
Relation between Verifiable Random Functions and Convertible
Undeniable Signatures, and New Constructions

Kaoru Kurosawa1, Ryo Nojima2, and Le Trieu Phong2

1 Ibaraki University
2 NICT, Japan

Abstract. Verifiable random functions (VRF) and selectively-convertible undeniable signature (SCUS)
schemes were proposed independently in the literature. In this paper, we observe that they are tightly
related. This directly yields several deterministic SCUS schemes based on existing VRF constructions.
In addition, we create a new probabilistic SCUS scheme, which is very compact. The confirmation and
disavowal protocols of these SCUS are efficient, and can be run either sequentially, concurrently, or
arbitrarily. These protocols are based on what we call zero-knowledge protocols for generalized DDH
and non-DDH, which are of independent interest.
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1 Introduction

1.1 Background

Selectively convertible undeniable signatures (SCUS) were introduced by Boyar, Chaum, Damg̊ard,
and Pedersen [2] in 1990, extending the concept of undeniable signatures of Chaum and Antwerpen
[5]. Recall that the verification of undeniable signatures is restricted, namely controlled by the
signer. Any verifier needs to run an interactive protocol with the signer to check whether the
purported signature is valid. However, in SCUS schemes, the verification of signatures can be
additionally done non-interactively; namely the signer now can release a piece of information, often
called a converter, to make his signature publicly checked.

SCUS schemes can be used directly, when one would like to allow some verifiers to freely check
his signature, while the other cannot do so. For example, IACR members who receive the converter,
can directly verify the signature, while non-members cannot. SCUS schemes can also be used as a
the main building block in protocols such as fair payment [3]. There is a long list of work on SCUS
schemes in the literature, including [10,15,17,26,28] in the standard model.

On the other hand, verifiable random functions (VRFs), later introduced by Micali, Rabin,
and Vadhan [21] in 1999, are like pseudo-random functions in the sense that their outputs are
indistinguishable from random. However, unlike standard pseudo-random functions, the output of
VRFs can be proved coming from a given input if one (owning the secret key) releases an additional
piece of information, often called the proof of correctness.

VRFs have been used in various contexts, including resettable zero-knowledge proofs [22], micro-
payment schemes [23], updatable zeroknowledge databases [20], and verifiable transaction escrow
schemes [14].

1.2 Our contributions

We first show VRF implies deterministic SCUS. The reverse side holds if SCUS has an additional
property called uniqueness. Furthermore, probabilistic SCUS can be seen as “randomized” VRF



Table 1. Some recent SCUS schemes in the standard model, operating on a pairing group PG = (G,GT , g, q, e),
where g is a generator of G, and the order |G| = |GT | = q for prime q, and e : G×G→ GT . The notation 3G means
3 group elements in G; 1GT means 1 group element in GT . Typically, sG = 160G

SCUS schemes Signature Converter Public keys
(all sizes are in group elements)

PKO [26] ≥ 3G 2G ≥ 12G
SM [28] 4G 2G ≈ sG

Our SCUSDY (Sect.4.2) 1GT 1G 2G
Our SCUSHW (Sect.4.2) 1GT ≈ sG ≈ sG
Our SCUSBB (Sect.5) 1Zq + 1GT 1G 4G

(taking randomness as a function input). Perhaps surprisingly, these facts were not notified before in
the literature of both SCUS and VRF. With these insights, one can use SCUS in protocols originally
employed VRF, and vice versa. This broadens the tools one can use in designing protocols.

Then, also based on the relation, we construct new deterministic SCUS in the standard model.
Going further, we build a probabilistic SCUS scheme with very neat parameters. A comparison
with the best known schemes in the standard model is given in Table 1. More details are as follows.

Deterministic SCUS from VRF. We show that VRFs directly imply deterministic SCUS
schemes. This result, coupling with our zero-knowledge protocols for generalized DDH and non-
DDH, then yields several efficient SCUS schemes. We give in Sect.4.2 two concrete deterministic
SCUS schemes denoted as SCUSDY and SCUSHW, respectively based on the VRFs of Dodis,
Yampolskiy [9] and Hohenberger, Waters [13]. We note that SCUSDY requires small signing
space, while SCUSHW does not.

Interlude: A new probabilistic SCUS. The converters and/or public keys in the above deter-
ministic SCUS schemes are a bit long (e.g., of at least 160 group elements in SCUSHW). Inspired
from SCUSDY and the technique of Boneh and Boyen [1], we newly construct a more compact
probabilistic SCUS scheme, called SCUSBB, with arbitrary signing space. The scheme is given
in Sect.5.

VRF from SCUS. We establish the other side as well, namely VRFs from SCUS schemes with
a unique property. The property requires, for every3 public key, there is one valid signature for
each message in SCUS. However, since there is no known unique SCUS scheme currently, this
is just of theoretical interest. See Sect.4.3 for the construction.

Note that the confirmation and disavowal protocols for our SCUS constructions can be efficiently
and elegantly realized from what we call zero-knowledge protocols for generalized DDH and non-
DDH in Sect.3. These protocols are of independent interest, and may be useful in other context as
well.

2 Definitions

By a
$← U we mean a is chosen randomly from a set U , and by AO(·) we mean the adversary A gets

access to the oracle O(·). The value |a| is the length in bits of the element a, while |H| is the order
of a group H.

Verifiable random function. The function, described as VRF = (Gen, Func, V), is as follows.

3 This unique property is a little stronger than “deterministic”, since it deals also with malformed public keys. If
the public key is honestly created, both are identical.



– Gen(1λ): return the public key pk and the secret key sk.
– Funcsk(x): return the (pseudo-random) output y = Fsk(x) for Fsk(·) : Domain(λ, pk)→ Range(λ, pk)

4, and its proof of correctness π = πsk(x).
– Vpk(x, y, π): return 1 (meaning y = Fsk(x)) or 0.

We require the following properties on VRF.

Provability: if (y, π) = Funcsk(x) then Vpk(x, y, π) = 1 (except with negligible probability), for
all (pk, sk)← Gen(1λ), and x ∈ Domain(λ).

Uniqueness: Except with negligible probability, there is no tuple (x, y1, y2, π1, π2) satisfying

y1 6= y2 and Vpk(x, y1, π1) = Vpk(x, y2, π2) = 1,

for all pk, and x ∈ Domain(λ).
Pseudo-randomness: For all poly-time distinguisher D = (D1,D2), the following advantage

Advrand
VRF (D) =∣∣∣∣∣∣∣Pr

b′ = b :

(pk, sk)
$← Gen(1λ), (x∗, st)← DFuncsk(·)

0 (1λ, pk)

y∗0 ← Fsk(x
∗), y∗1

$← Range(λ),

b
$←{0, 1}, b′ ← DFuncsk(·)

1 (y∗b , st)

− 1

2

∣∣∣∣∣∣∣ ,
where x∗ is not queried to the oracle Funcsk(·), is negligible in λ. Above, st stands for state.

Selectively convertible undeniable signature scheme. The scheme, denoted as SCUS,
consists of the algorithms (KGen, USign, Convert, Verify) and the protocols (Confirm, Disavowal)
described as follows.

– KGen(1λ): return the public key pk and the secret key (signing key) sk.
– USignsk(m): return a signature σ on a message m. We sometimes require that it is deterministic

so that a signature σ is valid on m if and only if σ = USignsk(m). If the algorithm is probabilistic
with randomness r, we sometimes write σ = USignsk(m; r).

– Convertsk(m,σ): release a converter cvt if (m,σ) is valid, and ⊥ otherwise.
– Verifypk(m,σ, cvt): return 1 (meaning (m,σ) is valid) or 0.
– Confirm: This is a protocol between the signer and a verifier, on common input (pk,m, σ), the

signer with sk proves that (m,σ) is a valid message-signature pair in zero-knowledge.
– Disavowal: This is a protocol between the signer and a verifier, on common input (pk,m, σ), the

signer with sk proves that (m,σ) is an invalid message-signature pair in zero-knowledge.

Definition 1 (Unforgeability of SCUS) The scheme SCUS is unforgeable if for all poly-time
adversary A, the advantage

Advforge
SCUS(A) =

Pr

(m∗, σ∗) is valid :

(pk, sk)← KGen(1λ),

(m∗, σ∗)← AUSignsk(·),Convertsk(·,·),P(pk),
m∗ was not queried to USignsk(·)


is negligible in λ. Above and below, P stands for the confirmation/disavowal oracle working as
follows: A submits a message-signature pair of the form (m,σ) to P, which first checks the validity
of (m,σ). If it is a valid pair, the oracle returns 1 and executes the confirmation protocol with A
4 We will be mainly interested in the case Range(λ) is big enough, e.g., Range(λ) = {0, 1}λ for λ = 170.



(acting as a cheating verifier). Otherwise, the oracle returns 0 and executes the disavowal protocol
with A.

For strong unforgeability, the forged pair (m∗, σ∗) is different from the pairs appeared at the
oracle USignsk(·). (Yet m∗ can be queried to USignsk(·), yielding for example σ∗. In that case,
σ∗ 6= σ∗.).

We note that all SCUS schemes in this paper meet the notion of strong unforgeability.

Definition 2 (Invisibility of SCUS [11]) The scheme SCUS has invisibility if for all poly-time
distinguisher D = (D0,D1), the advantage

Advinv
SCUS(D) =∣∣∣∣∣∣∣∣∣Pr

b′ = b :

(pk, sk)← KGen(1λ),

(m∗, st)← DUSignsk(·),Convertsk(·,·),P
0 (pk),

σ∗0 ← USignsk(m
∗), σ∗1

$← SigSpace(λ),

b′ ← DUSignsk(·),Convertsk(·,·),P
1 (σ∗

def
= σ∗b , st)

− 1/2

∣∣∣∣∣∣∣∣∣
is negligible in λ, where SigSpace(λ) is the signature space of the scheme. Also, there are some nat-
ural restrictions on D1’s queries: no confirmation/disavowal query and conversion query (m∗, σ∗),
and no signing query m∗ (needed only if USign is deterministic), are allowed.

3 Zero-knowledge protocols for generalized DDH and non-DDH

Protocols from q-oneway homomorphism [6]. Let Dom and Rng be finite Abelian groups,
and f : Dom→ Rng be a group homomorphism. Following Cramer, Damg̊ard, and MacKenzie, we
say a one-way function f is q-oneway for a fixed prime q, if given f and b in f ’s range, one can
efficiently find a ∈ Dom such that f(a) = bq. From such f , it is shown in [6] how to build a 4-move
zero-knowledge (ZK) protocol proving the knowledge of f ’s pre-image. Namely, for public x, the
prover shows the knowledge of ω such that f(ω) = x. The zero-knowledge protocol is based on the
following Σ-protocol.

Σ-protocol proving f(ω) = x

1. The prover chooses ω′
$← Dom, and sends x′ = f(ω′) to the verifier.

2. The verifier sends back a random challenge c ∈ {0, . . . , q − 1}.
3. The prover returns ω′′ = ω′ + cω to the verifier who checks f(ω′′) = x′xc.

The well-known Schnorr protocol [27] becomes a special case of the above, when considering
f : Zq → H, and f(ω) = hω, where the order |H| = q and h is a generator of H. It is easy to see
that f is an oneway homomorphism. For y ∈ H, we have yq = 1, thus f(0) = yq, and hence f is
q-oneway.

ZK protocol for generalized DDH. Consider two generators g, h ∈ H. The elements Xi = hxi

for 1 ≤ i ≤ n, and Y are given in public. The prover with secrets xi wants to show in ZK that
Y = g

∏n
i=1 xi . When g = h and n = 1, this is exactly the Schnorr protocol.

Let yj =
∏j
i=1 xi for 1 ≤ j ≤ n. For the following q-oneway homomorphism

f(y1, . . . , yn) =
(
hy1 , hy2X−y12 , . . . , hynX−yn−1

n , gyn
)
,



our prover proves that he knows (y1, . . . , yn) such that f(y1, . . . , yn) = (X1, 1, . . . , 1, Y ) by using
the above Σ-protocol. The protocol is a 3-move ZK protocol against honest verifier. It can be
transformed to a 4-move ZK protocol against any verifier.

(Completeness) It holds that hyjX
−yj−1

j = 1 because hyj = X
yj−1

j for all 2 ≤ j ≤ n. (Soundness)

Note that hy1 = X1 implies y1 = x1, and hy2X−y12 = 1 implies y2 = y1x2 = x1x2, and so on, so
that yn =

∏n
i=1 xi as required.

Neff [25], with other techniques, also gave a protocol called iterated logarithmic multiplication
protocol realizing the above task when g = h. Ours, described above, is more compact and general.

ZK protocol for generalized non-DDH. Given h,Xi = hxi , Y ∈ H, and now the prover wants
to show that Y 6= h

∏n
i=1 xi . We call this generalized non-DDH protocol, which will be used for

disavowal in later SCUS schemes. Employing a trick of Camenisch and Shoup [4], the prover takes

x0
$← Zq and sends T =

(
Y −1h

∏n
i=1 xi

)x0
to the verifier who checks T 6= 1. Let yj =

∏j
i=0 xi so

that T = Y −x0hyn . Note that hy1X−x01 = 1 and hyjX
−yj−1

j = 1 for 2 ≤ i ≤ n. We then consider the
following q-oneway homomorphism

f(x0, y1, . . . , yn) =
(
hy1X−x01 , hy2X−y12 , . . . , hynX−yn−1

n , Y −x0hyn
)
,

so that the prover just needs to prove the knowledge of the pre-image satisfying f(x0, y1, . . . , yn) =
(1, . . . , 1, T ). The protocol is 3-move against honest verifier, and 4-move against any verifier.

Full zero-knowledgeness from the Σ-protocols is described in Appendix A.

4 Relation between SCUS and VRF

4.1 SCUS from VRF: a Generic Construction

Let VRF = (Gen, Func, V) be a VRF for Funcsk(·) =
(
Fsk(·), πsk(·)

)
where the range of Fsk(·) is

considered as {0, 1}κ (κ ≈ 170 in later sections). We now construct a scheme SCUS = (KGen, USign,
Convert, Verify, Confirm, Disavowal) described as follows.

The construction of SCUS:

– KGen(1λ): Return (pk, sk)← Gen(1λ).

– USignsk(m): Return σ = Fsk(m) as the undeniable signature.

– Convertsk(m,σ): Return π = πsk(m) as the converter if Vpk(m,σ, π) = 1, else return ⊥.

– Verifypk(m,σ, π): Return Vpk(m,σ, π).

– Confirm: The common input is (pk,m, σ). With private input sk, the signer proves in zero-
knowledge that σ = Fsk(m).

– Disavowal: The common input is (pk,m, σ). With private input sk, the signer proves in zero-
knowledge that σ 6= Fsk(m).

In general, the Confirm and Disavowal protocols can be realized by general techniques for zero-
knowledge, but not very efficient. Later, we will show efficient protocols for specific cases.

Theorem 3 The SCUS construction above satisfies unforgeability.

Proof. Given A against the unforgeability of SCUS, we build a distinguisher D against the pseudo-
randomness of VRF. The distinguisher D, on input pk, runs A also with pk and answers A’s queries
as follows.



– Query m to USignsk(·): D calls its own oracle Funcsk(·) on m to obtain
(
σ = Fsk(m), π =

πsk(m)
)
. Return σ as the undeniable signature. Furthermore, D adds (m,σ, π) into a list Qusign,

which is initially empty.

Before using a technique as in [16] to continue the simulation, let us add some notations. Let nqr be
the total number of convert and confirmation/disavowal queries, each of which is indexed by a num-
ber i. Without loss of generality, consider the final output of A as the final confirmation/disavowal
query (since, otherwise, D can call the oracle with the query). Let i∗ be the first valid message-
signature pair, denoted as (m∗, σ∗), queried by A to the convert or the confirmation/disavowal
oracle so that (m∗, σ∗, ·) 6∈ Qusign. Certainly, i∗ exists if A wins, but we do not know the index

exactly. We then guess i∗ by choosing guess
$←{1, . . . , nqr+1}, so that Pr[i∗ = guess] = 1/(nqr+1),

which is non-negligible. Below simulation is conditioned on the event i∗ = guess.

– Query (m,σ) indexed i < guess to either Convertsk(·, ·) or P: If (m,σ, π) ∈ Qusign for some π,
then return π in case of conversion query, or return 1 and execute the confirmation protocol in
case of confirmation/disavowal query.
Otherwise, if (m,σ, ·) 6∈ Qusign, this must be an invalid message-signature pair (since i < guess),
so D just returns ⊥ (for conversion query), or returns 0 and runs the disavowal protocol. The
protocols can be simulated by the rewinding technique.

– The case i = guess(= i∗): As denoted above, we have the pair (m∗, σ∗) 6∈ Qusign. Since (m∗, σ∗) is
valid, we have σ∗ = Fsk(m∗). Now D sends m∗ as the challenge message, receiving the challenge
τ∗, which is either Fsk(m∗) or a random element in {0, 1}κ. Note that if the hidden bit is 1 then
τ∗ is random, and hence Pr[σ∗ = τ∗] ≤ 2−κ, which is negligible. Therefore, if σ∗ = τ∗, D return
0 as its guess of the hidden bit; otherwise D returns 1.

Note that there is no need to consider i > guess. Furthermore, it is easy to see that Advrand
VRF (D) =

1
nqr+1 ·Advforge

SCUS(A), ending the proof. ut

Theorem 4 The SCUS construction above has invisibility. In particular, if there is a poly-time
Dscus against SCUS, then there are poly-time Dvrf and A satisfying

Advinv
SCUS(Dscus) ≤ Advrand

VRF (Dvrf) + Advforge
SCUS(A)

Proof. Given Dscus against the SCUS scheme, we build a distinguisher Dvrf against the pseudo-
randomness of VRF. The distinguisher Dvrf , on input pk, runs Dscus and answers its queries as
follows.

– Query m to USign(·): Dvrf calls its own oracle Funcsk(m) to obtain σ = Fsk(m) and π = πsk(m).
Return Fsk(m) as the signature. Also, add the pair (m,σ, π) toQusign, which is an initially-empty
set.

– Query (m,σ) to Convertsk(·, ·): If for some π, (m,σ, π) ∈ Qusign, then return π; otherwise, return
⊥. The reason behind this simulation is that if (m,σ, ·) 6∈ Qusign, then (m,σ) must be invalid
thanks to unforgeability.

– Query (m,σ) to protocol P: Similarly to the above, if (m,σ, ·) ∈ Qusign, then Dvrf returns 1 and
runs the confirmation protocol with Dscus; otherwise it returns 0 and executes the disavowal
protocol. The protocols are zero-knowledge, and then simulatable by the rewinding technique.

– Challenge query m∗: Dvrf forwards m∗ to its own challenge oracle to obtain σ∗ which is either
Fsk(m

∗) or a random element from the range Range(λ). The element σ∗ is given to Dscus.

At the end, Dvrf outputs what Dscus does. It is straightforward to see that the simulation is correct
except with negligible probability, and Advinv

SCUS(Dscus) ≤ Advrand
VRF (Dvrf) + Advforge

SCUS(A), finishing
the proof. ut



4.2 Concrete instantiations

In this section, we will use a pairing group PG = (G,GT , g, q, e), where g is a generator of G, and
the order |G| = |GT | = q for prime q, and e : G×G→ GT .

SCUS from the VRF of Dodis and Yampolskiy [9] The VRF works on a pairing group
PG = (G,GT , g, q, e), and is pseudo-random under the q-DBDHI assumption [24]. The secret key
is sk = s ∈ Zq and the public key is pk = gs. On input m ∈ {0, 1}`m ⊂ Zq (in which 2`m must be
polynomial), define Fs(m) = e(g, g)1/(m+s), and π = πs(m) = g1/(m+s). The function Fs(·) serves
as a random function, and πs(·) as the proof of its correctness. To ensure that y(= Fs(m)) was
computed correctly, one checks

e(πm, g
m · pk)

?
= e(g, g) and e(πm, g)

?
= y.

We now show how to turn the above VRF into a SCUS scheme. The public and secret keys are
the same as above. The signature on m is σ = Fs(m), which is pseudo-random, so invisible, under
the q-DBDHI assumption. For selective conversion on (m,σ), release πs(m).

Confirm: To show that (m,σ) is valid in the confirmation protocol, the signer with secret s proves
that

σ = e(g, g)1/(m+s) ⇐⇒ σm+s = e(g, g)⇐⇒ σs = σ−me(g, g) ∈ GT .

Thus the signer just proves
(
e(g, g), e(pk, g), σ, σ−me(g, g)

)
is a DDH tuple in GT , which can

be realized in 4 moves as follows. Using ideas in Sect.3, the q-oneway homomorphism is f(s) =
(e(g, g)s, σs), and the signer needs to prove for secret s ∈ Zq that f(s) = (e(pk, g), σ−me(g, g)).

Disavowal: The signer needs to prove that the value σm+s · e(g, g) 6= 1. The signer sets U =
(σm+s · e(g, g))u ∈ GT for random u ∈ Zq and sends U to the verifier who checks U 6= 1. With
secrets u, s, the signer shows in zero-knowledge that

U =
(
σm+s · e(g, g)

)u
.

Imagine v = us, then what must be proven becomes, for secrets (u, v),

U = (σm)u · σv · e(g, g)u ∧ e(g, g)v · e(g, pk)−u = 1,

which can be again realized in 4 moves by the following q-oneway homomorphism (mentioned
in Sect.3)

f : Zq × Zq −→ GT ×GT
(u, v) 7−→

(
(σm)u · σv · e(g, g)u, e(g, g)v · e(g, pk)−u

)
Then, the Disavowal protocol just becomes proving f(u, v) = (U, 1) for U 6= 1.

It is worth noting that security results given in [9] hold only if the message length `m is log-
arithmic in the security parameter. However, other SCUS schemes below will not suffer from the
shortcoming.



SCUS from the VRF of Hohenberger and Waters [13] The VRF also works on a pairing
group PG = (G,GT , g, q, e), and is pseudo-random under the q-DDHE assumption. The secret key
is sk = (ũ, u0, . . . , un) for n ≈ 160 typically (or more, depending on the output of a hash function),
and the public key is pk = (PG, h, Ũ , U0, . . . , Un) where Ũ = gũ, U0 = gu0 , . . . , Un = gun . The
function Fsk(m ∈ {0, 1}n) is

σ = Fsk(m) = e(g, h)ũu0
∏n
i=1 u

m[i]
i ,

for m = m[1] . . .m[n], which serves as the undeniable signature on m. (For arbitrary m ∈ {0, 1}∗,
one can apply a hash function first to get an n-bit string, so that n = 160 typically.)

The proof of correctness πsk(m), which serves as the converter in the SCUS, consists of π =
(π1, . . . , πn, π0), in which

πk = gũ
∏k
i=1 u

m[i]
i (1 ≤ k ≤ n), and π0 = gũu0

∏n
i=1 u

m[i]
i .

To verify, Verifypk(m,σ, π) of the SCUS works step-by-step, checking

e(π1, g)
?
=

{
e(Ũ , g) if m[1] = 0

e(Ũ , U1) if m[1] = 1

and for 2 ≤ i ≤ n,

e(πi, g)
?
=

{
e(πi−1, g) if m[i] = 0
e(πi−1, Ui) if m[i] = 1

and finally

e(π0, g)
?
= e(πn, U0), and e(π0, h)

?
= σ,

and return 1 if and only if all checks pass.

Confirm: On common input (pk,m, σ), the signer with secret sk = (ũ, u0, . . . , un) proves in
zero-knowledge

σ = e(g, h)ũu0
∏n
i=1 u

m[i]
i ,

which can be implemented by the generalized DDH protocol (see Sect.3) on GT , with e(Ũ , h),
e(U0, h), . . . , e(Un, h) and σ as public elements.

Disavowal: On common input (pk,m, σ), the signer with secret sk = (ũ, u0, . . . , un) proves in
zero-knowledge

σ 6= e(g, h)ũu0
∏n
i=1 u

m[i]
i ,

which can be implemented using the generalized non-DDH protocol in Sect.3.

4.3 VRF from deterministic SCUS

Consider a deterministic SCUS consisting of the algorithms (KGen, USign, Convert, Verify) and two
protocols for confirmation and disavowal of signatures. The protocols are not used in the below
construction of VRF. The signing space is {0, 1}∗, and the signature space is SigSpace(λ).

The construction of VRF from deterministic SCUS:

– Gen(1λ): run KGen(1λ) of SCUS to obtain (pk, sk).



– Funcsk(x): return y = USignsk(x), and the proof π = Convertsk
(
x, y
)
. By construction, Fsk(·) :

{0, 1}∗ → SigSpace(λ).
– Vpk(x, y, π): return Verifypk(x, y, π).

We now check the properties of the VRF. Provability is easy: if (y, π) = Funcsk(x), then y is a
valid signature on x, and π is the converter, so Vpk(x, y, π) = 1.

Uniqueness holds if we require USign produces only one valid signature on each message. Then,
if Vpk(x, y1, π1) = Vpk(x, y2, π2) = 1 then y1, y2 are valid signatures on the same message x. Since
there is only one valid signature on each message, we have y1 = y2.

Pseudo-randomness is ensured by the following theorem.

Theorem 5 If SCUS has the property of invisibility, then VRF has the property of pseudo-randomness.
Moreover, if Dvrf is a distinguisher of VRF, then there exists Dscus against SCUS such that

Advrand
VRF (Dvrf) ≤Advinv

SCUS(Dscus),

T(Dvrf) ≈ T(Dscus),

where T(·) expresses the running time.

Proof. Given the distinguisher Dvrf , we will build Dscus, which receives input pk and runs Dvrf on
that input. Recalled that, by Definition 2, Dscus has access to oracles USignsk(·), and Convertsk(·).
Whenever Dvrf makes a query x on Funcsk(·), the distinguisher Dscus calls its own oracles to obtain
y = USignsk(x) and π = Convertsk(x, y), and then returns (y, π) to Dvrf .

When Dvrf submits the challenge query x∗, Dscus forwards the query to its own challenge oracle
to get y∗. By definition, y∗ is either USignsk(x

∗) or a random element. The distinguisher Dscus then
returns y∗ to Dvrf .

Finally, Dscus outputs what Dvrf does. It is clear that Dscus succeeds with the same advantage
and running time as Dvrf does. ut

5 A new probabilistic SCUS with neat converters and signatures

In Sect.4.2, we have seen the deterministic SCUS resulting from the VRF of Dodis and Yampolskiy
[9] with small signing space. In this section, we aim at increasing the signing space to arbitrary one,
while keeping the converters and signatures as short as possible. We will use the result of Boneh
and Boyen [1] to build a probabilistic SCUS scheme called SCUSBB in this section.

Let us provide some intuition first. Recall that a Boneh-Boyen signature is of two elements(
r, π = g

1/(x+m+ry)
1

)
for random r ∈ Zq, secrets x, y ∈ Zq and message m ∈ Zq (for m ∈ {0, 1}∗,

just applying a collision-resistant hash to Zq). The element π will serve as the converter5. To achieve
invisibility, we hide π in GT , namely apply the pairing to compute e(π, g2), which will, together
with r, be the undeniable signature. The confirmation and disavowal protocols can be efficiently
designed thanks to the algebraic structure of the construction.

We now proceed with the concrete description of the scheme, denoted as SCUSBB. To be
compatible with [1], we will be more general than previous schemes by considering the pairing
e : G1 ×G2 → GT in which |G1| = |G2| = |GT | = q, yet G1 may be different from G2.

The scheme SCUSBB:

5 Considering groups without pairings so the DDH assumption holds, Laguillaumie and Vergnaud [18] observed that
π is pseudo-random, on which they built an undeniable scheme. The scheme, however, is not convertible. More
schemes based on the Boneh-Boyen signature scheme are in Vergnaud’s PhD thesis [30].



KGen: Generate the generators g1 for G1, and g2 for G2. Pick the secret key sk = (x, y)
$← Z2

q . The
public key pk = (u, v, g1, g2) for u = gx2 , v = gy2 .

USignsk(m): For a message m ∈ Zq, pick r
$← Zq, and return the undeniable signature σ =(

r, e(g1, g2)
1

x+m+ry

)
.

Convertsk(m,σ): Parse σ = (r, ρ) ∈ Zq × GT . If ρ = e(g1, g2)
1

x+m+ry then return π = g
1

x+m+ry

1 as
the converter.

Verifypk(m,σ, π): Let σ = (r, ρ). Return 1 iff ρ = e(π, g2) and e(π, ugm2 v
r) = e(g1, g2).

Confirm: On common input pk, m, and σ = (r, ρ), the signer shows in ZK that ρ = e(g1, g2)
1

x+m+ry ,
namely ρx+m+ry = e(g1, g2), or equivalently ρx(ρr)y = e(g1, g2)ρ

−m.

Consider the q-oneway homomorphism f(x, y) = (ρx · (ρr)y, gx2 , g
y
2). The protocol is equivalent

to proving f(x, y) = (e(g1, g2)ρ
−m, u, v) for secret (x, y), which achieves 4 moves with full zero-

knowledge.

Disavowal: The notation is as above, and the signer proves in ZK that ρx(ρr)y 6= e(g1, g2)ρ
−m,

namely ρx(ρr)y · ρme(g1, g2)−1 6= 1. The prover takes t
$← Zq and sends

T =
(
ρx(ρr)y · ρme(g1, g2)−1

)t
,

to the verifier who checks T 6= 1. Let x′ = xt and y′ = yt, then T = ρx
′
(ρr)y

′ (
ρme(g1, g2)

−1)t,
and gx

′
2 u
−t = 1, gy

′

2 v
−t = 1. The q-oneway homomorphism is as follows

f(x′, y′, t) =
(
ρx
′
(ρr)y

′ (
ρme(g1, g2)

−1)t , gx′2 u−t, gy′2 v−t) ,
so that the protocol becomes proving f(x′, y′, t) = (T, 1, 1) for published T 6= 1, which is done
in 4 moves.

To prove security of SCUSBB, we need the following assumptions, which are variants of the strong
Diffie-Hellman assumption [1].

Computational bilinear strong Diffie-Hellman (CBSDH). Given g1 ∈ G1, g2 ∈ G2, and

gx1 , . . . , g
x`
1 , gx2 , it’s hard to compute (c, e(g1, g2)

1
x+c ) for some c ∈ Zq \ {−x}.

Decisional bilinear strong Diffie-Hellman (DBSDH). Given g1 ∈ G1, g2 ∈ G2, and gx1 , . . . , g
x`
1 ,

gx2 , and random c ∈ Zq \ {−x}, it’s hard to distinguish e(g1, g2)
1
x+c from a random element in GT .

The DBSDH assumption can be shown equivalent to the decisional bilinear Diffie-Hellman
inversion assumption [24], since c is fixed (see [1, Sect.3.3]). These assumptions can be evaluated
in the generic group model [29].

Theorem 6 The SCUSBB scheme is strongly unforgeable under the CBSDH assumption.

Proof. Given a forger against the SCUSBB scheme, we show how to use it to break the computational
bilinear SDH assumption. Let us denote m∗, σ∗ = (r∗, ρ∗) as the forgery; mi for 1 ≤ i ≤ ` as the
signing queries (whose total number is `), and σi = (ri, ρi) as the corresponding answers. We will
consider two types of forgers:

– Forger A1: [m∗ + r∗y 6= mi + riy for all 1 ≤ i ≤ `], or [mi = −x for some i].

– Forger A2: [m∗ + r∗y = mi + riy for some i], and [mi 6= −x for all i].



Let us begin with forger A1, from which we build an algorithm B1 solving the CBSDH assumption.
The input of B1 is g1, g

x
1 , . . . , g

x`
1 , g2, g

x
2 and it wants to compute

(
c, e(g1, g2)

1/(x+c)
)

for c 6= −x. The

algorithm B1 takes s0, . . . , s`
$← Zq and computes g′1 = g

f(x)
1 in which f(x) = s0(x+ s1) · · · (x+ s`).

B1 then runs A1 with the public key pk = (u = gx2 , v = gy2 , g
′
1, g2) for y

$← Zq. The implicit secret
key is (x, y) in which x is unknown to B1 (yet pk is clearly computable from the input of B1). The
queries of A1 are processed as follows.

Signing queries: for the i-th message mi, B1 sets ri = (si−mi)y
−1 so that mi + riy = si. It sets

πi = (g′1)
1/(x+si) and ρi = e(πi, g2), then returns σi = (ri, ρi) to A1 while adding (mi, σi, πi)

to an initially-empty list L. If mi = −x for some i, then obviously B1 can solve the problem
instance without any further action, so below we assume the harder case that m∗+r∗y 6= mi+riy
for all 1 ≤ i ≤ `.

Conversion queries (or confirmation/disavowal queries) (m,σ): Let’s first consider a con-
version query. If (m,σ) = (mi, σi) for some (mi, σi, πi) ∈ L, then return πi to A1; otherwise,
return ⊥. The reasoning behind this simulation is that if (m,σ) is not found on the list, and
yet the pair is valid, then it serves exactly as a forgery, which can be used to solve the problem
instance (as will be seen later). The problem is that it is unknown when A1 submits such a valid
pair, and yet the technique as in Theorem 3 can be used exactly in the same way, inducing a
(polynomial) loss factor in the reduction. The simulation of confirmation/disavowal queries is
also along the lines of Theorem 3.

Now consider A1’s forgery (m∗, σ∗ = (r∗, ρ∗)) 6∈ L in which s∗ = m∗ + r∗y 6= si = mi + riy for all
i. Thus we can express

f(x)

x+ s∗
=

t∗

x+ s∗
+

`−1∑
i=0

tix
i,

in which t∗( 6= 0), t0, . . . , t`−1 ∈ Zq are known to B1. Then

ρ∗ = e(g′1, g2)
1

x+s∗ = e(g1, g2)
f(x)
x+s∗

=
(
e(g1, g2)

1
x+s∗

)t∗
e

(
g
∑`−1
i=0 tix

i

1 , g2

)
,

enabling B1 to compute e(g1, g2)
1

x+s∗ , and then output
(
s∗, e(g1, g2)

1
x+s∗

)
as required.

Now consider forger A2, from which we build an algorithm B2 solving the CBSDH assumption.

The input of B2 is g1, g
y
1 , . . . , g

y`

1 , g2, g
y
2 and it wants to compute

(
c, e(g1, g2)

1/(y+c)
)

for c 6= −y.

In fact, B2 below does a little more by computing y. Set g′1 = g
f(y)
1 in which f(y) = s0(y +

s1) · · · (y + s`) for now. The public key is pk = (u = gx2 , v = gy2 , g
′
1, g2) for x

$← Zq. The conversion
and confirmation/disavowal queries are treated as before, so let us focus on the signing queries. Note
that x+mi+riy =

(
y + (x+mi)r

−1
i

)
ri. Let ri = (x+mi)s

−1
i (6= 0) so that x+mi+riy = (y+si)ri.

This means

ρi = e
(

(g′1)
1

x+mi+riy , g2

)
= e

(
(g′1)

1
(y+si)ri , g2

)
= e

(
(g′1)

1
(y+si) , g2

)1/ri
is computable by B2, so that the signature (ri, ρi) can be returned to A2.

At the end, A2 produces (m∗, σ∗ = (r∗, ρ∗)) in which m∗ + r∗y = mi + riy for some 1 ≤ i ≤ `.

Such index i can be found by checking gm
∗

2 vr
∗ ?

= gmi2 vri for all signing queries mi. Also note that
for such index, (m∗, r∗) 6= (mi, ri), since otherwise (m∗, σ∗ = (r∗, ρ∗)) is not a valid forgery. Thus
we have m∗ −mi = y(ri − r∗) and hence y is computable by B2 as stated. ut



Theorem 7 The SCUSBB scheme is invisible under the CBSDH assumption and the DBSDH as-
sumption.

Proof. By Theorem 6, we know that SCUSBB is strongly unforgeable under the CBSDH assumption.
The fact will be used in this proof of invisibility. Let D be a distinguisher, from which we will build
an algorithm D′ solving the DBSDH assumption. D′ is given g1 ∈ G1, g2 ∈ G2, and gx1 , . . . , g

x`
1 , gx2 ,

and c ∈ Zq \ {−x}, and Γ ∈ GT , and its task is to tell whether Γ = e(g1, g2)
1
x+c or random. As

above, D′ takes s0, . . . , s`
$← Zq and computes g′1 = g

f(x)
1 in which f(x) = s0(x + s1) · · · (x + s`).

Then D′ runs D with public key pk = (u = gx2 , v = gy2 , g
′
1, g2) for y

$← Zq, and answers the queries
as follows.

Signing query mi(1 ≤ i ≤ `): set ri = (si −mi)y
−1 so that mi + riy = si. Then

ρi = e
(

(g′1)
1

x+mi+riy , g2

)
= e (πi, g2)

for πi = (g′1)
1

x+si are computable by D′, who returns (ri, ρi) and keeps (ri, ρi, πi) in an initially-
empty list L.

Conversion query (m,σ): if (m,σ, π) ∈ L for some π then return π; otherwise return ⊥. The
reason is that if (m,σ, ·) 6∈ L then (m,σ) must be invalid thanks to the strong unforgeability of
the scheme.

Confirmation/disavowal query (m,σ): similarly to the above, if (m,σ, π) ∈ L for some π
then return 1 and run the simulated protocol for confirmation. Otherwise return 0 and run the
simulated protocol for disavowal.

Challenge query m∗: let r∗ = (c−m∗)y−1 so that m∗ + r∗y = c 6= −x. We can express

f(x)

x+ c
=

t∗

x+ c
+

`−1∑
i=0

tix
i,

in which t∗, t0, . . . , t`−1 ∈ Zq are known to D′. Note that

e
(
(g′1)

1
x+m∗+r∗y , g2

)
= e

(
g
f(x)
x+c

1 , g2

)
= e

(
g

1
x+c

1 , g2

)t∗
· e
(
g
∑`−1
i=0 tix

i

1 , g2

)
,

so that D′ sets

ρ∗ = Γ t
∗ · e

(
g
∑`−1
i=0 tix

i

1 , g2

)
,

which is random if Γ is random; and together with r∗, is a valid signature if Γ = e(g1, g2)
1
x+c .

Then (r∗, ρ∗) is given to D as the challenge.

Finally, D′ outputs what D does. It is clear that if D succeeds in distinguishing the challenge, then
D′ can break the DBSDH assumption as desired. ut
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A Full zero-knowledgeness from Σ-protocol

Sequential zero-knowledgeness. Following Damg̊ard [7], we now show how to turn the above
Σ-protocol proving f(ω) = x into a full-fledged zero-knowledge one proving the same statement,
which is presented below. Recall that x is the common input.

1. The verifier takes ωV
$← Zq and sends xV = f(ωV ) to the prover.

2. The verifier then proves the knowledge of ωV using the above Σ-protocol.
3. The prover proves the knowledge of ω satisfying f(ω) = x ∨ f(ω) = xV . This is exactly the

standard OR-proof, whose details can be found in [7].

By merging moves, the above is of 4 moves. To show full-fledged zero-knowledgeness of the protocol,
let us consider an arbitrary verifier V . Rewinding the verifier, from step 2, we can extract the witness
ωV satisfying xV = f(ωV ). This witness is then utilized in the OR proof at step 3 to complete the
protocol.

To show soundness, consider step 3. Rewinding the prover, we can extract ω∗ satisfying f(ω∗) =
x ∨ f(ω∗) = xV . If the equation f(ω∗) = xV holds, then we can use the prover to attack the
onewayness of f . Thus f(ω∗) = x with all but negligible probability, and the soundness follows.

Concurrent zero-knowledgeness. We will mainly assume that the zero-knowledge protocols are
run sequentially in this paper. However, if concurrency becomes a concern, then the technique of
Damg̊ard [8] can be used to turn the Σ-protocols into concurrent zero-knowledge ones. The trade-off
is that we have to use a publicly-available auxiliary string. The transformation is simple enough to
be recalled here. Let (Kg, Com, Decom) be a trapdoor commitment scheme, in which Kg generates
a trapdoor t, and a public key pk. The public key pk will be the auxiliary string, available to
both the prover and the verifier. With identical notations as the above Σ-protocol from q-oneway
homomorphism, consider the following protocol proving the knowledge of ω satisfying f(ω) = x.

1. The prover chooses ω′
$← Dom, and computes x′ = f(ω′). It then sends the commitment u =

Compk(x
′; r) to the verifier.

2. The verifier sends back a random challenge c ∈ {0, . . . , q − 1}.
3. The prover returns x′, r and ω′′ = ω′ + cω to the verifier who checks f(ω′′) = x′xc and u =

Compk(x
′; r).

To show concurrent zero-knowledgeness of the protocol, consider an arbitrary verifier V ∗, and we
will show how to simulate it without any rewinding. The simulator works as follows.

– It generates (t, pk) using Kg of the commitment scheme, and gives pk and x to V ∗. At the same
time, it sends a random u = Compk(x

′
fake; rfake) to V ∗.

– V ∗ sends back a challenge c ∈ {0, . . . , q − 1}.
– The simulator takes ω′′

$← Zq and sets x′ = f(ω′′)x−c. Using the trapdoor t, it finds r satisfying
u = Compk(x

′; r), and then returns x′, r, and ω′′ to V ∗. It is clear that f(ω′′) = x′xc and
u = Compk(x

′; r) and hence V ∗ accepts (while the simulator does not hold the witness ω).

Universally composable zero-knowledgeness. Following [12], we can turn the basis Σ-protocol
into a UC-secure one. To do so, let us restrict the challenge space to {0, 1}. This will allows us to



not rewind the prover and the verifier, albeit yielding 1/2 soundness error. Repeating the protocol
L times will result in a protocol with 2−L soundness error. Let us just provide some intuition below.
For details, see [12].

1. The prover takes ω′
$← Dom and lets x′ = f(ω′). It also computes the answers ω′′i = ω′ + iω

for i ∈ {0, 1}. The prover then commits x′, ω′′0 , ω
′′
1 to the verifier via a UC-secure commitment

scheme (e.g. [19]).

2. The verifier sends back a challenge c
$←{0, 1}.

3. The prover decommits x′, ω′′c . The verifier then checks f(ω′′c ) = x′xc as in the basic Σ-protocol.

Consider a corrupted prover. Opening its commitments, the simulator gets (x′, 0, ω′′0) and (x′, 1, ω′′1),
from which the witness can be extracted with probability 1/2.

Now consider a corrupted verifier. The simulator sends a random message for the first step.

After receiving c ∈ {0, 1} from the verifier, it takes ω′′c
$← Zq and lets x′ = f(ω′′)x−c. The simulator

also opens the commitments according to these values.


