
Efficient Dissection of Bicomposite Problems
with Cryptanalytic Applications?

Itai Dinur1, Orr Dunkelman2,
Nathan Keller3, and Adi Shamir4

1 Computer Science Department, Ben-Gurion University, Beer-Sheva, Israel
2 Computer Science Department, University of Haifa, Haifa, Israel

3 Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
4 Computer Science Department, The Weizmann Institute, Rehovot, Israel

Abstract. In this paper we show that a large class of diverse prob-
lems have a bicomposite structure which makes it possible to solve them
with a new type of algorithm called dissection, which has much better
time/memory tradeoffs than previously known algorithms. A typical ex-
ample is the problem of finding the key of multiple encryption schemes
with r independent n-bit keys. All the previous error-free attacks re-
quired time T and memory M satisfying TM = 2rn, and even if “false
negatives” are allowed, no attack could achieve TM < 23rn/4. Our new
technique yields the first algorithm which never errs and finds all the
possible keys with a smaller product of TM , such as T = 24n time and
M = 2n memory for breaking the sequential execution of r=7 block ci-
phers. The improvement ratio we obtain increases in an unbounded way
as r increases, and if we allow algorithms which can sometimes miss
solutions, we can get even better tradeoffs by combining our dissection
technique with parallel collision search. To demonstrate the generality of
the new dissection technique, we show how to use it in a generic way in
order to improve rebound attacks on hash functions and to solve with
better time complexities (for small memory complexities) hard combina-
torial search problems, such as the well known knapsack problem.

Keywords: Bicomposite problems, dissection algorithm, time-memory tradeoff,
cryptanalysis, multiple encryption, knapsack problems

1 Introduction

A composite problem is a problem that can be split into several simpler subprob-
lems which can be solved independently of each other. To prevent attacks based
on such decompositions, designers of cryptographic schemes usually try to en-
tangle the various parts of the scheme by using a complex key schedule in block
ciphers, or a strong message expansion in hash functions. While we can formally
split such a structure into a top part that processes the input and a bottom part

? A shortened version of this paper [9] was presented at CRYPTO 2012.



that produces the output, we cannot solve these subproblems independently of
each other due to their strong interactions.

However, when we deal with higher level constructions which combine mul-
tiple primitives as black boxes, we often encounter unrelated keys or indepen-
dently computed outputs which can provide exploitable decompositions. One of
the best examples of such a situation was the surprising discovery by Joux [18]
in 2004 that finding collisions in hash functions defined by the parallel execution
of several independent hash functions is much easier than previously believed. In
this paper we show the dual result that finding the key of a multiple-encryption
scheme defined by the sequential execution of several independent cryptosystems
is also easier than previously believed.

Since we can usually reduce the time complexity of cryptanalytic attacks by
increasing their memory complexity, we will be interested in the full tradeoff
curve between these two complexities rather than in a single point on it. We will
be primarily interested in algorithms which use an exponential combination of
M = 2mn memory and T = 2tn time for a small constant m and a larger constant
t, when the key size n grows to infinity. While this setup may sound superficially
similar to Hellman’s time/memory tradeoff algorithms [15], it is important to
notice that Hellman’s preprocessing phase requires time which is equivalent to
exhaustive search and memory which is at least the square root of the number
of keys, and that in Hellman’s online phase the product of time and memory is
larger than the number of keys. In our model we do not allow free preprocessing,
we can use smaller amounts of memory, and the product of time and memory is
strictly smaller than the number of keys.

P E E E E C

K1 K2 Ki Kr

Fig. 1: Multiple Encryption Scheme with r Independent Keys

The type of problems we can solve with our new techniques is characterized
by the existence of two orthogonal ways in which we can decompose a given
problem into (almost) independent parts. We call such problems bicomposite,
and demonstrate this notion by considering the problem of cryptanalyzing the
sequential execution of r block ciphers which use independent n-bit keys to
process n-bit plaintexts, usually called multiple encryption scheme (see Figure 1).
In order to make the full rn-bit key of this scheme unique with a reasonable
probability, the cryptanalyst needs r known plaintext/ciphertext pairs. The full
encryption process can thus be described by an (r+1)×r matrix whose columns
correspond to the processing of the various plaintexts and whose rows correspond

2



to the application of the various block ciphers, called in the sequel execution
matrix. The attacker is given the r plaintexts at the top and the r ciphertexts
at the bottom, and his goal is to find all the keys with a generic algorithm
which does not assume the existence of any weaknesses in the underlying block
ciphers. The reason we say that this problem is bicomposite is that the keys
are independently chosen and the plaintexts are independently processed, and
thus we can partition the execution matrix both horizontally and vertically into
independent parts. In particular, if we know certain subsets of keys and certain
subsets of intermediate values, we can independently verify their consistency
with the given plaintexts or ciphertexts without knowing all the other values in
the execution matrix. This should be contrasted with the standard constructions
of iterated block ciphers, in which a partial guess of the key and a partial guess
of some state bits in the middle of the encryption process usually cannot be
independently verified by an efficient computation.

The security of multiple-encryption schemes had been analyzed for more
than 35 years, but most of the published papers had dealt with either double or
triple encryption (which are widely used as DES-extensions, e.g., in the electronic
payment industry). For example, Diffie and Hellman’s original meet in the middle
attack [8], Lucks’ improvement for Triple-DES [25], or Biham’s work on triple
modes of operation [6]. While the exact security of double and triple encryption
are well understood and we can not push their analysis any further, our new
techniques show that surprisingly efficient attacks can be applied already when
we make the next step and consider quadruple encryption, and that additional
improvements can be made when we consider even longer combinations.1

Standard meet-in-the-middle (MITM) attacks (introduced in [8]), which ac-
count for the best known results against double and triple encryption, try to
split such an execution matrix into a top part and a bottom part with a single
horizontal partition line which crosses the whole matrix from left to right. Our
new techniques use a more complicated way to split the matrix into indepen-
dent parts by exploiting its two dimensional structure. Consider, for example,
the sequential execution of 7 independent block ciphers. We can find the full
7n-bit key in just 24n expected time and 2n expected memory by guessing two
of the seven internal states after the application of the third block cipher and
one of the seven internal states after the application of the fifth block cipher. We
call such an irregular way to partition the execution matrix with partial guesses
a dissection, since it mimics the way a surgeon operates on a patient by using
multiple cuts of various lengths at various locations.

Our new techniques make almost no assumptions about the internal struc-
ture of the primitive operations, and in particular they can be extended with
just a slight loss of efficiency to primitive operations which are one-way func-
tions rather than easily invertible permutations. This makes it possible to find
improved attacks on message authentication codes (MACs) which are defined

1 These results are independent of the theoretical analysis proposed in [13] which
discusses only query complexity (i.e., data complexity), disregarding any time or
memory considerations.

3



by the sequential execution of several keyed hash functions. Note that standard
MITM attacks cannot be applied in this case, since we have to encrypt the in-
puts and decrypt the outputs in order to compare the results in the middle of
the computation.

To demonstrate the generality of our techniques, we show in this paper how
to apply them to several types of combinatorial search problems. A main exam-
ple is the knapsack problem: Given n generators a1, a2, . . . , an which are n-bit
numbers, find a subset that sums modulo 2n to S.2 For 30 years, the best known
special purpose algorithm for this problem was the 1981 Schroeppel-Shamir al-
gorithm [30], with complexity of T = O(2n/2) and M = O(2n/4). At Eurocrypt
2011, Becker et al. [4] presented several improved special purpose algorithms
for different ranges of (T,M) (see Section 5). Our generic dissection technique
provides better time complexities for small memory complexities.

To show the connection between knapsack problems and multiple-encryption,
describe the solution of the given knapsack problem as a two dimensional r × r
execution matrix, in which we partition the generators into r groups of n/r
generators, and partition each number into r blocks of n/r consecutive bits. Each
row in the matrix is defined by adding the appropriate subset of generators from
the next group to the accumulated sum computed in the previous row. We start
with an initial value of zero, and our problem is to find some execution that leads
to a desired value S after the last row. This representation is bicomposite since
the choices made in the various rows of this matrix are completely independent,
and the computations made in the various columns of this matrix are almost
independent as the only way they interact with each other is via the addition
carries which do not tend to propagate very far into the next block. This makes it
possible to guess and operate on partial states, and thus we can apply almost the
same dissection technique we used for multiple-encryption schemes. Note that
unlike the case of multiple-encryption in which the value of r was specified as part
of the given problem, here we can choose any desired value of r independently of
the given value of n in order to optimize the time complexity for any available
amount of memory. In particular, by choosing r = 7 we can reduce the best
known time complexity for hard knapsacks when we use M = 2n/7 = 20.1428n

memory from 2(3/4−1/7)n = 20.6071n in [4] to 24n/7 = 20.5714n with our new
algorithm.

Previous algorithms for the knapsack problem [4, 30] crucially depend on
two facts: (1) addition is an associative and commutative operation on numbers,
and (2) sets can be partitioned into the union of two subsets in an exponential
number of ways. Our algorithms make no such assumptions, and thus they can
be applied under a much broader set of circumstances. For example, consider
a non-commutative variant of the knapsack problem in which the generators ai
are permutations over {1, 2, . . . , k}, and we have to find a product of length `
of these generators which is equal to some given permutation S (a special case

2 We note that in the standard formulation of the knapsack problem, one searches
for a subset that sums to S, without the modular reduction. However, as explained
in [4], the modular formulation is computationally equivalent.

4



of this variant is the problem of finding the fastest way to solve a given state of
Rubik’s cube by a sequence of face rotations, which was analyzed extensively in
the literature). To show that this problem is bicomposite, we have to represent
it by an execution matrix with independent rows and columns. Consider an `×k
matrix in which the i-th row represents the action of the i-th permutation in
the product, and the j-th column represents the current location of element j
from the set. Our goal is to start from the identity permutation at the top, and
end with the desired permutation S at the bottom. We can reduce this matrix
to size r× r for various values of r by bunching together several permutations in
the product and several elements from the set. The independence of the rows in
this matrix follows from the fact that we can freely choose the next generators
to apply to the current state, and the independence of the columns follows from
the fact that we can know the new location of each element j if we know its
previous location and which permutation was applied to the state, even when
we know nothing about the locations of the other elements in the previous state.
This makes it possible to guess partial states at intermediate stages, and thus to
apply the same dissection algorithms as in the knapsack problem with the same
improved complexities.

We note that generic ideas similar to the basic dissection attacks were used
before, in the context of several specific bicomposite problems. These include
the aforementioned algorithms of Schroeppel and Shamir [30] and of Becker et
al. [4] which analyzed the knapsack problem, the algorithm of van Oorschot
and Wiener [29] which attacked double and triple encryption, and the results
of Isobe [17] and of Dinur et al. [12] in the specific case of the block cipher
GOST.3 A common feature of all these algorithms is that none of them could
beat the tradeoff curve TM = N3/4, where N is the total number of keys. The
algorithms of [12, 17, 29, 30] matched this curve only for a single point, and the
recent algorithm of Becker et al. [4] managed to match it for a significant portion
of the tradeoff curve. Our new dissection algorithms not only allow to beat this
curve, but actually allow to obtain the relation TM < N3/4 for any amount of
memory in the range M ≤ N1/4.

Follow-up Work Since the conference version of this paper has appeared, the
dissection technique was studied further and applied in numerous papers, in a
wide variety of contexts. To mention a few:

On the theoretical side, Austrin et al. [1] transformed the complexity analysis
of the dissection technique from the average-case complexity setting considered
here to the worst-case complexity setting and Wang [31] generalized the appli-
cation to knapsacks to the k-SUM problem.

On the practical side, Canteaut et al. [7] used dissection in their ‘sieve in the
middle’ generic technique for MITM attacks, Lallemand and Naya-Plasencia [22]
used it in their semi-practical attack on the full stream cipher Sprout, Baek et

3 The basic idea of guessing internal values and “attacking” from them appeared in
several prior works, most notably in Merkle and Hellman attack on 2K-3DES [27]
and in Biham’s work on triple modes of operation [6].

5



al. [2] used it in an attack on a new white-box implementation of the AES,
Kirchner and Fouque [19] used it to obtain improved algorithms for lattice enu-
meration, and Bar-On et al. [3] used it in attacks on reduced-round AES.

In a follow-up work [11], the authors applied the dissection technique to Feis-
tel networks, obtaining generic attacks that outperform the best-known special-
ized attacks on a number of block ciphers, including the AES candidate DEAL.
In addition, in [10] the authors elaborated on how to apply dissection to solve
Rubik’s cube with the smallest possible number of face rotations.

Paper Organization The paper is organized as follows: In Section 3 we intro-
duce the dissection technique and present our best error-free attacks on multiple
encryption. In Section 4 we consider the model when “false negatives” are al-
lowed, and show that the dissection algorithms can be combined with the parallel
collision algorithm of van Oorschot and Wiener [29] to get an improved time-
memory tradeoff curve. In Section 5, we apply our techniques to other crypto-
graphic problems, such as solving the hardest instances of knapsack problems,
and improving rebound attacks on hash functions. Finally, Section 6 concludes
the paper and describes some open problems.

2 Notations and Conventions

In this paper, when we consider multiple encryption (mostly in Sections 3 and 4),
we denote the basic block cipher by E and assume that it uses n-bit blocks
and n-bit keys (we can easily deal with other sizes, but it makes the notation
and the discussion cumbersome). We denote by Ei the encryption process with
key ki, and denote by E[1...r] the multiple-encryption scheme which uses r in-
dependent keys to encrypt the plaintext P and produce the ciphertext C via
C = Ekr

(Ekr−1
(· · ·Ek2

(Ek1
(P )) · · · )). The intermediate value produced by the

encryption of Pj under E[1...i] is denoted by Xi
j , and the decryption process of

E[1...r] is denoted by D[1...r] (which applies the keys in reverse order). To attack
E[1...r], we are usually given r plaintext/ciphertext pairs, which are expected
to make the key unique (at intermediate stages, we may be given fewer than
j − i+ 1 plaintext/ciphertext pairs for E[i...j], and then we are expected to pro-
duce all the compatible keys). In all our exponential complexity estimates, we
consider expected rather than maximal possible values (under standard random-
ness assumptions, they differ by no more than a logarithmic factor), and ignore
multiplicative polynomial factors in n and r.

When we consider execution matrices for bicomposite problems (mostly in
Section 5), we denote the matrix by S, and the j’th element in its i’th row
(which corresponds to the intermediate state Xi

j in multiple encryption) by Si,j .
In addition, we denote the ‘actions’ that can be performed on a state at the i’th
row by ai. The execution matrix notations are demonstrated in Figure 2, which
also emphasizes the fact that in a bicomposite execution matrix, if we know
certain subsets of the actions and certain subsets of the intermediate values, we

6



Sr

Sr−1

Sr−2

...
...

...

Si+2

Si+1

Si

Si−1

...
...

...

S0

S1

S2

Sr,1 Sr,2 . . . Sr,r

Sr−1,1 Sr−1,2 . . . Sr−1,r

S2,1 S2,2 . . . S2,r

S1,1 S1,2 . . . S1,r

Si+2,j . . . Si+2,k

Si+1,j . . . Si+1,k

Si,j . . . Si,k

Si−1,j . . . Si−1,k

ar−1

ar

ai

ai+1

ai+2

a1

a2

Fig. 2: An Execution Matrix of a Bicomposite Search Problem

can independently verify their consistency without knowing all the other values
in the execution matrix.

3 Dissecting the Multiple-Encryption Problem

In this section we develop our basic dissection algorithms that allow to solve
efficiently the problem of multiple encryption. Given r-encryption with r in-
dependent keys, r n-bit plaintext/ciphertext pairs and 2mn memory cells, the
algorithms find all possible values of the keys which comply with the plain-
text/ciphertext pairs, or prove that there are no such keys. The algorithms are
deterministic, in the sense that they do not use random bits and they always
succeed since they implicitly scan all possible solutions.

This section is organized as follows. In Section 3.1 we briefly describe the
classical meet-in-the-middle attack which serves as a basis to our algorithms.
In Section 3.2 we present the most basic dissection algorithm, and apply it to
4-encryption. In Section 3.3, we discuss natural extensions of the basic dissec-
tion algorithm, which dissect the cipher in a symmetric way by splitting it into
parts of equal size. In Section 3.4 we introduce asymmetric dissection algorithms
(which split the cipher into parts of different sizes), and present a sequence of
asymmetric dissection algorithms which are more efficient than the symmetric
ones. In Section 3.5, we present a formal framework for dissection algorithms,
and show the optimality of our algorithms in this framework. While our basic
algorithms and analysis apply only to the case where M = 2n, in Section 3.6
we show that a small modification allows us to extend the dissection algorithms
to any fixed amount of memory. We list the complexities of our most efficient

7



deterministic dissection algorithms for all r ≤ 40 and m ≤ 10 in Table 1. Fi-
nally, in Section 3.7 we describe dissection algorithms in the case where instead
of encryptions we are given a sequence of keyed one-way functions.

A reader which is interested mainly in the ideas of the dissection algorithms
and not in details and generalizations, may concentrate on Sections 3.2 and 3.4
and leave the other sections for later reading.

3.1 Previous Work — The Meet-in-the-Middle Attack

The trivial algorithm for recovering the key of an r-encryption scheme is exhaus-
tive search over the 2rn possible key values, whose time complexity is 2rn, and
whose memory requirement is negligible. In general, with no additional assump-
tions on the algorithm and on the subkeys, this is the best possible algorithm.

In [27] Merkle and Hellman observed that if the keys used in the encryption
are independent, an adversary can trade time and memory complexities, using a
MITM approach. In this attack, the adversary chooses a value u, 1 ≤ u ≤ br/2c,
and for each possible combination of the first u keys (k1, k2, . . . ku) she computes
the vector (Xu

1 , X
u
2 , . . . , X

u
r ) = E[1...u](P1, P2, . . . , Pr) and stores it in a sorted

table (along with the respective key candidate). Then, for each value of the
last r−u keys, the adversary computes the vector D[u+1...r](C1, C2, . . . , Cr) and
checks whether the value appears in the table (each such collision suggests a key
candidate (k1, . . . , kr)). The right key is necessarily suggested by this approach,
and in cases when other keys are suggested, additional plaintext/ciphertext pairs
can be used to sieve the wrong key candidates.

The time complexity of this algorithm is T = 2(r−u)n, whereas its memory
complexity is M = 2un. Hence, the algorithm allows to achieve the tradeoff
curve TM = 2rn for any values T,M such that M ≤ 2br/2cn.4 Note that the
algorithm can be applied also if the number of available plaintext/ciphertext
pairs is r′ < r. In such a case, it outputs all the possible key candidates, whose
expected number is 2(r−r

′)n (since the plaintext/ciphertext pairs yield an r′n-bit
condition on the 2rn possible keys).

The MITM attack, designed for breaking double-encryption, is still the best
known generic attack on double encryption schemes. It is also the best known
attack up to logarithmic factors5 for triple encryption, which was studied very ex-

4 We note that the algorithm, as described above, works only for u ∈ N. However,
it can be easily adapted to non-integer values of u ≤ br/2c, preserving the tradeoff
curve TM = 2rn. This is done by trying 2un key candidates for (k1, . . . , kdue),
storing the relevant partial encryptions, and testing the relevant (kdue+1, . . . , kr). If
this procedure fails, the next 2un key candidates for (k1, . . . , kdue) are tested, and so
forth.

5 A logarithmic time complexity improvement can be achieved in these settings as
suggested by Lucks [25]. The improvement relies on the variance in the number of
keys encrypting a given plaintext to a given ciphertext. This logarithmic gain in time
complexity comes at the expense of an exponential increase in the data complexity
(a factor 8 gain in the time complexity when attacking triple-DES increases the data
from 3 plaintext-ciphertext pairs to 245 such pairs).

8



Input: Four plaintexts (P1, P2, P3, P4) and their corresponding ciphertexts
(C1, C2, C3, C4)

1: for all candidate values of X2
1 = Ek2(Ek1(P1)) do

2: Run the standard MITM attack on 2-round encryption with (P1, X
2
1 ) as a single

plaintext-ciphertext pair
3: for all obtained 2n values of (k1, k2) of the previous step do
4: Compute X2

2 = Ek2(Ek1(P2)) (i.e., partially encrypt P2 under k1, k2)
5: Store in a sorted table the corresponding values of X2

2 , along with the values
of (k1, k2)

6: Run the standard MITM attack on 2-round encryption with (X2
1 , C1) as a single

plaintext-ciphertext pair
7: for all obtained 2n values of (k3, k4) do
8: Compute X2

2 = Dk3(Dk4(C2)) (i.e., partially decrypt C2 using (k3, k4))
9: if the suggested value for X2

2 appears in the table then
10: Retrieve the corresponding (k1, k2) from the table
11: if Ek4(Ek3(Ek2(Ek1(P3, P4)))) = (C3, C4) then
12: return (k1, k2, k3, k4)

Algorithm 1: The Dissect2(4, 1) Algorithm

tensively due to its relevance to the former de-facto encryption standard Triple-
DES.

3.2 The Basic Dissection Algorithm: Attacking 4-Encryption

In the following, we show that for r ≥ 4, the basic MITM algorithm can be
outperformed significantly, using a dissection technique. For the basic case r = 4,
considered in this section, our algorithm runs in time T = 22n with memory
2n, thus allowing to reach TM = 23n, which is significantly better than the
TM = 24n curve suggested by the meet-in-the-middle attack.

The main idea behind the algorithm is to dissect the 4-encryption into two
2-encryption schemes, and to apply the MITM attack to each of them sepa-
rately. The partition is achieved by enumerating parts of the internal state at
the dissection point. The basic algorithm, which we call Dissect2(4, 1) is given
in Algorithm 1 and illustrated in Figure 3. The notation Dissect2(4, 1) means “a
dissection algorithm for 4-encryption, with m = 1 (i.e., with 2mn = 2n memory),
and the division performed after round 2”.

It is easy to see that once the right value for X2
1 is considered, the right

values of (k1, k2) are found in Step 2 and the right values of (k3, k4) are found
in Step 6, and thus, the right value of the key is necessarily found. The time
complexity of the algorithm is 22n. Indeed, Steps 2 and 6 are called 2n times (for
each value of X2

1 ), and each of them runs the basic MITM attack on 2-encryption
in expected time and memory of 2n. Following the randomness of a block cipher

9



P1 P2 P3 P4

C1 C2 C3 C4

X2
1

k
1

k
2

k
3

k
4

k
2
,
k
1

k
4
,
k
3

k
4
,
k
3
,
k
2
,
k
1

k
4
,
k
3
,
k
2
,
k
1

Fig. 3: Illustration of the Dissect2(4, 1) Algorithm for 4-Encryption

(for a random block cipher, about 2−n of the keys satisfy that the encryption of
a given plaintext P is a given ciphertext C), the number of expected collisions
in the table of X2

2 is 2n. Thus, the expected time complexity of the attack6 is
2n · 2n = 22n.

The memory consumption of the 2-encryption MITM steps (Steps 2 and 6)
is expected to be about 2n. The size of the table computed in Step 5 is also
2n, since each MITM step is expected to output 2n key candidates. Hence, the
expected memory complexity of the entire algorithm is 2n.

3.3 Natural Extensions of the Basic Dissection Algorithm

We now consider the case (r > 4,m = 1) and show that natural extensions of
the Dissect2(4, 1) algorithm presented above, allow us to significantly increase
the gain over the standard MITM attack for larger values of r.

It is clear that any algorithm for r′-encryption can be extended to attack
r-encryption for any r > r′, by trying all possible r− r′ keys (kr′+1, . . . , kr), and
applying the basic algorithm to the remaining E[1...r′]. The time complexity is
increased by a multiplicative factor of 2(r−r

′)n, and hence, the ratio 2rn/TM is
preserved. This leads to the following natural definition.

Definition 1. The gain of an algorithm A for r-encryption whose time and
memory complexities are T and M , respectively, is defined as

Gain(A) = log(2rn/TM)/n = r − log(TM)/n.

The maximal gain amongst all deterministic algorithms for r-encryption which
use 2mn memory, is denoted by GainD(r,m) (where “D” stands for “determin-
istic”).

By the trivial argument above, GainD(r, 1) is monotone non-decreasing with
r. The Dissect2(4, 1) algorithm shows that GainD(r, 1) ≥ 1 for r = 4, and hence,
for all r ≥ 4. Below we suggest two natural extensions, which allow to increase
the gain up to

√
r.

6 We remind the reader that we disregard factors which are polynomial in n and r.

10



The LogLayer Algorithm: The first extension of the Dissect2(4, 1) is the
recursive LogLayerr algorithm, applicable when r is a power of 2, which tries
all the possible X2i

1 for i = 1, 2, . . . , r/2 − 1 and runs simple MITM attacks on
each subcipher E[2i+1,2i+2] separately. As each such attack returns 2n candidate
keys (which can be stored in memory of (r/2) · 2n), the algorithm then groups 4
encryptions together, enumerates the valuesX4i

2 for i = 1, 2, . . . , r/4−1, and runs
MITM attacks on each subcipher E[4i+1...4i+4] separately (taking into account
that there are only 2n possibilities for the keys (k4i+1, k4i+2) and 2n possibilities
for the keys (k4i+3, k4i+4)). The algorithm continues recursively (with log r layers
in total), until a single key candidate is found. We illustrate LogLayer for 8-
encryption in Figure 4.7

P1 P2 P3 . . . P8

C1 C2 C3 . . . C8

X4
1 X4

2

X2
1

X6
1

k
1

k
2

k
3

k
4

k
5

k
6

k
7

k
8

k
2
,
k
1

k
4
,
k
3

k
6
,
k
5

k
8
,
k
7

k
4
,
k
3
,
k
2
,
k
1

k
8
,
k
7
,
k
6
,
k
5

Fig. 4: Illustration of the LogLayer Algorithm for 8-Encryption

7 We note that one can slightly reduce the memory complexity of the attack by using
only the pair (P3, C3) for checking the consistency between the candidates for the
subkeys (k1, . . . , k4) and the candidates for the subkeys (k5, . . . , k8) and then using
the remaining plaintext/ciphertext pairs sequentially to verify the correctness of the
proposed full key k1, . . . , k8, as was done in the algorithm Dissect2(4, 1). As the
improvement is only by a constant factor, for sake of simplicity we omit it and
use all the remaining plaintext/ciphertext pairs in the consistency check between
(k1, . . . , k4) and the candidates for the subkeys (k5, . . . , k8). We do the same in the
following algorithms as well.

11



The memory complexity of LogLayerr is 2n (as we need to store no more
than r tables, each of size 2n). As in the j-th layer of the attack, (r/2j) − 1
intermediate values are enumerated, and as each basic MITM attack has time
complexity of 2n, the overall time complexity of the attack is

log r∏
j=1

2n((r/2
j)−1) · 2n = 2n(r−log r).

Therefore,Gain(LogLayerr) = log r−1, which shows thatGainD(r, 1) ≥ blog rc−
1.

The Squarer Algorithm: This logarithmic gain of LogLayerr is significantly
outperformed by the Squarer algorithm, applicable when r = (r′)2 is a per-
fect square. The Squarer algorithm starts by by enumerating all Xr′

1 , X
r′
2 , . . .,

Xr′
r′−1, X

2r′
1 , X2r′

2 , . . . , X2r′
r′−1, . . ., X

r′(r′−1)
1 , X

r′(r′−1)
2 , . . . , X

r′(r′−1)
r′−1 , i.e., (r′−1)

intermediate values every r rounds for r′ − 1 plaintexts. Given these values, the
adversary can attack each of the r′-encryptions (e.g., E[1...r′]), separately, and
obtain 2n “solutions” on average, which are stored in sorted tables. Then, the
adversary can treat each r′-round encryption as a single encryption with 2n pos-
sible keys, and apply an r′-encryption attack to recover the key. We illustrate
Square9 for 9-encryption in Figure 5.

The time complexity of Squarer is equivalent to repeating 2(r
′−1)(r′−1)n times

a sequence of r′ + 1 attacks on r′-encryption. Hence, the time complexity is at
most 2[(r

′−1)(r′−1)+(r′−1)]·n, and the memory complexity remains 2n. Therefore,
Gain(Squarer) ≥

√
r − 1, which shows that GainD(r, 1) ≥ b

√
rc − 1.

Obviously, improving the time complexity of attacking r′-encryption with
2n memory reduces the time complexity of Squarer as well. However, as the
best attacks of this kind known to us yield a gain of O(

√
r′) = O(r1/4), the

improvement to the overall gain of Squarer is asymptotically negligible.

3.4 Asymmetric Dissections: 7-Encryption and Beyond

A common feature shared by the LogLayerr and the Squarer algorithms is their
symmetry. In both algorithms, every dissection partitions the composition into
parts of the same size. In this section, we show that a better gain can be achieved
by an asymmetric dissection.

We observe that the basic dissection attack on 4-encryption is asymmetric
in its nature. Indeed, after the two separate MITM attacks are performed, the
suggestions from the upper part are stored in a table, while the suggestions from
the lower part are checked against the table values. As a result, the number of
suggestions in the upper part is bounded from above by the size of the memory
(which is now assumed to be 2n and kept in sorted order), while the number of
suggestions from the lower part can be arbitrarily large and generated on-the-fly
in an arbitrary order. This suggests that an asymmetric dissection in which the
lower part contains more rounds than the upper part, may result in a better

12



P1 P2 P3 P4

C1 C2 C3 C4

. . . P9

. . . C9

X3
1 X3

2

X6
1 X6

2
k
2
,
k
1

k
3

k
5
,
k
4

k
6

k
8
,
k
7

k
9

k
6
,
k
5
,
.
.
.
,
k
2
,
k
1

k
9
,
k
8
,
k
7

Fig. 5: Illustration of the Square9 Algorithm for 9-Encryption

P1 P2 P3
. . . P7

C1 C2 C3
. . . C7

X3
1 X3

2

X5
1

k
1

k
3
,
k
2

k
1

k
3
,
k
2

k
4

k
5

k
6

k
7

k
5
,
k
4

k
7
,
k
6

k
3
,
k
2
,
k
1

k
7
,
k
6
,
k
5
,
k
4

Fig. 6: Illustration of the Dissect3(7, 1) Algorithm for 7-Encryption

algorithm. This is indeed the case, as illustrated by the Dissect3(7, 1) algorithm
given in Algorithm 2 and depicted in Figure 6.

13



Input: Seven plaintexts (P1, P2, . . . , P7) and their corresponding ciphertexts
(C1, C2, . . . , C7)

1: for all candidate values of X3
1 , X

3
2 do

2: Apply the basic MITM algorithm to E[1...3] with (P1, X
3
1 ) and (P2, X

3
2 ) as the

plaintext-ciphertext pairs
3: for all obtained 2n values of (k1, k2, k3) of the previous step do

4: Compute X3
3 , X

3
4 , . . . , X

3
7 = E

[1..3]
k1,k2,k3

(P3, P4, . . . , P7)

5: Store in a sorted table the corresponding values of X3
3 , X

3
4 , . . . , X

3
7 , along with

the values of (k1, k2, k3)
6: Apply Dissect2(4, 1) to E[4...7] with (X3

1 , C1) and (X3
2 , C2) as the plaintext-

ciphertext pairs
7: for all obtained 22n values of (k4, k5, k6, k7) do

8: Compute X3
3 , X

3
4 , . . . , X

3
7 = D

[4...7]
k4,k5,k6,k7

(C3, C4, . . . , C7)

9: if the suggested value for X3
3 , X

3
4 , . . . , X

3
7 appears in the table then

10: return (k1, k2, . . . , k7)

Algorithm 2: The Dissect3(7, 1) Algorithm

The memory complexity of the algorithm is 2n, as both the basic MITM
attack on triple encryption and the algorithm Dissect2(4, 1) require 2n memory,
and the size of the table computed in Step 5 is also 2n.

The time complexity is 24n. Indeed, two n-bit intermediate encryption val-
ues are enumerated, both the basic MITM attack on triple encryption and the
algorithm Dissect2(4, 1) require 22n time, and the remaining 22n possible val-
ues of (k4, k5, k6, k7) are checked instantly. This leads to a time complexity of
22n · 22n = 24n. This shows that Gain(Dissect3(7, 1)) = 2, which is better than
the algorithms LogLayerr and Squarer, for which the gain is only 1.

The algorithm Dissect3(7, 1) can be extended recursively to larger values of
r, to yield a better asymptotical gain compared to the symmetric algorithms we
presented. Given the algorithm Dissectj(r

′, 1) such that Gain(Dissectj(r
′, 1)) =

` − 1, we define the algorithm Dissect1NEXT = Dissect`+1(r′ + ` + 1, 1) for r-
encryption, where r = r′ + `+ 1, using Algorithm 3 depicted in Figure 7.

A similar argument to the one used for Dissect3(7, 1) shows that the time
and memory complexities of Dissect`+1(r, 1) are 2r

′n and 2n, respectively, which
implies that Gain(Dissect`+1(r, 1)) = `. In fact, Dissect3(7, 1) can be obtained
from Dissect2(4, 1) by the recursive construction just described.

The recursion leads to a sequence of asymmetric dissection attacks with mem-
ory M = 2n, such that the gain increases by 1 with each step of the sequence.
Let r` be the smallest number of rounds at with a gain of ` is achieved, then by
the construction, the sequence satisfies the recursion

r` = r`−1 + `+ 1,

14



Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts
(C1, C2, . . . , Cr)

1: for all candidate values of X`+1
1 , X`+1

2 , . . . , X`+1
` do

2: Apply the basic MITM algorithm to E[1...(`+1)] with (P1, X
`+1
1 ), (P2, X

`+1
2 ), . . . ,

(P`, X
`+1
` ) as the plaintext-ciphertext pairs

3: for all obtained 2n values of (k1, k2, . . . , k`+1) of the previous step do
4: Partially encrypt P`+1, P`+2, . . . , Pr using (k1, k2, . . . , k`+1)
5: Store in a sorted table the corresponding values of X`+1

`+1 , X
`+1
`+2 , . . . , X

`+1
r ,

along with the values of (k1, k2, . . . , k`+1)
6: Apply Dissectj(r

′, 1) to E[(`+2)...r] with (X`+1
1 , C1), (X`+1

2 , C2), . . . , (X`+1
` , C`)

as the plaintext-ciphertext pairs
7: for all obtained 2(r′−`)n values of (k`+2, k`+3, . . . , kr) do
8: Partially decrypt C`+1, C`+2, . . . , Cr using (k`+2, k`+3, . . . , kr)
9: if the suggested value for X`+1

`+1 , X
`+1
`+2 , . . . , X

`+1
r appears in the table then

10: return (k1, k2, . . . , kr)

Algorithm 3: The Dissect`+1(r′ + `+ 1, 1) Algorithm

P1 P2 P3 . . . Pℓ Pℓ+1 . . . Pr

C1 C2 C3 . . . Cℓ Cℓ+1 . . . Cr

k
ℓ
,
k
ℓ
−

1
,
.
.
.

k
3
,
k
2
,
k
1

k
ℓ
+

1

Xℓ+1
1 Xℓ+1

2 Xℓ+1
3

. . . Xℓ+1
ℓ

k
ℓ
+

1
,
k
ℓ
,
.
.
.
,
k
2
,
k
1

Dissectj(r
′, 1)

k
r
′ +

ℓ
+

1
,
k
r
′ +

ℓ

.
.
.
,
k
ℓ
+

3
,
k
ℓ
+

2

Fig. 7: Illustration of the Dissect`+1(r′+ `+ 1, 1) Algorithm for (r′+ `+ 1)-Encryption

which (together with r0 = 2 which follows from the basic MITM attack) leads
to the formula:

r` =
(`+ 1)(`+ 2)

2
+ 1.

15



The asymptotic gain of this sequence is obtained by representing ` as a function
of r, and is equal to (

√
8r − 7 − 3)/2 ≈

√
2r, which is bigger than the

√
r gain

of the Squarer algorithm.
The analysis presented in Section 3.5 shows that the algorithms obtained by

the recursive sequence described above are the optimal amongst all dissection
algorithms that split the r rounds into two (not necessarily equal) parts and
attacks each part recursively, using any dissection algorithm.

We conclude that as far as only dissection attacks are concerned, the magic
sequence of the minimal numbers of rounds for which the gains are ` = 0, 1, 2, 3, . . .,
called in the sequel magic numbers, is:

Magic1 = {2, 4, 7, 11, 16, 22, 29, 37, 46, 56, . . .}.

This “magic sequence” (also known as the Lazy Caterer’s sequence) will appear
several more times in the sequel.

3.5 The Dissectu(r, 1) Algorithm

In this section, we present a formal treatment of the dissection algorithm and
show the optimality of the sequence Magic1 presented above for algorithms
which use the following framework: In the outer loop of the algorithm, the ad-
versary dissects E[1...r] into two parts, E[1...u] and E[u+1...r], and guesses a few of
the Xu

i values. Then she finds candidates for the keys k1, k2, . . . , ku by attacking
E[1...u], and stores their values in a sorted table, along with some additional
Xu

j values. At this point, the adversary attacks E[u+1...r], deduces the candidate
values for ku+1, ku+2, . . . , kr, computes the corresponding Xu

j values, and looks
on-the-fly for matches in the table (each suggesting a value for the entire key
of E[1...r]). Obviously, the attacks on E[1...u] and E[u+1...r] themselves can be
performed using dissection algorithms.

As explained in Section 3.4, the number of Xu
i values the adversary has to

guess is dictated by the number of key suggestions for k1, k2, . . . , ku yielded by
the attack on E[1...u], since only these suggestions have to be stored in memory.
As the amount of memory allowed in Dissectu(r, 1) is 2n, we assume that the
adversary guesses u − 1 values of the form Xu

i , as this makes the number of
suggestions 2n (under standard randomness assumptions).

Therefore, the Dissectu(r, 1) attack on r-encryption can be defined by Algo-
rithm 4. Of course, the algorithms Dissect3(7, 1) and Dissect`+1(r′ + ` + 1, 1)
presented in Section 3.4 are special cases of Dissectu(r, 1).

Complexity Analysis of Dissectu(r, 1): It is easy to see that since the
memory complexity of the attacks on E[1...u] and E[u+1...r] is at most 2n, then the
memory complexity of the whole attack is 2n (recall that we expect 2n candidates
for k1, k2, . . . , ku). Moreover, for the right guess of the Xu

1 , X
u
2 , . . . X

u
u−1 values,

we are assured that the right key value is suggested by both Steps 2 and Step 6,
and that the combination of the right key values leads to a match in the table

16



Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts
(C1, C2, . . . , Cr)

1: for all candidate values of Xu
1 , X

u
2 , . . . , X

u
u−1 do

2: Apply the basic MITM algorithm to E[1...u] with (P1, X
u
1 ), (P2, X

u
2 ), . . . ,

(Pu−1, X
u
u−1) as the plaintext-ciphertext pairs

3: for all obtained 2n values of (k1, k2, . . . , ku) of the previous step do
4: Partially encrypt Pu, Pu+1, . . . , Pr using (k1, k2, . . . , ku)
5: Store in a sorted table the corresponding values of Xu

u , X
u
u+1, . . . , X

u
r , along

with the values of (k1, k2, . . . , ku)
6: Attack E[(u+1)...r] (possibly using dissection) with (Xu

1 , C1), (Xu
2 , C2), . . . ,

(Xu
u−1, Cu) as the plaintext-ciphertext pairs

7: for all obtained 2[r−u−(u−1)]n valuesa of (ku+1, ku+2, . . . , kr) do
8: Partially decrypt Cu, Cu+1, . . . , Cr using (ku+1, ku+2, . . . , kr)
9: if the suggested value for Xu

u , X
u
u+1, . . . , X

u
r appears in the table then

10: return (k1, k2, . . . , kr)

a We recall that when attacking E[u+1...n], we expect that out of the 2(r−u)n possible
keys, only one in 2(u−1)n is consistent with the given u − 1 “plaintext”-ciphertext
pairs.

Algorithm 4: The Dissectu(r, 1) Algorithm

in Step 9. Hence, the attack indeed returns the right key (perhaps with a few
other candidates).

The time complexity of the attack is 2(u−1)n times the complexity of Steps 2
and 6. The running time of Step 2 (attacking u ≤ br/2c rounds8) does not affect
the proof of optimality of our algorithms, and thus we ignore it.

Using our framework, we assume that the most efficient way to implement
Step 6 is by calling Dissectu∗(r−u, 1) algorithm for some u∗ < r−u. Thus, the
running time of Step 6 is at least the time complexity of the Dissectu∗(r− u, 1)
algorithm. In addition, one needs to note that the number of solutions suggested
by this part of the attack is 2(r−2u+1)n, i.e., we expect another 2(r−2u+1)n ac-
cesses to the table as part of Step 7).

For convenience of notation, let

f1(r) , min
1≤u≤r−1

{r − 1−Gain(Dissectu(r, 1))} ,

so that the lowest possible time complexity of an algorithm in our framework on
r-encryption with 2n memory is 2f1(r)n.

Using this notation, the time complexity of Dissectu(r, 1) is at least

2(u−1)n ·max
{

2f1(u)n, 2f1(r−u)n, 2(r−2u+1)n
}
.

8 For a good block cipher E, the problem of attacking the encryption and the de-
cryption direction is expected to be the same. Hence, we assume without lose of
generality that indeed u ≤ br/2c.

17



Therefore, for a given value of r, the optimal value of u is the one that
minimizes the above expression. In other words:

f1(r) = min
1≤u≤r

{u− 1 + max {f1(u), f1(r − u), r − 2u+ 1}} . (1)

We can simplify this expression by plugging in u = br/2c, and obtaining
f1(r) ≤ br/2c+ 1 + f1(dr/2e). Thus, since f1(r) is non-decreasing, the minimum
cannot be obtained for u > br/2c, which implies:

f1(r) = min
1≤u≤br/2c

{u− 1 + max {f1(r − u), r − 2u+ 1}} . (2)

Using Equation 2 and the known values of f1(1) = f1(2) = 1 (which follow
from the standard MITM algorithm on 2-encryption), it is easy to show by
induction on r that the minimal complexities are achieved by the sequence of
algorithms presented in Section 3.4.

Remark 1. One may be concerned by the fact that when the algorithm is run
recursively there are no additional “plaintext” values that allow constructing the
table in Step 2 (as we require at least one additional “plaintext” to filter some
of the key candidates found in Step 6). This issue is solved by the fact that once
the top part (being E[1...r∗] for some r∗) has at most 2n possible keys, we can
partially encrypt as many plaintexts as we have to generate the required data.

3.6 Deterministic Dissection Algorithms for m > 1

While the algorithms presented above seem tailored to the case m = 1, it turns
out that a small tweak in the recursive sequence of the dissection algorithms pre-
sented in Section 3.4 is sufficient to obtain optimal algorithms in our framework
for any integer m > 1.

First, we define the general family of dissection algorithms Dissectu(r,m),
which correspond to a memory complexity of 2mn, in Algorithm 5.

As in the case m = 1, we denote fm(r) = r − m − GainD(r,m), so that
the lowest possible time complexity of a deterministic dissection attack on r-
encryption with 2mn memory is 2fm(r)n. In these notations, exactly the same
analysis as in the case m = 1 shows that

fm(r) = min
1≤u≤br/2c

{u−m+ max {fm(r − u), r − 2u+m}} . (3)

The optimal choice of the “cut points” u for each value of r is obtained by a
recursive sequence of algorithms, which is a simple generalization of the sequence
that we obtained for m = 1.

First, note that if an algorithmDissectj(r
′,m) satisfiesGain(Dissectj(r

′,m))
= `−m, then the algorithmDissect`+m(r′+`+m,m) (which usesDissectj(r

′,m)
as a subroutine in the lower part) satisfies Gain(Dissect`+m(r′+`+m,m)) = `.
This allows us to construct a recursive sequence of algorithms, in which the gain
is increased by m at every step, thus generalizing the case of m = 1.

18



Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts
(C1, C2, . . . , Cr)

1: for all candidate values of Xu
1 , X

u
2 , . . . , X

u
u−m do

2: Apply the basic MITM algorithm to E[1...u] with (P1, X
u
1 ), (P2, X

u
2 ), . . . ,

(Pu−m, X
u
u−m) as the plaintext-ciphertext pairs

3: for all obtained 2mn values of (k1, k2, . . . , ku) of the previous step do
4: Partially encrypt Pu−m+1, Pu−m+2, . . . , Pr using (k1, k2, . . . , ku)
5: Store in a sorted table the corresponding values of Xu

u , X
u
u+1, . . . , X

u
r , along

with the values of (k1, k2, . . . , ku)
6: Attack E[(u+1)...r] (possibly using dissection) with (Xu

1 , C1), (Xu
2 , C2), . . . ,

(Xu
u−1, Cu) as the plaintext-ciphertext pairs

7: for all obtained 2[r−u−(u−1)]n values of (ku+1, ku+2, . . . , kr) do
8: Partially decrypt Cu, Cu+1, . . . , Cr using (ku+1, ku+2, . . . , kr)
9: if the suggested value for Xu

u , X
u
u+1, . . . , X

u
r appears in the table then

10: return (k1, k2, . . . , kr)

Algorithm 5: The Dissectu(r,m) Algorithm

As the starting points for the sequence, we start with the m algorithms
Dissectm+i(2m+2i,m) for i = 0, 1, . . . ,m−1. In the algorithmDissectm+i(2m+
2i,m), the adversary enumerates i intermediate values after m+i rounds, applies
simple MITM attacks on each part separately, and then applies a MITM attack
between the 2mn key suggestions from the two parts. The time and memory
complexities of the algorithm are 2(m+i)n and 2mn, respectively, and hence, its
gain is i.

Using these m starting points and the recursive step, the entire sequence can
be computed easily. It turns out that the “magic sequence” of the numbers of
rounds at which the gain ` = 0, 1, 2, . . . obtained is

Magicm = {2m, 2m+ 2,2m+ 4, . . . , 4m, 4m+ 3, 4m+ 6, . . . ,

7m, 7m+ 4, 7m+ 8, . . . , 11m, . . .},

and the asymptotic gain is approximately
√

2mr.
Using Equation (3), it is easy to show by induction on r that the optimal

complexities amongst Dissectu(r,m) algorithms are achieved by the sequence of
algorithms presented above.9

We present the time and memory complexities of the optimal Dissectu(r,m)
algorithms for all r ≤ 40 and m ≤ 10 in Table 1.

9 Our algorithms only work for integer values of m, since u − m (the number of
intermediate values that we guess in Step 1 of Algorithm 5) has to be an integer.
These algorithms can be extended to fractional values of m as well. However, as the
extended algorithms are more cumbersome, we decided to not present them in this
paper.

19



r m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10

1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2
5 3 3 3 3 3 3 3 3 3 3
6 4 3 3 3 3 3 3 3 3 3
7 4 4 4 4 4 4 4 4 4 4
8 5 4 4 4 4 4 4 4 4 4
9 6 5 5 5 5 5 5 5 5 5
10 7 6 5 5 5 5 5 5 5 5
11 7 6 6 6 6 6 6 6 6 6
12 8 7 6 6 6 6 6 6 6 6
13 9 8 7 7 7 7 7 7 7 7
14 10 8 8 7 7 7 7 7 7 7
15 11 9 8 8 8 8 8 8 8 8
16 11 10 9 8 8 8 8 8 8 8
17 12 11 10 9 9 9 9 9 9 9
18 13 11 10 10 9 9 9 9 9 9
19 14 12 11 10 10 10 10 10 10 10
20 15 13 12 11 10 10 10 10 10 10
21 16 14 12 12 11 11 11 11 11 11
22 16 14 13 12 12 11 11 11 11 11
23 17 15 14 13 12 12 12 12 12 12
24 18 16 15 14 13 12 12 12 12 12
25 19 17 15 14 14 13 13 13 13 13
26 20 18 16 15 14 14 13 13 13 13
27 21 18 17 16 15 14 14 14 14 14
28 22 19 18 16 16 15 14 14 14 14
29 22 20 18 17 16 16 15 15 15 15
30 23 21 19 18 17 16 16 15 15 15
31 24 22 20 19 18 17 16 16 16 16
32 25 22 21 19 18 18 17 16 16 16
33 26 23 21 20 19 18 18 17 17 17
34 27 24 22 21 20 19 18 18 17 17
35 28 25 23 22 20 20 19 18 18 18
36 29 26 24 22 21 20 20 19 18 18
37 29 27 25 23 22 21 20 20 19 19
38 30 27 25 24 23 22 21 20 20 19
39 31 28 26 25 23 22 22 21 20 20
40 32 29 27 25 24 23 22 22 21 20

Items marked in bold are magic numbers.
Table 1: fm(r) Values

3.7 Dissection Algorithms for a Composition of Keyed One-Way
Functions

In this section, we consider compositions of keyed one-way functions (OWFs),
which appear in the context of layered Message Authentication Codes, such as

20



NMAC [5]. It turns out that the deterministic dissection algorithms presented
above can be easily modified to yield efficient dissection algorithms for this sce-
nario.

In the scenario of composition of OWFs, the goal is to retrieve k1, k2, . . . , kr
used in

F [1...r](P ) = Fkr (Fkr−1(· · ·Fk2(Fk1(P )) · · · )),

where Fk(·) is a keyed one-way function from an n-bit input and an n-bit key
into an n-bit output. We shall assume that the keyed one-way function F is a
family of 2k random functions (where each function corresponds to a different
key).

Given 22n memory, one can simply store a table of (Fk(X), k,X) sorted by
the values of Fk(X) and k. Thus, given Fk(X) and k, one can find all possible
X values (there is one such value on average) that are “encrypted” into Fk(X)
under the key k. As this actually generates the “decryption” functionality by one
memory access per each possible X (and thus amortized complexity of one mem-
ory access per each (Fk(X), k) tuple), we can repeat the same Dissectu(r,m)
algorithms designed for multiple-encryption, if m ≥ 2.

In case we only have 2n memory, we use a slightly different approach in the
dissection of F [1...r] into two parts. In the lower part, instead of fixing inter-
mediate values and checking which keys “decrypt” the known outputs10 into
these intermediate values, we go over all tuples of (intermediate values, key)
and store in a table those tuples which comply with the known outputs.11 Then,
we obtain candidates for the keys in the upper part and check them against the
table. This procedure is somewhat less efficient than the original Dissectu(r,m),
but obtains similar asymptotical results.

In the simplest case of r = 3, the algorithm, which we call DissectOWF2(3),
is defined as in Algorithm 6.12

Steps 1 and 2 go over 22n values, with an n-bit filtering condition (in Step 3).
Hence, their running time is 22n and the expected memory consumption13 is 2n.
Step 5 iterates over all 22n values of (k1, k2), and for each such key pair, we
expect on average one value of X2

1 in the table. This value suggests on average a
single value of k3, from which we obtain a suggestion for the complete key. We
conclude that the time complexity of DissectOWF2(3) is 22n and its memory
complexity is 2n.

10 As we consider one way functions, we use the terms inputs and outputs rather than
plaintexts and ciphertexts.

11 Different from the case of multiple encryption, in the case of one-way functions, we
build a table for the lower part of the cipher.

12 Recall that we discuss only the case in which 2n memory is given, as for 22n memory
the previous Dissect algorithms are still applicable. Hence, we omit the amount of
memory from the notation.

13 A given output may have several inputs (even when the key is fixed), thus the number
of “solutions” to the equation Fk3(X2

1 ) = C1 may be larger than 2n. However,
assuming F (·) is a “good” one way function, the number of solutions is not expected
to be significantly larger than 2n.

21



Input: Three inputs (P1, P2, P3) and their corresponding outputs (C1, C2, C3)

1: for all candidate values of X2
1 do

2: for all k3 do
3: if Fk3(X2

1 ) = C1 then
4: Store (X2

1 , k3) in a sorted table
5: for all candidate values of k1, k2 do
6: Compute X2

1 = Fk2(Fk1(P1))
7: if X2

1 appears in the table then
8: Obtain k3 from the table
9: if F [1...3](P2, P3) = (C2, C3) then

10: return (k1, k2, k3)

Algorithm 6: The DissectOWF2(3) Algorithm

We note that (similarly to the case of multiple-encryption) a trivial extension
of DissectOWF2(3) allows us to retrieve the key of a composition of r OWFs
for any r ≥ 3, in time 2(r−1)n and memory 2n. Moreover, if we are given only
r − 1 input/output pairs, the same algorithm allows us to retrieve the 2n keys
which comply with these pairs. This algorithm will be used in the recursive step
below.

Starting with DissectOWF2(3), we can recursively construct a sequence of
dissection algorithms. The construction is similar to the DissectNEXT construc-
tion presented in Section 3.4, with a few differences which follow from the special
structure of OWFs.

Given ` ≥ 2 and an algorithm DissectOWFj(r
′) whose gain is ` − 1, i.e.,

Gain(DissectOWFj(r
′)) = `−1, we define the algorithm DissectOWFNEXT =

DissectOWFr′(r
′+`+1) for r-encryption, where r = r′+`+1, by Algorithm 7.

An analysis similar to that of the Dissect1NEXT algorithm presented in Sec-
tion 3.4 shows that the time and memory complexities of DissectOWFNEXT are
T = 2r

′n andM = 2n. Indeed, the only essential difference betweenDissectOWFNEXT

and Dissect1NEXT is the second part of Step 1 (i.e., computing the preimages),
but the time complexity of this part is 22n, which is less than the complexity of
the other steps of the algorithm, since ` ≥ 2.

This shows that the sequence of DissectOWFj(r) algorithms satisfies the
same recursion relation as the sequence Dissectj(r, 1). Hence, if we denote by r̃`
the `’th element of the sequence (i.e., the number of rounds for which the gain
is `), then

r̃` = r̃`−1 + `+ 1.

Since r̃0 = 3, we get the formula

r̃` = r` + 1 =
(`+ 1)(`+ 2)

2
+ 2.

22



Input: r inputs (P1, P2, . . . , Pr and their corresponding outputs (C1, C2, . . . , Cr)

1: for all candidate values of Xr′
1 , X

r′
2 , . . . , X

r′
` do

2: for all kr′+1, kr′+2, . . . , kr do

3: if F [r′+1...r](Xr′
1 , X

r′
2 , . . . , X

r′
` ) = (C1, C2, . . . , C`) then

4: Store (Xr′
1 , X

r′
2 , . . . , X

r′
` , kr′+1, kr′+2, . . . , kr) in a sorted table

5: Apply DissectOWFj(r
′) to E[1...r′] with (P1, X

r′
1 ), (P2, X

r′
2 ), . . . , (P`, X

r′
` ) as the

input-output pairs
6: for all obtained 2(r′−`)n values of (k1, k2, . . . , kr′) of the previous step do

7: Compute Xr′
1 , X

r′
2 , . . . , X

r′
` = F [1...r′](P1, P2, . . . , P`)

8: if Xr′
1 , X

r′
2 , . . . , X

r′
` appears in the table then

9: Obtain kr′+1, kr′+2, . . . , kr from the table
10: if F [1...3](P`+1, P`+2, . . . , Pr) = (C`+1, C`+2, . . . , Cr) then
11: return (k1, k2, . . . , kr)

Algorithm 7: The DissectOWFr′(r) Algorithm (for r = r′ + `+ 1)

Therefore, the “magic sequence” corresponding to a composition of OWFs is

MagicOWF
1 = {3, 5, 8, 12, 17, 23, . . .},

and the asymptotic gain is approximately
√

2r, as in the basic r-encryption case.

4 Parallel Collision Search via Dissection

In Section 3, we only considered deterministic algorithms for r-encryption schemes
which never err, that is, algorithms which find all the possible values of the keys
which comply with the plaintext-ciphertext pairs, or prove that there are no such
keys. For this type of algorithm, we improved the previously best known generic

tradeoff curve (obtained by MITM attacks) from TM = 2rn to TM = 2(r−
√
2r)n

using our dissection algorithms.
We now consider non-deterministic algorithms which find the right keys with

some probability p < 1, which can be made arbitrarily close to one (i.e., Monte
Carlo algorithms). In this case, an improved tradeoff curve of T 2M = 2(3/2)rn

can be obtained by the parallel collision search algorithm of van Oorschot and
Wiener [29]. In this section, we combine the dissection algorithms presented in
Section 3 with the parallel collision search algorithm to obtain an even better

tradeoff curve with a multiplicative advantage of at least 2(
√
2r/8)n over the curve

of [29].
This section is organized as follows: In Section 4.1 we give a brief descrip-

tion of the Parallel Collision Search algorithm. Our new algorithm, which we
call “Dissect & Collide”, is presented in Section 4.2. In Section 4.3 we present
several extensions of the basic Dissect & Collide algorithm and analyze its gain

23



compared to the PCS algorithm. Finally, we present a comparison between the
performances of the dissection, PCS, and Dissect & Collide algorithms for se-
lected values of r and m in Table 2.

4.1 Brief Description of the Parallel Collision Search Algorithm

We start with a brief description of the Parallel Collision Search (PCS) algorithm
of van Oorschot and Wiener [29]. For more information on the algorithm and its
applications, the reader is referred to the original paper [29].

The Memoryless Algorithm The simplest way to present the PCS algorithm
is to consider “memoryless” (i.e., constant memory) attacks on r-encryption. As
mentioned in Section 3, the time complexity of exhaustive search is 2rn, and the
MITM attack does not perform better given constant memory. Van Oorschot
and Wiener showed that the time complexity can be reduced to 2(3/4)rn, using
the PCS algorithm.

The basic observation behind the algorithm is that given constant memory,
one can efficiently find key candidates which comply with half of the plaintext-
ciphertext pairs.

Assume, for sake of simplicity, than r is even and the adversary is given r
plaintext-ciphertext pairs (P1, C1), . . . , (Pr, Cr). The first step of the PCS al-
gorithm consists of finding candidates for the keys (k1, . . . , kr), which comply
with the pairs (P1, C1), . . . , (Pr/2, Cr/2). In order to find them, the adversary
constructs the two step functions

Fupper : (k1, . . . , kr/2) 7→ (X
r/2
1 , . . . , X

r/2
r/2 ), and

F lower : (kr/2+1, . . . , kr) 7→ (X
r/2
1 , . . . , X

r/2
r/2 ),

and uses a variant of Floyd’s cycle finding algorithm [20] to find a collision be-
tween them. Thus, the adversary obtains a value of (k1, . . . , kr/2, kr/2+1, . . . , kr)
which complies with (P1, C1), . . . , (Pr/2, Cr/2). As both functions are from (r/2)n
bits to (r/2)n bits, Floyd’s algorithm is expected to find a collision in time
2(r/4)n, with constant memory. In the sequel, we call such collisions partial col-
lisions.

In the second step of the algorithm, the adversary checks whether the found
key candidate also complies with the pairs (Pr/2+1, Cr/2+1), . . . , (Pr, Cr). By

standard randomness assumptions, this occurs with probability 2−(r/2)n, and
hence the adversary is expected to find the key after testing 2(r/2)n candidates.
The total time complexity of the algorithm is thus 2(3/4)rn.

We note that one may be tempted to use the naive approach to find a collision
between Fupper and F lower, by trying to construct a self-colliding chain of values,
generated by alternating the applications of the two functions on the current
value. However, this approach does not work, and in order to efficiently obtain
the desired collision, one has to embed pseudo-randomness into the generation
of the chain in order to decide at each stage which of the functions to apply next

24



(for more details, refer to [29]). Moreover, the adversary has to use different
flavors of the step functions Fupper and F lower in order to produce the 2(r/2)n

distinct partial collisions required for the second step of the algorithm. Thus, the
algorithm is probabilistic also in the sense that its success probability depends
on the (randomly chosen) starting points of Floyd’s algorithm and the different
flavors.

Time/Memory Tradeoff in Parallel Collision Search If more memory is
available, then the algorithm described above can be combined with the tech-
niques used in the classical Hellman’s time-memory tradeoff attack [15] to ob-
tain the tradeoff curve T 2M = 2(3/2)rn. The reduction in the time complexity
is achieved by obtaining many partial collisions simultaneously, with a lower
amortized time per collision.

Assume that the available memory is M = 2mn. The adversary chooses
M random starting points Vi, and for each of them she computes a chain of
values starting from Vi. Each chain is terminated once a value with (r/4 −
m/2)n zero LSBs is obtained, and this “distinguished point” is stored in a table,
along with Vi and its total length. For each reached distinguished point, the
adversary checks whether it already appears in the table. If it indeed appears,
then the corresponding chains give a collision between F lower and Fupper with
high probability. This collision can be easily found using the two starting points
of the chains, and their lengths.

The expected length of each of the 2mn paths is 2(r/4−m/2)n, and thus the
structure covers a total of about 2(r/4+m/2)n values. Using the birthday paradox,
since every path contains about 2(r/4−m/2)n values, we expect it to collide with at
least one of the 2(r/4+m/2)n covered points with high probability. Thus, we expect
to find a total of about 2mn partial collisions using this algorithm. Generating
the structure requires a total of about 2(r/4+m/2)n operations, and we can obtain
each of the 2mn partial collisions in about 2(r/4−m/2)n time (the expected length
of a chain in the structure). Thus, the total time complexity of obtaining the
collisions is about 2(r/4+m/2)n, which implies that the time complexity of the
algorithm is also about 2(r/4+m/2)n.

In total, the algorithm requires about 2(r/4+m/2)n operations in order to find
2mn partial collisions. Since 2rn/2 partial collisions are needed, the overall time
complexity is

T = 2(r/4+m/2)n · 2(r/2−m)n = 2(3r/4−m/2)n,

which leads to the tradeoff curve T 2M = 2(3/2)rn.

4.2 The Dissect & Collide Algorithm

In this section, we present the Dissect & Collide (DC) algorithm, which uses
dissection to enhance the PCS algorithm.

The basic idea behind the DC algorithm is that it is possible to fix several

intermediate values after r/2 rounds, (X
r/2
1 , . . . , X

r/2
u ), and construct complex

25



step functions F̃upper and F̃ lower in such a way that all the keys they suggest par-

tially encrypt Pi to X
r/2
i and partially decrypt Ci to X

r/2
i , for all i ≤ u. This is

achieved by incorporating an attack on E[1...r/2] with (P1, X
r/2
1 ), . . . , (Pu, X

r/2
u )

as the plaintext-ciphertext pairs into the function Fupper, and similarly with
E[r/2+1...r] and F lower. As a result, a partial collision which complies with the
pairs (P1, C1), . . . , (Pr/2, Cr/2) can be found at a smaller “cost” than in the PCS
algorithm. It should be noted that this gain could potentially be diminished by
the “cost” of the new step functions F̃ , which is higher than the “cost” of the
simple step functions F . However, we show that when the efficient dissection
algorithms presented in Section 3 are used to attack the subciphers E[1...r/2] and
E[r/2+1...r], the gain is bigger than the loss, and the resulting DC algorithm is
faster than the PCS algorithm (given the same amount of memory).

A Basic Example: Applying DC to 8-encryption As the idea of the
DC algorithm is somewhat involved, we illustrate it by considering the simple
case (r = 8,m = 1). In the case of 8-encryption, the goal of the first step
in the PCS algorithm is to find partial collisions which comply with the pairs
(P1, C1), . . . , (P4, C4). Given memory of 2n, the average time in which PCS finds
each such collision is 21.5n. The DC algorithm allows us to achieve the same goal
in 2n average time.

In the DC algorithm, we fix three intermediate values: (X4
1 , X

4
2 , X

4
3 ), and

want to attack the subciphers E[1...4] and E[5...8]. Recall that the algorithm
Dissect2(4, 1) presented in Section 3 retrieves all 2n values of (k1, k2, k3, k4)
which comply with the pairs (P1, X

4
1 ), (P2, X

4
2 ), (P3, X

4
3 ) in time 22n and memory

2n. Furthermore, given a fixed value X2
1 , there is a single value of (k1, k2, k3, k4)

(on average) which complies with the three plaintext-ciphertext pairs and the X2
1

value, and this value can be found in time 2n (since the Dissect2(4, 1) algorithm
starts with guessing the value X2

1 and then performs only 2n operations for each
guess).

Given plaintexts (P1, P2, P3, P4), their corresponding ciphertexts (C1, C2, C3,
C4), and a guess for (X4

1 , X
4
2 , X

4
3 ):

Define the step functions F̃upper and F̃ lower by:

F̃upper : X2
1 7→ X4

4 and F̃ lower : X6
1 7→ X4

4 .

In order to compute the step function F̃upper, apply the Dissect2(4, 1) algorithm
to E[1...4] with the plaintext-ciphertext pairs (P1, X

4
1 ), (P2, X

4
2 ), (P3, X

4
3 ) and the

intermediate value X2
1 to obtain a unique value of the keys (k1, k2, k3, k4). Then,

partially encrypt P4 through E[1...4] with these keys to obtain F̃upper(X1
2 ) = X4

4 .
The function F̃ lower is computed similarly. The resulting algorithm is given in
Algorithm 8 and depicted in Figure 8.

By the construction of the step functions, each suggested key (k1, . . . , k4)
(or (k5, . . . , k8)) encrypts (P1, P2, P3) to (X4

1 , X
4
2 , X

4
3 ) (or decrypts (C1, C2, C3)

to (X4
1 , X

4
2 , X

4
3 ), respectively), and hence, each collision between F̃upper and

F̃ lower yields a suggestion of (k1, . . . , k4, k5, . . . , k8) which complies with the

26



Input: Eight plaintexts (P1, P2, . . . , P8) and their corresponding ciphertexts
(C1, C2, . . . , C8)

1: for all candidate values of X4
1 , X

4
2 , X

4
3 do

2: Use PCS to obtain 2n collisions between F̃upper and F̃ lower

3: for all obtained collisions do
4: if E

[1..8]
k1,...,k4,k5,...,k8

(P5, P6, P7, P8) = (C5, C6, C7, C8) then
5: return k1, . . . , k4, k5, . . . , k8

Algorithm 8: The DC(8, 1) Algorithm

P1 P2 P3 P4 P5
. . . P8

C1 C2 C3 C4 C5
. . . C8

X4
1 X4

2 X4
3

X2
1

X6
1

F̃
u
pp
er

us
ing D

issect2
(4

,1
)

F̃
low

er
using

D
is
se
ct

2
(4
,1

)

k
8
,
k
7
,
k
6
,
k
5
,
k
4
,
k
3
,
k
2
,
k
1

Fig. 8: Illustration of the DC(8, 1) Algorithm for 8-Encryption

pairs (P1, C1), . . . , (P4, C4). Since we find 2n collisions in step 1(a), we expect
a collision for each possible value of X4

4 . Thus, once we iterate over the correct
value of (X4

1 , X
4
2 , X

4
3 ), we expect a collision on the correct value of X4

4 , which
will suggest the correct key with high probability.

27



Since the step functions are from n bits to n bits, we can find the required
2n partial collisions with 2n invocations using 2n memory in Step 2. By the
properties of the algorithm Dissect2(4, 1) mentioned above, the invocation of
the step functions F̃ can be performed in 2n time and memory. Thus, Step
2 requires a total of 22n time, and the total running time of the algorithm is
24n−n · 22n = 25n.

We note that while our DC algorithm outperforms the respective PCS al-
gorithm (whose time complexity is 25.5n), it has the same performance as the
Dissect4(8, 1) algorithm presented in Section 3. However, as we show in the se-
quel, for larger values of r, theDC algorithms outperform theDissect algorithms
significantly.

The General DC(r,m) Algorithms We are now ready to give a formal
definition of the DC(r,m) class of algorithms, applicable to r-encryption (for an
even r),14 given memory of 2mn. An algorithm A ∈ DC(r,m) is specified by a
number u, 1 ≤ u ≤ r/2, and two sets Iupper and I lower of intermediate locations
in the subciphers E[1...r/2] and E[r/2+1...r], respectively, such that |Iupper| =
|I lower| = r/2− u.

To apply the algorithm, u intermediate values (X
r/2
1 , . . . , X

r/2
u ) are fixed,

and the step functions F̃upper and F̃ lower are defined by:

F̃upper : V upper 7→ (X
r/2
u+1, . . . , X

r/2
r/2 ), and

F̃ lower : V lower 7→ (X
r/2
u+1, . . . , X

r/2
r/2 ),

where V upper and V lower denote intermediate values at the locations Iupper and
I lower, respectively.

The step function F̃upper is computed by applying a dissection attack to

E[1...r/2] with the plaintext-ciphertext pairs (P1, X
r/2
1 ), . . . , (Pu, X

r/2
u ), where

the intermediate values at locations Iupper are fixed to the values V upper, to
retrieve a unique value of the keys (k1, . . . , kr/2), and then partially encrypting

(Pu+1, . . . , Pr/2) with these keys to obtain (X
r/2
u+1, . . . , X

r/2
r/2 ). The step func-

tion F̃ lower is computed in a similar way, with respect to E[r/2+1...r] and the
set I lower. The adversary finds 2mn collisions between F̃upper and F̃ lower us-
ing a Hellman-like data structure, where each collision gives a suggestion of
(k1, . . . , kr/2, kr/2+1, . . . , kr), complying with the plaintext-ciphertext pairs (P1, C1),
. . . , (Pr/2, Cr/2). The resulting algorithm is described in Algorithm 9.

Denote the time complexity of each application of F̃ by S = 2sn. An easy
computation shows that the overall time complexity of the algorithm DC(r,m)
is:

2(r/2)n · 2((r/2−u−m)/2)n · 2sn = 2((3/4)r−(u+m−2s)/2)n. (4)

14 We note that for sake of simplicity, we discuss in this section only even values of r.
An easy (but probably non-optimal) way to use these algorithms for an odd value
of r is to guess the value of the key kr, and for each guess, to apply the algorithms
described in this section to E[1...r−1].

28



Input: r plaintexts (P1, P2, . . . , Pr) and their corresponding ciphertexts
(C1, C2, . . . , Cr)

1: for all candidate values of X
r/2
1 , X

r/2
2 , . . . , X

r/2
u do

2: Use PCS to obtain 2mn collisions between F̃upper and F̃ lower

3: for all obtained collisions do
4: if E

[1..r]
k1,...,kr/2,kr/2+1,...,kr

(Pr/2+1, Pr/2+2, . . . , Pr) = (Cr/2+1, Cr/2+2, . . . , Cr)

then
5: return k1, . . . , kr/2, kr/2+1, . . . , kr

Algorithm 9: The DC(r,m) Algorithm

As the time complexity of the PCS algorithm with memory 2mn is 2((3/4)r−m/2)n,
the multiplicative advantage of the DC algorithm is 2(u/2−s)n. In particular, for
the specific DC(8, 1) algorithm described above for 8-encryption, we have s = 1,
and thus, the gain is indeed 2(3/2−1)n = 2n/2. In the sequel, we denote the pa-
rameters Iupper, I lower, u, s which specify a DC(r,m) algorithm A and determine
its time complexity by Iupper(A), I lower(A), u(A), and s(A), respectively.

Flavors in the Step Function of the Algorithm DC We conclude this
section by pointing out a difficulty in the implementation of the DC algorithm
(which does not exist in the PCS algorithm) and presenting a way to resolve it.

Recall that in the PCS algorithm, for each value of (k1, . . . , kr/2), there is

exactly one corresponding value of F̃upper(k1, . . . , kr/2) = (X
r/2
1 , . . . , X

r/2
r/2 ). On

the other hand, in DC, for some values of V upper, there are no correspond-

ing values of F̃upper(V upper) = (X
r/2
u+1, . . . , X

r/2
r/2 ) at all, while for other values of

V upper, there are several possible outputs of F̃upper. This happens since the num-
ber of keys (k1, . . . , kr/2) which comply with the u plaintext-ciphertext values

(P1, X
r/2
1 ), . . . , (Pu, X

r/2
u ) and the r/2−u fixed intermediate values at the loca-

tions Iupper is not always 1, but is distributed according to a Poisson distribution
with mean 1. While this feature does not influence the expected performance of
the Dissect attacks, its effect on the DC attack is crucial: in an e−1 fraction
of the cases, the step function F̃upper returns no value, and thus, the expected
length of its generated chains is constant!

In order to resolve this difficulty, we introduce flavors into the definition of the
step function. Formally, for each value of V upper, F̃upper(V upper) is a (possibly
empty) multiset. Based on this, we define:

F̄upper(V upper) = min({F̃upper(V upper ⊕ i0)}),

where i0 ∈ {0, 1}(r/2−u)n is minimal such that the set {F̃upper(V upper ⊕ i0)} is
non-empty, and the minimums are taken with respect to the lexicographic order.

29



In other words, if the set F̃upper(V upper) is empty, then we replace V upper by
V upper ⊕ (0, 0, . . . , 0, 1) and compute F̃upper again. We continue until we reach
a value of i0 for which the set of outputs of F̃upper is non-empty, and the single
output F̄upper(V upper) is chosen from this set according to the lexicographical
order. The same modification is applied also to F̃ lower.

Using this modification, the step function becomes uniquely defined as in the
case of PCS, and the computation overhead required by the new definition is
small, since the output of F̃upper is non-empty for an 1 − 1/e fraction of the
inputs. On the other hand, the introduction of flavors gives rise to another diffi-
culty which does not arise in the original PCS algorithm, namely, the possibility
that in an execution of the algorithm with the correct values of Iupper/I lower,
the correct key will not be found since the set of outputs of F̃upper contains more
than one solution. Since the algorithm is forced to pick only one solution, it may
miss the correct key. To deal with this possibility, if we do not find the key in
an execution of the algorithm, we change the ordering algorithm of the solutions
and run the algorithm again. Since we expect no more than a few solutions in
each execution of the step functions, we expect to repeat the algorithm only a
small number of times. After these modifications, which result in a small (con-
stant) penalty in its time complexity, we can claim that the success probability
of the DC algorithm can be made arbitrarily close to 1 (similarly to the PCS
algorithm).

4.3 The Gain of the Dissect & Collide Algorithm Over the PCS
Algorithm

In this section we consider several natural extensions of the basic DC(8, 1) al-
gorithm presented in Section 4.2. We use these extensions to show that the gain
of the DC algorithms over the PCS algorithm is monotone non-decreasing with
r and is lower bounded by b

√
2rc/8 for any r ≥ 8.

Before we present the extensions of the basic DC algorithm, we formally
define the notion of gain in the non-deterministic setting. As the best previously
known algorithm in this setting is the PCS algorithm, whose time complexity
given 2mn memory is 2((3/4)r−m/2)n, we define the gain with respect to it.

Definition 2. The gain of a probabilistic algorithm A for r-encryption whose
time and memory complexities are T and M = 2mn, respectively, is defined as

GainND(A) = (3/4)r −m/2− (log T )/n.

The maximal gain amongst all probabilistic DC algorithms for r-encryption
which require 2mn memory, is denoted by GainND(r,m).

Note that it follows from Equation (4) that if A ∈ DC(r,m), then

GainND(A) = u(A)/2− s(A). (5)

30



Monotonicity of the gain The simplest extension of the basic DC algorithm
preserves the gain when additional “rounds” are added. While in the determinis-
tic case, such an extension can be obtained trivially by guessing several keys and
applying the previous algorithm, in our setting this approach leads to a decrease
of the gain by 1/2 for each two added rounds (as the complexity of the PCS
algorithm is increased by a factor of 23n/2 when r is increased by 2). However,
the gain can be preserved in another way, as shown in the following lemma.

Lemma 1. Assume that an algorithm A ∈ DC(r′,m) has gain `. Then there
exists an algorithm B ∈ DC(r′ + 2,m) whose gain is also equal to `.

Proof. Recall that the sets of intermediate locations fixed in the algorithm A are
denoted by Iupper(A) and I lower(A). We describe the algorithm B by fixing the

sets of intermediate values at locations: Iupper(B) = Iupper(A) ∪ {Xr′/2
1 }, and

similarly for I lower(B). Note that as the DC algorithms for r-encryption satisfy
u + |Iupper| = r/2, our choice of Iupper(B) and I lower(B) ensures that u(B) =
u(A). Hence, Equation (4) implies that in order to show that GainND(B) =
GainND(A), it is sufficient to show that s(B) = s(A). Let Step(A) be an al-
gorithm which allows us to compute the function F̃upper(A) : V upper(A) 7→
(X

r′/2
u+1 , . . . , X

r′/2
r′/2 ) in time 2sn (where u = u(A) and s = s(A)), given the

plaintext-ciphertext pairs (P1, X
r′/2
1 ), . . . , (Pu, X

r′/2
u ) and the intermediate val-

ues at locations Iupper(A). We have to find an algorithm Step(B) which com-

putes the function F̃upper(B) : V upper(B) 7→ (X
(r′+2)/2
u+1 , . . . , X

(r′+2)/2
(r′+2)/2 ) in time

2sn given the plaintext-ciphertext pairs (P1, X
(r′+2)/2
1 ), . . . , (Pu, X

(r′+2)/2
u ) and

the intermediate values at locations Iupper(B). We define the algorithm Step(B)
as follows:

1. Use the values X
r′/2
1 and X

(r′+2)/2
1 to compute a unique value of the key

k(r′+2)/2 which complies with them.

2. Use the value of k(r′+2)/2 to partially decrypt the vector (X
(r′+2)/2
1 , . . . ,

X
(r′+2)/2
u ) through E(r′+2)/2 to obtain the vector (X

r′/2
1 , . . . , X

r′/2
u ).

3. Use the algorithm Step(A) to deduce the vector (X
r′/2
u+1 , . . . , X

r′/2
r′/2 ) from the

plaintext-ciphertext pairs (P1, X
r′/2
1 ), . . . , (Pu, X

r′/2
u ) and the intermediate

values at locations Iupper(A).

4. Partially encrypt the vector (P1, X
r′/2
1 ), . . . , (Pu, X

r′/2
u ) through E(r′+2)/2 to

obtain the desired vector F̃upper(B)(V upper(B)) = (X
(r′+2)/2
u+1 , . . . , X

(r′+2)/2
(r′+2)/2 ).

It is clear that Step 1 of the algorithm requires at most 2n operations, Steps 2
and 4 require at most r operations each, and Step 3 requires 2sn operations.
Hence, if s ≥ 1 (which is the case for all DC algorithms), the time complexity
of Step(B) is indeed equal to that of Step(A). The same argument applies also
to the function F̃lower. Finally, it is clear that the memory requirement of B is
equal to the memory requirement of A, which completes the proof. �

31



Lemma 1 implies that the gain of the DC algorithms is monotone non-
decreasing with r, and in particular, that GainND(r, 1) ≥ 1/2, for any even
r ≥ 8.

An analogue of the LogLayer algorithm The next natural extension of
the basic DC algorithm is an analogue of the LogLayer algorithm presented in
Section 3.3. Recall that the LogLayerr algorithm, applicable when r is a power
of 2, consists of guessing the set of intermediate values:

I0 = {X2
1 , X

4
1 , . . . , X

r−2
1 , X4

2 , X
8
2 , . . . , X

r−4
2 , X8

3 , . . . , X
r−8
3 , . . . , X

r/2
log r−1},

and applying a recursive sequence of MITM attacks on 2-encryption. Using
this algorithm, we can define the algorithm LLr ∈ DC(2r, 1), by specifying
Iupper(LLr) = I0, and I lower(LLr) in a similar way. Since |I0| = r − log r − 1,
we have u(LLr) = r − (r − log r − 1) = log r + 1. It follows from the struc-
ture of the LogLayerr algorithm that given the values in I0, it can compute the
keys (k1, . . . , kr) in time and memory of 2n. Hence, we have s(LLr) = 1. By
Equation (5), it follows that Gain(LLr) = (log r + 1)/2− 1 = (log r − 1)/2.

The basic algorithm for 8-encryption is the special case of this algorithm
LL4. The next two values of r also yield interesting algorithms: LL8 yields gain
of 1 for (r = 16,m = 1), which amounts to an attack on 16-encryption with
(T = 210.5n,M = 2n), and LL16 yields gain of 1.5 for (r = 32,m = 1), which
amounts to an attack on 32-encryption with (T = 222n,M = 2n). Both attacks
outperform the Dissect attacks and are the best known attacks on 16-encryption
and on 32-encryption, respectively.

An analogue of the Squarer algorithm: The logarithmic asymptotic gain
of the LL sequence can be significantly outperformed by an analogue of the
Squarer algorithm, presented in Section 3.3. Recall that the Squarer algorithm,
applicable when r = (r′)2 is a perfect square, starts by guessing the set of (r′−1)2

intermediate encryption values:

I1 = {Xr′
1 ,X

r′
2 , . . . , X

r′
r′−1, X

2r′
1 , X2r′

2 , . . . , X2r′
r′−1, . . . ,

X
r′(r′−1)
1 , X

r′(r′−1)
2 , . . . , X

r′(r′−1)
r′−1 },

and then performs a two-layer attack, which amounts to r′ + 1 separate at-
tacks on r′-encryption. Using this algorithm, we can define the algorithm Sqr ∈
DC(2r, 1), by specifying Iupper(Sqr) = I1, and I lower(Sqr) in a similar way.
Since |I1| = (r′ − 1)2, we have u(Sqr) = r − (r′ − 1)2 = 2r′ − 1. The step
complexity s(Sqr) is the time complexity required for attacking r′-encryption
without fixed intermediate values. Hence, by Equation (5),

Gain(Sqr) = r′ − 1/2− f1(r′),

where 2f1(r)n is the time complexity of our best attack on r-encryption with 2n

memory.

32



The basic algorithm for 8-encryption is the special case Sq2 of this algorithm.
Since for small values of r′, the best known attacks on r′-encryption are obtained
by the dissection attacks presented in Section 3.4, the next elements of the
sequence Sqr which increase the gain, correspond to the next elements of the
sequence Magic1 = {1, 2, 4, 7, 11, 16, . . .} described in Section 3.4. They lead to
gains of 1.5, 2.5, and 3.5 for r = 32, 98, and 242, respectively. For large values
of r, the PCS algorithm outperforms the Dissect algorithms, and using it we
obtain:

Gain(Sqr) ≥ r′ − 1/2− ((3/4)r′ − 1/2) = r′/4 =
√

2r/8.

This shows that the asymptotic gain of the DC algorithms is at least
√

2r/8.
We note that as for r′ ≥ 16, the DC algorithm outperforms both the Dissect

and the PCS algorithms, we can use it instead of PCS in the attacks on r′-
encryption in order to increase the gain for large values of r. However, as the
gain of DC over PCS for r′-encryption is only of order O(

√
r′) = O(r1/4), the

addition to the overall gain of Sqr is negligible.

Two-layer DC algorithms A natural extension of the Sqr algorithm is the
class of two-layer DC algorithms. Assume that r = 2r1 · r2, and that there exist
algorithms A1, A2 for r1-encryption and for r2-encryption, respectively, both of
which perform in time 2sn and memory 2n given sets of intermediate values
Iupper1 and Iupper2 , respectively.

Then we can define an algorithm A ∈ DC(r, 1) whose step function is com-
puted by a two-layer algorithm: First, E[1...r/2] is divided into r2 subciphers of
r1 rounds each, and algorithm A1 is used to attack each of them separately and
compute 2n possible suggestions for each set of r1 consecutive keys. Then, each
r1-round encryption is considered as a single encryption with 2n possible keys,
and algorithm A2 is used to attack the resulting r2-encryption. The set Iupper(A)
is chosen such that both A1 and A2 algorithms perform in time 2sn. Formally,
if we denote u1 = |Iupper1 |, then the set Iupper(A) consists of r2 “copies” of the
set Iupper1 , r1− 1− u1 intermediate values after each r1 rounds, and one copy of
the set Iupper2 . The set I lower(A) is defined similarly. Hence,

u(A) = r/2− |Iupper(A)| = r/2− (r2 · u1 + (r2 − 1)(r1 − 1− u1) + u2)

= r2 + r1 − u1 − u2 − 1.

As s(A) = s, we have GainND(A) = (r2 + r1 − u1 − u2 − 1)/2− s.
Note that the algorithm Sqr is actually a two-layer DC algorithm, with

r1 = r2 = r′ and Iupper1 = Iupper2 = ∅. It turns out that for all 8 ≤ r ≤ 128,
our maximal gains are obtained by two-layer DC algorithms where r1, r2 are
chosen from the sequence Magic1 presented in Section 3.4, and A1, A2 are the
respective Dissect algorithms. The cases of r = 8, 16, 32 presented above are
obtained with r1 = 4 and r2 = 1, 2, 4 (respectively), and the next numbers of
rounds in which the gain increases are r = 56, 88, 128, obtained for r1 = 4 and
r2 = 7, 11, 16, respectively. The continuation of the “non-deterministic magic

33



sequence” is, however, more complicated. For example, the two-layer algorithm
for r = 176 with (r1 = 4, r2 = 22) has the same gain as the algorithm with
(r1 = 4, r2 = 16), and the next increase of the gain occurs only for r = 224, and
is obtained by a two-layer algorithm with (r1 = 7, r2 = 16). For larger values of r,
more complex algorithms, such as a three-layer algorithm with r1 = r2 = r3 = 7
for 686-encryption, outperform the two-layer algorithms. We leave the analysis
of the whole magic sequence as an open problem, and conclude that using the
two-layer algorithms, the minimal numbers of rounds for which the gain equals
0.5, 1, 1.5, 2, . . . are:

MagicND
1 = {8, 16, 32, 56, 88, 128, . . .}.

Finally, we note that a similar analysis to that presented in Section 3.6 shows
that two-layer DC algorithms can be applied also for m > 1, and can be used to
show that the first numbers of rounds for which GainND(r,m) = 0.5, 1, 1.5, 2, . . .
are:

MagicND
m = {8m, 8m+ 8,8m+ 16, . . . , 16m, 16m+ 16, 16m+ 32, . . . ,

32m, 32m+ 24, 32m+ 48, . . . , 56m, . . .}.

We give in Table 2 a comparison between the time complexities of the Dissect,
PCS, and DC algorithms. We also give in Figure 9 a comparison of the gains
obtained by all the algorithms presented given 2n memory.

5 Applications

In this section, we apply our new dissection algorithms to the knapsack problem
in Section 5.1, and show how dissection can be used to reduce the memory
complexity of rebound attacks on hash functions in Section 5.2.

The application to knapsacks consists of two stages: first, we find a way to
represent the problem as a bicomposite problem, and then we choose the best
appropriate dissection algorithm to solve it. In the case of the knapsack problem
the bicomposite representation is simple, and moreover we have the freedom to
choose the value of r, in order to optimize the complexities. By using different
choices of r and m, we obtain a complete tradeoff curve between the time and
memory complexities, which is better than the best previously known curve for
all 2n/100 ≤ M ≤ 2n/6. We note that the analyses of our algorithms assume
a uniform distribution of solutions. In the case of knapsacks, our deterministic
algorithms can be adapted (with only a small memory overhead) to deal with
cases where the distribution of solutions is far from uniform, as shown in the
follow-up paper [1].

34



r m = 1 m = 2 m = 3

Dissect PCS DC Dissect PCS DC Dissect PCS DC

2 1 1 1 1 – – 1 – –
4 2 2.5 2.5 2 2 2 2 – –
6 4 4 4 3 3.5 3.5 3 3 3
8 5 5.5 5 4 5 5 4 4.5 4.5
10 7 7 6.5 6 6.5 6.5 5 6 6
12 8 8.5 8 7 8 8 6 7.5 7.5
14 10 10 9.5 8 9.5 9.5 8 9 9
16 11 11.5 10.5 10 11 10.5 9 10.5 10.5
18 13 13 12 11 12.5 12 10 12 12
20 15 14.5 13.5 13 14 13.5 12 13.5 13.5
22 16 16 15 14 15.5 15 13 15 15
24 18 17.5 16.5 16 17 16 15 16.5 16
26 20 19 18 18 18.5 17.5 16 18 17.5
28 22 20.5 19.5 20 20 19 18 19.5 19
30 23 22 21 21 21.5 20.5 19 21 20.5
32 25 23.5 22 22 23 21.5 21 22.5 21.5
34 27 25 23.5 24 24.5 23 22 24 23
36 29 26.5 25 26 26 24.5 24 25.5 24.5
38 30 28 26.5 27 27.5 26 25 27 26
40 32 29.5 28 29 29 27.5 27 28.5 27

Table 2: Comparison of the Time Complexities of Dissect, PCS, and Dissect& Collide

5.1 Application to Knapsacks

The knapsack problem is defined as follows: given a list of n positive integers
x1, x2, . . . , xn of n bits and an additional n-bit positive integer S, find a vector

ε = (ε1, ε2, . . . , εn) ∈ {0, 1}n, such that S =
n∑

i=1

εi · xi (mod 2n).15

Knapsack is a well-known problem that has been studied for many years. For
more than 30 years, the best known algorithm for knapsacks was the Schroeppel-
Shamir algorithm [30], which requires 2n/2 time and 2n/4 memory. In 2010,
Howgrave-Graham and Joux [16] showed how to solve the knapsack problem in
time 20.337n and memory 20.256n, using a specialized algorithm (which does not
apply if the addition is replaced by a non-commutative operation, such as the
rotations in the Rubik’s cube problem). The specialized algorithm of [16] was
further improved by Becker, Coron and Joux [4] into an algorithm with time and
memory complexities of 20.291n. In addition, Becker et al. presented a specialized
memoryless attack which requires only 20.72n time. All these attacks are heuris-
tic in the sense that they may fail to find a solution even when it exists, and thus
they cannot be used in order to prove the nonexistence of solutions. In addition

15 We work with modular knapsacks which are in general computationally equivalent
to arbitrary knapsacks [4, 16].

35



0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

r

Gain

Meet in the Middle

LogLayer

Square

Dissect

PCS

Dissect & Collide

b

b

b

b

b

b

b

r

r

r

r

r

r

r

r

r

×

×

×

×

×

×

×

×

×

×

×

×

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

lD
lD

lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD
lD

lD

Fig. 9: Comparison of the gain of all algorithms for M = 2n

to these heuristic algorithms, Becker, Coron and Joux [4] also considered de-
terministic algorithms that never err, and obtained a straight-line time-memory
tradeoff curve of TM = 23n/4, for all 2n/16 ≤M ≤ 2n/4.

It is worth noting that a pseudo-polynomial algorithm for the knapsack prob-
lem is suggested in [24] which uses polynomial storage. However, this algorithm’s
running time is about 2n in the cryptographic settings (in which S is roughly
2n).

In this section, we show how to use our generic dissection techniques in
order to find deterministic algorithms for the knapsack problem which are better
than the deterministic tradeoff curve described in [4] over the whole range of
2n/16 < M < 2n/4. In addition, we can expand our tradeoff curve in a continuous
way for any smaller value of M ≤ 2n/4. By combining our generic deterministic
and non-deterministic algorithms, we obtain a new curve which is better than the
best knapsack-specific algorithms described in [16] and [4] in the interval 2n/100 <
M < 2n/6. Note that the algorithms of [4, 16] outperform our algorithms for
M > 2n/6 and in the memoryless setting.

36



We note that all the results presented in this section can easily be adapted to
the closely-related partition problem, in which we are given a set of n integers,
U = {x1, x2, . . . , xn}, and our goal is to partition U into two complementary
subsets U1, U2 whose elements sum up to the same value.

Representing Knapsack as a Bicomposite Problem First, we represent
knapsack as a composite problem. We treat the problem of choosing the vector
ε = (ε1, . . . , εn) as a sequence of n atomic decisions, where the i’th decision is
whether to assign εi = 0 or εi = 1. We introduce a counter C which is initially
set to zero, and then at the i’th step, if the choice is εi = 1 then C is replaced
by C + xi(mod2n), and if the choice is εi = 0, then C is left unchanged. Note
that the value of C after the n’th step is

∑
i = εixi(mod2n), and hence, the

sequence of choices leads to the desired solution if and only if the final value of
C is S.

In this representation, the partition problem has all the elements of a com-
posite problem: an initial state (Cinitial = 0), a final state (Cfinal = S), and a
sequence of n steps, such that in each step, we have to choose one of two possible
atomic and invertible actions. Our goal is to find a sequence of choices which
leads from the initial state to the final state. In terms of the execution matrix,
we define Si to be the value of C after the i’th step (which is an n-bit binary
number), and ai to be the action transforming Si−1 to Si, whose possible values
are either C ← C + xi(mod2n) or C ← C.

The second step is to represent the problem as a bicomposite problem. The
main observation we use here is the fact that for any two integers a, b, the m’th
least significant bit of a+ b( mod 2n) depends only on the m least significant bits
of a and b (and not on their other bits). Hence, if we know the m LSBs of Si−1
and the action ai, we can compute the m LSBs of Si.

Using this observation, we define Si,j to be the j’th most significant bit of Si.
This leads to an n-by-n execution matrix Si,j for i, j ∈ 1, 2, . . . , n with the prop-
erty that if we choose any rectangle within the execution matrix which includes
the rightmost column of the matrix, knowledge of the substates Si−1,j , Si−1,j+1, . . . ,
Si−1,n along its top edge and knowledge of the actions ai, ai+1, . . . , a` to its left
suffices in order to compute the substates S`,j , S`,j+1, . . . , S`,n along its bottom
edge.

In order to handle general rectangles, we ensure that all enumerations of
intermediate states in the algorithm are done from right to left, i.e., in each state,
the LSB is guessed first, then the second least significant bit is guessed, etc. As a
result, when we deal with the processing of the state Si−1,j to S`,j via the actions
ai, ai+1, . . . , a`, we already know the states Si−1,k for all k > j, and hence, we can
keep track of the carry bits into the j-th bit in the addition operations. Thus, our
representation effectively satisfies the conditions of a bicomposite representation.

So far, we have represented knapsack as a bicomposite problem with an n-by-
n execution matrix. In order to make the representation similar to the multiple
encryption problem considered in Sections 3 and 4, we note that for any r � n,
the problem has a bicomposite representation with an r-by-r execution matrix.

37



Indeed, in the representation as a composite problem above, we can group
sequences of n/r consecutive decisions,16 such that we have r atomic decisions,
where in the i-th atomic decision we choose (ε(i−1)n/r+1, ε(i−1)n/r+2, . . . , εin/r) ∈
{0, 1}n/r, and the operation is

C ← C +

in/r∑
j=(i−1)n/r+1

εjxj (mod 2n).

Similarly, in the bicomposite representation, we define Si,j as an n/r-bit value
which consists of bits (j − 1)n/r + 1, (j − 1)n/r + 2, . . . , jn/r of Si, where the
counting order starts with the MSB indexed by 1.

In the knapsack problem we have the freedom to choose r such that the time
complexity of the algorithm will be minimized, for a given amount of memory.

Formally, for any r � n, we apply one of the algorithms for multiple encryp-
tion described in Sections 3 and 4 to an r-encryption scheme with a block size
of n∗ = n/r bits and a memory parameter of m∗. As the memory complexity of
the resulting algorithm is 2m

∗n∗ = 2m
∗n/r, it follows that if we want the memory

complexity to be 2mn, we should consider m∗ = rm.
We denote by f(r, n∗,m∗) the running time of our optimal dissection algo-

rithm (among the algorithms presented in this paper) for r-encryption with a
block size of n∗ bits and M∗ = 2m

∗n∗ available memory. In these notations, the
problem of finding the optimal dissection algorithm for n-bit knapsack is reduced
to finding r that minimizes f(r, n∗,m∗) = f(r, n/r,mr). We call such a value of
r an optimal value.

We note that the deterministic algorithms applied in [16] and [4] for 2n/16 ≤
M ≤ 2n/4 implicitly perform a reduction to multiple encryption with the fixed
parameters r = 4 and r = 16. In fact, these algorithms are closely related to
our Squarer algorithms described in Section 3.3. However, as we show below,
we can get a better tradeoff curve by using other choices of r.

Dissecting the Knapsack Problem - a Summary In this section, we use the
dissection algorithms presented in Sections 3 and 4 to obtain a new time-memory
tradeoff curve of algorithms for the knapsack problem. We aim at obtaining a
complete curve, which yields for any fixed memory complexity 2mn, the time
complexity 2tn of our optimal dissection algorithm.

We consider deterministic and general algorithms separately. In the deter-
ministic case, we show below that the curve is piece-wise linear, with “cut”
points at all values of the form m = 1/bj where bj is the j-th element of
the sequence Magic1 = {2, 4, 7, 11, 16, 22, 29, . . .} presented in Section 3. For
each such m = 1/bj , an optimal algorithm is obtained by choosing r = bj and
m∗ = rm = 1. The tradeoff in the deterministic case is presented in Figure 10.

In the non-deterministic case, the situation is similar, with the sequence
Magic1 replaced by the corresponding magic sequence presented in Section 4,

16 Since we are mostly interested in asymptotic analysis, and since r � n, we assume
for sake of simplicity that n is divisible by r.

38



i.e., MagicND
1 = {8, 16, 32, 56, 88, 128, . . .}. It turns out that non-deterministic

dissection algorithms outperform the deterministic ones for m < 9/104. A com-
parison between our general tradeoff curve and the previous results of [4, 16] for
small memory complexities is presented in Figure 11.17

m

t

0

1

22{29
16{22
11{16

7{11

4{7

1{2
1
4

1
7

1
11

1
16

1
22

1
29

b

b

b

b

b

b

m

t

0

3{4 t “ 72{100
39.5{56
22{32
10.5{16
5{8

1{2
1
4

1
8

1
11

1
16

1
32

1
56

b

b

b
b

b

b

b
b

p9{104, 67{104q

1

A comparison between our time-memory tradeoff curve and the curve obtained in [4]
(shown as a dashed line) for deterministic algorithms. Our curve (defined for m ≤ 1/4)
is strictly better than the curve obtained in [4] (defined only for 1/16 ≤ m ≤ 1/4) for
any 1/16 < m < 1/4.

Fig. 10: Time-Memory Tradeoff Curves for Knapsack for Deterministic Algorithms

Optimal Choice of r for Deterministic Dissection algorithms Recall that
given r and m, we apply a deterministic dissection algorithm with an effective

17 In Figure 11 we do not include the curve of TM = 23n/4 of [4] and the PCS curve
of [29], since the curve obtained using our algorithms is strictly better for the whole
range of 0 < m < 1/4.

39



m

t

0

1

22{29
16{22
11{16

7{11

4{7

1{2
1
4

1
7

1
11

1
16

1
22

1
29

b

b

b

b

b

b

m

t

0

3{4 t “ 72{100
39.5{56
22{32
10.5{16
5{8

1{2
1
4

1
8

1
11

1
16

1
32

1
56

b

b

b
b

b

b

b
b

p9{104, 67{104q

1

A comparison in the range 0 ≤ m ≤ 1/4 between our general time-memory tradeoff
curve, the curve obtained by extending the (m = 0.211, t = 0.421) attack given in
[16] (shown as a bold dashed line), and the memoryless attack with t = 0.72 obtained
in [4] (shown as a light dashed horizontal line). Our general time-memory tradeoff
curve is better than the attacks of [4] and [16] in the interval of (approximately)
1/100 ≤ m < 1/6.

Fig. 11: Time-Memory Tradeoff Curves for Knapsack for General Algorithms

block size of n∗ = n/r and an effective memory unit of m∗ = mr. We would
like to find, for a fixed m, the value of r that minimizes the running time of our
algorithm 2tn = f(r, n∗,m∗) = f(r, n/r,mr).

First, we note that for any natural number z, it is easy to reduce our dissection
algorithm with parameters (z · r, n∗/z, z ·m∗), to an algorithm with parameters
(r, n∗,m∗) that runs with the same time complexity. As described in Section 3.4,
the reduction aggregates every sequence of z blocks into a single block, and every
sequence of z plaintext-ciphertext pairs into a single pair. The reduction implies
that for any integer value of z, f(z · r, n∗/z, z ·m∗) ≤ f(r, n∗,m∗). This, in turn,
implies that given n and m, in order to find an optimal value of r, it is sufficient
to consider all values of r which are multiples of some integer. In particular, it
is sufficient to consider only values of r for which m∗ = rm is an integer (i.e.,
multiples of the denominator of m, assuming w.l.o.g. that m is rational).

Second, we note that if for some m∗ and r, the number r appears in the
magic sequence Magicm∗ , then for any z ∈ N, we have f(z · r, n∗/z, z ·m∗) =
f(r, n∗,m∗).

Indeed, by the structure of the sequence Magicm∗ , any of its elements can
be written as r = bj−1m∗+ ji for some i, j with 0 ≤ i < r (where bj denotes the
j’th element of the sequence Magic1, starting with j = 0, as above). Hence, if
we consider r′ = zr for some z ∈ N and denote n′ = n∗/z and m′ = z ·m∗, we

40



have
r′ = zr = bj−1zm

∗ + jzi = bj−1m
′ + j(zi),

for 0 ≤ iz < r′, which means that r′ appears in the sequence Magicm′ . Then,
as shown in Section 3.6, the improvement factor of the r′-round algorithm over
exhaustive search is

2((j−1)m
′+zi)n′ = 2((j−1)zm

∗+zi)m∗/z = 2((j−1)m
∗+i)n∗ = 2((j−1)m+i/r)n,

which is indeed independent of z.
The arguments presented above imply that for m = 1/bj for some j, all

choices r = 1/m, 2/m, 3/m, . . . are equivalent, and thus, the optimal gain is
given by r = 1/m, m∗ = rm = 1. In this case, the time complexity is 2(r−j)n

∗
=

2n(1−jm).
We would like to show now that for any rational18 m which satisfies 1/bj <

m < 1/bj−1, the optimal time complexity parameter t is given by a linear ex-
trapolation of the complexities at m = 1/bj and m = 1/bj−1 (see Figure 10).
The proof consists of three simple propositions:

Proposition 1. Let m ∈ Q+. There exists r ∈ N such that rm ∈ N and r ∈
Magicrm.

Proof. Let m = p/q where p, q ∈ N, and let j ∈ N be such that bj−1 ≤ 1/m < bj
(or equivalently, bj−1 ≤ 1/m < bj−1 + j). We claim that r = qj satisfies the
condition of the proposition. First, rm = (qj) · (p/q) = pj ∈ N. Second, we have
r − bj−1mr = qj − bj−1pj = j(q − bj−1p). Note that the sequence Magicrm
contains elements of the form bj−1rm+ ji for all 0 ≤ i < rm. Hence, if we show

that 0 ≤ i , q − bj−1p < mr, this would imply r ∈Magicrm.
This indeed holds, since by assumption, bj−1 ≤ q/p < bj−1 + j, and thus,

bj−1p ≤ q < bj−1p+ jp, which implies 0 ≤ q − bj−1p < jp = mr, as asserted. �

Proposition 2. Let m ∈ Q+ and r ∈ N be such that rm ∈ N and r ∈Magicrm.
Let j ∈ N be such that bj−1 ≤ 1/m < bj, and let 0 ≤ s < 1 be such that
1/m = sbj−1 + (1− s)bj. Then

f(r, n/r,mr) = 2n(s(1−jm)+(1−s)(1−(j+1)m)).

In other words, the exponent t is a linear extrapolation of the exponents corre-
sponding to m = 1/bj−1 and m = 1/bj.

Proof. The claim follows immediately from the structure of the sequenceMagicrm.
Indeed, since bj−1 ≤ 1/m < bj and r ∈Magicrm, r is of the form r = bj−1rm+ij
for some 0 ≤ i < rm. For each such i, the gain is jrm+i. Since by the assumption,
1/m = sbj−1 + (1− s)bj , we have i = s/rm. Hence, the gain which corresponds
to f(r, n/r, rm) is

jrm+ (1− s)/rm = s · jrm+ (1− s) · (j + 1)rm.

18 There is clearly no loss of generality in assuming that m is rational as any number
can be approximated by rational numbers up to any precision.

41



The claim follows by substituting f(r, n/r,mr) = 2n
∗−rm−Gain(A) where A is

the corresponding dissection algorithm. �

Proposition 3. Let m ∈ Q+ and r ∈ N be such that rm ∈ N and r 6∈Magicrm.
Let j ∈ N be such that bj−1 ≤ 1/m < bj, and let 0 ≤ s < 1 be such that
1/m = sbj−1 + (1− s)bj. Then

f(r, n/r,mr) > 2n(s(1−jm)+(1−s)(1−(j+1)m)).

In other words, the exponent t is larger than in the linear extrapolation of the
exponents corresponding to m = 1/bj−1 and m = 1/bj.

Proof. This claim also follows immediately from the structure of the sequence
Magicrm. Indeed, since bj−1 ≤ 1/m < bj and r 6∈Magicrm, there exist 0 ≤ i <
rm and 1 ≤ ` < j such that r is of the form r = bj−1rm + ij + `. Since by the
assumption, 1/m = sbj−1 + (1 − s)bj , we can write i = s′/rm for some s′ > s.
By the structure of the sequence Magicrm, we have

Gain(A) = jrm+ (1− s′)/rm < s · jrm+ (1− s) · (j + 1)rm

(since the gain at r = bj−1rm+ i(s′/rm)+` is equal to the gain at r̃ = bj−1rm+
i(s′/rm)). The claim follows by substituting f(r, n/r,mr) = 2n

∗−rm−Gain(A). �
Combination of the three propositions above yields the complete tradeoff

described in Figure 10. Indeed:

– For each m such that bj−1 ≤ 1/m < bj , there exists r such that r ∈Magicrm
(by Proposition 1),

– The time complexity obtained for this r is optimal (by combination of Propo-
sitions 2 and 3), and

– The corresponding value of t is the linear extrapolation of the values at
m = 1/bj−1 and m = 1/bj (by Proposition 2).

Optimal Choice of r for Non-Deterministic Dissection Algorithms The
arguments presented above hold with only slight changes for non-deterministic
algorithms, with the Magic sequences replaced by the corresponding MagicND

sequences presented in Section 4. The resulting tradeoff curve is given, along with
the tradeoff curves corresponding to deterministic dissection algorithms and to
previous results, in Figure 11.

5.2 Using Dissection to Improve Rebound Attacks on Hash
Functions

Another application of our dissection technique can significantly reduce the mem-
ory complexity of rebound attacks [23, 26] on hash functions. An important pro-
cedure in such attacks is to match input/output differences through an S-box

42



Input: A list LA of input differences and a list LB of output differences

1: for all input differences δ ∈ LA restricted to the S-boxes of S1 do
2: for all 713 output differences which are possible in the S-boxes of S2 do
3: Store in the table the output differences along with the input difference in S1.
4: for all 713 output differences that may be caused by δ in the S-boxes of S1 do
5: if there is a difference δ′ ∈ LB which agrees with δ in S1 then
6: Check that the difference of δ′ in the S-boxes of S2 is in the table
7: if a match is found then
8: Analyze the differences in the S-boxes of S3 and S4

9: if δ and δ′ match then
10: return δ and δ′

Algorithm 10: The Dissect2(4, 1) Rebound Attack

layer (or a generalized S-box layer). More precisely, the adversary is given a
list LA of input differences and a list LB of output differences, and has to find
all the input/output difference pairs that can be combined through the S-box
layer. A series of matching algorithms were presented by Naya-Plasencia [28] at
CRYPTO 2011, optimizing and improving various rebound attacks.

Our dissection algorithms can be applied to this problem as well, replacing
the gradual matching or parallel matching presented in [28]. As an example, we
can improve the rebound attack on the SHA-3 candidate Luffa using a variant
of our Dissect2(4, 1) algorithm.

In this rebound attack, the adversary is given 267 possible input differences
(|LA| = 267) and 265.6 output differences (LB = 265.6) for 52 active 4-bit to 4-bit
S-boxes. The adversary has to find an input difference in LA that can become an
output difference in LB through the Luffa’s S-box. We note that for this S-box,
for any given input difference there are about 7 possible output differences (and
vice versa). We refer the reader to [28] for the description of the previously best
algorithm which takes time of 2104 and 2102 memory.

One can consider this problem to be a bicomposite problem and dissect it.
The resulting attack algorithm follows the Dissect2(4, 1) algorithm. We start
by (arbitrarily) dividing the 52 active S-boxes into four sets of 13 S-boxes each
S1, S2, S3, S4. We then go over all the possible input differences δ ∈ LA in the
S-boxes of S1, and for each such input difference, store all the possible output
differences in S2. We then go over all possible output differences δ′ ∈ LB in the
S-boxes of S1, and check for each of them whether the proposed difference in S2

is in the table. If so, we check whether the output difference in S1 is compatible
with the input difference associated with the output difference in S2 that was
stored in the table. Each such match is further analyzed to determine whether
the combination is feasible.

The resulting algorithm is depicted in Algorithm 10.

43



An analysis of this algorithm shows that its time complexity is 2104 oper-
ations, but its memory complexity is only 252. We note that the true memory
complexity of this attack is actually 266, as one needs to store at least one out of
LA or LB . Still, our results significantly improve those of [28]. These ideas were
later used in [7].

We note that this algorithm, besides improving other rebound attacks, can
also be used when the problem is composed of layers which are relations (rather
than functions or permutations) which allow multiple outputs for a single input.

6 Summary and Open Problems

In this paper we introduced the new dissection technique which can be applied to
a broad class of problems which have a bicomposite structure. We used this tech-
nique to obtain improved complexities for several well studied problems such as
the cryptanalysis of multiple-encryption schemes and the solution of hard knap-
sacks. The main open problem in this area is to either improve our techniques or
to prove their optimality. In particular, we conjecture (but cannot prove) that
any attack on multiple-encryption schemes should have a time complexity which
is at least the square root of the total number of possible keys. Another inter-
esting problem for further research is whether the dissection technique can be
combined with the list-merging algorithms presented in [28], in order to obtain
the benefits of both approaches simultaneously.

Acknowledgements

The authors like to thank the anonymous reviewers of this paper for their useful
comments and suggestions.

The first author was supported in part by the Israeli Science Foundation
through grant No. 573/16. The second author was supported in part by the Is-
raeli Science Foundation through grant No. 827/12 and by the Commission of
the European Communities through the Horizon 2020 program under project
number 645622 PQCRYPTO. The third author was supported by the Euro-
pean Research Council under the ERC starting grant agreement number 757731
(LightCrypt) and by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minister’s Office.

References

1. Austrin, P., Kaski, P., Koivisto, M., Määttä, J.: Space-Time Tradeoffs for Sub-
set Sum: An Improved Worst Case Algorithm. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M.Z., Peleg, D. (eds.) ICALP (1). Lecture Notes in Computer Sci-
ence, vol. 7965, pp. 45–56. Springer (2013)

2. Baek, C.H., Cheon, J.H., Hong, H.: White-box AES implementation revisited. Jour-
nal of Communications and Networks 18(3), 273–287 (2016)

44



3. Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved Key
Recovery Attacks on AES with Practical Data and Memory Complexities. In: Ac-
cepted to CRYPTO 2018, to appear in Lecture Notes in Computer Science (2018)

4. Becker, A., Coron, J.S., Joux, A.: Improved Generic Algorithms for Hard Knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT. Lecture Notes in Computer Science,
vol. 6632, pp. 364–385. Springer (2011)

5. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz [21], pp. 1–15

6. Biham, E.: Cryptanalysis of Triple Modes of Operation. J. Cryptology 12(3), 161–
184 (1999), https://doi.org/10.1007/s001459900050

7. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-Middle: Improved
MITM Attacks. In: Canetti, R., Garay, J.A. (eds.) Advances in Cryptology -
CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer Science, vol.
8042, pp. 222–240. Springer (2013)

8. Diffie, W., Hellman, M.E.: Special Feature Exhaustive Cryptanalysis of
the NBS Data Encryption Standard. IEEE Computer 10(6), 74–84 (1977),
https://doi.org/10.1109/C-M.1977.217750

9. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 7417, pp. 719–740. Springer (2012)

10. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Dissection: a new paradigm
for solving bicomposite search problems. Commun. ACM 57(10), 98–105 (2014),
http://doi.acm.org/10.1145/2661434

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New Attacks on Feistel Structures
with Improved Memory Complexities. In: Gennaro and Robshaw [14], pp. 433–454

12. Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full gost. In: Canteaut,
A. (ed.) FSE. Lecture Notes in Computer Science, vol. 7549, pp. 9–28. Springer
(2012)

13. Even, S., Goldreich, O.: On the Power of Cascade Ciphers. In: Chaum, D. (ed.)
Advances in Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California,
USA, August 21-24, 1983. pp. 43–50. Plenum Press, New York (1983)

14. Gennaro, R., Robshaw, M. (eds.): Advances in Cryptology - CRYPTO 2015 - 35th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 9215. Springer (2015)

15. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Transactions on In-
formation Theory 26(4), 401–406 (1980)

16. Howgrave-Graham, N., Joux, A.: New Generic Algorithms for Hard Knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT. Lecture Notes in Computer Science, vol. 6110, pp.
235–256. Springer (2010)

17. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In: Joux, A. (ed.)
Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby, Den-
mark, February 13-16, 2011, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6733, pp. 290–305. Springer (2011)

18. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M.K. (ed.) CRYPTO. Lecture Notes in Computer Science,
vol. 3152, pp. 306–316. Springer (2004)

19. Kirchner, P., Fouque, P.: Time-Memory Trade-Off for Lattice Enumeration in a
Ball. IACR Cryptology ePrint Archive 2016, 222 (2016)

45



20. Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms, 2nd Edition. Addison-Wesley (1981)

21. Koblitz, N. (ed.): Advances in Cryptology - CRYPTO ’96, 16th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 18-22,
1996, Proceedings, Lecture Notes in Computer Science, vol. 1109. Springer (1996)

22. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of Full Sprout. In: Gennaro and
Robshaw [14], pp. 663–682

23. Lamberger, M., Mendel, F., Schläffer, M., Rechberger, C., Rijmen, V.: The Re-
bound Attack and Subspace Distinguishers: Application to Whirlpool. J. Cryptol-
ogy 28(2), 257–296 (2015)

24. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Schulman, L.J.
(ed.) Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
2010, Cambridge, Massachusetts, USA, 5-8 June 2010. pp. 321–330. ACM (2010),
http://doi.acm.org/10.1145/1806689.1806735

25. Lucks, S.: Attacking Triple Encryption. In: Vaudenay, S. (ed.) FSE. Lecture Notes
in Computer Science, vol. 1372, pp. 239–253. Springer (1998)

26. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) Fast
Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 5665, pp. 260–276. Springer (2009)

27. Merkle, R.C., Hellman, M.E.: On the Security of Multiple Encryption. Commun.
ACM 24(7), 465–467 (1981)

28. Naya-Plasencia, M.: How to Improve Rebound Attacks. In: Rogaway, P. (ed.) Ad-
vances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011. Proceedings. Lecture Notes in Computer
Science, vol. 6841, pp. 188–205. Springer (2011)

29. van Oorschot, P.C., Wiener, M.J.: Improving implementable meet-in-the-middle
attacks by orders of magnitude. In: Koblitz [21], pp. 229–236

30. Schroeppel, R., Shamir, A.: A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-
Complete Problems. SIAM J. Comput. 10(3), 456–464 (1981)

31. Wang, J.R.: Space-Efficient Randomized Algorithms for K-SUM. In: Schulz, A.S.,
Wagner, D. (eds.) Algorithms - ESA 2014 - 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings. Lecture Notes in Computer
Science, vol. 8737, pp. 810–829. Springer (2014)

46


