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Abstract. Multi-Factor Authentication (MFA), often coupled with Key Exchange (KE), offers very
strong protection for secure communication and has been recommended by many major governmental
and industrial bodies for use in highly sensitive applications. Over the past few years many companies
started to offer various MFA services to their users and this trend is ongoing.

The MFAKE protocol framework presented in this paper offers à la carte design of multi-factor au-
thentication and key exchange protocols by mixing multiple types and quantities of authentication
factors in a secure way: MFAKE protocols designed using our framework can combine any subset of
multiple low-entropy (one-time) passwords/PINs, high-entropy private/public keys, and biometric fac-
tors. This combination is obtained in a modular way from efficient single-factor password-based, public
key-based, and biometric-based authentication-only protocols that can be executed in concurrent ses-
sions and bound to a single session of an unauthenticated key exchange protocol to guarantee forward
secrecy.

The modular approach used in the framework is particularly attractive for MFAKE solutions that
require backward compatibility with existing single-factor authentication solutions or where new fac-
tors should be introduced gradually over some period of time. The framework is proven secure using
the state-of-the art game-based security definitions where specifics of authentication factors such as
dictionary attacks on passwords and imperfectness of the biometric matching processes are taken into
account.

Keywords: two-factor, multi-factor authentication, tag-based authentication, key exchange, frame-
work, modular design

1 Introduction

Authentication Factors An authentication factor is used to produce some evidence that an entity at
the end of the communication channel is the one which it claims to be. Modern computer security knows
different types of authentication factors, all of which are widely used in practice. Their standard classification
considers three main groups (see e.g. [20]), characterized by the nature of provided evidence: knowledge,
possession, and physical presence. The evidence of knowledge is typically offered by low-entropy passwords.
These include memorizable (long-term) passwords or PINs, e.g. for login purposes and banking ATMs, and
one-time passwords that are common to many online banking and e-commerce transactions. The evidence of
possession corresponds to physical devices such as smart cards, tokens, or TPMs, equipped with long-term
(high-entropy) secret keys and some cryptographic functionality. These devices have tamper-resistance to
protect secret keys from exposure. The evidence of physical presence refers to unique biometric identifiers
of human beings. These may include face profile, finger prints, iris images, or behavioral characteristics such
as gait or voice, and are used in access control systems and many electronic passports.

? A shorter version of this paper appears in the proceedings of the 1st International Conference on Research in
Security Standardisation (SSR 2014), December 16-17, 2014, Egham, UK. This is the full version.



A different approach might be needed for an attacker to compromise a particular factor, depending on
its type and use. For instance, passwords are susceptible to social engineering (e.g. phishing) and dictionary
attacks. Digital devices can be lost or stolen. Those offering tamper-resistance may nonetheless fall to reverse-
engineering [21,22], side-channel attacks [19], and trojans (e.g. recent Sykipot Trojan attacks against smart
cards). Biometric data can be obtained from a physical contact with the human or copied if available in
a digital form. Since the number of personal biometrics that permit efficient use in security technologies
is limited, their wide use across different application domains makes it even harder to keep those factors
private.

Multi-Factor Authentication (with Key Exchange) The strength of Multi-Factor Authentication
(MFA) is based on the assumption that if an entity has many authentication factors, regardless of their
nature, then it is hard for the attacker to compromise them all. That is, by combining different factors within
a single authentication process, MFA aims at higher assurance in comparison to single-factor schemes. MFA
has found its way into practice4, most notable are combinations of long-term passwords with secret keys,
possibly stored in tokens (e.g. Two-Factor SSH with USB sticks) or any of these with one-time passwords
(e.g. OATH HOTP/TOTP, RSA SecurID, Google Authenticator). Many companies, e.g. Google, Facebook,
Yahoo are now offering their users optional two-factor authentication mechanisms based on one-time pass-
words. The increasing use of smart phones to access services and the recent progress by Apple and Samsung
to equip smart phones with fingerprint readers is expected to further boost the practical deployment of the
MFA technology. Since MFA is mostly used to authenticate a client/user to a remote server the authenti-
cation of the client becomes its main security goal. The server-side authentication in MFA protocols offers
further protection and is typically performed without using multiple factors on the server side.

The concept of Multi-Factor Authenticated Key Exchange (MFAKE), formalized in [36], extends MFA
with establishment of secure session keys. In addition to authentication goals it aims at key secrecy, usu-
ally modeled in terms of (Bellare-Rogaway style) AKE-security [8,10,16]. Earlier MFAKE protocols focused
mostly on two factors and were often unsuccessful: for instance, password-token combination from [34] was
broken in [40] which itself was broken in [31], the scheme from [37] was cryptanalyzed in [39], and a biometric-
token combination from [32] has fallen in [33]. Partially, these attacks were due to the missing modeling and
analysis in those works.

A formal approach to MFAKE introduced in [36] was the first to account simultaneously for all three
types of authentication factors. Most notable is their modeling of biometric factors. Unlike some previous
single-factor biometric schemes, e.g. [18,12], that regarded biometrics as low- or high-entropy secrets, [36]
drops biometric secrecy in favor of the liveness assumption (see also [15,14]) aiming at physical presence
of a user. The protocol from [36] has recently been cryptanalysed in [26], who showed how an adversary
that steals user’s password and impersonates the server can essentially compromise all other authentication
factors of the client. The model in [36] didn’t consider server authentication and the only way to prevent the
above attack against the protocol is to require mandatory authentication on the server side. The protocol
would remain insecure if server authentication is left optional (as intended by the model) due to the way in
which client messages bind different authentication factors together, as also exploited in [26].

MFAKE protocols may differ not only in nature of factors but also in their quantity. To this end, [38]
introduced Multi-Factor Password AKE (MFPAKE), extending the PAKE setting [7], where arbitrary many
low-entropy passwords (long-term and one-time) can be combined to authenticate the client. Their protocol
further offers public-key based server-side authentication and supports verifier-based PAKE setting from
[23,24].

4 MFA definitions and usage in practice are not consistent. For example, according to [1, Sec. 8.3], for two-factor
authentication it suffices to deploy RADIUS authentication or use a single tamper-proof hardware token or a VPN
access with individual certificate, whereas using two factors of the same type is not regarded as a two-factor solution.
[2, Level 3] explicitly requires hardware tokens and some additional factor, e.g. password or biometric. This is in
line with the perception of MFA where authentication with a certificate alone is considered single-factor [36] but
deployment of two or more passwords multi-factor [38]. For the purpose of generality, we regard any approach with
at least two factors irrespective of their type as MFA.
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Generalized and Modular MFAKE Approach? Various problems in the design of secure MFAKE
protocols, coupled with the fact that existing protocols differ in nature and quantity of deployed factors and
that perception of MFA varies across products, standards, and research literature, motivates the need for a
simpler and modular MFAKE approach.

Our goal is to build secure MFAKE protocols out of well-known and understood concepts behind existing
single-factor solutions. We argue that in general this approach though not necessarily more efficient helps to
avoid caveats, arising in the combination of factors and results in a cleaner, less error-prone protocol design.
The generality of the approach can further be used to formally explain the relationships between MFAKE
and single-factor authentication schemes, and its modularity is beneficial for an independent accommodation
of other factors, e.g. for social authentication [13,17].

A general MFAKE protocol can be built from different types of single-factor AKE protocols that are
then combined in a smart way into a secure MFAKE solution. The feasibility of this approach and its formal
correctness is implied by our work. A direct combination of different black-box AKE schemes is sub-optimal
since it would include some redundancy in the computations of forward-secure session keys. Therefore, our
approach for a general MFAKE is to use single-factor authentication-only protocols (to avoid computation
of multiple session keys) and derive one forward-secure session key at the end of the protocol.

1.1 Contributions and Organization

General MFAKE Model We introduce and model a general framework for (α, β, γ)-MFAKE, including
its MFA-only version, building on the three-factor AKE model from [36]. In a standard client-server setting
we admit arbitrary quantities and combinations of low-entropy passwords (long-term and one-time), high-
entropy secret keys (possibly with corresponding public keys), and biometric factors (with explicit and
implicit matching). We model dictionary attacks on passwords and also account for the imperfect matching
process of biometric templates. When modeling biometrics we follow the liveness assumption of [36] and do
not treat biometric distributions as secret. We discuss why this assumption is realistic from the practical
point of view.

Remark 1. In Appendix A we further relate our (α, β, γ)-MFAKE framework to several existing authentica-
tion models and protocols. By varying the parameters α, β, and γ we can show that many current single-factor
and multi-factor settings can be seen as special cases of our general framework: (1, 0, 0)-MFAKE implies
PAKE models from [7,23], (0, 1, 0)-MFAKE implies two-party AKE models from [8,10], (1, 1, 1)-MFAKE
subsumes the three-factor client authentication approach from [36], while (α, 0, 0)-MFAKE is related to the
MFPAKE protocol introduced in [38].

Modular (α, β, γ)-MFAKE Framework We give a simple generic (α, β, γ)-MFAKE protocol construc-
tion, based on sub-protocols that can be instantiated from a wide range of existing, well-understood and
efficient authentication-only schemes. More precisely we consider arbitrary many independent runs of ef-
ficient authentication-only protocols that rely on passwords, secret keys, and biometrics and link them to
a single independent session of an Unauthenticated Key Exchange (UKE) in a way that generically binds
authentication and key establishment and results in an AKE-secure MFAKE protocol (with forward secrecy)
that offers MFA for the client and strong (optional) authentication of the server.

To this end, we define a generalized notion of tag-based MFA, extending the preliminary concepts from
[27] that considered the use of tags (auxiliary strings) in public key-based challenge-response scenarios. For
all types of single-factor authentication-only protocols we demonstrate existence of efficient tag-based flavors
and discuss their generic extensions with tags. We show how to use tags in an (α, β, γ)-MFAKE protocol to
bind all independent (black-box) sub-protocols in a secure way. (In this way, for example, we avoid the type
of problems identified in [26] for the protocol in [36].)

Organization. Generalized (α, β, γ)-MFAKE, its MFA-only version, and security goals are modeled in
Section 2. Our modular and generic construction of (α, β, γ)-MFAKE is specified and analyzed in Section 3,
along with the underlying sub-protocols and their instantiations.
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2 Generalized MFAKE: Definitions and Security

Our definitions of generalized MFAKE extend the model from [36], which in turn builds on the models
from [8,7].

2.1 System Model and Correctness

Participants, Sessions, and Authentication Factors An MFAKE protocol is executed between two
participants: a client C and a server S. Several instances of any participant can exist at a time. This models
multiple concurrent protocol sessions. An instance of participant U ∈ {C, S} in session s is denoted as [U, s].
The session id s is the transcript of all messages sent and received by the instance, except for the very last
protocol message. At the end of the protocol each instance either accepts or rejects.

By pid([U, s]) we denote partner identity with which [U, s] is interacting in the protocol session. Two
instances [U, s] and [U′, s′] are said to be partnered if and only if pid([U, s]) = U′, pid([U′, s′]) = U, and their
session ids form matching conversations [8,10], denoted s = s′.

Each client C may have arbitrary types and quantities of authentication factors that it may use in multiple
protocol sessions as detailed in the following.

Passwords A client C may hold an array of α passwords, denoted pwdC . Each password pwdC [i], i =
1, . . . , α is assumed to have low entropy, chosen from a dictionary Dpwd. Passwords can be used across multiple
sessions, in which case they are considered to be long-term. We also allow for one-time passwords [3,35] that
have been previously registered with the server. Our setting can be extended to deal with verifier-based
password authentication, e.g. [24,9,29], where the server stores some non-trivial function of pwdC [i] for
better protection against server compromise attacks.

Client Secret Keys A client C may hold an array of β secret keys, denoted skC . Each secret key
skC [i] ∈ KeySp, i = 1, . . . , β is assumed to have high entropy. In case of public key-based client authentication
there exists an array of corresponding public keys, denoted pkC , which is assumed to be known system-wide.
Any skC [i] can be stored in a secure hardware token (e.g. in a smartcard or TPM), in which case its usage in
the protocol assumes client’s access to the corresponding device, i.e., our model doesn’t distinguish between
hardware tokens and private keys of the client.

Biometrics For each client C there are γ public biometric distributions DistC,i, i = 1, . . . , γ. The process
of measuring some biometric (being it face, any particular finger, or iris) is comprehended as drawing a
biometric template WC,i according to DistC,i. Upon the enrollment of the client an array WC containing γ
biometric templates WC [i], i = 1, . . . , γ is created and will be used as a reference for the session-dependent
matching process on the server’s side. We do not need to require that WC is stored in clear on the server’s
side. Our model admits the case, where the server stores some non-trivial transformation of WC , e.g. using
secure sketches [18,12].

Functionality of biometric data matching is modeled through an algorithm BioMatch, which takes as input
a candidate template W ∗ and a reference template W , which may also be given implicitly in a transformed
form, and outputs 1 indicating that W ∗ matches W and 0 otherwise. For example, BioMatch can require
that the Hamming distance between W and W ∗ remains below some threshold, an approach used, e.g. in
[12,36]. We also take into account that biometric measurements are not perfect:

– For any client C,

Pr
[
BioMatch(W ∗C,i,WC [i]) = 1 | W ∗C,i ← DistC,i, i ∈ [1, γ]

]
≥ 1− falsenegi ,

where falsenegi is the probability with which ith biometric of C is falsely rejected.
– For any two clients C ′, C with C ′ 6= C,

Pr
[
BioMatch(W ∗C′,i,WC [i]) = 0 | W ∗C′,i ← DistC′,i, i ∈ [1, γ]

]
≥ 1− falseposi ,

where falseposi is the probability with which ith biometric of C ′ is falsely accepted.
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While false rejection is important for MFA correctness, false acceptance impacts the lower bounds of the
protocol’s security.

Server Secret Key We assume that server S may have a high-entropy secret key skS with the corre-
sponding system-wide known public key pkS .

Generalized MFAKE We define generalized MFAKE and its correctness property.

Definition 1 ((α, β, γ)-MFAKE). A multi-factor authenticated key exchange protocol (α, β, γ)-MFAKE(C,
S) is a two-party protocol, executed between a client instance [C, s] with α passwords, β secret keys, and γ
biometric templates and a server instance [S, s′] such that at the end of their interaction each instance either
accepts or rejects. The correctness property of the protocol requires that for all κ ∈ N, if at the end of the
protocol session [C, s] accepts holding session key kC and [S, s] accepts holding session key kS, and [C, s] and
[S, s] are partnered, then Pr[kC = kS ] = 1.

In authentication-only MFA protocols parties either reject or accept their communication partner without
computing any session keys. The following definition of client’s MFA towards the server accounts for imperfect
biometric matching process, where servers may falsely reject clients.

Definition 2 ((α, β, γ)-MFA). A multi-factor authentication-only protocol (α, β, γ)-MFA is a two-party
protocol, executed between a client instance [C, s] with α passwords, β secret keys, and γ biometric templates
and a server instance [S, s′] such that at the end of their interaction the server instance either accepts C as its
communication partner or rejects. Let ‘acc C’ denote the event that [S, s] accepts the client. The correctness

property of the (α, β, γ)-MFA protocol requires that Pr[acc C] ≥ 1−
γ∑
i=1

falsenegi .

For server-side authentication the multi-factor aspect is typically irrelevant, i.e., the client decides whether
to accept the server based on pkS . The correctness property in this case is perfect.

2.2 Security Goals: AKE-Security and Mutual Authentication

MFAKE protocols must guarantee standard goals with respect to session key security and mutual authenti-
cation against any probabilistic polynomial-time adversary A. Due to asymmetry with regard to the use of
multiple factors on the client side and typically one factor (secret key) on the server’s side, mutual authen-
tication is dealt with separately for clients and servers.

Liveness Assumption for Biometrics We assume that biometric data is public and resort to liveness
assumption [36] to ensure physical presence of a client. Liveness of a client C is modeled through a special
biometric computation oracle BioComp([C, s],WA,i): depending on the state of [C, s] this oracle uses client’s
secret keys skC and passwords pwdC together with an input biometric template WA,i that must be chosen
according to some adversary-specified distribution DistA,i to perform the required computation step that
would otherwise be performed using a template W ∗C,i chosen according to the distribution DistC,i. The crucial
condition here is that DistA,i must significantly differ from DistC,i such that Pr[BioMatch(WA,i,WC [i]) =
0] ≥ 1 − falseposi for any WA,i ←R DistA,i. For simplicity, we assume that A queries BioComp only with
templates WA,i from the distributions DistA,i, 1 ≤ i ≤ γ (alternative modeling of BioComp would require
A to specify some template generation algorithm with a suitable distribution DistA,i which will be invoked
within BioComp on each new query to pick WA,i). Liveness assumption requires that any new message
m, whose computation depends on the ith biometric template of C, must be previously generated by the
BioComp oracle, before an active adversary can make use of it. Using BioComp oracle A can test own
biometric templates in client’s computations. Note that the liveness assumption allows for replay attacks on
biometric-dependent messages, i.e. A can consult the BioComp oracle to obtain a new message in one session
of C and then replay it in another.

Remark 2. Hao and Clarke [26] criticized [36] for the assumption that biometric data is public, arguing
that templates that can be obtained by the adversary in practice are often of poor quality so that obtaining
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high-quality templates should be seen as a corruption of the client. This might be a valid argument in certain
use cases, however, for the purpose of generality, it seems more appropriate to assume that biometric data
is public and resort to the liveness assumption, when modeling security of biometric-based protocols. Since
biometric data is used in many different domains (e.g. e-passports, personal computers, entry access systems,
etc.) leakage of high-quality templates is not unlikely. In contrast to private keys, biometric characteristics
are produced by nature and are bound to a specific person. From this perspective, their modeling via liveness
assumption, aiming at user’s physical presence seems to be more appropriate. Liveness assumption has also
been in the focus of recent standardization initiatives, e.g. ISO/IEC WD 30107 Anti-Spoofing and Liveness
Detection Techniques.

Client and Server Corruptions An active adversary A may corrupt authentication factors of a client C
through its CorruptClient(C, type, i) oracle by indicating the type of the corrupted factor and its position i
in the array. Corrupted passwords and secret keys are revealed to A, whereas corrupted biometric factors
imply that A no longer needs to follow restrictions put forth by the liveness assumption on those factors. A
can ask multiple CorruptClient queries for different factors of its choice. This models realistic scenarios, where
different factors may require different attacks. Server corruptions are handled through the CorruptServer
oracle, which responds with skS .

Adversarial Queries Our security definitions will be given in form of games with a PPT adversary A
that interacts with the instances through a set of oracles, as specified in the following. We assume that
U,U′ ∈ {C, S}.

Invoke(U,U′) allows A to invoke a session at party U with party U′. If U is a client then U′ must be a
server, and vice versa. In response, a new instance [U, s] with pid([U, s]) = U′ is established. [U, s] takes
as input the authentication factors of U. If [U, s] is supposed to send a message first then this message
is generated and given to A.

Send([U, s],m) allowsA to send messages to the protocol instances (e.g. by forwarding, modifying, or creating
new messages). In general, the oracle processes m according to the state of [U, s] and eventually outputs
the next message (if any) to A. However, if U = S and m is such that it was not produced by an instance
of C = pid([S, s]) but its computation was expected to involve ith biometric of C, then m is processed
only if it was output by BioComp([C, ·],WA,i) or if A previously queried CorruptClient(C, 3, i).

BioComp([C, s],WA,i) outputs message m (if any) computed based on the internal state of [C, s] using skC ,
pwdC , and WA,i (from DistA,i as explained above).

RevealSK([U, s]) gives A the session key computed by [U, s] (if such key exists).
CorruptClient(C, type, i) allowsA to corrupt authentication factors of C. If type = 1 thenA is given pwdC [i];

if type = 2 then it receives skC [i]; if type = 3 then A receives nothing but the liveness assumption for
the ith biometric of C is dropped.

CorruptServer(S) gives A server’s S secret key skS .

Freshness The notion of freshness prevents A from using its oracles to attack the protocol in a trivial
way. For instance, key secrecy and authentication goals will require that no protocol participant was fully
corrupted during the protocol session: a client C is fully corrupted if and only if all existing authentication
factors of C have been corrupted via corresponding CorruptClient(C, ·, ·) queries; a server S is fully corrupted
if and only if a CorruptServer(S) query has been asked. Our definition of freshness aims at server instances
since A will be required to break AKE-security for their session keys. This is not a limitation since protocol
correctness guarantees that any accepted partnered client instance will compute the same key as the server
instance. In protocols without server authentication A can impersonate the server and compute the same
key as the client. An instance [S, s] that has accepted is said to be fresh if all of the following holds:

– Upon acceptance of [S, s] neither the server S nor the client C = pid([S, s]) were fully corrupted.
– There has been no RevealSK query to [S, s] or to its partnered client instance (if such instance exists).

The above conditions allow full corruption of parties after the session ends (upon acceptance) and thus
capture the property of forward secrecy that is equally important for all types of authentication factors.
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Remark 3. Freshness conditions can be made more complicated to incorporate specialized goals such as
security against key compromise impersonation (KCI) and corruptions of ephemeral secrets (cf. [30] and its
variants). These goals however are factor-dependent. For instance, (α, 0, 0)-MFAKE protocols with shared
passwords typically wouldn’t offer KCI-security (which by definition makes sense only in the public key
setting). It also seems unlikely that (α, 0, 0)-MFAKE can tolerate leakage of ephemeral secrets (the only
randomness used in the protocol) without enabling an offline dictionary attack. Our conditions thus offer a
common security base for all (α, β, γ)-MFAKE flavors, without narrowing the possibility of extension towards
more complex requirements.

Security of Session Keys Secrecy of session keys is modeled in terms of AKE-security in the Real-or-
Random indistinguishability framework [4] where multiple Test queries that can be asked only to fresh
instances [S, s]. Their answers depend on the value of bit b, which is fixed in the beginning of the game:
if b = 1 then A receives the real session key held by [S, s]; if b = 0 then A is given a random key chosen
uniformly from the set of all possible session keys. At the end of the game A outputs bit b′ aiming to guess

b. Let Succ
A,(α,β,γ)-MFAKE
AKE (κ) denote the probability of the event b′ = b in a game played by A against the

AKE-security of (α, β, γ)-MFAKE. Let q denote the total number of invoked sessions. (α, β, γ)-MFAKE is
AKE-secure, if for all PPT adversaries A the following advantage is negligible in κ:

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

( α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣.
AKE-security is relevant only for (α, β, γ)-MFAKE protocols from Definition 1. It doesn’t apply to

(α, β, γ)-MFA protocols from Definition 2 that do not support key establishment.

Authentication Requirements An (α, β, γ)-MFAKE protocol must further provide authentication, which
we treat separately for clients and servers. A protocol which satisfies both offers mutual authentication.

Client Authentication. Let A be an adversary against client authentication of (α, β, γ)-MFAKE that
interacts with client and server instances using the aforementioned queries (whereby Test queries are ir-
relevant). A breaks client authentication if there exists a server instance [S, s] that has accepted a client
C = pid([S, s]), for which there exists no client instance that is partnered with [S, s], and neither S nor C
were fully corrupted upon the acceptance of [S, s].

Let Succ
(α,β,γ)-MFAKE,A
CAuth (κ) denote the success probability in breaking client authentication. The protocol

is CAuth-secure, if for all PPT adversaries A the following advantage is negligible (in κ):

Adv
(α,β,γ)-MFAKE,A
CAuth (κ) =

∣∣∣Succ(α,β,γ)-MFAKE,A
CAuth (κ)− q

( α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣.
This definition of CAuth-security is directly applicable to (α, β, γ)-MFA protocols from Definition 2. The

advantage of A is denoted then Adv
(α,β,γ)-MFA,A
CAuth (κ) and its success probability is subject to the same bounds

as Succ
(α,β,γ)-MFAKE,A
CAuth (κ). For (α, β, γ)-MFA protocols CAuth-security is the main property.

Remark 4. The low entropy of passwords and non-perfect biometric matching impose a lower bound q( α
|Dpwd|+∑γ

i=1 false
pos
i ) on the success probability of a CAuth-adversary. This bound is not imposed on the success

probability with regard to server authentication as explained below.

Server Authentication. An adversary A against server authentication of (α, β, γ)-MFAKE interacts with
client and server instances and breaks server authentication if there exists a client instance [C, s] that has
accepted a server S = pid([C, s]), for which there exists no server instance that is partnered with [C, s], and
neither C nor S were fully corrupted upon the acceptance of [C, s]. (α, β, γ)-MFAKE is SAuth-secure, if for

all PPT adversaries A the probability of breaking server authentication, denoted Succ
(α,β,γ)-MFAKE,A
SAuth (κ) is

negligible in the security parameter κ.
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3 Modular Design of MFAKE Protocols

Our general (α, β, γ)-MFAKE protocol is built in a modular way from sub-protocols for different authentica-
tion factors, yet with some extensions and optimizations. We start with the main building blocks.

3.1 Tag-based Authentication

Tag-based Authentication (TbA) [27] accounts for the use of auxiliary, possibly public, strings (tags) in
authentication protocols. In TbA each party uses a tag, in addition to the authentication factor, and the
protocol guarantees that if parties accept then their tags match. For instance, the server accepts some client
in a session if and only if that client was alive during that session and used as input the same tag as the
server. For public key-based challenge-response protocols, [27] gave a signature-based compiler with the TbA
property. In our work we require a more general TbA notion that in addition to public keys encompasses
passwords and biometrics as defined in the following.

Definition 3 (Tag-based MFA). A tag-based MFA protocol (α, β, γ)-tMFA is an (α, β, γ)-MFA protocol
from Definition 2, where in addition the client instance [C, s] takes as input tag tC , the server instance [S, s]
takes as input tag tS, and if tC 6= tS then both parties reject; otherwise, they accept as in the (α, β, γ)-MFA
protocol.

Tag-based CAuth-security: Let A be a PPT adversary against client authentication of (α, β, γ)-tMFA that
interacts with the instances of C and S using the same oracles as for (α, β, γ)-MFA, except that the Invoke
oracle is modified such that it receives tag t as an additional input from A. A is said to break CAuth-security
of (α, β, γ)-tMFA if at the end of its interaction there exists a server instance [S, s] that was invoked with tag
tS and has accepted a client C = pid([S, s]), for which there exists no client instance that was invoked with tag
tC = tS and is partnered with [S, s], and neither S nor C were fully corrupted upon the acceptance of [S, s].

The corresponding advantage of A, denoted Adv
(α,β,γ)-tMFA,A
CAuth (κ), is then defined analog to the advantage in

(α, β, γ)-MFA.

A is allowed to test tags of its own choice, i.e. existence of a partnered client instance that was invoked with
a tag tC 6= tS leads to a successful attack. Definitions of tag-based server authentication in (α, β, γ)-tMFA and

success probability Succ
(α,β,γ)-tMFA,A
SAuth (κ) are obtained by reversing the roles of C and S, as for (α, β, γ)-MFA

in Section 2.2.

3.2 Utilized Sub-Protocols and Their Examples

Our framework constructs (α, β, γ)-MFAKE in a modular way from simpler protocols that represent special
cases of tag-based MFA. We first describe corresponding (non tag-based) protocols for authentication and
provide some examples, including the discussion on how to extend those protocols with tags.

PwA : (Tag-based) Password-based Authentication Protocol The first sub-protocol is for password-
based authentication, denoted PwA, in which only one party (in our case the client) authenticates itself to the
other party (server). In our generalized MFA model the adversarial advantage against client authentication

of PwA becomes AdvA,PwACAuth(κ) = Adv
A,(1,0,0)-MFA
CAuth (κ).

For instance, an AKE-secure PAKE protocol with key confirmation from client to server, which is proven
secure in the model from [7] can be used as PwA. On the other hand, those PAKE protocols can be somewhat
simplified since we do not require PwA to provide session keys. The following is an example for the PAKE
protocol from [6] when only client-side authentication with key confirmation is applied.

PwA example. Let (G, g, q) be a description of the cyclic group of prime order q with generator g that
together with two elements V,W ∈ G and a hash function H : {0, 1}∗ 7→ {0, 1}κ build public parameters. As-
sume that pwd ∈ Zq is shared between C and S. In a PwA session, derived from [6], S sends Y ∗ = gyW pwd for
some y ←R Zq to C. C picks x←R Zq and responds with (X∗, h) = (gxV pwd,H(C, S, Y ∗, X∗, (Y ∗/W pwd)x,
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pwd)). S checks whether h = H(C, S, Y ∗, X∗, (X∗/V pwd)y, pwd) and accepts the client in this case. It is easy
to see that client authentication of this PwA follows from the security of PAKE in [6].

Verifier-based PwA. The Ω-method introduced in [24,23] transforms any PAKE into a verifier-based (aka.
asymmetric or augmented) PAKE where passwords are stored on the server side in a blinded way using a
random oracle H′, a symmetric encryption scheme (Gen,Enc,Dec), and an additional pair of signing keys
(sk, pk), which are not treated as an authentication factor. For a given password pwd the server stores
(H′(pwd),Encpwd(sk)). The Ω-method proceeds as follows. First a (symmetric) PAKE session is executed
using H′(pwd) as a password on both sides, resulting in an intermediate PAKE key k. This key is used to
derive two independent keys k′ and k′′ and the client is given Enck′(Encpwd(sk)). C decrypts sk and sends
a signature on the entire protocol transcript. If this signature verifies using pk the server accepts the client.
The session key of verifier-based PAKE becomes k′′. The Ω-method can be applied to obtain verifier-based
PwA from plain PAKE protocols, in which case k′′ can be omitted.

Tag-based (verifier-based) PwA. In the symmetric case any PwA protocol can be transformed into a
tag-based tPwA as follows. Parties on input their tags t first compute HT (pwd, t) using a cryptographic
hash function HT , which then serves as a password for the original PwA. Since in Definition 3 the adversary
specifies tags upon invocation of an instance any successful CAuth-adversary against tPwA can either be used
to break CAuth-security of PwA or to find a collision for H, i.e. AdvtPwA,ACAuth (κ) ≤ AdvPwA,ACAuth(κ) + qεHT

(κ) in q
protocol sessions. A similar trick can be applied to verified-based PwA constructed using the aforementioned
Ω-method — instead of H′(pwd) in the initial (symmetric) PwA session parties would use HT (H′(pwd), t).
Security of such verifier-based tPwA follows from the security of the underlying PwA, the Ω-method, and
the collision-resistance of HT .

PkA: (Tag-based) Public Key Authentication Protocol The second sub-protocol is a single-side au-
thentication protocol in the public key setting, denoted PkA, with adversarial advantage against its client

authentication defined as AdvA,PkACAuth(κ) = Adv
A,(0,1,0)-MFA
CAuth (κ).

Tag-based PkA. Examples of PkA include challenge-response protocols, where S sends a (high-entropy)
challenge r to C, and C replies with a function of its secret key, e.g. a signature. A generic extension of such
PkA protocols with tags, denoted tPkA, uses a cryptographic hash function HT and follows immediately
from [27] — the challenge r received by C with tag tC is transformed into r′C = HT (r, tC), which is then
used to generated response to S where it is verified using rS = HT (r, tS). As shown in [27] this conversion
is applicable to various classes of PkA protocols.

BiA: (Tag-based) Biometric-based Authentication Protocol The third sub-protocol is a biometric-
based authentication protocol, denoted BiA, in which C authenticates towards S that holds some (possibly
blinded) reference template of C. In line with our model (and [36]) we work with public biometric factors and

denote the adversarial advantage against client authentication of BiA as AdvA,BiACAuth(κ) = Adv
A,(0,0,1)-MFA
CAuth (κ).

Tag-based BiA example. Let (G, g, q) be a cyclic group of sufficiently large prime order q. C and S first
execute an unauthenticated Diffie-Hellman key exchange in G by exchanging gx and gy. Consider two hash
functions H1,H2 : G 7→ {0, 1}κ. Let W ′C,i resp. WC,i denote the ith bit of the corresponding template. For
each bit i the client computes hi = H1(gx, gy, gxy,W ′C,i, i) using its version of gxy and sends the resulting
set {hi}i to S. S re-computes corresponding values using its version of gxy and the reference template WC ,
and accepts the client if τ or more hash values from {hi}i match. Note that if liveness assumption is in
place then the adversary is prevented from sending any hi that was not computed beforehand through the
BioComp oracle. The tag-based CAuth-security of the protocol follows then directly from the classical CDH
assumption in the random oracle model.

UKE: Unauthenticated Key Exchange Observe that tag-based authentication protocols do not offer
computation of session keys. In our modular (α, β, γ)-MFAKE protocol we will use an unauthenticated key
exchange, denoted UKE, as another sub-protocol. We assume that UKE satisfies the following standard
definition (see e.g. [27]) tailored to the client-server scenario.
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Definition 4 (Unauthenticated KE). An unauthenticated key exchange protocol, denoted UKE, is a two-
party protocol executed between a client instance [C, s] and a server instance [S, s′] such that at the end both
instances accept holding respective session keys kC and kS or reject. Let s = trC and s′ = trS be respective
communication transcripts of the two instances. An UKE protocol is correct if their partnering, i.e. s = s′,
implies equality of their session keys, i.e., kC = kS.

KE-security. Consider the following attack game against some correct UKE protocol: A PPT adversary A
receives as input the security parameter κ and can query the Transcript oracle which is parameterized with
a random bit b fixed in the beginning of the game. On an ith query the Transcript oracle executes a protocol
session between two new instances of C and S, and hands its communication transcript tri and a key ki to
A, where ki is real if b = 0 or randomly chosen (for each new Transcript query) if b = 1. At some point A
outputs bit b′. An UKE protocol is KE-secure if the following advantage is negligible in κ for all A:

AdvUKE,AKE =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
UKE example. The unauthenticated Diffie-Hellman key exchange protocol in a cyclic group (G, g, q), where
C and S exchange gx and gy, respectively, and derive their session keys via H(gx, gy, gxy) offers a straight-
forward KE-secure UKE scheme in the random oracle model under the CDH assumption.

3.3 Modular (α, β, γ)-MFAKE Protocol Framework

We now detail the modular design of a generalized (α, β, γ)-MFAKE protocol, which supports arbitrary
combinations of authentication factors, both in type and quantity. In addition to the sub-protocols from the
previous section, its construction utilizes four hash functions HT ,HC ,HS ,Hk : {0, 1}∗ 7→ {0, 1}κ, modeled
as random oracles that are used for the purpose of tag derivation, key confirmation, and key derivation.

Protocol description. (α, β, γ)-MFAKE is built from four sub-protocols: UKE, tPwA, tPkA, and tBiA.
The design is based on the following idea (see also Figure 1): first, C and S run one UKE session resulting
in unauthenticated session keys k0 for the client and k′0 for the server, that are then used by both parties to
derive tags (tC and tS) through HT . Then, an appropriate tag-based sub-protocol is executed independently
for each authentication factor of the client. C and S thus execute α sessions of tPwA, β sessions of tPkA (with
client-side authentication), and γ sessions of tBiA, possibly in parallel. S aborts the protocol and rejects C
if any of those sessions results in the rejection of the client. The server authentication is optional and is
executed through a session of tPkA (with server-side authentication). After finishing all sub-protocols C and
S hold their so-far transcripts {tri}i=0,...,α+β+γ+1 and {tr′i}i=0,...,α+β+γ+1, respectively, and proceed with the
confirmation: C sends a hash value, computed with HC , on input its unauthenticated key material from the
UKE session and session identifier s, which comprises its so-far transcripts and the identities of both parties.
S verifies that this hash value is as expected. For the optional server authentication, S responds with its
own hash value, computed using HS on similar inputs as in the client’s case. Upon successful confirmation
parties accept with session keys kC resp. kS , derived using Hk.

Instantiations. Our general (α, β, γ)-MFAKE protocol can be instantiated using concrete sub-protocols
from Section 3.2. That is, working in prime-order cyclic groups (G, g, q), we can use unauthenticated Diffie-
Hellman key exchange for UKE, a tag-based password-based authentication protocol PwA obtained from the
PAKE protocol in [6] (as detailed in Section 3.2), a suitable tag-based challenge-response protocol for tPkA,
e.g. using DSS or Schnorr signatures, and our simple tBiA protocol with explicit matching based on the
Hamming distance mentioned in Section 3.2. By using the Ω-method from [24] (as also discussed in Section
3.2) we can obtain a verifier-based version of tPwA and use it in our construction. Finally, as evident from
the security analysis in Section 3.4, (α, β, γ)-MFAKE can be instantiated from arbitrary sub-protocols as
long as those satisfy the required authentication goals. Moreover, as discussed in Section 3.2, tPwA can be
obtained generically from PwA, and for a large class of PkA there exists a generic conversion to tPkA. Hence,
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C(pwdC , skC ,WC , pkS ) ( skS , pwdC ,pkC , W ′
C ) S

UKE
k0, tr0 k′0, tr

′
0

tC ← HT (C, S, k0, tr0) tS ← HT (C, S, k′0, tr
′
0)

tPwA
pwdC [1], tC

tr1

pwdC [1], tS

if acc C : tr′1...

tPwA
pwdC [α], tC

trα

pwdC [α], tS

if acc C : tr′α

tPkA
skC [1], tC

trα+1

pkC[1], tS

if acc C : tr′α+1
...

tPkA
skC[β], tC

trα+β

pkC [β], tS

if acc C : tr′α+β

tBiA
WC [1], tC

trα+β+1

W ′
C [1], tS

if acc C : tr′α+β+1
...

tBiA
WC [γ], tC

trα+β+γ

W ′
C [γ], tS

if acc C : tr′α+β+γ

tPkA
pkS , tC

if acc S : trα+β+γ+1

skS , tS

tr′α+β+γ+1

s := (C, S, {tri}i=0,...,α+β+γ+1) s′ := (C, S, {tr′i}i=0,...,α+β+γ+1)
µC ← HC(s, k0) µS ← HC(s′, k′0)µC

If µC 6= µS then reject, else:

νS ← HS(s′, k′0)νC ← HS(s, k0)
νS

If νS 6= νC then reject, else

kS ← Hk(s′, k′0)
accept with kS

kC ← Hk(s, k0)

accept with kC

Fig. 1. (α, β, γ)-MFAKE Protocol. The inputs skS and pkS are optional for the case of server authentication and so is
the server-authenticated execution of tPkA and the confirmation message νS . These optional parts are shown with a
light gray background. Boxed input pwdC on the server side reflects that client’s passwords could be stored in some
blinded way, in which case tPwA is assumed to follow the steps from [24,9,29]. Boxed input W ′

C on the server side
means that client’s reference templates are not necessarily stored in clear, in which case tBiA must provide implicit
matching functionality.
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all building blocks of (α, β, γ)-MFAKE can be realized using existing efficient (single-factor) authentication
solutions.

Performance optimizations. The only dependency amongst the different black-box runs of tag-based
authentication sub-protocols is the input tag obtained after the UKE session. Therefore, all subsequent
sub-protocol runs can be parallelized, resulting in three generic rounds (UKE, tag-based sub-protocols, and
confirmation round). Of course, care should be taken to match client and server messages within each round,
in order to account for the potential mismatch in the sending and delivery order of messages in parallel
sub-protocol sessions. This can be done by pre-pending labels indicating that a message belongs to the ith
session and using these labels to construct matching transcripts on both sides. Further optimizations may
include interleaving of messages and using one random challenge of S for all β sessions of tPkA and another
one for all γ sessions of tBiA, resulting in a three-pass protocol for MFA-based client authentication and
five-pass protocol with further authentication of the server.

3.4 Security Analysis

The initial UKE execution contributes to the forward secrecy of the session keys. In particular, successful
key confirmation guarantees that the transcripts tr0 and tr′0 and the unauthenticated keys k0 and k′0 match.
Independent runs of tag-based authentication-only protocols for each client’s factor ensure that C was alive
at least during that part of the protocol execution. This is because at least one of those factors must remain
uncorrupted prior to the acceptance of the server and all sub-protocol transcripts are linked together in the
key confirmation step. Since tr0 and tr′0 are linked to the transcripts of all authentication-only sub-protocols
the key confirmation step further guarantees that C was alive during the UKE session and, hence, the secrecy
of unauthenticated keys k0 and k′0 follows from KE-security of the UKE protocol. The secrecy of k0 and k′0
carries over to the secrecy of the final session keys kC and kS due to the use of independent random oracles.
The optional server authentication follows the same reasoning as client authentication using PkA sessions.
This intuition is proven in Theorems 1 and 2.

Theorem 1. Our (α, β, γ)-MFAKE protocol is AKE- and CAuth-secure, in the random oracle model, and

Adv
(α,β,γ)-MFAKE,A
AKE (κ) ≤ AdvUKE,BKE (κ) + α · AdvtPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

AdvtBiAi,B
CAuth (κ) + (q2HT

+ q(qHC
+ qHK

)) · 2−κ, and

Adv
(α,β,γ)-MFA,A
CAuth (κ) = Adv

(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ.

Proof. We prove this theorem using a series of games that are written for the AKE-security. To the end of

the proof we discuss the impact of game hops on the CAuth-security. We denote by Succ
(α,β,γ)-MFAKE,A
AKE-x (κ)

the success probability of A in game Gx and define

∆x(κ) = |Succ(α,β,γ)-MFAKE,A
AKE-x (κ)− Succ

(α,β,γ)-MFAKE,A
AKE-(x−1) (κ)|.

G0 This is the original AKE-security game, where the simulator answers the queries of A on behalf of the
instances according to the specification of (α, β, γ)-MFAKE.

G1 In this game for all simulated server and client instances that have matching UKE transcripts tr0 = tr′0
the corresponding UKE keys k0 and k′0 are chosen at random such that k0 = k′0 holds. Otherwise, k0 and
k′0 are computed as in G0.

Claim. ∆1(κ) ≤ AdvUKE,BKE (κ). Proof. For session instances that do not share matching UKE transcripts
both games are identical. Any A that can distinguish between G1 and G0 with non-negligible probability
can be used to break the KE security from Definition 4. The corresponding KE-adversary B against UKE
would interact with A and simulate all its (α, β, γ)-MFAKE oracle queries as specified in G0, except for
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the messages and keys of the UKE sub-protocol. Assume A invokes an instance of U ∈ {C, S}. If this
instance is supposed to send the first message in the UKE session then B queries its Transcript oracle and
uses the first message of the obtained transcript as a response to A. If A invokes an instance for U′ 6= U
that is expected to send a message only after having received some incoming message then B waits for
the corresponding Send query of A and checks whether input message is amongst those output by B from
some transcript that it holds and responds with the next response message from this transcript. If the
input message is unexpected then B runs UKE part on behalf of this instance of U′ without consulting
its oracle (and will thus be able to compute the UKE key for that session). Once UKE session on behalf
of some instance is finished B has always a key to continue its simulation, either from its own UKE run
or from a Transcript query. The way in which B simulates UKE sessions ensures that the latter type of
keys are used in sessions that involve instances with matching UKE transcripts. If Transcript returns real
keys then we are in G0; otherwise in G1. Hence, ∆1(κ) ≤ AdvUKE,BKE (κ).

G2 In this game the simulator aborts if in the ith tPwA session, for some i ∈ {1, . . . , α}, a server instance
[S, s′] with tag tS and (partial) transcript tr′i accepts client C but there exists no instance of C with
matching (partial) transcript tri and tC = tS , and pwd[i] is not corrupted.

Claim. ∆2(κ) ≤ α·SucctPwA,BCAuth (κ). Proof. We prove this with a hybrid argument using sub-games G
upto(j)
2 ,

j = 0, . . . , α. Let tPwAi, i ∈ {1, . . . , α} denote the ith tPwA sub-protocol run. In G
upto(j)
2 all tPwAi,

1 ≤ i ≤ j are handled as in G2 and all tPwAi, j < i ≤ α are handled as in G1. That is, G1 = G
upto(0)
2

and G2 = G
upto(α)
2 . As before, we define ∆

upto(j)
2 (κ) as the difference in A’s success probability in two

consecutive games G
upto(j−1)
2 and G

upto(j)
2 . The difference between the two is that G

upto(j)
2 may still abort

even if G
upto(j−1)
2 does not. Any A that can distinguish between the games must have successfully caused

tPwAj to abort in G
upto(j)
2 , in which case an instance [S, s′] accepts C in tPwAj while no partnered

client instance with the same tag exists and no CorruptClient(C, 0, j) was asked. Such A can be used to
break CAuth-security of tPwA. The simulator can act as CAuth-adversary B against tPwA by invoking
new instances of the server in the tPwA game using tags of server instances that it simulates in the
interaction with A. The simulator relays all tPwAj related queries of A as its own queries in the tPwA

game and wins if A causes G
upto(j)
2 to abort. Therefore ∆

upto(j)
2 (κ) ≤ SucctPwA,BCAuth (κ) and thus ∆2(κ) =∑α

j=1∆
upto(j)
2 (κ) ≤ α · SucctPwA,BCAuth (κ).

G3 In this game the simulator aborts if in the ith client side tPkA session, for some i ∈ {1, . . . , β}, a server
instance [S, s′] with tag tS and (partial) transcript tr′α+i accepts client C but there exists no instance of
C with matching (partial) transcript trα+i and tC = tS , and skC [i] is not corrupted.

Claim. ∆3(κ) ≤ β · SucctPkA,BCAuth(κ). Proof. We can use essentially the same hybrid argument as in G2, but
for tPkA sessions, and thus build a sequence of β sub-games to show that the difference between any two

consecutive sub-games can be upper-bounded by SucctPkA,BCAuth(κ). This leads to∆3(κ) =
∑β
j=1∆

upto(j)
3 (κ) ≤

β · SucctPkA,BCAuth(κ).

G4 In this game the simulator aborts if in the ith tBiA session, for some i ∈ {1, . . . , γ}, a server instance
[S, s′] with tag tS and (partial) transcript tr′α+β+i accepts client C but there exists no instance of C with
matching (partial) transcript trα+β+i and tC = tS , and the ith biometric is not corrupted.

Claim. ∆4(κ) ≤
∑γ
i=1 Succ

tBiAi,B
CAuth (κ). Proof. We denote by tBiAi the tBiA protocol operating on the ith

biometric. Again, using the hybrid argument as in G2, but for tBiA sessions, we can build a sequence

of γ sub-games and upper-bound the difference between any two consecutive sub-games G
upto(j−1)
4 and

G
upto(j)
4 with Succ

tBiAj ,B
CAuth (κ). The simulator can relay all tBiAj related queries of A as its own queries

in the tBiA game, including those related to the BioComp oracle since all biometric-dependent tBiA
messages used in the (α, β, γ)-MFAKE protocol remain identical to those of the tBiA protocol. This leads

to ∆4(κ) =
∑γ
j=1∆

upto(j)
4 (κ) ≤

∑γ
i=1 Succ

tBiAi,B
CAuth (κ).
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Remark 5. If the simulation does not abort in this game then it is guaranteed that for each server in-
stance [S, s′] that is entering the confirmation round with partial transcripts {tr′i}1≤i≤α+β+γ (comprising
executions of tPwA, PkA, and tBiA sub-protocols) and tag tS , and that has not disqualified itself as a
candidate for a Test query (i.e. fulfills freshness conditions from Section 2.2), there exists a client instance
[C, s] with partial transcripts {tri}1≤i≤α+β+γ such that there exists an index i, 1 ≤ i ≤ α + β + γ with
tri = tr′i. Moreover, any such client instance holds tag tC = tS .

G5 In this game the simulation aborts if an instance [S, s′] enters the confirmation round with partial
transcripts tr′0 and {tr′i}1≤i≤α+β+γ and there exists [C, s] with partial transcripts tr0 and {tri}1≤i≤α+β+γ
such that for some index i : tri = tr′i but tr0 6= tr′0.

Claim. ∆5(κ) ≤ q2HT
2−κ. Proof. G4 already ensures that if [S, s′] accepts in all authentication sub-

protocols then there exists a client instance with tC = tS . The only difference between the two games is
that G5 may still abort even if G4 does not. If A can distinguish between the games then A must have
successfully caused the simulator to abort in G5, in which case [S, s′] and [C, s] hold tags tS = tC but
tr0 6= tr′0. We can thus output a collision for HT . Since HT is a random oracle we get ∆5(κ) ≤ q2HT

2−κ.

Remark 6. G5 implies that any instance [S, s′] that was not disqualified as a candidate for a Test query
(upon entering the confirmation round) has a corresponding client instance [C, s] with the same UKE
transcript and at least one matching tag-based sub-protocol transcript.

G6 This game proceeds as G5, except that on behalf of an instance [S, s′] that is not disqualified as a
candidate for a Test query the simulator computes µS ← H′C(s′) and kS ← H′K(s′) using two private
random oracles H′C and H′k, and sets µC = µS and kC = kS for the corresponding [C, s] that has
matching UKE transcript and at least one matching tag-based sub-protocol transcript.

Claim. ∆6(κ) ≤ q(qHC
+ qHK

) · 2−κ. Considering that in the previous game, confirmation values and
session keys of [S, s′] were derived through random oracles HC and Hk on input k′0 (which is random as
ensured by G1) and the transcript s′, any A that can distinguish between the games must ask at some
point a query for HC or Hk containing k′0 and s′ for any of the q invoked sessions as input. Therefore,
∆6(κ) ≤ q(qHC

+ qHk
) · 2−κ.

G6 implies that if [S, s′] accepts and is not disqualified as a candidate for a Test query then kS is uniformly
distributed in the domain of session keys. Hence, the probability of A to win in G6 no longer depends on the
key, i.e. A can win in G6 only by guessing bit b (with probability 1

2 ).

Summarizing the probability differences across all games we obtain

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣
=

∣∣∣∣∣
6∑
i=1

∆i(κ) +
1

2
− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣ .
Taking into account that

6∑
i=1

∆i(κ) ≤ AdvUKE,BKE (κ) + α · SucctPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

SucctBiAi,B
CAuth (κ) + (q2HT

+ q(qHC
+ qHK

)) · 2−κ,

and that

AdvtPwA,BCAuth (κ) =

∣∣∣∣SucctPwA,BCAuth (κ)− q

|Dpwd|

∣∣∣∣
AdvtBiAi,B

CAuth (κ) =
∣∣∣SucctBiAi,B

CAuth (κ)− q · falseposi

∣∣∣
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we obtain

Adv
(α,β,γ)-MFAKE,A
AKE (κ) ≤ AdvUKE,BKE (κ) + α · AdvtPwA,BCAuth (κ) + β · SucctPkA,BCAuth(κ)

+

γ∑
i=1

AdvtBiAi,B
CAuth (κ) + (q2HT

+ q(qHC
+ qHK

)) · 2−κ,

which is negligible by assumptions on UKE, tPwA, tPkA, and tBiA.

Proof for CAuth-security. With regard to client authentication, consider the above game sequence from the

perspective of the CAuth-security game and success probability Succ
(α,β,γ)-MFAKE,A
CAuth (κ). Freshness conditions

regarding server instances encompass the requirements that are relevant for the CAuth-game. Then, Remark
6 implies that in G5 for each server instance [S, s′] for which A could still win the game there exists a
client instance [C, s] with the matching UKE transcript and at least one matching tag-based sub-protocol
transcript. In G6, µC and µS are computed using private oracle, while for CAuth-security modifications of
kC and kS are irrelevant. The probability difference to G5 is thus upper-bounded by q · qHC

· 2−κ. Then,
[S, s′] must have received µC = µS without having a partnered client instance. That is A must have asked
a Send query containing a value that matches a uniformly distributed µS . This happens with probability at
most q · 2−κ for up to q invoked server instances. We thus obtain the following CAuth-success

Succ
(α,β,γ)-MFAKE,A
CAuth (κ) = Succ

(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ − 1

2
.

Taking into account that by definition

Adv
(α,β,γ)-MFAKE,A
AKE (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)
− 1

2

∣∣∣∣∣
we obtain a negligible CAuth-advantage

Adv
(α,β,γ)-MFAKE,A
CAuth (κ) =

∣∣∣∣∣Succ(α,β,γ)-MFAKE,A
CAuth (κ)− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣∣∣
=

∣∣∣∣Succ(α,β,γ)-MFAKE,A
AKE (κ)− q(qHk

− 1) · 2−κ − 1

2

− q

(
α

|Dpwd|
+

γ∑
i=1

falseposi

)∣∣∣∣∣
=
∣∣∣Adv(α,β,γ)-MFAKE,A

AKE (κ)− q(qHk
− 1) · 2−κ

∣∣∣ .
ut

Theorem 2. Our (α, β, γ)-MFAKE protocol with server authentication is SAuth-secure in the random oracle
model, and

Succ
(α,β,γ)-MFAKE,A
SAuth (κ) ≤ AdvUKE,BKE (κ) + SucctPkA,BCAuth(κ) + (q2HT

+ q(qHS
+ 1)) · 2−κ.

Proof. This proof resembles in part the proof of Theorem 1 and proceeds in a series of similar games. We

denote by Succ
(α,β,γ)-MFAKE,A
SAuth-x (κ) the success probability of A in game Gx. For each game Gx, we define ∆x(κ)

as the difference in A’s success probability when playing against the two consecutive games Gx-1 and Gx, i.e.,

∆x(κ) = |Succ(α,β,γ)-MFAKE,A
SAuth-x (κ)− Succ

(α,β,γ)-MFAKE,A
SAuth-(x−1) (κ)|.

G0 This is the original SAuth-security game, where the simulator answers the queries of A on behalf of the
instances according to the specification of (α, β, γ)-MFAKE.
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G1 This game proceeds as G0, except that for all simulated server and client instances that have matching
UKE transcripts tr0 = tr′0 the corresponding UKE keys k0 and k′0 are chosen at random such that k0 = k′0
holds. Otherwise, k0 and k′0 are computed as in G0.

Claim. ∆1(κ) ≤ AdvUKE,BKE (κ). Proof. For client and server instances that do not share matching UKE
transcripts both games are identical. Any A that can distinguish between G1 and G0 with non-negligible
probability can be used to break the KE security from Definition 4. The description of the UKE adversary
is exactly the same as in G1 from the proof of Theorem 1. Hence, ∆1(κ) ≤ AdvUKE,BKE (κ), as claimed.

G2 This game proceeds as G1, except that the simulator aborts if in the server-side tPkA session a client
instance [C, s] with tag tC and (partial) transcript trα+β+γ+1 accepts server S but there exists no instance
of S with matching (partial) transcript tr′α+β+γ+1 and tag tS = tC , and skS is not corrupted.

Claim. ∆2(κ) ≤ SucctPkA,BCAuth(κ). Proof. As already described in games G2 through G4 in proof of Theorem 1
if A can distinguish between the two games, it can be immediately used to break CAuth-security of
tPkA. (In this game CAuth-security is understood as a security property of PkA in case where the
authenticating party is the server S. Recall that PkA offers single-side authentication and was defined
from the perspective of an authenticating client. In this game the authenticating party is S but the
notion of CAuth-security remains as defined.) Hence, ∆2(κ) ≤ SucctPkA,BCAuth(κ), as claimed.

Remark 7. Note that if the simulation does not abort in G2 then it is guaranteed that for each client
instance [C, s] that is entering the confirmation round with partial transcript trα+β+γ+1 and tag tC ,
there exists a server instance [S, s′] with partial transcript tr′α+β+γ+1 = trα+β+γ+1 and tS = tC if neither
C nor S = pid([C, s]) has been fully corrupted.

G3 This game proceeds as G2, except that simulation aborts if an instance [C, s] enters the confirmation
round with partial transcripts tr0 and trα+β+γ+1 and there exists [S, s′] with partial transcripts tr′0 and
tr′α+β+γ+1 such that trα+β+γ+1 = tr′α+β+γ+1 but tr0 6= tr′0.

Claim. ∆3(κ) ≤ q2HT
2−κ. Proof. G2 already ensures that if [C, s′] accepts in the server side tPkA sub-

protocol then there exists a server instance with tS = tC . The only difference between the two games is
that G3 may still abort even if G2 does not. If A can distinguish between the games then A must have
successfully caused the simulator to abort in G3, in which case [C, s] and [S, s′] hold tags tC = tS but
tr0 6= tr′0. We can thus output a collision for HT . Since HT is a random oracle we get ∆3(κ) ≤ q2HT

2−κ,
as claimed.

G4 This game proceeds as G3, except that on behalf of an instance [C, s] for which neither C nor S =
pid([C, s]) is fully corrupted the simulator computes νC ← H′S(s′) using a private random oracle H′S , and
sets νS = νC for the corresponding [S, s′] that has matching UKE transcript and matching server-side
tPkA sub-protocol transcript.

Claim. ∆4(κ) ≤ q · qHS
· 2−κ. Proof. Considering that in the previous game, confirmation values of [C, s]

were derived through the random oracle HS on input k0 (which is random as ensured by G1) and the
transcript s, any A that can distinguish between the games must ask at some point a query for HS
containing k0 and s for any of the q invoked sessions as input. Therefore, ∆4(κ) ≤ q · qHS

· 2−κ, as
claimed.

Assume that A wins in G4. Then, [C, s] must have received νS = νC without having a partnered server
instance. That is, A must have asked a Send query containing a value that matches a uniformly distributed
νC . This happens with probability at most q · 2−κ for up to q invoked client instances. We thus get

Succ
(α,β,γ)-MFAKE,A
SAuth (κ) =

4∑
i=1

∆i(κ) + q · 2−κ

≤ AdvUKE,BKE (κ) + SucctPkA,BCAuth(κ) + (q2HT
+ q(qHS

+ 1)) · 2−κ,

which is negligible by assumptions on UKE and tPkA.
ut
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4 Conclusion

The proposed framework for multi-factor authentication and key exchange protocols enables black-box con-
structions from existing, better-understood single-factor authentication-only schemes. Our generic construc-
tion of the (α, β, γ)-MFAKE protocol avoids undesirable interactions amongst the different factors and bears
optimization potential since messages of tag-based authentication sub-protocols can be interleaved or commu-
nicated over different channels. Thanks to its modularity the framework can easily be extended in the future
to accommodate other authentication factors, e.g. based on friend-of-friend or social authentication [13,17].
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A Some Special Cases of (α, β, γ)-MFAKE

This section relates our (α, β, γ)-MFAKE model to some well-known authentication models. In particular,
proven relationship between (1, 0, 0)-MFAKE and the PAKE model from [7] implies that any PAKE protocol
proven secure in [7] can readily be used as an (1, 0, 0)-MFAKE in our generic solution; similarly, any 2-AKE
protocol that satisfies the security definitions from [8], refined in [10] for the public-key setting, can readily
be used as an (0, 1, 0)-MFAKE.

Special Case of (1, 0, 0)-MFAKE Using (α, β, γ) = (1, 0, 0) we obtain the original setting of Password-
based Authenticated Key Exchange (PAKE) as defined in [7]. This relationship is established in Theorem
3.
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Theorem 3. (1) Let P be an AKE-secure PAKE protocol with client authentication according to the defi-
nitions by Bellare, Pointcheval, and Rogaway [7], then P is also an AKE-secure (1, 0, 0)-MFAKE protocol
with client authentication. (2) Let P be an AKE-secure (1, 0, 0)-MFAKE protocol with client authentication.
If P is symmetric, i.e. the roles of server and client can be swapped, then P is also an AKE-secure PAKE
protocol with client and server authentication as defined in [7].

Proof. We denote the notions of AKE-security, client authentication, and server authentication from [7] by
AKEBPR, CAuthBPR, and SAuthBPR, respectively. For corresponding definitions we refer to [7]. The two
statements in the theorem are proven separately.

Statement (1) Let AAKE be an adversary against the AKE-security of P and ACAuth an adversary against

the CAuth-security of P in the (1, 0, 0)-MFAKE model. We use AAKE to construct an adversary BAKEBPR

against the AKEBPR-security of P and ACAuth to construct BCAuthBPR against the client authentication of
P in the model from [7].

Simulation of Oracles: For simplicity we write A for an adversary in our (1, 0, 0)-MFAKE model and B for
an adversary (against the same security property as A) in the model from [7]. The general idea is that B
invokes A as a subroutine and simulates its oracles in the (1, 0, 0)-MFAKE model using the oracles of B from
[7]. Note that oracles BioComp and CorruptServer of A need not to be handled, as the theorem views P as a
PAKE protocol that (by definition) does not use biometrics or public keys.

If A invokes a new session between C and S via Invoke(C, S) then B queries Send(C, s, S) with a pre-
viously unused s and returns its output to A. (In [7] protocol sessions are invoked through this special
Send query.) Queries of A to Send, RevealSK, and CorruptClient oracles are answered by B as follows: If
A queries Send([U, s],m) with U ∈ {C, S} then B queries Send(U, s,m) and returns its output to A. If A
queries RevealSK([U, s]) with U ∈ {C, S} then B returns the output of its own Reveal(U, s) query from [7].
In (1, 0, 0)-MFAKE queries to CorruptClient of A can only be of the form CorruptClient(C, 1, 1). Any such
query is forwarded by B as Corrupt(C,DontChange) from [7] and the response is forwarded to A. (Note
that in [7], a special symbol DontChange means that upon corruption of the client the latter’s password
remains unchanged on the server’s side.) In this way B can perfectly simulate Invoke, Send, RevealSK, and
CorruptClient queries of A.

AKE-Security: Let A = AAKE and B = BAKEBPR . Here B needs to simulate the additional Test oracle of A
that can be queried for any fresh server instances. B also has access to a Test oracle in the model from [7]. The
difference is that [7] uses Find-then-Guess (FtG) approach, where only one Test query can be asked, whereas
(1, 0, 0)-MFAKE follows the Real-or-Random (RoR) approach with multiple Test queries. The difference

between RoR and FtG was explored in [5, Lemma 2], resulting in AdvP,BRoR

AKEBPR
(κ) ≤ qTest · AdvP,BFtG

AKEBPR
(κ),

where qTest is the maximum number of Test queries asked by an AKE-adversary BRoR in the RoR version
of [7]. We use this result as an intermediate step, i.e. we first consider B = BAKEBPR

RoR within our reduction
(that is as an AKE-adversary for the RoR version of [7]) and let B answer each Test([S, s]) query of A by
forwarding it as its own Test(S, s) query and returning the output back to A. Once A outputs bit b′, B
forwards this bit as its own output in the AKE-security game from the RoR version of [7]. If A correctly
outputs bit b′ = b used by the Test oracle, then so is B. This is guaranteed by the definitions of freshness.
Then by switching to B = BAKEBPR

FtG and using [5, Lemma 2] we obtain AdvP,AAKE(κ) ≤ qTest · AdvP,BAKEBPR
(κ),

where qTest is the number of Test queries asked by the AKE adversary A = AAKE in the (1, 0, 0)-MFAKE
model.

Client Authentication: Let A = ACAuth and B = BCAuthBPR . This case is simpler since there are no Test
queries to consider. If A is successful then at the end of the simulation there must exist a fresh instance
of server S that has accepted without a partnered instance of client C. This means that B is successful
whenever A is and thus AdvP,ACAuth(κ) ≤ AdvP,BCAuthBPR

(κ).

Statement (2) Let AAKEBPR be an AKEBPR-adversary against P, ACAuthBPR an adversary against client

authentication of P, and ASAuthBPR an adversary against server authentication of P in the model from [7].
We first use AAKEBPR to construct an AKE-adversary BAKE against (1, 0, 0)-MFAKE. We then show that
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(since P is assumed to be symmetric) both ACAuthBPR and ASAuthBPR can be used to construct BCAuth

against client authentication in (1, 0, 0)-MFAKE.

Simulation of Oracles: For simplicity we write A for an adversary from [7] and B for the corresponding
adversary in the (1, 0, 0)-MFAKE model. As in Statement (1), B invokes A as a subroutine and simulates its
oracles using the oracles for (1, 0, 0)-MFAKE. Since an (1, 0, 0)-MFAKE protocol P does not use biometrics
and public keys B has no use for its BioComp and CorruptServer oracles. We discuss now, how B answers
queries of A to its Execute, Send, Reveal, and Corrupt oracles from [7]. An Execute(C, s, S, s′) query of A,
which is supposed to return a complete transcript of an honest protocol execution between the two specified
instances is answered by B as follows. B calls Invoke(C, S) to establish a new client instance [C, s] with
partner id S and Invoke(S,C) to establish a new server instance [S, s′] with partner id C. Then, using its
Send oracle B faithfully forwards messages between the both instances until it obtains the resulting protocol
transcript that it hands over to A. The Send oracle in the model from [7] serves two purposes: it invokes new
client and server instances and facilitates communication amongst them. In contrast in our (1, 0, 0)-MFAKE
model sessions are invoked using the Invoke oracle. Hence, if A queries Send(C, s, S) from [7] to invoke a new
client session with server S, B calls Invoke(C, S), returns its output to A, and records the resulting instance
as the s-th instance of C with server S as its communication partner. Similarly, if A queries Send(S, s′, C)
to invoke a new server session with client C, B calls Invoke(S,C), returns its output to A, and records
the resulting instance as the s′-th instance of S with client C as its communication partner. A controls
communication amongst the instances using Send(U, s,M), which sends message M to the s-th instance of
U ∈ {C, S}. These queries are forwarded by B as its own Send queries in the (1, 0, 0)-MFAKE model and
their response is returned to A. A Reveal(U, s) query of A is answered by B through its own RevealSK([U, s])
query. A Corrupt(C, pw) query from [7] serves two purposes: first, the adversary gets the current password
of the client C. In addition, if pw 6= DontChange, where DontChange is considered as a special symbol,
the current password for C stored at server S is replaced with pw that is provided as part of the query.
Note that Katz, Ostrovsky, and Yung [28] later refined the Corrupt query from [7] by allowing the adversary
to install a new password for C at S without necessarily learning the previous password. Our proof can
cope with their refinement. In our simulation, any query Corrupt(C,DontChange) of A is answered by B
using CorruptClient(C, 1, 1) query. Whereas, if A asks Corrupt(C, pw) with pw 6= DontChange (or wishes
to replace the current password with pw as in [28]) then B records pw as a new password for C and answers
subsequent Send queries of A to the new instances of S with partner id C, by executing the protocol on
behalf of S with the new password pw. This simulation is possible since the (1, 0, 0)-MFAKE protocol P is
assumed to be symmetric, so the roles of C and S can be swapped. It is thus sufficient for B to know the
password shared between C and S in order to execute the protocol on behalf of an instance of S that was
invoked with partner id C. Note that in [7] any instance of S with partner id C and any instance of C with
partner id S becomes unfresh if A issues Send queries to these instances after having modified the password
for C at S.

AKE-Security: Let A = AAKEBPR and B = BAKE. In this case B must additionally simulate the Test oracle
that is available to A in [7]. Note that also B has access to a Test oracle in the (1, 0, 0)-MFAKE model but
there is a differences between the two models. The first difference (which was important for Statement (1)
above) is that B may ask multiple Test queries, whereas A may issue only one Test query. This difference is
not important for Statement (2), since B executes A as a subroutine and will thus ask only one Test query.
The second difference, which is important for Case (2), is that B can query its Test oracle with respect to
server instances only (recall that in the (α, β, γ)-MFAKE setting servers do not necessarily have secret keys),
whereas A in the PAKE setting from [7] can direct its Test query also to a client instance. We deal with this
difference in the following way. The universe of PAKE participants in the model from [7] is split into two sets,
ClientBPR and ServerBPR. Also in the (α, β, γ)-MFAKE setting each participant is either a client C or a
server S. We use the fact that in Statement (2) the (1, 0, 0)-MFAKE protocol P is assumed to be symmetric
and let B first flip a bit c ∈R {0, 1} aiming to guess with probability 1

2 whether A will ask its Test query to
a server instance (c = 0) or to a client instance (c = 1). Depending on the value of c, B defines the two sets
of participants as follows: if c = 0 then B defines ClientBPR to be the set of all clients C and ServerBPR to
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contain all servers S, otherwise if c = 1 then ClientBPR is defined as the set of all servers S and ServerBPR
as the set of all clients C. Once the two sets are defined, B invokes A and proceeds with simulation. If the
guess of B is correct then B can always forward the Test(U, s) query of A as its own Test([S, s]) query where
S is a server in the (1, 0, 0)-MFAKE model. Indeed, if c = 0 then U = S for some S ∈ ServerBPR, whereas
if c = 1 then U = S for some S ∈ ClientBPR. In both cases B will forward the answer of its own Test query
to A. Once A outputs bit b′, indicating the end of the AKE-security game from [7], B forwards this bit as
its own output in the AKE-security game from the (1, 0, 0)-MFAKE model. If A is successful, i.e. correctly
outputs bit b′ = b used by the Test oracle, then so is B. This is guaranteed by the definitions of freshness in
both models. This gives us the desired inequality AdvP,AAKEBPR

(κ) ≤ 2AdvP,BAKE(κ).

Client Authentication: Let A = ACAuth
BPR and B = BCAuth. In this case there are no additional oracles to take

care of. If A is successful in its attack then at the end of the simulation there must exist a fresh instance
of server S that has accepted without a partnered instance of client C. This means that B is successful
whenever A is and thus AdvP,ACAuthBPR

(κ) ≤ AdvP,BCAuth(κ). By assumption in the theorem the left part of this
inequality is negligible. Thus, P achieves client authentication in the model from [7].

Server Authentication: In order to argue that P also achieves server authentication as defined in [7], we

recall that for symmetric PAKE protocols AdvP,ACAuthBPR
(κ) = AdvP,ASAuthBPR

(κ). Since our theorem assumes
that P is a symmetric (1, 0, 0)-MFAKE protocol we can use the inequality for client authentication above to

immediately obtain AdvP,ASAuthBPR
(κ) ≤ AdvP,BCAuth(κ). ut

Special Case of (0, 1, 0)-MFAKE Using (α, β, γ) = (0, 1, 0) we obtain the setting of Two-Party Authen-
ticated Key Exchange (2-AKE), as defined in [8] and refined later for the public key setting in [10]. This
relationship is established in Theorem 4.

Theorem 4. (1) Let P be an AKE-secure 2-AKE protocol with mutual authentication according to the
definitions by Bellare and Rogaway [8], refined for the public key setting by Blake-Wilson, Johnson, and
Menezes [10]. Then P is also an AKE-secure (0, 1, 0)-MFAKE protocol with client and server authentication.
(2) Let P be an AKE-secure (0, 1, 0)-MFAKE protocol with client and server authentication. Then P is
also an AKE-secure 2-AKE protocol with mutual authentication as defined in [8,10] in the client server
communication model.

Proof. We denote the notions of AKE-security and mutual authentication from [8,10] as AKEBR and
MAuthBR respectively. For corresponding definitions we refer to [8,10]. The two statements in the theo-
rem are proven separately.

Statement (1) Let AAKE be an adversary against the AKE-security of P, ASAuth an adversary against the

SAuth-security of P and ACAuth an adversary against the CAuth-security of P in the (1, 0, 0)-MFAKE
model. Using AAKE we will construct an adversary BAKEBR against the AKEBR-security of P and using any
of ACAuth or ASAuth we will construct an adversary BMAuthBR against the mutual authentication of P in
the model from [8,10].

Simulation of Oracles: In order to simplify the notation we will use in this paragraph A for an adversary in
our (0, 1, 0)-MFAKE model and B for the adversary (against the same security property as A) in the model
from [8,10]. The general idea is that B invokes A as a subroutine and simulates oracles that are available to
A in the (0, 1, 0)-MFAKE model using the oracles that are available to B in the model from [8,10]. Note that
queries of A to the BioComp oracle need not to be handled, as the theorem views P as a 2-AKE protocol
that (by definition) does not use biometrics.

If A invokes a new session between a client C and a server S via an Invoke(C, S) query then B queries
Send(C, S, s, λ), where λ is the empty string, with a previously unused s and returns its output to A. Note
that in [8,10], protocol sessions are invoked through this special Send query.

Queries of A to its Send, RevealSK, CorruptClient, and CorruptServer oracles are answered by B using its
own oracles as follows: If A asks a Send([U, s],m) query with U ∈ {C, S} then B queries Send(U, pid(U), s,m)
from [8] and returns its output to A. If A asks a RevealSK([U, s]) query with U ∈ {C, S} then B returns
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the output of its own Reveal(U, pid(U), s) query from [8]. If A asks a CorruptServer(S) then B returns the
output of its own Corrupt(S) query. In the (0, 1, 0)-MFAKE setting the CorruptClient queries of A can only
be of the form CorruptClient(C, 2, 1). Any such query of A is forwarded by B as its own Corrupt(C) query
and its response is handed over to A. (Note that Corrupt oracle was introduced to the model from [8] in [10]
to address forward secrecy in the context of public key-based AKE protocols.)

In this way B can perfectly simulate Invoke, Send, RevealSK, CorruptClient, and CorruptServer queries of
A.

AKE-Security: We first focus on the AKE-security, i.e. assume A = AAKE and B = BAKEBR . Here B needs
to simulate the additional Test oracle that is available to A in the (0, 1, 0)-MFAKE model and that can be
asked for any fresh server instances. Note that also B has access to a Test oracle in the model from [8].
The difference is – similar to the proof of Theorem 3 and the model from [7] – that [8,10] follow the so-
called Find-then-Guess (FtG) approach, where only one Test query can be asked, whereas (0, 1, 0)-MFAKE
follows the Real-Or-Random (ROR) approach that allows for multiple Test queries. We again use the AKE
modeling result by Abdalla, Fouque, and Pointcheval [5, Lemma 2] as an intermediate step, i.e. we first
consider B = BAKEBR

RoR within our reduction (that is as an AKE-adversary for the ROR version of [8]) and let
B answer each Test([S, s]) query of A by forwarding it as its own Test(S, s) query and returning the output
back to A. Once A outputs bit b′, indicating the end of the AKE-security game from the (0, 1, 0)-MFAKE
model, B forwards this bit as its own output in the AKE-security game from the ROR version of [8]. If A is
successful, i.e. correctly outputs bit b′ = b used by the Test oracle, then so is B. This is guaranteed by the
definitions of freshness. Now by switching to B = BAKEBR

FtG and using the result from [5, Lemma 2] we obtain

the resulting inequality AdvP,AAKE(κ) ≤ qTest ·AdvP,BAKEBR
(κ), where qTest is the number of Test queries asked by

the AKE adversary A = AAKE in the (0, 1, 0)-MFAKE model.

Mutual Authentication: We proceed with the notion of mutual authentication, i.e. assuming either A =
ACAuth or A = ASAuth and B = BMAuthBR . This notion is simpler since there are no further Test queries
to consider. If ACAuth is successful in its attack then at the end of the simulation there must exist a fresh
instance of server S that has accepted without a partnered instance of client C. If ASAuth is successful in
its attack then at the end of the simulation there must exist a fresh instance of client C that has accepted
without a partnered instance of server S. This means that in both cases B is successful whenever A is and
AdvP,ACAuth(κ) ≤ AdvP,BMAuthBR

(κ) as well as AdvP,ASAuth(κ) ≤ AdvP,BMAuthBR
(κ).

Statement (2) Let AAKEBR be an adversary against the AKEBR-security of P, AMAuthBR an adversary

against mutual authentication of P, and ASAuthBR an adversary against server authentication of P in the
model from [8,10]. We will use AAKEBR to construct an AKE-adversary BAKE in the (0, 1, 0)-MFAKE model.
We will use AMAuthBR to construct an adversary BCAuth against client authentication in the (0, 1, 0)-MFAKE
model.

Simulation of Oracles: In order to simplify the notation we will use in this paragraph the notation A for an
adversary in the model from [8,10] and B for the corresponding adversary in our (0, 1, 0)-MFAKE model. As
in Case (1), B invokes A as a subroutine and simulates oracles that are available to A in the model from
[8,10] using the oracles from the (0, 1, 0)-MFAKE model. Note that since the (0, 1, 0)-MFAKE protocol P
does not use biometrics B has no use for its BioComp oracle. We discuss now, how B answers queries of A
to its oracles Send and Reveal from [8], refined with the additional oracle Corrupt from [10].

The Send oracle in [8,10] invokes new sessions on the fly when the communication begins. In contrast
in our (0, 1, 0)-MFAKE model sessions are explicitly invoked using the Invoke oracle. Hence, if A queries
Send(U,U′, s, λ) from [8,10], where λ is the empty string, to start a session, B calls Invoke(U,U′), returns its
output to A, and records the resulting instance as the s-th instance of U with server U′ as its communication
partner. Here, we implicitely assume, that the protocol follows the client-server communication model, i.e.
one of the participants will always be a client and the other one a server. For regular queries of the form
Send(U,U′, s,m), B needs to make sure, that the specified receiver already exists. If it does not exist, B first
calls Invoke(U,U′), and records the resulting instance as the s-th instance of U with U′ as its communication

22



partner. Once B has ensured that the receiving instance exists, the query can be answered by B by forwarding
it as its own Send query in the (1, 0, 0)-MFAKE model and its response is handed over to A.

A Reveal(U, s) query of A is answered by B through its own RevealSK([U, s]) query.

A Corrupt(U) query of A is answered by B depending on whether U = C or U = S. If U = C the query
is answered by B though its own CorruptClient(U, 2, 1) query. Otherwise the query is answered by B through
its own CorruptServer(U) query.

AKE-security: We first consider the notion of AKE-security, i.e. assuming that A = AAKEBR and B = BAKE.
In this case B must additionally simulate the Test oracle that is available to A in [8,10]. Note that also B
has access to a Test oracle in the (0, 1, 0)-MFAKE model but there is a differences between the two models.
The first difference (which was important for Statement (1) above) is that B may ask multiple Test queries,
whereas A may issue only one Test query. This difference is not important for Statement (2), since B executes
A as a subroutine and will thus ask only one Test query. The second difference, which is important for Case
(2), is that B can query its Test oracle with respect to server instances only (recall that in the (α, β, γ)-
MFAKE setting servers do not necessarily have secret keys), whereas for A in the 2-AKE setting from [8,10]
there is no distinction between clients and servers and it can direct its Test query to any instance. We deal
with this difference in the following way. From A’s point of view, the protocol is completely symmetric and
he has no way to distinguish between clients and servers. Therefore, if A asks a Test query for some pair of
communication partners, it will pick the server with probability 1

2 . If A chose a server instance for its Test
query, B can always forward the Test(S, s) query of A as its own Test([S, s]) query where S is a server in the
(1, 0, 0)-MFAKE model. Otherwise, B needs to abort, as it cannot answer the Test query.

Once A outputs bit b′, indicating the end of the AKE-security game from [8,10], B forwards this bit as
its own output in the AKE-security game from the (0, 1, 0)-MFAKE model. If A is successful, i.e. correctly
outputs bit b′ = b used by the Test oracle, then so is B. This is guaranteed by the definitions of freshness in
both models. This gives us the desired inequality AdvP,AAKEBR

(κ) ≤ 2AdvP,BAKE(κ).

Mutual Authentication: We continue with the notion of mutual authentication, i.e. assuming A = AMAuthBR

and B = BCAuth. In this case there are no additional oracles to take care of. If A is successful in its attack
then at the end of the simulation there must exist a fresh instance of participant U that has accepted without
a partnered instance of U′. This means that B is successful whenever A is, as long as U = C. We again argue
that because of the protocols symmetry, the probability of U = C is 1

2 . Thus AdvP,AMAuthBR
(κ) ≤ 2AdvP,BCAuth(κ).

Since by assumption in the theorem the left part of this inequality is negligible we follow that P achieves
mutual authentication in the model from [8,10]. ut

Special Case of (0, 0, 1)-MFAKE If we set the parameters (α, β, γ) = (0, 0, 1) our definitions of AKE-
security and client authentication result in the stand-alone notion of Biometric-based Authenticated Key
Exchange (BAKE) in the presence of liveness assumption. Working with public biometric data, we emphasize
the difference of this setting to existing BAKE notions such as [12,15] that model biometric data as secret
data. The latter are usually constructed using secure sketches and robust fuzzy extractors [18,11] and have an
initial step, in which both BAKE participants (client and server) derive some secret high-entropy shared key
K. The actual authentication is then performed using K in a (symmetric) two-party AKE protocol session
and is analyzed using the model from [8].

A stand-alone BAKE setting with public distribution of biometric data can also be obtained from the
MFAKE model in [36], which we take as a basis for our (α, β, γ)-MFAKE. A by-product of a BAKE model
with liveness assumption is that its security definitions are equally applicable to biometrics of high and low
entropy — which is not the case if biometrics are regarded as secrets — since in order to make active use of
a biometric the adversary must consult its BioComp oracle.

Simple (0, 0, 1)-MFAKE Protocol. As observed in [36], stand-alone BAKE protocols with public biomet-
ric data have not been proposed so far. The actual MFAKE construction in [36] doesn’t admit a pure BAKE
protocol since it binds biometric data to the password and it is not clear how to separate the both. In fact
this link lead to an attack in [25]. We give now a simple construction of a stand-alone AKE-secure BAKE,
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termed (0, 0, 1)-MFAKE, whose explicit matching process checks that the Hamming distance of a candidate
template W ′C and the reference template WC (stored at S) remains below a threshold τ :

Let (G, g, q) be a cyclic group of sufficiently large prime order q. C and S first execute an unauthenticated
Diffie-Hellman key exchange in G by exchanging gx and gy. Consider two hash functions H1,H2 : G 7→
{0, 1}κ. Let W ′C,i resp. WC,i denote the ith bit of the corresponding template. For each bit i the client
computes hi = H1(gx, gy, gxy,W ′C,i, i) using its version of gxy and sends the resulting set {hi}i to S. S
re-computes corresponding values using its version of gxy and the reference template WC , and accepts with
kS = H2(gx, gy, gxy) if strictly less than τ hash values from {hi}i do not match. It is not difficult to see
that this protocol guarantees AKE-security for the session keys kS if liveness assumption is in place, which
essentially prevents the adversary from sending any hi that was not computed beforehand through the
BioComp oracle. The secrecy of the session key kS follows then from the classical CDH assumption in the
random oracle model.

Special Case of (1, 1, 1)-MFAKE By construction, our (α, β, γ)-MFAKE model implies the previous
MFAKE model from [36]. Therefore, any MFAKE protocol with AKE- and CAuth-security from [36] satisfies
corresponding definitions in our model with (α, β, γ) = (1, 1, 1) and vice versa. Our model further extends
[36] with the additional requirement of server authentication (SAuth-security). Note that attacks from [26]
against the protocol in [36] were partially based on the missing server authentication property.

Special Case of (α, 0, 0)-MFAKE The scenario covered by this case is where a client shares α passwords
with the remote server. This case has also been explored in the context of Multi-Factor Password Authen-
ticated Key Exchange (MFPAKE) introduced in [38]. Without formally establishing the relationship to the
model from [38], we observe that like [38] our definitions also aim at AKE-security with forward secrecy of
the established session keys as long as one of the passwords remains uncorrupted.
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