R′
2 can be distinguished

from R2 with probability at mostp2 (the probability of the
collisions excluded inR′

2), so the adversary can distinguish
L2 from R2 with probability at mostp2.

D. The Computational Diffie-Hellman Assumption

A classical intractability assumption in asymmetric cryp-
tography is the hardness of the Diffie-Hellman problem: let
us be given a groupG of prime orderq, with a generator
g, and two random elementsA = ga and B = gb

with a, b ∈ [1, q − 1], computeCDHg(A,B) = gab. The
Computational Diffie-Hellman (CDH) assumption claims
that for any polynomial-time adversaryA, SucccdhG (A) =
Pr[A(G, g, A,B) = CDHg(A,B)] is negligible. More gen-
erally, we noteSucccdhG (t) the maximal success probability
for any adversaryA within time t.

This assumption can be written in CryptoVerif as follows:

foreach i ≤ n do a R
← Z; b

R
← Z;

(OA() := exp(g, a) | OB() := exp(g, b) |
foreach i′ ≤ n′ do ODDH(z : G) :=
z = exp(g,mult(a, b)))

≈#ODDH×Succcdh
G

(t+(n+#ODDH)τexp)

foreach i ≤ n do a R
← Z; b

R
← Z;
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L3 = foreach ia ≤ na do a R
← Z ; (

OA() := return (exp(g, a)) |
Oa() := return (a) |
foreach iaDDH ≤ naDDH do
ODDHa(m : G, j ≤ nb) :=

return (m = exp(g,mult(b[j], a)))) |

foreach ib ≤ nb do b R
← Z ; (

OB() := return (exp(g, b)) |
Ob() := return (b) |
foreach ibDDH ≤ nbDDH do
ODDHb(m : G, j ≤ na) :=

return (m = exp(g,mult(a[j], b))))

R3 = foreach ia ≤ na do a R
← Z ; (

OA() := return (exp(g, a)) |
Oa() := let ka : bitstring = mark in return (a) |
foreach iaDDH ≤ naDDH do
ODDHa(m : G, j ≤ nb) :=

find u ≤ nb suchthat defined(kb[u], b[u])
∧ b[j] = b[u] then

return (m = exp(g,mult(b[j], a)))
else if defined(ka) then

return (m = exp(g,mult(b[j], a)))
else return(false)) |

foreach ib ≤ nb do b R
← Z ; (

OB() := return (exp(g, b)) |
Ob() := let kb : bitstring = mark in return (b) |
foreach ibDDH ≤ nbDDH do
ODDHb(m : G, j ≤ na) :=
(symmetric ofODDHa)

Figure 4. Computational Diffie-Hellman assumption

(OA() := exp(g, a) | OB() := exp(g, b) |
foreach i′ ≤ n′ do ODDH(z : G) := false)

The typeZ represents[1, q− 1], that is, the groupZ∗
q ; mult

is the product in that group;G represents the groupG
without its neutral element; andexp is the exponentiation
G × Z → G. These two games define three oracles:OA

andOB return the exponentialsga andgb respectively, and
the oracleODDH checks whether its argumentz is equal
to gab in the left-hand side while it always returnsfalse in
the right-hand side. The adversary can distinguish these two
games if and only if it can provide az such thatz = gab, that
is, it breaks the CDH assumption. However, in CryptoVerif,
this model requires thata and b be chosen one after the
other under the sameforeach: while this is true in some
cryptographic schemes such as ElGamal, this is not true for
most protocols: as in OEKE,a andb are chosen by different
protocol participants that can each execute several sessions.

Therefore, we need a more general model, which is given

by the indistinguishability between the two games presented
in Figure 4. In these two games, one generatesna exponents
a, nb exponentsb and the adversary (any context) has access
to various oracles:OA andOB that return the group elements
associated toa, resp.b; Oa andOb that return the exponents
a and b themselves; and Diffie-Hellman decisions oracles
ODDHa and ODDHb that check whether the adversary
correctly solved a Diffie-Hellman problem with the above
generated elements. Basically, the difference between the
two games is in the answers of the decision oracles: in
the first game they answer correctly, while in the second
game, they answerfalse if the adversary did not ask for
any of the two exponents. Unless the adversary can break
the Diffie-Hellman problem, and then ask correct Diffie-
Hellman decision queries, the two executions are perfectly
indistinguishable. In more detail, inR3, the variableka
is defined if and only if the oracleOa has been called
and thus the exponenta has been asked by the adversary.
All variables and oracles defined underforeach ia ≤ na

are implicitly indexed byia, so thatka[ia ] is defined if
and only if a[ia] has been asked by the adversary. The
variablekb plays the same role forb. The oracleODDHa
computes the equality testm = ga[ia]b[j] when b[j] has
been asked by the adversary, i.e.,kb[j] is defined, ora[ia]
has been asked by the adversary, i.e.ka[ia] (abbreviated
ka) is defined. Otherwise, it returnsfalse. The condition
“kb[j] is defined” is encoded as “kb[u] is defined for some
u such thatb[u] = b[j]” (defined(kb[u], b[u])∧ b[j] = b[u]),
because CryptoVerif allows to reference a variablex[ũ] in
defined conditions in the right-hand side of an equivalence
only when its indices̃u are a prefix of the indices looked
up by find, so a reference tokb[j] would not be allowed.
We can refer tob[j] without including it in a defined
condition because it also occurs in the left-hand side of the
equivalence, so CryptoVerif knows that it must be defined.
That is why the conditiondefined(kb[u], b[u]) ∧ b[j] = b[u]
is accepted by CryptoVerif.

In Appendix B-A, we formally prove thatL3 ≈p3 R3,
that is, no adversary can distinguish the two gamesL3 and
R3, within time t, with advantage greater than

p3 = (#ODDHa+#ODDHb)

×max(1, 7.4#Oa)×max(1, 7.4#Ob)

× SucccdhG (t+ (na + nb +#ODDHa+#ODDHb)τexp).

The proof technique consists in guessing the two elementsa
and b that will be involved in the critical decisional Diffie-
Hellman query (but with Coron’s improvement [60]), and
then to guess the critical query, hence the factor#ODDHa+
#ODDHb.

For this equivalence to be supported by CryptoVerif, we
had to implement two extensions:

• OraclesODDHa andODDHb take as argument an array
index j, which was not supported.
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• In typical usages of the CDH assumption in proto-
cols, gab is often an argument of a hash function
in the random oracle model. The transformation that
comes from the random oracle model, presented in
Section III-B, transformshash(. . . gab . . .) into lookups
that comparegab with previous arguments ofhash.
These comparisonsm = gab, which occur in conditions
of find, are themselves transformed intofind using the
CDH assumption. We therefore end up with afind
inside the condition of afind, which was not supported.

In addition to the modeling of the CDH assumption itself,
our model of Diffie-Hellman key agreements includes further
properties, such as commutativity and injectivity of several
functions. They are formally defined in Appendix B-B. We
stress that our above modeling is not specific to the OEKE
protocol. We have also used it to prove a signed Diffie-
Hellman key exchange, and we believe that it can be used
for proving many other protocols.

E. The Protocol Itself

If we consider a general configuration with several clients
and servers, each client-server pair shares a different pass-
word, and there is no other secret shared initially. Therefore,
different client-server pairs have no common secret, so we
can encode a single clientU and a single serverS that wish
to talk to each other; the other clients and servers, which
may be corrupted, and the interactions ofU and S with
other clients and servers are included in the adversary. This
model supports static corruptions; dynamic corruptions and
forward secrecy properties are left for future work.

The protocol model first chooses random keyshk0 and
hk1 to model the choice of the hash functionsh0 (i.e.H0)
and h1 (i.e. H1) respectively and a keyck to model the
choice of the ideal cipher scheme. It also randomly chooses
a passwordpw in the typepasswd . Then, it makes available
hash oracles forh0 and h1, encryption and decryption
oracles, as well as oracles that represent the client and the
server. As an example, we detail the code for the client:

foreach iU ≤ NU do

OC1() := x
R
← Z ;X ← exp(g, x); return (U, X);

OC2(= S,Ystar u : G) := Y u ← dec(ck ,Ystar u, pw);
K u ← exp(Y u, x);
auth u ← h1(hk1 , concat(U, S, X,Y u,K u));
sk u : hash0 ← h0(hk0 , concat(U, S, X,Y u,K u));
return (auth u)

This code modelsNU sessions of the client, indexed by
iU . Each session defines two oraclesOC1 andOC2. OC1
takes no argument and returns the first message of the
protocol U, X computed as specified in Figure 1.OC2
takes as argument the second message of the protocol
S,Ystar u received by the client and returns the third
one auth u. It also computes the shared keysk u. In
this code,concat(U, S, X,Y u,K u) is the concatenation

U‖S‖X‖Y u‖K u. These oracles are implicitly indexed by
iU , so that they can be writtenOC1[iU ], OC2[iU ]. (This
index is omitted in CryptoVerif code for readability.) The
adversary can call the oracles with any index it likes in the
order it likes, except that, obviously,OC2[iU ] can be called
only if OC1[iU ] has been called before with the sameiU .
This gives the adversary full control over the network.

We representNS sessions of the server in a similar way.
The NU sessions of the client and theNS sessions of
the server model active attacks. Additionally, we represent
NP sessions of the protocol in which the adversary just
eavesdrops messages without altering them. In order to
represent such sessions, we simply compute and output their
transcript. They model passive attacks. Since we are con-
sidering dictionary attacks against a password-authenticated
key exchange protocol, it is important to distinguish passive
sessions/attacks from active ones against the honest players.

F. Security Properties

Our goal is to prove that OEKE is a secure key exchange
that provides unilateral (explicit) authentication. (OEKE
guarantees client authentication but not server authentica-
tion.) To do that, we follow the ideas of [61, Section 7.2]:
instead of proving semantic security of the key and au-
thentication, we prove secrecy of the key on the client
side and a slightly stronger authentication property. This
technique avoids the burden of considering partnering when
proving secrecy of the key and still implies authenticated
key exchange [61, Proposition 4]: intuitively, authentication
guarantees that a key of the server is also a key of a client.
Authentication is modeled by correspondence properties [62]
of the form “if some event occurs, then some other event oc-
curred”. There are still two differences with respect to [61]:

• [61] considers mutual authentication, while we consider
unilateral authentication, so we remove the correspon-
dence that guaranteed authentication of the server.

• In [61], each protocol participant may interact with hon-
est participants (U andS here) but also with dishonest
participants, and in the latter situation, the exchanged
key is published when the participant accepts. As
mentioned in Section III-E, in OEKE, we need not code
explicitly for U andS interacting with other clients and
servers, so the output of the exchanged key disappears.

Taking into account these points, we add events to record
that the participants accept or terminate:

• eventacceptU(U,X , S,Ystar u, auth u, sk u) when
the client accepts (line “accept ← true” of the client
in Figure 1, that is, before the last line in the code of
Section III-E).

• event termS(U,X s , S,Ystar , auth s , sk s) when
the server terminates (line “terminate ← true” of the
server in Figure 1).
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and we prove that the resulting process preserves the secrecy
of sk u and satisfies the correspondences

inj-event(termS(U,X, S,Ystar , a, k))⇒

inj-event(acceptU(U,X, S,Ystar , a, k))
(1)

event(termS(U,X, S,Ystar , a, k)) ∧

event(acceptU(U,X, S,Ystar , a, k′))⇒ k = k′
(2)

with public variables{sk u}. A variant of [61, Proposi-
tion 4] allows us to conclude one-way authenticated key
exchange. Next, we define secrecy and correspondences.

Intuitively, the secrecy ofsk u means that the keys
sk u of all sessions of the client are indistinguishable from
independent random keys. Formally, secrecy is defined as
follows:

Definition 2 (Secrecy) Assume that the variablex of type
T is defined inG under a singleforeach i ≤ n. The gameG
preserves the secrecy ofx up to probabilityp when, for all
contextsC acceptable forG | Rx without public variables
that do not containS andS, Pr[C[G | Rx] : S] − Pr[C[G |
Rx] : S] ≤ p(C) where

Rx = O0() := b
R
← bool; return ;

(foreach i′ ≤ n′ do O(u : [1, n]) :=
if defined(x[u]) then

if b then return(x[u]) else
find u′ ≤ n′ suchthat defined(y[u′], u[u′]) ∧
u[u′] = u then return(y[u′]) else

y
R
← T ; return (y)

| O′(b′ : bool) := if b = b′ then eventS; abort
else eventS; abort)

O0, O,O
′, b, b′, u, u′, y, S, andS do not occur inG.

We define the secrecy ofx with the Real-or-Random model
of [63]: in Rx, we choose a random bitb, and provide the
oracleO that the adversary can use to perform several test
queries onx[u]: if b = 1, the test query returnsx[u]; if b = 0,
it returns a random valuey (the same value if the same query
x[u] is asked twice). Finally, the adversary should guess the
bit b: it calls oracleO′ with its guessb′ and, if the guess
is correct, then eventS is executed, and otherwise, eventS

is executed. The probability of getting some information on
the secret is the difference between the probability ofS and
the probability ofS. (When the game always runs oracle
O′, we havePr[C[G | Rx] : S] = 1 − Pr[C[G | Rx] : S],
so the advantage of the adversary isPr[C[G | Rx] : S] −
Pr[C[G | Rx] : S] = 2Pr[C[G | Rx] : S] − 1, which is
a more standard formula.) As shown in [63], the Real-or-
Random model is stronger than the Find-Then-Guess model
used in [55], which allows a single test query and several
reveal queries. (Reveal queries always return the realx[u].)

The correspondence (1) means that each execution of
event termS(U,X, S,Ystar , a, k) corresponds to a dis-
tinct execution of eventacceptU(U,X, S,Ystar , a, k); in

other words, each session of the server that accepts with
transcriptU,X, S,Ystar , a and shared keyk corresponds
to a distinct session of the client that accepts with the
same transcript and same key. It corresponds to the au-
thentication of the client. The keywordinj-event is used
in CryptoVerif to require injective correspondences, that
is, acceptU has been executed at least as many times
as termS, and not only once. The correspondence (2)
means that when eventstermS(U,X, S,Ystar , a, k) and
acceptU(U,X, S,Ystar , a, k′) have been executed,k = k′,
that is, if a client and a server have the same transcript,
then they share the same key. These correspondences are
proved “with public variables{sk u}”, that is, they hold
even when the adversary is allowed to accesssk u directly.
Formally, we writeE ⊢ ψ ⇒ ϕ when the sequence of events
E satisfies the correspondenceψ ⇒ ϕ. (This is formally
defined in [61].) For instance,E ⊢ inj-event(termS(U,X, S,
Ystar , a, k))⇒ inj-event(acceptU(U,X, S,Ystar , a, k)) if
and only if, for each eventacceptU(. . .) in E , there is a
distinct eventtermS(. . .) in E with the same arguments as
the eventacceptU(. . .).

Definition 3 (Correspondence)The gameG satisfies the
correspondenceψ ⇒ ϕ with public variablesV up to
probability p if and only if, for all contextsC acceptable
for G with public variablesV that do not contain events,
Pr[C[Q] : D] ≤ p(C), whereD(E , a) = (E 6⊢ ψ ⇒ ϕ).

IV. PROVING OEKE IN CRYPTOVERIF

In the previous section, we have presented the formal-
ization of the protocol given as input to CryptoVerif. In
this section, we explain how CryptoVerif proceeds with the
proof. Some parts of the proof are automatic, some are
guided by the user. The commands for guiding CryptoVerif
can be given interactively, which allows one to see the
current game and understand what should be done next, or
in aproof {. . .} declaration in the CryptoVerif input file, so
that CryptoVerif can then run on its own. The input file pre-
sented at http://www.cryptoverif.ens.fr/OEKE/ includessuch
a declaration. We stress that, even with manual guidance, all
game transformations are verified by CryptoVerif, so that
one cannot perform an incorrect proof.

A. Applying Shoup’s Lemma

The first step of the proof is to introduce the events
Auth andEncrypt, which correspond to cases in which the
adversary succeeds in testing a password and were also used
in the manual proof of [55].

By Shoup’s lemma [43], ifG′ is obtained fromG by
inserting an evente and modifying the code executed after
e, the probability of distinguishingG′ fromG is bounded by
the probability of executinge: for all contextsC acceptable
for G andG′ (with any public variables) and all distinguish-
ersD, |Pr[C[G] : D] − Pr[C[G′] : D]| ≤ Pr[C[G′] : e].
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Hence,Pr[C[G] : D] ≤ Pr[C[G′] : e] + Pr[C[G′] : D]. We
improve over this computation of probabilities by consider-
ing e andD simultaneously instead of making the sum of
the two probabilities:Pr[C[G] : D] ≤ Pr[C[G′] : D ∨ e].

Lemma 1 LetC be a context acceptable forG andG′ with
public variablesV .

1) If G′ differs fromG only whenG′ executes evente,
thenPr[C[G] : D] ≤ Pr[C[G′] : D ∨ e].

2) If G differs from G′ only whenG executes event
NonUnique andD = (D0∧¬NonUnique)∨e1∨. . .∨en
where we abort just after executing eventse1, . . . , en,
thenPr[C[G] : D] ≤ Pr[C[G′] : D].

3) If G ≈V
p G′, then Pr[C[G] : D] ≤ p(C, tD) +

Pr[C[G′] : D].
4) Pr[C[G] : D ∨D′] ≤ Pr[C[G] : D] + Pr[C[G] : D′].

This lemma, and Lemma 2 below, are proved in Ap-
pendix C. In order to bound the probability that a distin-
guisherD0 returns true for some gameG0, we consider
any contextC acceptable forG0 with public variablesV
and that does not contain events, and boundPr[C[G0] :
D0 ∧ ¬NonUnique] which is equal toPr[C[G0] : D0]
because nofind[unique] occurs in the initial game. For
each game transformation, we assume that the introduced
variables are fresh, so thatC remains acceptable for all
games of the sequence. We can then apply Lemma 1 for
each game transformation. Points 1, 2, and 3 of this lemma
allow us to handle several events simultaneously, as long as
the proof uses the same sequence of games to bound their
probabilities. Point 2 is useful for transformations that rely
on the uniqueness of the values that satisfy the conditions
of find, detailed in Appendix E-B: these transformations
preserve the behavior of the game whenG does not execute
event NonUnique. The distinguisherD is always of the
desired form(D0∧¬NonUnique)∨e1∨ . . .∨en because we
start fromD0 ∧ ¬NonUnique and add events introduced by
Shoup’s lemma using point 1; we abort immediately after
these events. When the proof uses different sequences of
games to bound the probabilities of events, we use point 4
of the lemma to bound each probability separately and
compute the sum. The standard computation of probabilities
corresponds to always applying point 4.

For example, suppose that we want to bound the proba-
bility of event e0 in G0, G1 differs fromG0 only whenG1

executes evente, G1 ≈p G2, andG2 executes neithere0 nor
e. Suppose for simplicity that nofind[unique] occurs, so that
NonUnique never occurs. Lemma 1 yieldsPr[C[G0] : e0] ≤
Pr[C[G1] : e0 ∨ e] ≤ p(C, te0∨e) + Pr[C[G2] : e0 ∨ e] =
p(C, te0∨e). The standard computation of probabilities yields
Pr[C[G0] : e0] ≤ Pr[C[G1] : e0] + Pr[C[G1] : e] ≤
p(C, te0 )+ p(C, te). The runtimetD of D is essentially the
same fore0, e, and e0 ∨ e, so Pr[C[G0] : e0] ≤ p(C, tD)

by Lemma 1, whilePr[C[G0] : e0] ≤ 2p(C, tD) by the
standard computation, so we have gained a factor 2.

For secrecy, the advantagePr[C[G | Rx] : S]− Pr[C[G |

Rx] : S] introduces a factor 2 in the probability: ifG ≈{x}
p

G′, thenPr[C[G | Rx] : S]−Pr[C[G | Rx] : S] ≤ 2p(C[[ ] |
Rx], tS) + (Pr[C[G′ | Rx] : S] − Pr[C[G′ | Rx] : S]), since
tS = tS. The next lemma avoids this factor 2 for probabilities
of events:

Lemma 2 Let C be a context acceptable forG and G′

with public variablesV . Let the distinguishersD,D′ be
disjunctions of eventse1 ∨ . . . ∨ en such that we abort just
after executing eachei. Let AdvSecrecyG (C,D) = Pr[C[G |
Rx] : S ∨D]− Pr[C[G | Rx] : S ∨ NonUnique].

1) If G′ differs from G only when G′ executes
event e and we abort just after executinge, then
Adv

Secrecy
G (C,D) ≤ Adv

Secrecy
G′ (C,D ∨ e).

2) If G differs fromG′ only whenG executesNonUnique,
thenAdvSecrecyG (C,D) ≤ Adv

Secrecy
G′ (C,D).

3) If G ≈V
p G′, then Adv

Secrecy
G (C,D) ≤ 2p(C[[ ] |

Rx], t) + Adv
Secrecy
G′ (C,D) where t = max(tS∨D,

tS∨NonUnique).

4) Adv
Secrecy
G (C,D∨D′) ≤ Adv

Secrecy
G (C,D)+Pr[C[G |

Rx] : D
′].

5) If CryptoVerif proves the secrecy ofx in gameG,
then Pr[C[G | Rx] : S] = Pr[C[G | Rx] : S], so
Adv

Secrecy
G (C,D) ≤ Pr[C[G | Rx] : D].

In order to prove secrecy ofx in the initial gameG0,
we bound Pr[C[G0 | Rx] : S] − Pr[C[G0 | Rx] :
S] = Adv

Secrecy
G0

(C, false), by applying Lemma 2 for each
game transformation. When we apply points 4 and 5 of
this lemma, we use bounds on the probabilities of events,
Pr[C[G | Rx] : D

′] and Pr[C[G | Rx] : D] respectively,
which can be established using Lemma 1. (They can be
written Pr[C[G | Rx] : (false ∧ ¬NonUnique) ∨D], so they
are of the form required by point 2 of Lemma 1.) These
probabilities are not multiplied by 2, so we improve over
the standard computation of probabilities for secrecy.

These improvements are implemented in CryptoVerif but
also apply to manual proofs. For instance, by applying this
result to the manual proof of OEKE [55], we obtain that
the probability for any adversary to make a server instance
accept with no terminating client partner is bounded by

NU +NS

N
+ qhSucc

cdh
G (t′) + p′coll

with p′coll =
(2qe + 2NU + 3NS + 3NP )

2

2(q − 1)
+
q2h + 2NS

2l1+1

and that no adversary can distinguish the session key from
a random key with advantage greater than

NU +NS

N
+ qhSucc

cdh
G (t′) + 2p′coll
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with the notations of Section II. (The detailed computation
is in Appendix D.) For both properties, the first term
of the probability NU+NS

N shows that the adversary can
test at most one password for each interaction with the
client or the server, which is the optimal result, while the
standard evaluation of probabilities given in Section II yields
NU+2NS

N for the first property and2NU+4NS

N for the second
one. Similar improvements could also be obtained for the
AuthA protocol [55, Section 4.1] and for the forward secrecy
property [55, Appendix D].

1) Inserting events:In order to introduce events, we have
implemented a new game transformation in CryptoVerif:
insert event e o insertsevente; abort at program pointo.
The program pointo is an integer, which can be determined
using the commandshow game occ: this command displays
the current game with the corresponding label{o} at each
program point. The commandshow game occ also allows
one to inspect the game, for instance to know the names
of fresh variables created by CryptoVerif during previous
transformations. Program points and variable names may
depend on the version of CryptoVerif; this paper uses
CryptoVerif 1.14. CryptoVerif cannot guess where events
should be introduced, so the commandinsert event must
be manually given to the tool.

We have also defined a commandinsert o ins which
adds instructionins at the program pointo. The instruction
ins can for instance be a test, in which case all branches
of the test will be copies of the code that follows program
point o (so that the semantics of the game is unchanged). It
can also be an assignment or a random generation of a fresh
variable. In all cases, CryptoVerif checks that this instruction
preserves the semantics of the game, and rejects it with an
error message if it does not.

2) Transformations forh1: At the beginning of the proof,
we transform the game using the random oracle assumption
for h1. This transformation helps us make a program point
appear at which we will next insert an event. Before actually
performing this transformation, we first introduce a case
distinction that leads to a simpler game after applying the
random oracle assumption:

• By commandinsert 261 “ let concat(x1 , x2 , x3 , x4 ,
x5 ) = h1x in”, we introduce alet in the hash oracle for
h1. As the result, this hash oracle becomesOH1(h1x :
bitstring) := let concat(x1 , x2 , x3 , x4 , x5 ) = h1x in
return (h1(hk1 , h1x )) else return(h1(hk1 , h1x )): the
meaning of thislet construct is that, ifh1x is of the
form concat(x1 , x2 , x3 , x4 , x5 ), then the in branch
is taken withx1 , x2 , x3 , x4 , x5 bound to their value
(which is uniquely determined because the length of the
fields of the concatenation is fixed); otherwise, theelse
branch is taken. Thus, we distinguish cases depending
on whetherh1x is of the form concat(. . .) or not.
In the next transformation, which applies the random
oracle assumption toh1, we are going to replace calls

to h1 with lookups in the previous queries toh1. All
queries toh1 in the protocol have an argument of the
form concat(x1 ′, x2 ′, x3 ′, x4 ′, x5 ′). When comparing
this query to a query in the hash oracle, the compari-
son h1x = concat(x1 ′, x2 ′, x3 ′, x4 ′, x5 ′) can then be
simplified as follows:

– If h1(h1x ) was computed in thein branch
of the introducedlet, the comparison becomes
concat(x1 , x2 , x3 , x4 , x5 ) = concat(x1 ′, x2 ′,
x3 ′, x4 ′, x5 ′), that is,x1 = x1 ′ ∧ . . . ∧ x5 = x5 ′.

– If h1(h1x ) was computed in theelsebranch of this
let, the comparison becomesfalse, becauseh1x
cannot be of the formconcat(. . .), since thein
branch would have been taken in that case.

• crypto rom(h1) applies the equivalenceL1 ≈p1 R1 of
Figure 2, designated byrom for Random Oracle Model,
to the hash functionh1: it transforms calls toh1 into
lookups in the previous queries toh1, as outlined in
Section III-B.

3) EventAuth: Next, we introduce eventAuth: This
event corresponds to the case in which the group element
X received by the server (denotedX s) does not come
from the client, the authenticatorAuth received by the server
(denotedauth s) comes from a hash query by the adversary,
and authentication still succeeds. To be able to introduce this
event, we first make the program point appear, at which this
event will be inserted:

• insert 179 “find j ≤ NU suchthat defined(X [j]) ∧
X [j] = X s then” inserts a test after receiving the
authenticator in the server, to distinguish the case in
which X s comes from the client (X s = X [j] for
somej).

• insert 341 “find jh ≤ qH1 suchthat defined(x1 [jh],
x2 [jh], x3 [jh], x4 [jh], hash1[jh ])∧(U = x1 [jh ])∧(S =
x2 [jh])∧ (X s = x3 [jh])∧ (Y = x4 [jh])∧ (auth s =
hash1[jh]) then” inserts a test, in theelsebranch of the
previous one, to detect when authentication succeeds
with an authenticatorauth s that comes from a hash
query made by the adversary. The result of that hash
query2 is hash1[jh ] and its arguments arex1 [jh], . . . ,
x5 [jh]. We purposely do not test that the 5-th argument
of the hash query is the expected one. This avoids
computing an exponentiationexp(X s, y) whereX s

comes from the adversary andy is a secret exponent,
thus removing a query toOb in the CDH equivalence.

• insert event Auth 384 inserts the event itself in the
then branch of the previous test.

• Finally, simplify cleans up the obtained game. The
elsebranch of thefind jh inserted above is removed: in
that branch, authentication always fails so the protocol
executes nothing.

2In CryptoVerif 1.14, the variablehash1 is in fact named@11 r 134 .
We have renamed it tohash1 for readability.
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4) EventEncrypt: Next, we introduce the eventEncrypt:
This event corresponds to the case in which the value
Y ⋆ received by the client (denotedYstar u) comes from
an encryption query of the adversary under the correct
password. As above, we have to prepare this insertion:

• crypto icm(enc) applies the equivalence that repre-
sents the Ideal Cipher Model, designated byicm, to
the encryption schemeenc: it replaces calls to encryp-
tion/decryption with lookups in previous queries, as
outlined in Section III-C.

• insert event Encrypt 633 inserts the eventEncrypt
when the lookup in previous encryption/decryption
queries that comes from the decryption ofYstar u

succeeds with an encryption query of the adversary.

5) Transformations forh0: We proceed forh0 similarly
to what we did forh1 at the beginning of the proof:

• insert 1251 “ let concat(x01 , x02 , x03 , x04 , x05 ) =
h0x in” distinguishes cases depending on whether the
argumenth0x of the hash oracle forh0 is of the form
concat(. . .) or not.

• crypto rom(h0) applies the random oracle assumption
to h0 (Section III-B).

B. Automatic Steps

After distinguishing cases forh0 andh1 and introducing
events, we can use the automatic proof strategy of Cryp-
toVerif, by commandauto. Basically, this strategy consists
in applying all possible cryptographic transformations (com-
ing from equivalencesL ≈p R) and simplifying the game
after each such transformation. When the transformations
fail, they advise syntactic transformations that could make
them succeed; these transformations are executed and the
cryptographic transformation is then retried [49, Section5].

More precisely, in our case, CryptoVerif renames several
variables and simplifies terms, in order to be able to apply
the CDH assumption (Section III-D). Details are provided in
Appendix F. After these transformations, no automatic step
can be performed, so the automatic proof stops.

C. Reorganizing Random Number Generations

We end up in a situation in which random values forY are
generated, but are used only in comparisons with previous
queries. We would like to delay or remove these random
number generations. This situation occurs at three places:

• When Y u (the value ofY in the client) is a fresh
random group element,auth u andK u are also fresh
random values, independently of the value ofY u,
so Y u is used only in comparisons with previous
encryption/decryption queries.

• The value ofY in the passive eavesdroppings,Yp,
is a fresh random group element; the encryptionY ⋆

of Y is thus also a fresh random group element by
the ideal cipher model, and the hash queries return a

random value independently of the value ofYp, so
Yp is also used only in comparisons with previous
encryption/decryption queries.

• The value ofY in the server is also a fresh random
group element; it is used in the test that decides whether
to execute eventAuth and in comparisons with previous
encryption/decryption queries.

We have implemented new game transformations in Cryp-
toVerif, detailed in Appendix E, to handle this situation:

• move arrayX delays the generation of a random value
X until the point at which it is first used.

• merge arrays x11 . . . x1n, . . . , xm1 . . . xmn merges
the variablesxj1, . . . , xjn into a single variablexj1 for
each j ≤ m. Each variablexjk must have a single
definition. For eachj ≤ n, the variablesxj1, . . . ,
xjn must have the same type and indices of the same
type. They must not be defined for the same value of
their indices (that is,xjk andxjk′ must be defined in
different branches ofif or find whenk 6= k′), so that
they can be merged into a single array.

• merge branches merges branches ofif andfind when
they execute the same code.

Using these transformations, we can eliminate the random
number generations forY as outlined at the beginning of
this section. We consider the three generations ofY in turn.
For each of these generations, we first applymove array

to the corresponding variable, to delay its generation. For
OEKE, this has the effect of generating it in the decryption
oracle available to the adversary. So, in this oracle, we end
up with two possibilities of generating a fresh result, the one
that comes from the delayed generation ofY , sayY ′, and
the one that corresponds to the situation in which the query
is really a fresh decryption query, sayYd. We would like
to merge these two cases bymerge branches. However,
merge branches does not succeed directly: we first need to
merge the two variablesYd andY ′ into a single variable by
merge arrays Yd Y

′, then we can applymerge branches.
In the case of the value ofY in the server, we additionally
need to rewrite the condition that triggers the eventAuth

for merge branches to succeed. This is done by a few
manual commands, checked correct by CryptoVerif. In this
process, the eventAuth is renamed intoAuth2. These steps
are detailed in Appendix F.

D. The Final Computation of Probabilities

In the obtained game, the eventsAuth2 andEncrypt are
guarded by the following conditions (variables have been
renamed for readability):

(foreach iU ≤ NU do . . .
find[unique] je ≤ qE suchthat defined(re[je], ke[je]) ∧
Ystar u = re[je] ∧ pw = ke[je] then eventEncrypt . . .)
| (foreach iS ≤ NS do . . .

find jh′ ≤ qH1 , jd ≤ qD suchthat defined(x1 [jh′],
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x2 [jh′], x3 [jh′], x4 [jh′], hash1[jh
′],m[jd ], kd [jd ],

rd [jd ]) ∧m[jd ] = Y star ∧ U = x1 [jh′] ∧
S = x2 [jh′] ∧ X s = x3 [jh′] ∧ rd [jd ] = x4 [jh′] ∧
auth s = hash1[jh

′] ∧ kd [jd ] = pw then
eventAuth2 . . .) | . . .

So, in order to bound the probabilities of these events, we
just have to eliminate collisions between the passwordpw

and the encryption and decryption keys,ke[je] and kd [jd ].
This is done by the commandsimplify coll elim pw .
The collisions onpw are not eliminated automatically by
CryptoVerif because the typepasswd of pw is declared
with annotationpassword. This annotation allows manual
elimination of collisions but prevents automatic elimination
of collisions. For passwords, whose set is not very large, the
automatic elimination of collisions would yield a too large
probability bound.

We have to evaluate the probability of these collisions. A
naive evaluation considers that one makes at mostNU ×qE

comparisonspw = ke[je] (there areNU sessions of the
client and the condition offind is evaluated at mostqE
times) and similarly at mostNS × qH1 × qD comparisons
kd [jd ] = pw , which yields the probability(NU × qE +
NS × qH1 × qD)/|passwd |. A slightly more clever way is
to notice thatpw = ke[je] contains as only indexje ≤ qE ,
so at mostqE distinct comparisons are performed (there
are at mostqE distinct encryption keys), and similarly at
most qD distinct comparisonskd [jd ] = pw , which yields
the probability(qE +qD)/|passwd |. This is not satisfactory
yet, because the encryption and decryption queries can be
performed by the adversary without interacting with the
protocol, soqE andqD can be large. So we have extended
CryptoVerif to improve this probability bound. We start from
the most naive evaluationNU × qE and try to eliminate
each factor. We can eliminateNU as shown above, but
we can also eliminateqE : for each session of the client,
Ystar u is fixed; sinceYstar u = re[je], re[je] is also
fixed. By eliminating collisions onre, there is a uniqueje
that can make the comparisonYstar u = re[je] succeed,
so a uniqueje for which the comparisonpw = ke[je]
is performed. Similarly, the comparisonkd [jd ] = pw is
performed at most once for each session of the server.
Thus we obtain the probability(NU + NS)/|passwd |. To
know which factors we should preferably eliminate, we
annotateqE and qD with noninteractive, which means
that the adversary can perform the corresponding queries
without interacting with the protocol, soqE and qD will
typically be larger than other bounds. Therefore, the bound
(NU + NS)/|passwd | is better than(qE + qD)/|passwd |,
so CryptoVerif returns the former.

CryptoVerif then concludes that the eventsEncrypt and
Auth2 can be executed with probability at most(NU +
NS)/|passwd | in the last game. Finally, CryptoVerif shows

that OEKE preserves the secrecy ofsk u up to probability

NS +NU

|passwd |
+ (2qH0 + 3qH1 )SucccdhG (t′) + 2p′′coll

and satisfies the correspondences (1) and (2) with public
variables{sk u} up to probability

NS +NU

|passwd |
+ (4qH0 + 6qH1 )SucccdhG (t′) + p′′coll

wheret′ = t+(2qH0+3qH1+qD+2NU+2NP+NS)τexp
and the terms inp′′coll come from elimination of collisions
between hashes and between group elements:p′′coll ≤ (NS+
NU + qH1 ×NU + qH1 2)/|hash1 |+ (qD ×NU ×NP +
NU 2×NP+qD×NU ×NS+NU 2×NS+2qH1 ×NP+
4qE ×NP+4qE×NS+4NP2+3NS2+2.5qD2+9NP×
NU + 9NU × NS + 7NS × qD + 6NP × qD + 10NS ×
NP +12.5NU 2+2qD× qE + qH1 ×NU +2qH0 ×NU +
4NU×qD+3NU×qE+1.5qE2+6NS+10NU )/|G|. The
main term in this probability is(NS +NU )/|passwd |: the
adversary can test at most one password per session with the
client or the server (active attack), which is the best bound
we can hope. In contrast, [55] yields a bound of at most 4
passwords per session. In Section IV-A, by applying our im-
provement of the computation of probabilities to the manual
proof of [55], we obtained the same first term as CryptoVerif,
and even better second and third terms. CryptoVerif obtains
a second term larger than in Section IV-A because it counts
several Diffie-Hellman queries, which in fact correspond to
the same query, and because the CDH assumption does not
benefit from the improvement of Lemma 2, points 4 and 5:
the probability of breaking CDH is taken into account using
Lemma 2, point 3, so it is multiplied by 2.

V. CONCLUSION

We have proved the security of OEKE using the tool
CryptoVerif. This proof provides additional confidence that
the protocol is correct. Moreover, we have improved the
probability bound given in [55]: we have shown that the
adversary can test at most one password per session with
the client or with the server, which is the optimal result.
OEKE is a non-trivial case study, which is interesting on
its own. It was also an opportunity to implement many
extensions to CryptoVerif, which will be useful for proving
many other protocols. We have already used the model of
CDH to prove a signed Diffie-Hellman protocol. We plan to
apply these extensions to other protocols, such as IKEv2 or
SSH, which also rely on Diffie-Hellman. Our improvement
of the computation of probabilities is also of general interest,
and applies to manual proofs as well as CryptoVerif proofs.
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[45] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,
“Computer-aided security proofs for the working cryptogra-
pher,” in CRYPTO 2011, 2011, to appear.

[46] D. Nowak, “A framework for game-based security proofs,”
in ICICS 2007, ser. LNCS, vol. 4861. Springer, 2007, pp.
319–333.

[47] ——, “On formal verification of arithmetic-based crypto-
graphic primitives,” in ICISC 2008, ser. LNCS, vol. 5461.
Springer, 2008, pp. 368–382.

[48] R. Affeldt, D. Nowak, and K. Yamada, “Certifying assembly
with formal cryptographic proofs: the case of BBS,” in
AVoCS’09, ser. Electronic Communications of the EASST,
vol. 23, 2009.

[49] B. Blanchet, “A computationally sound mechanized prover for
security protocols,”IEEE Transactions on Dependable and
Secure Computing, vol. 5, no. 4, pp. 193–207, 2008.

[50] B. Blanchet and D. Pointcheval, “Automated security proofs
with sequences of games,” inCRYPTO 2006, ser. LNCS, vol.
4117. Springer, 2006, pp. 537–554.

[51] P. Laud, “Handling encryption in an analysis for secureinfor-
mation flow,” in ESOP’03, ser. LNCS, vol. 2618. Springer,
2003, pp. 159–173.

[52] ——, “Symmetric encryption in automatic analyses for confi-
dentiality against active adversaries,” inIEEE Symposium on
Security and Privacy, 2004, pp. 71–85.
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APPENDIX A.
BASIC DEFINITIONS AND PROPERTIES

This appendix recalls and sometimes adapts the definitions
of the basic concepts used by CryptoVerif. In CryptoVerif,
games are represented in a process calculus. A similar
calculus was presented in detail in [49], using channels
instead of oracles and asymptotic security instead of exact
security. The syntax of this calculus is recalled in Figure 5.

This calculus uses parameters, denoted byn, which rep-
resent integer values. This calculus also uses types, denoted
by T , corresponding to subsets ofbitstring ∪ {⊥} where
bitstring is the set of all bitstrings and⊥ is a special
symbol. We say that a type islarge when its cardinal is
large enough so that we can harmlessly eliminate collisions
between random values of this type. Particular types are
predefined:bool = {true, false}, wherefalse is 0 andtrue
is 1; bitstring; bitstring⊥ = bitstring ∪ {⊥}; [1, n] where
n is a parameter. (We consider integers as bitstrings without
leading zeroes.)

The calculus also uses function symbolsf . Each function
symbol comes with a type declarationf : T1×. . .×Tm → T ,
and represents a function fromm-tuples of bitstrings or⊥
in T1 × . . . × Tm to a bitstring or⊥. Particular functions
are predefined, and some of them use the infix notation:
M = N for the equality test,M 6= N for the inequality test
(both taking two values of the same typeT and returning a
value of typebool ), M ∨N for the boolean or,M ∧N for
the boolean and,¬M for the boolean negation (taking and
returning values of typebool ).

In this calculus, terms represent computations on bit-
strings. The replication indexi is an integer which serves
in distinguishing different copies of a replicated process
foreach i ≤ n do Q. (Replication indices are typically
used as array indices.) The variable accessx[M1, . . . ,Mm]
returns the content of the cell of indicesM1, . . . ,Mm of the
m-dimensional array variablex. The function application
f(M1, . . . ,Mm) returns the result of applying functionf to
M1, . . . ,Mm.

The calculus distinguishes two categories of processes:
oracle definitionsQ consist of a set of definitions of or-
acles, while oracle bodiesP describe the content of an
oracle definition. Oracle bodies perform some computations
and return a result. After returning the result, they may

M,N ::= terms
i replication index
x[M1, . . . ,Mm] variable access
f(M1, . . . ,Mm) function application

FC ::= find condition
M term
x[̃i] : T ←M ;FC assignment
if defined(M1, . . . ,Ml) ∧M

then FC elseFC′ conditional
find[unique?] (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ FCj

then FC′
j) elseFC array lookup

Q ::= oracle definitions
0 nil
Q | Q′ parallel composition
foreach i ≤ n do Q n parallel copies
newOracleO;Q restriction for oracles
O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P oracle definition

P ::= oracle body

x[̃i]
R
← T ;P random choice

x[̃i] : T ←M ;P assignment
if defined(M1, . . . ,Ml) ∧M

then P elseP ′ conditional
find[unique?] (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj ) ∧ FCj

then Pj) elseP array lookup
event e(M1, . . . ,Mm);P event
(x1 [̃i] : T1, . . . , xk′ [̃i] : Tk′)← oracle call
O[M1, . . . ,Ml](N1, . . . , Nk);P elseP ′

return (N1, . . . , Nk);Q return
end end
abort abort

C ::= contexts
[ ] hole
C | Q parallel composition
Q | C parallel composition
newOracleO;C restriction for oracles

Figure 5. Syntax of the process calculus

define new oracles. (An oracle definitionQ follows the
return (N1, . . . , Nk) instruction.)

The nil oracle definition 0 defines no oracle;Q | Q′ is
the parallel composition ofQ andQ′: it makes available
both oracles defined inQ and inQ′; foreach i ≤ n do Q
representsn copies ofQ in parallel, each with a different
value of i ∈ [1, n]. The constructnewOracle O;Q hides
oracleO outsideQ: oracleO can be called only insideQ.
The oracle definitionO[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P
defines an oracleO, taking argumentsx1, . . . , xk of types
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T1, . . . , Tk respectively, and computed as described in oracle
bodyP , whereĩ denotes a tuplei1, . . . , im.

The random choicex[̃i]
R
← T ;P chooses a new random

number uniformly in T , stores it in x[̃i], and executes
P . Function symbols represent deterministic functions, so
all random numbers must be chosen byx[̃i]

R
← T . The

assignmentx[̃i] : T ← M ;P stores the bitstring value of
M (which must be inT ) in x[̃i] and executesP .

Next, we explain the array lookupfind (
⊕m

j=1 uj1 [̃i] ≤

nj1, . . . , ujmj
[̃i] ≤ njmj

suchthat defined(Mj1, . . . ,Mjlj )
∧ FCj then Pj) elseP . The order and array indices on
tuples are taken component-wise, so for instance,uj1 [̃i] ≤
nj1, . . . , ujmj

[̃i] ≤ njmj
can be abbreviated̃uj [̃i] ≤ ñj .

A simple example is the following:find u ≤ n suchthat
defined(x[u]) ∧ x[u] = a then P ′ elseP tries to find an
index u such thatx[u] is defined andx[u] = a, and when
such au is found, it executesP ′ with that value ofu;
otherwise, it executesP . In other words, thisfind construct
looks for the valuea in the arrayx, and whena is found,
it stores inu an index such thatx[u] = a. More generally,
find u1 [̃i] ≤ n1, . . . , um [̃i] ≤ nm suchthat defined(M1,
. . . ,Ml) ∧ FC then P ′ else P tries to find values of
u1, . . . , um for which M1, . . . ,Ml are defined andFC is
true. In case of success, it executesP ′. In case of failure,
it executesP . This is further generalized tom branches:
find (

⊕m
j=1 uj1 [̃i] ≤ nj1, . . . , ujmj

[̃i] ≤ njmj
suchthat

defined(Mj1, . . . ,Mjlj ) ∧ FCj then Pj) else P tries to
find a branchj in [1,m] such that there are values ofuj1,
. . . , ujmj

for whichMj1, . . . ,Mjlj are defined andFCj is
true. In case of success, it executesPj . In case of failure
for all branches, it executesP . More formally, it evaluates
the conditionsdefined(Mj1, . . . ,Mjlj ) ∧ FCj for each j
and each value ofuj1 [̃i], . . . , ujmj

[̃i] in [1, nj1] × . . . ×
[1, njmj

]. If none of these conditions istrue, it executes
P . Otherwise, it chooses randomly with (almost) uniform
probability onej and one value ofuj1 [̃i], . . . , ujmj

[̃i] such
that the corresponding condition is true, and executesPj .
(When the number of possibilities is not a power of 2, a
probabilistic bounded-time Turing machine cannot choose
these values exactly with uniform probability, but it can
choose them with a probability distribution as close as
we wish to uniform.) Optionally, one may add a[unique]
modifier to find, represented in Figure 5 by[unique?].
When this modifier is present and there are several values of
j, uj1 [̃i], . . . , ujmj

[̃i] such that the corresponding condition
is true, we execute the eventNonUnique and abort the game.
The find conditionsFC can themselves contain not only
terms but also assignments, conditionals, and array lookups.

The processif defined(M1, . . . ,Ml) ∧ M then P else
P ′ is syntactic sugar forfind suchthat defined(M1, . . . ,
Ml) ∧M then P elseP ′.

The constructevent e(M1, . . . ,Mm);P executes the
evente(M1, . . . ,Mm), then executesP . Events just record

that a certain program point has been reached, with certain
values of the arguments of the event. They do not influence
the execution of the rest of the process.

The oracle call(x1 [̃i] : T1, . . . , xk′ [̃i] : Tk′) ← O[M1,
. . . ,Ml](N1, . . . , Nk);P else P ′ calls oracleO[M1, . . . ,
Ml] with argumentsN1, . . . , Nk. When this oracle returns a
result byreturn (N ′

1, . . . , N
′
k′), this result is stored inx1 [̃i],

. . . , xk′ [̃i] and the process executesP . When the oracle
O[M1, . . . ,Ml] terminates byend, the process executesP ′.
(Returning a result byreturn corresponds to the normal
termination of the oracleO, while terminating withend
corresponds to abnormal termination.) Finally, the instruc-
tion abort aborts the game: the whole game terminates
immediately and returns the special valueabort.

To lighten notations,∧ true and defined() ∧ may be
omitted in conditions ofif andfind. Moreover,else end, a
trailing 0, or a trailingend may be omitted. Types may be
omitted when they can be inferred.

Thecurrent replication indicesat a certain program point
in a process arei1, . . . , im when the considered program
point is under foreach i1 ≤ n1 do . . . foreach im ≤
nm do . We abbreviatex[i1, . . . , im] by x when i1, . . . , im
are the current replication indices, but it should be kept in
mind that this is only an abbreviation. Similarly, an oracle
definition O[i1, . . . , im](. . .) := P under foreach i1 ≤
n1 . . . foreach im ≤ nm is abbreviatedO(. . .) := P .
Variables and oracles defined underforeachmust be indexed
by the current replication indices: for exampleforeach i1 ≤
n1 do . . . foreach im ≤ nm do . . . x[i1, . . . , im] : T ←
M ; . . .

We require somewell-formedness invariantsto guaran-
tee that several definitions of the same oracle cannot be
simultaneously available, that bitstrings are of their expected
type, and that arrays are used properly (that each cell of an
array is assigned at most once during execution, and that
variables are accessed only after being initialized). Formally,
we require the following invariants:

Invariant 1 (Single definition for oracles) The process
Q0 satisfies Invariant 1 if and only if

1) in every definition ofO[i1, . . . , im] in Q0, the indices
i1, . . . , im of O are the current replication indices at
that definition, and

2) two different definitions of the same oracleO in Q0

are in different branches of afind (or if ).

Invariant 1 guarantees that each oracle is defined at most
once for each value of its indices. (Indeed, item 2 shows
that only one definition of each oracle can be available for
given indices in each trace.)

Invariant 2 (Single definition for variables) The process
Q0 satisfies Invariant 2 if and only if

17



1) in every definition ofx[i1, . . . , im] in Q0, the indices
i1, . . . , im of x are the current replication indices at
that definition, and

2) two different definitions of the same variablex in Q0

are in different branches of afind (or if ).

Similarly to the previous invariant, Invariant 2 guarantees
that each variable is assigned at most once for each value
of its indices.

Invariant 3 (Defined variables) The processQ0 satisfies
Invariant 3 if and only if every occurrence of a variable
accessx[M1, . . . ,Mm] in Q0 is either

• syntactically under the definition ofx[M1, . . . ,Mm]
(in which caseM1, . . . ,Mm are in fact the current
replication indices at the definition ofx);

• or in a defined condition in afind construct;
• or in FC′

j or Pj in a process of the formfind

(
⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat defined(M ′
j1, . . . ,M

′
jlj

)∧
FC′

j then Pj) else P where for somek ≤ lj ,
x[M1, . . . ,Mm] is a subterm ofM ′

jk;
• or in FC′

j or FCj in a find condition of the form

find (
⊕m′′

j=1 ũj [̃i] ≤ ñj suchthat defined(M ′
j1, . . . ,

M ′
jlj

) ∧ FC′
j then FCj) else FC where for some

k ≤ lj , x[M1, . . . ,Mm] is a subterm ofM ′
jk.

Invariant 3 guarantees that variables can be accessed only
when they have been initialized. It checks that the definition
of the variable access is either in scope (first item) or
checked by thedefined condition of afind (last two items).
A variable access that does not correspond to the first item
of Invariant 3 is called anarray access. We furthermore
require the following invariant.

Invariant 4 (Variables defined in find conditions) The
processQ0 satisfies Invariant 4 if and only if the variables
defined in conditions offind have no array accesses.

This invariant did not appear in previous versions of the
calculus because conditions offind were restricted to be
terms.

We use a type system (see [49, Appendix A]) to check
that bitstrings of the proper type are passed to each function
and that array indices are used correctly.

Invariant 5 (Typing) The processQ0 satisfies Invariant 5
if and only if it is well-typed.

We require the adversary to be well-typed. This requirement
does not restrict its computing power, because it can always
define type-cast functionsf : T → T ′ to bypass the type
system. Similarly, the type system does not restrict the class
of protocols that we consider, since the protocol may contain
type-cast functions. The type system just makes explicit

which set of bitstrings may appear at each point of the
protocol.

These invariants are checked by the prover for the ini-
tial game and preserved by all game transformations. We
suppose that all games satisfy these invariants.

We use a contextC to represent an adversary. A context
is a process with a hole. In this paper, we consider only
evaluation contexts, generated by the grammar given at the
bottom of Figure 5. A contextC is put around a processQ
by C[Q]. This construct means thatQ is put in parallel with
some other processQ′ contained inC, possibly hiding some
oracles defined inQ, so that, when consideringC′[C[Q]],
C′ cannot call these oracles.

A contextC is said to beacceptablefor Q with public
variablesV if and only if the common variables ofC andQ
are inV , andC[Q] satisfies the well-formedness invariants.

We nameOstart the oracle called to start the experiment.
We denote byPr[Q : D] the probability that, for some
sequence of eventsE and bitstringa, when oracleOstart()
is called,Q executes exactly the sequenceE , in the same
order, and returns the resulta, such that the algorithm
D(E , a) returns true.

We denote byvar(Q) (resp.var(C)) the set of variables
of the processQ (resp. contextC).

The following lemma is a straightforward consequence of
Definition 1:

Lemma 3 1) Q ≈V
0 Q.

2) ≈V
p is symmetric.

3) If Q ≈V
p Q′ andQ′ ≈V

p′ Q′′, thenQ ≈V
p+p′ Q′′.

4) If Q ≈V
p Q′ andC is a context acceptable forQ and

Q′ with public variablesV , thenC[Q] ≈V ′

p′ C[Q′],
where p′(C′, tD) = p(C′[C[ ]], tD) and V ′ ⊆ V ∪
var(C).

APPENDIX B.
THE COMPUTATIONAL DIFFIE-HELLMAN ASSUMPTION

A. Proof of the Reduction

First, let us rephrase the two games:
G1: the adversary is allowed to query

• for group elements, via oraclesOA and OB:
OA[i]()3 provides agai element for a randomai
(at mostna queries), andOB[j]() provides agbj

element for a randombj (at mostnb queries);
• for discrete logarithms, via oraclesOa and Ob:

Oa[i]() outputsai (at most#Oa ≤ na queries),
Ob[j]() outputsbj (at most#Ob ≤ nb queries);

• for Diffie-Hellman decisions, via ODDHa

and ODDHb oracles: ODDHa[i](m, j) checks
whetherm = gaibj (at most naDDH queries
for each a, at most #ODDHa queries total),

3The argument[i] between brackets is implicit in the CryptoVerif syntax
and corresponds to the replication index.
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ODDHb[j](m, i) checks whetherm = gaibj

(at most nbDDH queries for eachb, at most
#ODDHb queries total). We can thus combine
them into DDH(m, ai, bj) queries (at most
qddh = #ODDHa+#ODDHb ≤ na ·nb queries)
which check whetherm = gaibj .

G2: the adversary is allowed to query

• OA andOB oracles, that answer as above;
• Oa andOb oracles, that answer as above;
• for DDH(m, ai, bj), Diffie-Hellman decisions, or-

acle. But in this game, the correct answer is given
if either ai or bj has been askedbeforefor anOa
or Ob query. Otherwise, the answer is ’false’.

We thus insist on the fact that the 2 games differ on
DDH(m, ai, bj) Diffie-Hellman decisions queries, if neither
ai nor bj has been askedbeforefor anOa or Ob query. In
the first game, the answer is the correct one; in the second
game, the answer is always ’false’.

Let us be given aCDH tuple(X = gx, Y = gy) for which
we want to computeZ = gxy. And we provide a simulator
A for these games:

• For the queryOA[i], one chooses a random bitγi with

biaspa, and a random scalarαi
R
← Zp, and setsAi =

Xγigαi . This makesai = αi + γix, and thusai = αi

if γi = 0;
• For the queryOB[j], one chooses a random bitδj with

biaspb, and a random scalarβj
R
← Zq, and setsBj =

Y δjgβj . This makesbj = βj + δjx, and thusbj = βj
if δj = 0;

• For the queryOa[i], with probability1−pa, γi = 0, and
then the correct answerαi can be sent. However, with
probabilitypa on the currenta, the simulation fails;

• For the queryOb[j], with probability1−pb, δj = 0, and
then the correct answerβj can be sent. However, with
probabilitypb on the currentb, the simulation fails.

Since there are at most#Oa Oa queries and#Ob Ob

queries, with probability at least(1−pa)#Oa(1−pb)
#Ob, the

simulation does not fail, and is perfectly indistinguishable
from the real oraclesOA, OB, Oa, and Ob. Let us now
consider theDDH Diffie-Hellman Decision queries, and the
simulation of the answers when no failure happens during
Oa andOb simulation: for anyDDH(m, ai, bj),

• if one of theai or bj has been asked anOa orOb-query
(and did not lead to a failure), which means that either
γi = 0 or δj = 0, then one can either test whether
m = (gbj )αi or not, or whetherm = (gai)βj or not,
and provide the correct answer. This leads to a perfect
simulation of theDDH oracle;

• otherwise, one can safely answer ’false’, which leads
to a perfect simulation of theDDH oracle in the second
game. However, it differs from the first game oracle if
m = gaibj .

As a consequence, the two games differ if for oneDDH

query,m = gaibj but neitherai or bj has been asked for
anOa or Ob query. In this case, with probabilitypapb, both
γi = 1 andδj = 1:

m = Z ×XβjY αigαiβj .

If the two above games differ with probabilityε, then such
a criticalDDH query happens with probabilityε, since our
simulation is perfectly indistinguishable from the second
game and such a critical query is the unique event that makes
the two games different.

Let us randomly choosek between1 and qddh, and bet
that thek-th DDH query is the first critical one, which is
true with probabilityε/qddh. Furthermore, with probability
(1 − pa)

#Oa(1 − pb)
#Obpapb the simulation did not fail

and the criticalDDH query leads to the expectedZ value,
by computingZ = m/XβjY αigαiβj . This means that our
simulator A achievesSucccdhG (A) ≥ (1 − pa)

#Oa(1 −
pb)

#Obpapbε/qddh, and is bounded bySucccdhG (t + (na +
nb + qddh)τexp):

ε ≤
qddh × SucccdhG (t+ (na + nb + qddh)τexp)

(1− pa)#Oa(1− pb)#Obpapb

Note that, two cases appear for the functionx 7→ x(1−x)n:

• if n = 0, then the maximum is 1, forx = 1;
• if n ≥ 1, then the maximum is greater thane−2/n ≥

1/7.4n, for x = 1/(n+ 1).

By choosingpa = 1/(#Oa+ 1) andpb = 1/(#Ob+ 1) in
the latter case, we get1/(1− pa)#Oapa ≤ max(1, 7.4#Oa)
and1/(1− pb)#Obpb ≤ max(1, 7.4#Ob), so

ε ≤ (#ODDHa+#ODDHb)×

max(1, 7.4#Oa)×max(1, 7.4#Ob)×

SucccdhG (t+ (na + nb +#ODDHa+#ODDHb)τexp).

One could use Shoup’s amplification technique [64] to
eliminate the factor#ODDHa + #ODDHb, but at a com-
putational cost: one runs the attack twice with different ran-
domizations of the CDH instance, and looks for a collision
in the two executions: if the attack succeeded twice, we have
a collision on the correct answer; if the attack fails once, the
collision probability is negligible.

B. Additional Modeling

In the CryptoVerif implementation, the equivalence
L3 ≈p3 R3 additionally contains three proof strategy in-
dications, which we have omitted in Figure 4:

• In R3, we use the symbolexp′ instead ofexp, al-
though the two symbols represent the same function
on bitstrings. This technique avoids infinite loops: if
we usedexp in R3, R3 would be an instance ofL3,
so the transformation ofL3 into R3 could be applied
again onR3, leading to an infinite loop. By using
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exp′, we prevent applying the transformation again on
occurrences that have already been transformed.

• In L3, the oraclesOa and Ob are marked with the
integer “[3]”. CryptoVerif tries to use oracles with the
lowest mark first. (No mark means [0].) Here, the goal
is to make sure thatga is obtained by callingOA and
not by callingOa to obtaina and then computingga

(and similarly forgab obtained by callingODDHa or
ODDHb rather thanOa and Ob). Indeed, if Oa is
called, then the CDH assumption on thata can no
longer be applied. Therefore, CryptoVerif should use
OA, OB, ODDHa, or ODDHb rather thanOa or Ob

where possible, hence we giveOa and Ob a higher
mark than the other oracles.

• In L3, the oracleODDHa is marked[useful change].
This prevents the application of the transformation of
L3 into R3 when the initial game can be encoded
without callingODDHa. Indeed, the transformation has
a useful effect only whenODDHa or ODDHb are
called and, by symmetry, we can require thatODDHa

is called.

Moreover, we use the following properties. The multipli-
cation mult is commutative and we have the following
equalities:

∀a : G, ∀x : Z , ∀y : Z ,

exp(exp(a, x), y) = exp(a,mult(x, y))
(3)

∀x : Z , ∀y : Z , (exp(g, x) = exp(g, y)) = (x = y) (4)

∀x : Z , ∀y : Z , (exp′(g, x) = exp′(g, y)) = (x = y) (5)

∀x : Z , ∀y : Z , ∀y′ : Z ,

(mult(x, y) = mult(x, y′)) = (y = y′)
(6)

The commutativity ofmult combined with (3) shows that
(ga)b = gab = gba = (gb)a, the standard equality that
shows that the client and the server compute the same key
in the Diffie-Hellman key exchange. Equations (4) and (5)
express the injectivity ofexp and exp′ respectively. They
hold becauseg is a generator of the groupG of orderq and
x, y ∈ [1, q − 1]. Equation (6) is obtained by dividing the
equalityxy = xy′ by x in the groupZ∗

q .
The statement

collision x1 R
← Z ;x2

R
← Z ;x3

R
← Z ;x4

R
← Z ;

return (mult(x1, x2) = mult(x3, x4))

≈1/|Z| return (false).

(7)

means that, whenx1, x2, x3, x4 are uniformly randomly
and independently chosen inZ , except with probability
1/|Z|, one can replacemult(x1, x2) = mult(x3, x4) with
false. Indeed,mult(x1, x2) = mult(x3, x4) if and only if
x1 × x2/x3 = x4 so the probability ofmult(x1, x2) =
mult(x3, x4) is the probability of choosing anx4 in Z equal
to a givenx1×x2/x3, that is,1/|Z|. The formulas (4), (5),

(6), and (7) allow CryptoVerif to simplify equalities between
exponentials.

If we choose uniformlyx in Z and computegx, the result
is a uniformly distributed group element, so we have the
equivalence

foreach i ≤ n do x R
← Z ;OX() := return (exp(g, x))

≈0 foreach i ≤ n do X R
← G;OX() := return (X).

(8)

We have a similar equivalence forexp′. Although equiva-
lences are symmetric, CryptoVerif always applies them from
left to right, replacing the code of oracles in the left-hand
side with the corresponding code in the right-hand side. For
this reason, we state the symmetric equivalence explicitly:

foreach i ≤ n do X R
← G;OX() := return (X)

≈0 [manual]

foreach i ≤ n do x
R
← Z ;OX() := return (exp(g, x)).

(9)

However, this equivalence is applied only manually, as
indicated by[manual]; otherwise, it would yield an infinite
loop by applying alternatively (8) and (9). We use the
following more restricted form for automatic proofs

foreach i ≤ n do X R
← G;

(OX() := return (X) |

foreach i′ ≤ n ′ do OXm(m : Z )

[useful change ] := return (exp(X,m)))

≈0 foreach i ≤ n do x R
← Z ;

(OX() := return (exp(g, x)) |

foreach i′ ≤ n ′ do OXm(m : Z ) :=

return (exp(g,mult(x,m)))).

(10)

which can be applied only whenX is used as argument of
exp.

APPENDIX C.
PROOFS OFLEMMAS 1 AND 2

Proof of Lemma 1: For Property 1, ifC[G′] does
not executee andD returns false, thenC[G] behaves like
C[G′] sinceC[G] andC[G′] differ only whene is executed,
so D also returns false on the execution ofC[G]. Hence
Pr[C[G′] : ¬(D∨ e)] ≤ Pr[C[G] : ¬D]. Property 1 follows.

For Property 2, if C[G] satisfies D = (D0 ∧
¬NonUnique) ∨ e1 ∨ . . . ∨ en, thenC[G] does not execute
NonUnique: this is clear by definition whenC[G] satisfies
D0 ∧ ¬NonUnique; when it satisfiese1 ∨ . . . ∨ en, C[G]
also does not executeNonUnique because one aborts imme-
diately after the eventse1, . . . , en and afterNonUnique, so
these events are pairwise incompatible. Hence,G′ behaves as
G whenC[G] satisfiesD. HencePr[C[G] : D] ≤ Pr[C[G′] :
D].
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Property 3 is an immediate consequence of Definition 1.
Property 4 is obvious.

Proof of Lemma 2: Property 1: By Lemma 1 (Prop-
erty 1),Pr[C[G | Rx] : S∨D] ≤ Pr[C[G′ | Rx] : S∨D∨e].
Moreover, ifC[G′ | Rx] executesS or NonUnique, C[G′ |
Rx] does not executee (since we abort immediately afterS,
NonUnique, ande), soC[G | Rx] behaves likeC[G′ | Rx],
thusC[G | Rx] also executesS or NonUnique. Therefore,
Pr[C[G′ | Rx] : S ∨ NonUnique] ≤ Pr[C[G | Rx] :
S ∨ NonUnique]. Property 1 follows.

Property 2: We have

Pr[C[G | Rx] : ¬(S ∨ NonUnique)]

≤ Pr[C[G′ | Rx] : ¬(S ∨ NonUnique)]

since, whenG does not executeS nor NonUnique, a for-
tiori, it does not executeNonUnique, soG′ behaves asG.
Therefore,

− Pr[C[G | Rx] : S ∨ NonUnique]

≤ −Pr[C[G′ | Rx] : S ∨ NonUnique]

Moreover,

Pr[C[G | Rx] : S ∨D] ≤ Pr[C[G′ | Rx] : S ∨D]

since, whenG executesS or an event inD, it does not
executeNonUnique (because one aborts immediately after
S, the events inD, andNonUnique), soG′ behaves asG.
Property 2 follows.

Property 3: Lett = max(tS∨D, tS∨NonUnique). By defini-
tion of indistinguishability,

Pr[C[G | Rx] : S ∨D]

≤ p(C[[ ] | Rx], t) + Pr[C[G′ | Rx] : S ∨D]

and

Pr[C[G′ | Rx] : S ∨ NonUnique]

≤ p(C[[ ] | Rx], t) + Pr[C[G | Rx] : S ∨ NonUnique]

So

Adv
Secrecy
G (C,D) ≤ 2p(C[[ ] | Rx], t) + Adv

Secrecy
G′ (C,D)

Property 4 is obvious.
Property 5: When CryptoVerif proves the secrecy ofx in

gameG, it shows that only a certain set of variables depends
on value ofx, but the output messages and the control-flow
do not depend onx. Hence an execution ofC[G | Rx] that
calls oracleO′ (defined in Definition 2) in whichb = 1
sends the same messages and has the same value ofb′, as
the executions with the same random choices except that
b = 0, y[i] has the value ofx[u[i]], andx takes any value.
The execution withb = 1 executesS if and only if the
executions withb = 0 executeS.

Therefore,Pr[C[G | Rx] : S] = Pr[C[G | Rx] : S]. Since
we abort immediately after each eventS, e1, . . . , en, S is
incompatible withe1, . . . , en, so

Pr[C[G | Rx] : S ∨D]

= Pr[C[G | Rx] : S] + Pr[C[G | Rx] : D]

Hence

Adv
Secrecy
G (C,D)

= Pr[C[G | Rx] : S] + Pr[C[G | Rx] : D]

− Pr[C[G | Rx] : S ∨ NonUnique]

≤ Pr[C[G | Rx] : D]

APPENDIX D.
IMPROVED COMPUTATION OF PROBABILITIES FOR THE

MANUAL PROOF OFOEKE

To illustrate the use of our improved computation of prob-
abilities of Section IV-A, we apply it to the manual proof of
OEKE [55]. We just recall the structure of the proof and the
computation of probabilities, and refer the reader to [55] for
details of the proof. Let us consider the proof of semantic
security [55, Section 3.2]. The proof starts from a game
G0 that represents the OEKE protocol, in which we define
a test-query that returns either the session key or a random
value, depending on the value of a bitb, an eventS executed
when the adversary guessesb correctly, and an eventS
executed when the adversary guesses the wrong value of
b. The probability that the adversaryC guessesb correctly
in G0 is Pr[C[G0] : S], the probability that it guesses the
wrong value ofb is Pr[C[G0] : S] and the advantage of the
adversaryC in distinguishing the session key from a random
key isAdvakeoeke(C) = Pr[C[G0] : S]− Pr[C[G0] : S].

The proof then proceeds as follows. The gameG0 is trans-
formed into gamesG1, G2, G3, by eliminating collisions,
such that

G0 ≈ q2
E

2(q−1)

G1 ≈ qSqE
q−1

G2 ≈ 2q2
E
+q2

S
2(q−1)

+
q2
h

2l1+1

G3

where qS is the number of involved server instances,qE
is the number of encryption/decryption queries,qh is the
number of hash queries,l1 is the length of the output of
H1, q is the order ofG.

Then G3 is transformed intoG4 by inserting event
Encrypt. GameG4 is transformed intoG5 by excluding
traces in which a correct authenticator is guessed, so that
G4 ≈NS

2l1

G5 where NS is the number of sessions of

the serverS interacting with the adversary. GameG5 is
transformed intoG6 by inserting eventAuth′, andG6 is
transformed intoG7 by inserting eventAskH. Finally, one
evaluates the probability of the various events in gameG7:

Pr[C[G7] : Encrypt] ≤
NU

N
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Pr[C[G7] : Auth
′] ≤

NS

N
Pr[C[G7] : AskH] ≤ qhSucc

cdh
G (t′)

Pr[C[G7] : S] = Pr[C[G7] : S]

where the password in chosen in a dictionary of sizeN ,
NU is the number of sessions of the clientU interacting
with the adversary,NS is the number of sessions of the
serverS interacting with the adversary,NP is the number of
sessions between the clientU and serverS that the adversary
passively eavesdrops,t′ ≤ tC+(NU+NS+NP +qe+1)τG,
with qe denoting the number encryption/decryption queries
asked by the adversary andτG denoting the computation
time for an exponentiation inG.

From this proof, we can bound the advantageAdvakeoeke(C)
in G0. Let AdvakeG (C,D) = Pr[C[G] : S∨D]−Pr[C[G] : S]
as in Lemma 2. (Here,G already includes the test queries,
so we need not compose withRx in parallel; the event
NonUnique never occurs, so we omit it.) By Lemma 2,

Advakeoeke(C) = AdvakeG0
(C, false)

≤ 2pcoll0 + AdvakeG3
(C, false) (Lemma 2, Point 3)

wherepcoll0 =
q2E

2(q − 1)
+
qSqE
q − 1

+
2q2E + q2S
2(q − 1)

+
q2h

2l1+1

Advakeoeke(C)

≤ 2pcoll0 + AdvakeG4
(C,Encrypt) (Point 1)

≤ 2pcoll0 +
2NS

2l1
+ AdvakeG5

(C,Encrypt) (Point 3)

≤ 2pcoll0 +
2NS

2l1
+ AdvakeG6

(C,Encrypt ∨ Auth′)

(Point 1)

≤ 2pcoll0 +
2NS

2l1
+ AdvakeG7

(C,Encrypt ∨ Auth′ ∨ AskH)

(Point 1)

≤ 2pcoll0 +
2NS

2l1
+ Pr[C[G7] : Encrypt ∨ Auth′ ∨ AskH]

(Point 5)

≤ 2pcoll0 +
2NS

2l1
+
NU

N
+
NS

N
+ qhSucc

cdh
G (t′)

Moreover,

pcoll0 =
q2E + 2qSqE + 2q2E + q2S

2(q − 1)
+

q2h
2l1+1

≤
(2qE + qS)

2

2(q − 1)
+

q2h
2l1+1

≤
(2qe + 2NU + 3NS + 3NP )

2

2(q − 1)
+

q2h
2l1+1

sinceqE ≤ qe +NU +NS +Np andqS ≤ NS +NP . So

Advakeoeke(C) ≤
NU +NS

N
+ qhSucc

cdh
G (t′) +

(2qe + 2NU + 3NS + 3NP )
2

q − 1
+
q2h + 2NS

2l1

Similarly, for unilateral authentication [55, Section 3.3], we
use an eventAuth executed when the adversary submits
an authenticator accepted by the server and built by the
adversary itself, so the probability for an adversaryC to
make a server instance accept with no terminating client
partner is

Advc−auth
oeke (C) = Pr[C[G0] : Auth]

We obtain similarly by Lemma 1

Pr[C[G0] : Auth] ≤ pcoll0 +
NS

2l1
+

Pr[C[G7] : Auth ∨ Encrypt ∨ Auth′ ∨ AskH]

SinceG7 never executes eventAuth,

Pr

[
C[G7] :

Auth ∨ Encrypt

∨ Auth′ ∨ AskH

]
≤
NU

N
+
NS

N
+qhSucc

cdh
G (t′)

so

Advc−auth
oeke (C) ≤

NU +NS

N
+ qhSucc

cdh
G (t′) +

(2qe + 2NU + 3NS + 3NP )
2

2(q − 1)
+
q2h + 2NS

2l1+1

APPENDIX E.
NEW GAME TRANSFORMATIONS

The CryptoVerif proof of OEKE requires new game
transformations that we have implemented. We first describe
these games transformations, then summarize the proof
itself. For a better understanding, we recommend reading
Appendix A before reading this appendix.

A. The transformationmove array

The transformationmove array X delays the generation
of a random valueX until the point at which it is first used.
This transformation is implemented as a particular case of a
cryptographic transformation by the following equivalence:

foreach i ≤ n do X R
← T ;

(foreach iX ≤ nX do OX() := return (X) |
foreach ieq ≤ neq do Oeq(X ′ : T ) :=

return (X ′ = X))
≈#Oeq/|T | [manual]
foreach i ≤ n do
(foreach iX ≤ nX do OX() :=

find[unique] j ≤ nX suchthat defined(Y [j])

then return(Y [j]) elseY R
← T ; return (Y ) |

foreach ieq ≤ neq do Oeq(X ′ : T ) :=
find[unique] j ≤ nX suchthat defined(Y [j])
then return(X ′ = Y [j]) else return(false))

whereT is the type ofX . Two oracles are defined,OX
andOeq. In the left-hand side,OX returns the randomX
itself. In the right-hand side,OX uses a lookup to test if the
random value was already generated; if yes, it returns the
previously generated random valueY [j]; if no, it generates a
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fresh random valueY . Transforming the left-hand side into
the right-hand side therefore moves the generation of the
random numberX to the first call toOX, that is, the first
usage ofX . The oracleOeq provides an optimized treatment
of equality testsX ′ = X : when the random valueX was
not already generated, we returnfalse instead of generating
a freshX , so we exclude the case thatX ′ is equal to a
freshX . This case has probability1/|T | for each call to
Oeq, so the probability of distinguishing the two games is
#Oeq/|T |. (Notice that, similarly to the reasoning done in
Section III-B for the Random Oracle Model, there never
exist several choices ofj that satisfy the conditions of the
finds in the right-hand side of this equivalence, so thesefinds
can be marked[unique] without modifying their behavior.)

B. Extensions of simplification

We have also extended simplification with the following
transformations:

1) If some then branches of afind[unique] execute
the same code as theelse branch (up to renaming
of variables defined in these branches and that do
not have array accesses), and the variables bound in
the condition of thesethen branches have no array
accesses, then we remove thesethen branches.
Indeed, thesethen branches have the same effect as
the else branch. The hypotheses are needed for the
following reasons:

• The renamed variables must not have array ac-
cesses because renaming variables that have ar-
ray accesses requires transforming these array
accesses. The transformationmerge arrays pre-
sented in Section E-C below can rename variables
with array accesses.

• The variables bound in conditions of the removed
branches must not have array accesses, because
removing the definitions of these variables would
modify the behavior of the array accesses.

2) If all branches ofif or find execute the same code
(up to renaming of variables defined in these branches
and that do not have array accesses), and the variables
bound in the conditions of thethen branches have no
array accesses, then we replace thatif or find with its
elsebranch.
In this transformation, we ignore the array accesses
that occur in the conditions of thefind under consid-
eration, since these conditions will disappear after the
transformation.

3) If one of thethen branches of afind[unique] always
succeeds, we keep only that branch.
Indeed, the other branches are never taken: thefind
aborts when there are several choices.

4) We reorganize afind[unique] that occurs in athen

branch of afind[unique]: we transform

find[unique] (
⊕k

j=1
ũj ≤ ñj suchthat cj

then Pj) elseP

where Pj0 = find[unique] (
⊕k′

j′=1 ũ
′
j′ ≤ ñ′

j′

suchthat c′j′ then P ′
j′ ) elseP ′ into

find[unique] (
⊕

j=1..k,j 6=j0
ũj ≤ ñj suchthat cj
then Pj)

⊕ (
⊕k′

j′=1
ũj0 ≤ ñj0 , ũ

′
j′ ≤ ñ

′
j′ suchthat cj0 ∧ c

′
j′

then P ′
j′ )

else find[unique] ũj0 ≤ ñj0 suchthat cj0
then P ′ elseP

We advise renaming the variables̃uj0 to distinct
names, since they now have multiple definitions. This
transformation cannot be performed when thefinds are
not unique because it might change the probability of
taking each branch.

5) We reorganize afind[unique] that occurs in a condi-
tion of a find: we transform

find[unique?] (
⊕k

j=1
ũj ≤ ñj suchthat cj

then Pj) elseP

where cj0 = defined(M̃ ′) ∧ find[unique]
(
⊕k′

j′=1 ũ
′
j′ ≤ ñ′

j′ suchthat c′j′ then M ′
j′) else

false into

find[unique?] (
⊕

j=1..k,j 6=j0
ũj ≤ ñj suchthat cj
then Pj)

⊕ (
⊕k′

j′=1
ũj0 ≤ ñj0 , ũ

′
j′ ≤ ñ

′
j′ suchthat

defined(M̃ ′) ∧ c′j′ ∧M
′
j′ then Pj0)

elseP

The indication [unique?] corresponds to either
[unique] or empty. Thefind is marked[unique] after
transformation if the outerfind was [unique] before
transformation.

For all these transformations, the correctness proof
shows that, when the initial game does not execute event
NonUnique, the transformed game behaves in the same way
as the initial game. We can then apply point 2 of Lemmas 1
and 2 to bound the probability of attack.

C. The transformationmerge arrays

The transformationmerge arrays x11 . . . x1n, . . .,
xm1 . . . xmn merges the variablesxj1, . . . , xjn into a single
variablexj1 for eachj ≤ m. Each variablexjk must have a
single definition. For eachj ≤ n, the variablesxj1, . . . , xjn
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must have the same type and indices of the same type. They
must not be defined for the same value of their indices (that
is, xjk andxjk′ must be defined in different branches ofif
or find whenk 6= k′). The arraysxj1, . . . , xjn are merged
into a single arrayxj1 for eachj ≤ m. The transformation
proceeds as follows:

• If, for each k ≤ n, x1k is defined abovexjk for all
1 < j < m, we introduce a fresh variablebk defined by
bk ← mark just after the definition ofx1k. We callbk a
branch variable; it is used to detect thatxjk has been
defined:xjk[M̃ ] is defined before the transformation
if and only if xj1[M̃ ] and bk[M̃ ] are defined after the
transformation, andxj1[M̃ ] after the transformation is
equal toxjk [M̃ ] before the transformation.

• For eachfind that requires that some variablesxjk are
defined, we leave the branches that do not require the
definition ofxjk unchanged and we try to transform the
other branchesFB l = ũl ≤ ñl suchthat defined(M̃l)∧
Ml then Pl as follows.

1) We require that, for eachl, there exists a distinct
k such that thedefined condition ofFB l refers
to xjk for somej but not toxjk′ for any otherk′.
(Otherwise, the transformation fails.) We denote
by l(k) the value ofl that corresponds tok.

2) We choose a “target” branchFBT = ũ ≤
ñ suchthat defined(M̃) ∧ M then P : if the
defined condition of some branchFB l refers to
xj1 for some j, we choose that branchFB l.
Otherwise, we choose any branchFB l and re-
name its variablesxjk to xj1. We require that
the referencesxj1[M̃ ] to the variablesxj1 in the
definedcondition of the target branch all have the
same indicesM̃ . If the transformation succeeds,
we will replace all branchesFB l with the target
branch.

3) The branchFBT after transformation is equiv-
alent to branches

⊕n
k=1 FBT{xjk/xj1, j =

1...m} before transformation. We show that these
branches are equivalent to the branchesFB l.
For eachk ≤ n,

– if l(k) exists, then we show that
FBT{xjk/xj1, j = 1...m} is equivalent
to FB l(k). Let l = l(k). We first
rename the variables̃ul of FB l to the
variables ũ of the target branch. For
simplicity, we still denote byFB l = ũl ≤
ñl suchthat defined(M̃l) ∧ Ml then Pl the
obtained branch. Then we show that, if the
variables ofM̃l are defined, then the variables
of M̃{xjk/xj1, j = 1...m} are defined, and
conversely;Ml = M{xjk/xj1, j = 1...m}
(knowing the equalities that hold
at that program point), andPl and

P{xjk/xj1, j = 1...m} execute the same
code up to renaming of variables defined in
Pl or P{xjk/xj1, j = 1...m} and that do not
have array accesses.

– if l(k) does not exist, then we show that
FBT{xjk/xj1, j = 1...m} can in fact not be
executed, because its condition cannot hold: the
variables ofM̃{xjk/xj1, j = 1...m} cannot
be simultaneously defined orM{xjk/xj1, j =
1...m} cannot hold.

If the transformation above fails and we have in-
troduced branch variables, we replace each condition
defined(xjk [M̃ ]) with defined(xj1[M̃ ], bk[M̃ ]).
If the transformation above fails and we have not
introduced branch variables, the wholemerge arrays

transformation fails.
• The definition of xjk is renamed toxj1 and each

reference toxjk[M̃ ] is renamed toxj1[M̃ ].

D. The transformationmerge branches

The transformationmerge branches extends again the
first two extensions of simplification mentioned in Ap-
pendix E-B. Instead of applying these transformations to
a single find at a time, merge branches applies them
globally to allfinds of the game for which the simplification
is possible. As a consequence, one can ignore array accesses
to all variables in conditions offind that will be removed,
so more transformations are enabled.

APPENDIX F.
THE PROOF IN CRYPTOVERIF

A. Initial configuration

First, we configure CryptoVerif to iterate the
simplification of games at most 3 times, by
set maxIterSimplif = 3, instead of at most twice
by default. The complexity of the intermediate games of
OEKE requires more simplifications than in many other
examples. One can also iterate simplification until a fixpoint
is reached, which is slightly slower but works for all
examples.

B. EventsAuth andEncrypt

As explained in Section IV-A, we manually introduce
eventsAuth and Encrypt and distinguish cases in hash
functions.

C. Automatic Steps

Then, we can use the automatic proof strategy of Cryp-
toVerif, by commandauto. Basically, this strategy consists
in applying all possible cryptographic transformations (com-
ing from equivalencesL ≈p R) and simplifying the game
after each such transformation. When the transformations
fail, they advise syntactic transformations that could make
them succeed; these transformations are executed and the
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cryptographic transformation is then retried [49, Section5].
This automatic strategy performs the following transforma-
tions:

1) It renames each occurrence ofK u to a distinct name.
Indeed, as part ofcrypto icm(enc), the definition of
K u has been copied once for each possible origin
of Y u (a previous encryption/decryption query, or a
freshY u if no previous query matches). After this
renaming, simplification can simplify many tests of
the form K u = K s that appeared as a result of
the transformation of the hash functions; it uses the
values ofK u andK s as well as properties (4), (6),
and (7).

2) Using equivalence (10) twice, it replaces the genera-
tion of a fresh group elementX with the generation
of an exponentx and the computationX ← exp(g, x)
as a result of decryption when no previous encryp-
tion/decryption query matches, in the decryption ora-
cle and in the client.

3) It removes assignments on the copies ofK u created
in step 1 above, onK s (the key of the server), and
Kp (the key used in passive eavesdroppings), thus
replacing these variables with their values everywhere
in the game.

4) It can then apply the CDH assumption (Section III-D).
The oraclesOa and Ob are in fact not used in this
example (the code that would use them has been
removed by introducing events), so the situation is
particularly simple: expressions of the formm =
exp(g,mult(a[i], b[j])) are replaced withfalse.

5) At this point, CryptoVerif can bound the probability
of breaking all desired properties (secrecy ofsk u,
correspondences (1) and (2)). However, the obtained
bound depends on the probability of executing the
eventsAuth and Encrypt which are not eliminated
yet, so the proof continues in order to eliminate these
events.

6) Using the version of equivalence (8) forexp′, we
replace the computation ofexp′(g, x) for a fresh
random x with the generation of a random group
elementX , for the result of the decryption oracle and
for the computations ofYp andXp (the values ofY
andX in passive eavesdroppings),Y (in the server),
Y u andX (in the client).

After these transformations, no automatic step can be per-
formed, so the automatic proof stops.

D. Reorganizing random number generations

Using manually guided transformations, we can eliminate
the random number generations forY . We consider the three
generations ofY in turn.

• First, Yu (the value of Y in the client), when
it is a fresh random group element. This variable

is now named@6 X 416 , so we use the com-
mand move array ”@6 X 416” to delay its gener-
ation. The game is automatically simplified after this
command, which reorganizesfind constructs. Before
move array, @6 X 416 is used in the following
ways:

1) to compare it with the argument of encryption
queries in the encryption oracle. This usage is
transformed using oracleOeq of the transforma-
tion move array; no random value is generated.

2) as a result of decryption queries in the decryption
oracle. This usage is transformed using oracle
OX; the generation of@6 X 416 in the client
is replaced with a generation of@2 Y 418 in
the decryption oracle.

3) as a result of the decryption querydec(Y ⋆, pw) in
the client. That result is unused, so@6 X 416

appears only in adefined condition, which Cryp-
toVerif leaves unchanged.

Therefore, in the decryption oracle, when the result
was not generated before, we have two cases: ei-
ther the result was in fact anYu whose genera-
tion has been delayed, and it is now generated as
@2 Y 418 , or the query is really a fresh decryp-
tion query, and the result is named@6 X 412 .
We would like to merge these two cases. However,
merge branches does not succeed directly because
these variables have array accesses, so we first ap-
ply merge arrays ”@6 X 412” ”@2 Y 418 ” to
merge@2 Y 418 into @6 X 412 . Furthermore, in
some branches that we would like to merge, some
random number generations are not ordered in the
same way: in the client, the authenticator named
@11 r 130 is generated sometimes before and some-
times after the shared keysk u. We need to make
sure that they are in the same order in all branches for
merge branches to succeed. This is done by the trans-
formation move binder @11 r 130 , which moves
definitions of@11 r 130 as much as possible down-
wards in the game. Then, we applymerge branches

successfully.
• Second, the value ofY in passive eavesdroppings,Yp.

This variable is now named@6 X 413 . We proceed
similarly, using move array ”@6 X 413”, then
merge the delayed@6 X 413 named@2 Y 425

into the result of decryption @6 X 412 by
merge arrays ”@6 X 412 ” ”@2 Y 425 ”, and
finally apply merge branches.

• Third, the value of Y in the server, now
named @6 X 415 . We again proceed similarly,
using move array ”@6 X 415”, then merge
the delayed @6 X 415 named @2 Y 432

into the result of decryption”@6 X 412” by
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merge arrays ”@6 X 412 ” ”@2 Y 432 ”. We
cannot applymerge branches directly because the
condition that triggers the eventAuth,

find @i 435 ≤ qD , jh ≤ qH1 suchthat

defined(@i 437 [@i 435 ], x1 [jh], x2 [jh ], x3 [jh],

x4 [jh ],@6 X 412 [@i 435 ],@11 r 134 [jh]) ∧

@i 437 [@i 435 ] = iS ∧ U = x1 [jh ] ∧

S = x2 [jh] ∧ X s = x3 [jh] ∧

x4 [jh ] = @6 X 412 [@i 435 ] ∧

auth s = @11 r 134 [jh] then
(11)

refers to the variable@i 437 which is defined in
the condition of afind whose branches we would
like to merge; this merging is not possible because it
would make the definition of@i 437 disappear. So
we manually rewrite the condition (11) to remove the
reference to@i 437 . By

insert 121 “find jh′ ≤ qH1 , jd ≤ qD

suchthat defined(x1 [jh′], x2 [jh′], x3 [jh′],

x4 [jh′],@11 r 134 [jh′],m[jd ], kd [jd ],

@6 X 412 [jd ]) ∧m[jd ] = @8 re 161 ∧

U = x1 [jh′]) ∧ S = x2 [jh′]) ∧ X s = x3 [jh′] ∧

x4 [jh′] = @6 X 412 [jd ] ∧

auth s = @11 r 134 [jh′] ∧ kd [jd ] = pw then”
(12)

we insert a test just above thefind (11). The variables
jh and @i 435 of the find (11) are renamed tojh′

and jd respectively in (12) (without change in the
meaning), and the condition@i 437 [@i 435 ] = iS

of (11), that is,@i 437 [jd ] = iS is replaced with
m[jd ] = @8 re 161 ∧ kd [jd ] = pw in (12). In the
considered game, the variable@i 437 is defined in
a find with condition m = @8 re 161 [@i 437 ] ∧
kd = pw , so when@i 437 [jd ] is defined, we have
m[jd ] = @8 re 161 [@i 437 [jd ]] ∧ kd [jd ] = pw ;
when@i 437 [jd ] = iS , we obtain exactly the condi-
tion of (12), knowing that the indexiS can be omitted
because it is the index of the replication above the
find (12). Explained another way, thefind of (12)
looks for a hash query indexed byjh′ and a decryption
query indexed byjd , such that the adversary has
decrypted the value ofY ⋆ generated by the server,
@8 re 161 , under the correct passwordpw , obtaining
@6 X 412 [jd ] (which is then the correct value of
Y ) using that decryption query, and then has passed
a value (U, S,X s,@6 X 412 [jd ], ) to the hash
query, obtaining the correct authenticatorauth s =
@11 r 134 [jh′]. This corresponds exactly to the situ-
ation in which the adversary authenticates to the server

by guessing the password. After the command (12), by
insert event Auth2 184, we insert the eventAuth2
in the then branch of thefind of (12). CryptoVerif
can show that the condition (11) implies the condition
of (12), so in theelsebranch of (12), the condition (11)
never holds, hence by simplification (simplify), we
remove thatelsebranch. Simplification also merges the
cases offind, without an explicitmerge branches. At
this point, eventAuth does not occur in the current
game. The eventsEncrypt and Auth2 are eliminated
and their probabilities are bounded as explained in
Section IV-D. (The variables@8 re 161 , @8 re 167 ,
@11 r 134 , and@6 X 412 have been renamed to
Y star , re, hash1, andrd respectively there.)
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