
Physical Unclonable Functions in Cryptographic Protocols:
Security Proofs and Impossibility Results

Marten van Dijk Ulrich Rührmair

April 25, 2012

Abstract

We investigate the power of physical unclonable functions (PUFs) as a new primitive in cryptographic proto-
cols. Our contributions split into three parts. Firstly, we focus on the realizability of PUF-protocols in a special
type of stand-alone setting (the “stand-alone, good PUF setting”) under minimal assumptions. We provide new
PUF definitions that require only weak average security properties of thePUF, and prove that these definitions
suffice to realize secure PUF-based oblivious transfer (OT), bit commitment (BC) and key exchange (KE) in said
setting. Our protocols for OT, BC and KE are partly new, and have certainpracticality and security advantages
compared to existing schemes.

In the second part of the paper, we formally prove that there are verysharp limits on the usability of PUFs for
OT and KEbeyondthe above stand-alone, good PUF scenario. We introduce two new and realistic attack models,
the so-called posterior access model (PAM) and the bad PUF model, andprove several impossibility results in
these models. First, OT and KE protocols whose security is solely based onPUFs are generally impossible in the
PAM. More precisely, one-time access of an adversary to the PUF afterthe end of a single protocol (sub-)session
makes all previous (sub-)sessions provably insecure. Second, OTwhose security is solely based on PUFs is
impossible in the bad PUF model, even if only a stand alone execution of the protocol is considered (i.e., even if
no adversarial PUF access after the protocol is allowed). Our impossibility proofs do not only hold for the weak
PUF definition of the first part of the paper, but even apply if ideal randomness and unpredictability is assumed
in the PUF, i.e., if the PUF is modeled as a random permutation oracle.

In the third part, we investigate the feasibility of PUF-based bit commitment beyond the stand-alone, good
PUF setting. For a number of reasons, this case is more complicated than OT and KE. We first prove that BC is
impossible in the bad PUF model if players have got access to the PUF between the commit and the reveal phase.
Again, this result holds even if the PUF is “ideal” and modeled as a random permutation oracle. Secondly, we
sketch (without proof) two new BC-protocols, which can deal with bad PUFsor with adversarial access between
the commit and reveal phase, but not with both.

We hope that our results can contribute to a clarification of the usability of PUFs in cryptographic protocols.
They show that new hardware properties such as offline certifiability andthe erasure of PUF responses would be
required in order to make PUFs a broadly applicable cryptographic tool. These features have not yet been realized
in practical PUF-implementations and generally seem hard to achieve at lowcosts. Our findings also show that
the question how PUFs can be modeled comprehensively in a UC-setting must be considered at least partly open.

1 Introduction

Since the time of Kerckhoff’s principle [1], most cryptographic schemes have been built on the concept of a secret
key. This forces modern security hardware to contain a pieceof digital information that is, and must remain,
unknown to the adversary. It is long known that this requirement can be difficult to uphold in practice. Physical
attacks like invasive, semi-invasive or side-channel attacks, as well as software attacks like malware, can lead to
key exposure and full security breaks. As Ron Rivest emphasized in his keynote talk at CRYPTO 2011 [36],
merely calling a bit string a “secret key” does not make it secret, but rather identifies it as an interesting target for
the adversary.

Indeed, one of the initial motivations in the development ofPhysical Unclonable Functions (PUFs)was their
promise to better protect secret digital keys in vulnerablehardware. A PUF is an (at least partly) disordered
physical systemP that can be excited with external stimuli or so-called challengesc. It reacts with corresponding
responsesr, which depend on the challenge and on the micro- or nanoscalestructural disorder that is present in

1

the PUF. It is assumed that this disorder cannot be cloned or reproduced exactly, not even by the PUF’s original
manufacturer, and that it is unique to each PUF. Each PUFP thus implements a unique and individual functiong
that maps challengesc from an admissible challenge set to responsesr = g(c). The tuples(c, r) are usually called
the challenge-response pairs (CRPs) of the PUF. Due to its complex internal structure, a PUF can avoid some
of the shortcomings of classical digital keys. It is usuallyharder to read out, predict, or derive PUF-responses
than to obtain digital keys that are stored in non-volatile memory. The PUF-responses are only generated when
needed, which means that no secret keys are present permanently in an easily accessible digital form. These
facts have been exploited in the past for different securityprotocols. Prominent examples include schemes for
identification [33, 17] or various forms of (tamper sensitive) key storage and applications thereof, for example
intellectual property protection or read-proof memory [21, 26, 48].

In recent years, however, the use of PUFs in more advanced cryptographic protocols has been investigated. Not
their application as a key storage mechanism is in the focus of these approaches, but their usability as a novel, and
possibly very powerful, cryptographic primitive. The use of the PUF in these protocols is similar to a “physical
random oracle”. It is physically transferred between the parties, and can be queried for responsesonly by the very
party who currently holds physical possession of it. Its challenge-response behavior is so complex that its response
to a randomly chosen challenge cannot be predicted purely numerically and without physical measurement of the
PUF, not even by a person who held the PUF at earlier points in time. In 2010, Rührmair [38] showed that oblivious
transfer (OT) can be realized by physically transferring a PUF between two parties in this setting. In the same year,
the first formal security proof for a PUF-protocol was provided by Rührmair, Busch and Katzenbeisser [39]. At
CRYPTO 2011, Brzuska et al. [7] presented a way to adapt Canetti’s universal composition (UC) framework [9]
to include PUFs, an approach that was followed up in 2012 by very recent work of Ostrovsky et al. [31].

In this paper, we continue this line of research, and try to clarify the power of PUFs in cryptographic protocols.
We approach the problem from two opposite ends: At the one endof the spectrum, we prove the security of
several PUF protocols in a stand-alone scenario under a veryweak PUF definition, and under the assumption that
all parties faithfully generate and use non-manipulated PUFs. This ideal scenario is called the stand-alone, good
PUF model. At the other end of the spectrum, we introduce two new and very realistic attack models: The first
is the so-calledposterior access model (PAM), in which it is assumed that the adversary has got physical access
to the PUF at least once after at least one protocol session orsubsession (if there are any subsessions). Among
other situations, the PAM applies in practice whenever the same PUF is used multiple sequential protocol sessions
or subsessions. The second new model is thebad PUF model, which allows malicious players to fabricate and
use malicious hardware that looks like a PUF from the outside, exhibiting the same CRP behavior etc., but which
possesses hidden extra properties that enable fraud. We show that in these two models, several PUF-protocols are
provably impossible. This includes PUF-based OT and KE in the PAM, and OT in a stand alone, bad PUF model.
Our impossibility results even apply if we assume a very strong randomness and unpredictability of the PUF, i.e.,
if the PUF is modeled as a random permutation oracle. Finally, we consider the case of PUF-based BC, providing
one impossibility result and two new constructions (without proof) that can withstand adversarial access between
the commit and the reveal phase or the use of bad PUFs, but not both.

Related Work. Our paper relates to existing literature as follows. Rührmair [38] was the first to give (without
proof) an oblivious transfer protocol for PUFs, but his protocol is more complicated than ours, and is based on
an interactive hashing step with a linear number of rounds. Our modified OT-scheme is still based on interactive
hashing, but has constant rounds.

Rührmair, Busch and Katzenbeisser [39] were the first to provide PUF-definitions together with formal security
proofs, but only considered schemes for identification. They do not treat more advanced protocols like OT and BC
or consider more sophisticated attacks like bad PUFs. Furthermore, their PUF-definition involves a relatively large
number of parameters.

Rührmair, Jaeger and Algasinger [41] provided an attack on asession key exchange protocol by Tuyls and
Skoric [47], in which they implicitly assume access to the PUF after a protocol execution. Their attack motivated
our posterior access model (see Section 2). One difference to our work is that they do not lead general impossibility
proofs, but focus on attacking one specific protocol.

Brzuska, Fischlin, Schröder and Katzenbeisser presented at Crypto 2011 one (of several possible) ways to
adapt Canetti’s UC framework to PUFs [7, 8]. They give PUF-schemes for OT, BC and KE, and prove them
secure in their setting. Their work differs from our work in anumber of aspects: First, quadratic attacks exist on
their OT- and BC-protocols, whence they cannot be used safely in practice with optical PUFs or with PUFs of

2

OT KE BC

Stand-Alone
X Prot 4 X Prot 9 X Prot 8

Good PUF
Stand-Alone × Thm 22 X Prot 9 X© Prot 24

Bad PUF

Posterior Access × Thm 18 × Thm 19 X Prot 8
Good PUF

Posterior Access × Thm 18 × Thm 19 X© Prot 24
Bad PUF

Access Before Reveal Phase
— — X© Prot 25

Good PUF
Access Before Reveal Phase

— — × Thm 23
Bad PUF

Table 1: A taxonomy of protocols whose security is solely based on PUFs in various scenarios (see Section 2 for
detailed definitions). A checkmark indicates that we provide a protocol together with a formal security argument.
A cross means we lead a formal impossibility proof. A circledcheckmark says that we give a protocol without
a formal security argument, possibly making additional security assumptions. A hyphen shows that the listed
scenario does not apply to the respective protocol. All impossibility results in the bad PUF models hold already
if the malicious parties use no other than simulatable and challenge-logging PUFs (Section 2.4). Pointers to the
respective theorems and protocols are provided, too.

challenge lengths 64 bits, not even in the stand-alone, goodPUF setting (see [40] and Appendix B). Second, their
PUF-based BC-protocol is a generic reduction to OT, while our BC-protocol is the first direct PUF-construction.
Finally, and perhaps most importantly, their adaption of the UC-framework to PUFs does not deal with the cases
that adversaries have repeated access to the same PUF in multiple protocol (sub-)sessions, or that players actively
use manipulated, malicious PUFs. We introduce these two newand realistic attack models in this manuscript, and
show that several protocols provably cannot solely be basedon PUFs under these attacks.

Just recently, Ostrovsky, Scafuro, Visconti and Wadia re-considered PUFs in the UC framework, and presented
new protocols and security proofs in an ePrint paper [31]. They introduce a new class of PUFs termed malicious
PUFs that is related, but not equal to our bad PUF model. However, they do not give formal impossibility proofs
for PUF protocols, and do not consider specific bad PUFs (suchas the simulatable bad PUFs or challenge-logging
bad PUFs introduced in Section 2). Another difference to ourwork is that they do not focus on protocols that are
solely based on PUFs, but combine PUFs with classical computational assumptions. Contrarily, all protocols that
we provide are based on PUFs only, and the impossibility proofs which we lead refer to protocols that are solely
based on PUFs. We will further comment on the exact relationship between the work of Ostrovsky et al. and our
efforts in future versions of this paper.

Organization of this Paper. Section 2 describes different communication models and attack scenarios. Section
3 gives protocols for OT, BC and KE, and security proofs in thestand-alone, good PUF setting. Section 4 lays
the mathematical foundations for our impossibility results, which are proven in Section 5. Section 6 deals with
PUF-based bit commitment protocols. Section 7 summarizes our work.

2 Communication Models and Attack Scenarios for PUF-Protocols

Let us overview and motivate the four communication models and attack scenarios that are relevant for this paper.

2.1 The Stand-Alone, Good PUF Model

The stand-alone, good PUF model is the vanilla model among the considered scenarios. We assume that there is
only one single, isolated execution of a PUF-protocol (or (sub-)session, if there are any (sub-)sessions). The PUF

3

cannot be accessed any more or communicated with after the end of the protocol (or (sub-)session).1

The parties and also any external adversaries may only use faithfully generated, non-manipulated, “good”
PUFs. They are not allowed to change or manipulate existing PUF hardware when they have access to it. Apart
from these restrictions, all parties may be actively malicious, and can deviate from the protocol arbitrarily (includ-
ing the exchange of one good PUF against another good PUF).

The stand-alone, good PUF model will not be realistic in manypractical applications, but makes a clean first
setting for studying the security of PUF-protocols.

2.2 The UC-Model of Brzuska et al.

Brzuska et al. [7, 8] proposed one possible method how Canetti’s UC-framework can be adapted to PUFs. For a
detailed treatment we refer the readers to the original papers [7, 8], but summarize the features of their model that
are most relevant for us in the sequel:

1. It is assumed that all used PUFs are drawn faithfully from apreviously specified PUF-family. Not only
external adversaries, but also the players themselves are not allowed to use malicious hardware instead of a
PUF, physically manipulate a PUF, or add malicious hardwareto an existing PUF.

2. Only one PUF can be used per protocol sessionsid. The PUF is bound to this protocol session and cannot
be used in another session.

3. The adversary does not have physical access to the PUF between the different subsessionsssid of a protocol.

For completeness we indicate where the above features are specified in [8]: Features 1 and 2 directly follow
from the specification of the ideal PUF-functionalityFPUF, in particular the first and third dotted item of Fig. 2 of
[8]. Regarding feature 2, the functionalityinitPUF specifies thatFPUF turns into the waiting state if the sessionsid
already contains a PUF. And the functionalityhandoverPUF specifies thatsid remains unchanged in the handover,
i.e., the PUF remains in the same sessionsid after the handover process. Feature 3 follows from the treatment of
the subsessionsssid throughout their paper. Examples include Figs. 3 to 8, the protocols given in Figs. 3 and 7,
or the proof of Theorem 7.1, where the adversary is only allowed to access the PUF in the set-up phase, but not
during or between the different subsessions.

Please note that the above features are not rudimentary aspects of the model of [7, 8], but that they are central
to the security of their protocols and the validity of their security proofs.

2.3 The Posterior Access Model

The UC model of Brzuska et al. and their protocols assume thatthe adversary cannot access the PUF between
different (sub-)sessions of the protocol. However, this requirement cannot be guaranteed in many natural PUF-
applications. To see this, consider a well-established application scenario of PUFs: Their use on a smart-card (or
bank card) that has been issued by a central authorityCA, and which is subsequently used in different terminals
by a user [33, 32]. To be more concrete, let us assume that the PUF is repeatedly employed in different terminals
for a session key exchange between theCA on the one hand, and the smart-card/terminals on the other hand.
Since an adversary could set up fake terminals, add fake readers to the card slots of terminals, or gain temporary
possession of the bank card when the user employs it in different contexts (for example when he is paying with
it), a straightforward and very realistic assumption is that an adversary will have temporary physical access to the
PUF between the different key exchange (sub-)sessions.

This natural scenario — and the multiple adversarial accessinherent to it — is hard to express in the framework
of Brzuska et al. The reason is twofold (see Section 2.2): First, their model does not allow the same PUF to be
used in different sessions. Second, while the same PUF couldwell be used in different subsessions, the adversary
has no PUF-access between these different subsessions, forexample in the OT or KE protocol of [7, 8].

This motivates the introduction and investigation of new and more realistic attack models. One straightforward
possibility would be to assume that the adversary has accessto the PUF betweeneachsession or subsession.
However, for our upcoming impossibility results even a weaker and more general assumption suffices. We will
show in Section 5 that whenever the adversary gains access toa PUF only once after the end of a (sub-)session, all

1One (costly) possibility to realize this in pratice would beto physically destroy the PUF directly at the end of the protocol (or (sub-)session).

4

previous (sub-)sessions that have been carried out by usingthis PUF become insecure. This leads to the following
model:

The Posterior Access Model (PAM). In the PAM, we assume that the adversary and malicious players can
access the PUF at least one time after at least one completed protocol session or subsession (if there are any
subsessions).

Security of Existing PUF-Protocols in the PAM. We observe that many existing PUF-protocols are naturally
no longer secure in the PAM. This applies to the OT-protocol of Rührmair [38] and to the OT and KE protocol of
Brzuska et al. [7]. Since this is not of central importance tothis paper, we provide an example attack on the OT
protocol of Brzuska et al. in the posterior access model in Appendix C. Interested readers may perhaps use this
example attack to become familiar with the PAM.

2.4 The Bad PUF Model

One other central assumption in the UC-model of Brzuska et al. is that the players will not use malicious PUF-
hardware with properties beyond the expected PUF functionality. Consider again the above smart-card example
for illustration purposes. Let us assume that theCA issues the card that carries the PUF, and that theCA and the
smart-card/terminals want to run an OT protocol in this setting. We must assume that theCA is not fully trusted
by the smart-card/terminals (note that if the CA was fully trusted, then the smart-card/terminals would not require
an OT implementation). However, a maliciousCA can cheat easily in this scenario by putting a malicious PUF-
hardware (a “bad PUF”) instead of a normal PUF on the smart card. To name one example, theCA could replace
the normal PUF by a pseudo random number generator (PRNG) with a seeds known to theCA. This enables the
CA to simulate and predict all responses of this “bad PUF” without being in physical possession of it, and breaks
one of the essential security features of the purported “PUF” on the bankcard, namely its unpredictability. It is
not too difficult to see that under the assumptions that theCA replaces the PUF by a PRNG the currently known
OT protocols of Rührmair [38] and Brzuska et al. [7] break down and are no longer secure. If theCA acts as
OT-receiver, for example, it can learn both bits of the OT-sender.

This motivates a systematic study of bad PUF attacks. Generally, we denote by the term“bad PUF” a hardware
system that looks like a proper PUF from the outside, showingan input-output behavior indistinguishable from
a proper PUF, but which possesses secret, additional properties that allow cheating. The assumed similar input-
output behavior makes it impossible to distinguish a bad PUFfrom a proper PUF by mere challenge-response
measurements. In order to detect bad PUFs, an honest party would need to physically open the PUF-hardware and
to inspect it thoroughly (as a regular and dedicated step of the protocol), a task that is beyond the capabilities of an
average user. While detection of a bad PUF would not even be guaranteed with certainty by such a step (adversaries
would presumably develop obfuscation techniques for the bad PUF hardware), it would surely destroy the opened
PUF, even if it was “good” and non-manipulated. Overall, this makes bad PUFs a very simple and effective way
to cheat.

From an abstract perspective, bad PUFs exploit the fact thatPUFs are real physical objects. Unlike the clean
binary strings transferred in classical cryptographic protocols, these objects may bring about unwanted properties.
They can act as real, physical “Trojans”. The two types of badPUFs that we focus on in this paper are the PUFs
that are numerically simulatable by their manufacturer (but by no one else), and bad PUFs that “log” or record
all challenges that have been applied to them. Both are particularly easy to implement, but suffice for our formal
impossibility results in the upcoming sections.

Simulatable Bad PUFs (SIM-PUFs). The concept of a simulatable PUF (or SIM-PUF, for short) is relatively
simple: It is a hardware system that looks like a PUF, having achallenge-response interface etc., but which pos-
sesses a simulation algorithmSim. Sim takes as input any challengec, and computes in polynomial time the
corresponding responser. It is assumed thatSim has been derived during the fabrication of the simulatable PUF
via the special construction of the PUF. External parties who merely have access to the simulatable PUF after
fabrication are not able to derive a simulation model.

In practice there are several possibilities for implementing simulatable PUFs. A straightforward and very
efficient way is to use a trapdoor one-way permutation or pseudo random functiongs based on a short digital seed

5

s. The hardware of the simulatable PUF simply implementsgs. Whenever the PUF is interrogated over the digital
interface with a challengec, the hardware outputs the responser = gs(c).

The party who manufactured the PUF knows bothg as well as seeds and can easily simulate the input-output
behavior of the PUF. Furthermore, if a cryptographically hard pseudo-random function is used, it is practically
infeasible for the honest parties to distinguish the bad PUFfrom a proper PUF with a real, random output. Two
other, more involved examples of simulatable PUFs are described in Appendix E. They are not strictly necessary
for the exposition of this paper, but they add interesting extra information.

Challenge-Logging Bad PUFs (CL-PUFs). A second feature that bad PUFs may possess is challenge-logging.
A challenge-logging PUF (CL-PUF for short) with secret challengec∗, also called the access challenge, is a
malicious piece of hardware that looks like a proper PUF fromthe outside (with a challenge-response interface
etc.), but which possesses the following properties:

1. Except for one input challengec∗, the challenge-response behavior of a CL-PUF is exactly like that of
the underlying PUF. Whenever a challengec unequal toc∗ is applied to the CL-PUF via its interface, the
challenge is passed on to the underlying PUF. The corresponding responser is obtained from the latter, and
the CL-PUF uses this responser as its output.

2. The CL-PUF has a non-volatile memory (NVM) module in whichit automatically records all challenges
that have been applied to it.

3. When challengec∗ is applied to the CL-PUF, it does not pass on this challenge tothe underlying PUF as
usual. Instead, the CL-PUF outputs the entire content of thenon-volatile memory module (i.e., all challenges
that have previously been applied to it) via the challenge-response interface, and erases the content of the
NVM module.

If the PUF has a large, preferably exponential challenge set, then the probability that someone by chance inputs
c∗ and detects the challenge-logging feature is negligibly small.

Countermeasures? At first sight, a seemingly simple countermeasure against bad PUFs would be to “authenti-
cate” or “certify” the PUF in some way to detect bad PUFs. For example, a trusted authority (TA) could send a list
of CRPs as a “fingerprint” of a genuine PUF to the players before any protocol execution. On closer inspection,
however, this countermeasure turns out to be problematic and ineffective.

First of all, the use of aTA that needs to be called in every single protocol session would make the use of PUFs
in security protocols obsolete. The aspired functionalities could then be implemented in a much simpler fashion
directly via theTA, avoiding the significant effort of physically transferring a PUF during the protocol. Secondly,
CRP-based authentication does not rule out externally added malicious hardware, such as external challenge log-
gers. The latter do not affect the CRP-behavior of an existing (and previously certified) PUF.

Meaningful “certification” of a PUF hence requires not only to “identify” a PUF. It also must (i) exclude that
external parts have been added to the PUF and that the PUF-hardware has been manipulated; and (ii) it should
work offline, i.e., it must avoid calling a centralTA in every execution of the protocol. Currently, no protocolsor
PUF implementations that realize these two properties havebeen considered in the literature. Given the current
state of the field, it seems hard to design such methods, even more so at low costs. Once more, this makes bad
PUFs a realistic and efficient method to cheat.

Brzuska et al. indeed assume certification of the PUF, but do not give protocols or methods how it can be
achieved. For the above reasons, we believe that efficient certification is currently infeasible in practice. This holds
even more if malicious players (not only external adversaries) generate and use manipulated PUFs.

Natural Limits on Bad PUFs and Super-Bad PUFs. How “bad” can a PUF be? When do protocols based
on bad PUFs become straightforwardly impossible? Perhaps the most extreme type would be a PUF that has a
real-time wireless connection to the malicious party. The party could use the wireless connection (i) to passively
learn which challenges are applied to and/or which responses are obtained from the PUF by the honest parties,
or (ii) to actively influence and alter the challenge-response behavior of the PUF. In the worst case, the malicious
party receives in real-time any challenge that is applied tothe PUF, and returns in real-time a personally selected

6

response, which the PUF then outputs. A less laborious possibility was that the malicious party sends one single
signal to the PUF that flips some selected PUF-CRPs for good.

We call bad PUFs of the above type (where there is a wireless connection between the PUF and the malicious
party) “super-bad PUFs”. Super-bad PUFs are not our centraltopic in this publication. There are two reasons:
Firstly, it is straightforward that many protocols cannot be based solely on PUFs (without making additional
complexity assumptions) if malicious parties can use super-bad PUFs.2 Secondly, communication between the
super-bad PUF and the malicious player during a protocol canbe prevented in several natural PUF-applications
(for example bank cards) by shielding the PUF/bank card for the time in which the protocol is run. This allows at
least protocols that are secure in a single execution, stand-alone setting. Such measures are already common today
in Automated Teller Machines.

We comment that all of our formal impossibility results in the bad PUF model hold already if only two realistic
and simple types of bad PUFs are used, namely simulatable PUFs and challenge-logging PUFs (see the last Section
2.4). We leave PUF-protocols that remain secure during multiple protocol executions in versions of the super-bad
PUF model (possibly under additional computational assumptions) as a future research topic.

Security of Existing PUF-Protocols in the Bad PUF Model. Again, it is relatively easy to see that many
existing PUF-protocols are no longer secure if the adversary can use bad PUFs, for example simulatable PUFs.
This applies to the OT-protocol of Rührmair [38] and to the OTand BC protocol of Brzuska et al. [7]. Since this
is not of central importance to this paper, we describe example attacks on the OT protocol of Brzuska et al. under
the use of simulatable PUFs in Appendix D. Interested readers may perhaps use this example attack in order to
become familiar with the bad PUF model.

2.5 Combinations of Model Features

As indicated in Table 1, we consider different combinationsof attack models, such as “Posterior Access, Bad
PUFs”, or “Stand Alone, Bad PUFs”. These combinations have the expectable properties that follow from our
above discussion: For example, “Posterior Access, Bad PUFs” means that the adversary and malicious players are
allowed to (i) have posterior access to the PUF as described in Section 2.3, and (ii) that they are allowed to use bad
PUFs as described in Section 2.4. Similar statements hold for the other combinations of model features that we
examine.

3 Protocols and Security Proofs in the Stand Alone, Good PUF Model

We now turn to the first part of the paper as announced in the abstract. We provide protocols for OT, BC and KE,
and prove their security in the stand-alone, good PUF setting. The protocols that we provide are at least partly new;
for example, we give the first direct BC construction that rests on the unpredictability of the PUF alone. The exact
motivation for each protocol is described in the respectivesubsections. We start by giving a new PUF definition
that is relatively simple, avoiding an asymptotic treatment and min-entropy conditions.

3.1 Yet Another PUF Definition (YAP)

The question about an intuitive security definition for PUFshas been open for some time. Early suggestions
captured the intuition about PUFs well, but partly sufferedfrom formal problems [43]. Recent suggestions by
Rührmair, Busch and Katzenbeisser [39] and by Brzuska et al.[7] can be used in formal security proofs, but are
relatively complicated. The framework of Armknecht et al. [2] mainly applies to so-called Physically Obfuscated
Keys or POKs (sometimes also termed weak PUFs), for example SRAM PUFs, which are not relevant for this
paper. Finding an intuitive PUF-definition that appeals to hardware designers and theoretical cryptographers alike
seems at least partly open. Existing work indicates that some small concessions between formal correctness and
simplicity might be inevitable.

2There are some parallels to another well-established examplefrom classical cryptography here, namely the condition thatthe two provers
in Multi-Prover Interactive Proof Systems must not communicatewith each other. This is a necessary requirement for exploiting the extra
power of two provers over one single prover. This is somewhat similar to the situation with super-bad PUFs: If real-time communication
between the (super-bad) PUF and a malicious party is allowed,certain security features break down naturally.

7

In the following, we present an extremely simple definition,which still suffices for certain security proofs.
It focuses on a single PUF, and does not require worst-case security (or min-entropy conditions), such as the
definition of Brzuska et al. [7]. The reason is that many existing PUF-candidates do not fulfill such worst-case
conditions, since they have strong correlations between certain selected CRPs.3 Nevertheless, such correlations
of a few specific CRPs do not hinder a PUF’s applicability in typical protocols, in particular if it is used with
randomly selected challenges. This motivates to merely require the weaker feature of average-case unpredictability
in definitions.

Definition 1 (PUFs and Associated Functions). A PUFP is a physical object that can be stimulated by challenges
c from a challenge spaceCP , by which it reacts with corresponding responsesr from a response spaceRP . We
modelP by a associated functiongP : CP → RP that maps the challengesc to responsesr = gP (c). The pairs
(c, gP (c)) are called challenge-response pairs (CRPs) of the PUF.

Whenever the PUFP is clear from the context, we will often drop the index and write C,R or g. Definition
1 assumes that suitable error correction techniques have been applied to the PUF, leading to a stable PUF output.
The definition can easily be adjusted to the case of noisy PUF outputs by replacinggP (c) by a random variable,
but we will not follow this route in this work.

In this paper, we will almost exclusively consider the case thatC = R = {0, 1}λ, with λ being the security
parameter. In order to achieve output length ofλ in practice, fuzzy extraction of several consecutive responses can
be applied, or the concatenation of theλ responses ofλ independent hardware instantiations of a PUF to the same
challenge can be used (as discussed in [7, 8]).

Definition 2 (ǫ-Unpredictability with respect to Parties). We model the ability of a partyA to predict the output
of a PUFP by a random variableAP , which maps challengesc ∈ C to responsesr ∈ R according to some
probability distributionDA,P . We call a PUFP ǫ-unpredictable with respect to a partyA if

Probc←C [AP (c) = gP (c)] ≤ ǫ.

Thereby the probability is taken over the random variableA and the uniformly random choice ofc ∈ C.

Since we consider PUFs with challenge and response lengthλ in this paper, please note that the probabilityǫ
might (for a well-designed or ideal PUF) be as low as2−λ. Again, we will sometimes drop the indexP if it is
clear from the context.

Definition 2 is astonishingly simple, but suffices for the upcoming security arguments of Protocols 4, 8 and 9.
Our framework is to some extent inspired by the work of Pavlovic [34]. Instead of quantifying over all possible
(and infinitely many) Turing machines or adversaries that could attack a PUF, we focus on the concrete capabilities
of a single adversary. We use the assumption that a given adversary cannot predict a PUF as a premise in our
security proofs, which are then led relative to this adversary, if you like.

3.2 Oblivious Transfer

3.2.1 Interactive Hashing with Constant Rounds in a PUF-Setting

One basic tool in our upcoming constructions is interactivehashing [44]. Ding, Harnik, Rosen and Shaltiel [4]
showed how to achieve secure protocols with only four rounds:

Lemma 3 (Interactive Hashing [4]). Lets ≥ 2+ log λ. There exists a 4 messageinteractive hashing (IH)protocol
between Alice with no input and Bob with input stringW ∈ {0, 1}λ that outputs to both players(W0,W1) ∈
{0, 1}λ × {0, 1}λ, satisfying the following:

Correctness: If both players are honest, thenW0 6= W1 and there exists aD ∈ {0, 1} such thatWD = W .
Furthermore, the distribution ofW1−D is 2−λ-close to uniform on all strings{0, 1}λ\{W} not equal toW .

3As an example, consider the well-known Arbiter PUF [24, 45]: Flipping the first (leftmost) input bit will not change the output with a
probability close to 1, as the resulting delay change is dominated by the accumulated delays in the rest of the structure. Atthe same time,
flipping the rightmost input bit will almost certainly change the PUF’s output, as the two signal paths are exchanged. This means that there
are CRPs with strong positive or negative correlation. Related considerations hold for the Arbiter PUF variants Feed-Forward Arbiter PUF and
XOR Arbiter PUF.

8

Security for Bob: If Bob is honest, then (for every unbounded strategy by Alice) W0 6= W1 and there exists a
D ∈ {0, 1} such thatWD = W . If Bob choosesW uniformly at random, thenD is uniform and independent
of Alice’s view.

Security for Alice: If Alice is honest, then (for every unbounded strategy by Bob) for every subsetS ⊆ {0, 1}λ,

|S| ≤ 2s ⇒ Pr[W0 ∈ S andW1 ∈ S] ≤ 10 · λ2
s

2λ

Note that interactive hashing is unconditionally secure inthe sense that it does not require additional set-up or
computational assumptions. The above IH protocol by Ding etal. uses a so-called“ µ-almostt-wise independent
permutation space”from which Alice uniformly selects a member. Since the selection only affects Alice’s own
security, interactive hashing does not need any pre-protocol agreement by Alice and Bob. I.e., no set-up assump-
tions are needed; the interactive hashing protocol is unconditionally secure. We will use the lemma to construct
constant round OT and BC protocols solely based on PUFs in thesequel.

3.2.2 Oblivious Transfer Protocol

Following the PUF-based OT-protocols by Rührmair [38] and Brzuska et al. [7], we provide another PUF-based
OT-protocol in this section. Our motivation for giving another protocol is as follows: Compared to the original
protocol of Rührmair, the protocol below has been simplified, and also has a reduced round complexity due to its
new interactive hashing step. In comparison to the OT-protocol of Brzuska et al., our approach does not allow the
same type of quadratic attack that is described in Appendix B. Due to the interactive hashing step, the security
proof Protocol 4 does not require conditions on the mutual (information-theoretic or computational) independence
of more than one CRP of the PUF, such as in [7]. The average unpredictability of single CRPs (see Def. 2) suffices.

Let P be a PUF withgP : {0, 1}λ → {0, 1}λ. Let the employed interactive hashing scheme be the four
message IH scheme of Ding et al. [4], whose security is described in Lemma 3. We assume that the sender’s input
are two stringss0, s1 ∈ {0, 1}λ and the receiver’s input is a choice bitb ∈ {0, 1}. The receiver intially holds the
PUF.

Protocol 4: PUF-BASED 1-OUT-OF-2 OBLIVIOUS TRANSFER WITH INTERACTIVE HASHING

1. The receiver chooses a challengec uniformly at random. He appliesc to the PUF, and obtains a responser.

2. The receiver transfers the PUF to sender.

3. The sender and receiver execute an IH protocol, where the receiver has inputc. Both get outputc0, c1. Let i
be the value whereci = c.

4. The receiver sendsb′ := b⊕ i to the sender.

5. The sender applies the challengesc0 andc1 to the PUF, obtaining responsesr0 andr1.

6. The sender sendsS0 := s0 ⊕ rb′ andS1 := s1 ⊕ r1−b′ to the receiver.

7. The receiver recovers the stringsb that depends on his choice bitb asSb⊕r = sb⊕rb⊕b′⊕r = sb⊕ri⊕r =
sb.

We will now prove the security of Protocol 4 in the stand-alone, good PUF model using Lemma 3.

Lemma 5. Protocol 4 is secure for the receiver, i.e., the sender does not learn the receiver’s choice bitb.

Proof. From Lemma 3 it follows that the valuei is uniform and unknown to the sender. Sob′ does not give any
information about whetherc = c0 or c = c1. Therefore, the sender has no idea whether the receiver knows r0 or
r1, which means that the sender does not know whethers0 or s1 has been revealed.

Lemma 6. Suppose that2λ ≥ 160λ3 and let2−λ ≤ ǫ ≤ 1/(10λ). If after step 2 in Protocol 4, the used PUF
is ǫ-unpredictable with respect to the receiver and if the IH is based on parameters = λ + log

√

ǫ/(10λ), then
Protocol 4 is secure for the sender in that the receiver is able to correctly guess both bit stringss0 and s1 with
probability at most

√
40λǫ.

9

Proof. Let Sp be the set of challenges for which the receiver is able to correctly guess responses with probability
at leastp (notice thatci ∈ Sp). By Definition 2, a lower bound onǫ is given by|Sp|p/2λ ≤ ǫ. This yields an upper
bound on the cardinality ofSp,

|Sp| ≤ ǫ2λ/p. (1)

In a standard run of Protocol 4, the receiver reconstructs the stringsb by using his knowledge ofr = ri. In
order to also reconstructs1−b, he needs to guessr1−i. Let q be the probability that the receiver is able to guess
ri−1. By the definition ofSp,

q ≤ Prob(c1−i ∈ Sp) + Prob(ci−1 6∈ Sp)p ≤ Prob(c1−i ∈ Sp) + p. (2)

Notice that the receiver is able to predictri with probability 1, thereforeǫ ≥ 2−λ. Together with2λ ≥ 160λ3

this impliess ≥ 2+ log λ for s defined in the lemma. This means that Lemma 3 is applicable: The probability that
r1−i corresponds to a challengec1−i in Sp is by Lemma 3 at most10 · λ2s−λ if |Sp| ≤ 2s. Together with (1) this
proves

ǫ2λ/p ≤ 2s ⇒ Prob(c1−i ∈ Sp) ≤ 10λ2s−λ

Combined with (2) this gives
ǫ2λ/p ≤ 2s ⇒ q ≤ 10λ2s−λ + p.

Let p = ǫ2λ−s, which is≤ 1 if 10λǫ ≤ 1 for s defined in the lemma. Then, fors = λ + log
√

ǫ/(10λ),
q ≤ 10λ2s−λ + ǫ2λ−s =

√
40λǫ.

Comments and Discussion. We remark once more that depending on the PUF and the adversary, ǫ may be as
small as2−λ. Furthermore, please note thatlog

√

ǫ/(10λ) < 0, whences < λ for the parameter choice of Lemma
6.

The security of Protocol 4 can be amplified by using a well-known result by Damgard, Kilian and Savail (see
Lemma 3 of [11]):

Theorem 7 (OT-Amplification [11]). Let (p, q)-WOT be a 1-2-OT protocol where the sender with probabilityp
learns the choice bitc and the receiver with probabilityq learns the other bitb1−c. Assume thatp + q < 1. Then
the probabilitiesp andq can be reduced by runningk (p, q)-WOT-protocols to obtain a(1− (1− p)k, qk)-WOT

protocol.

In the case of our OT-Protocol 4 it holds thatp = 0, whence the technique of Damgard et al. leads to an efficient
security amplification, and to a(0, qk)-WOT protocol. The PUF does not need to be transferredk times, but one
PUF-transfer suffices.

Please note that the security guarantee of Lemma 6 contains asquare root, but is otherwise very different from
the quadratic attack described in Appendix B. This quadratic attack breaks the OT-protocol of Brzuska et al. with
probability 1 if an adversary is able to read out2λ/2 CRPs. The attack is independent of the cryptographic hardness
and unpredictability of the PUF, and even holds for an ideal,perfectly random PUF. No probability amplification
by the technique of Damgard et al. is possible any more after the attack. In addition to the quadratic attack, also
“normal” attacks on the employed PUF (for example modeling attacks [42]) can be mounted.

To the contrary, our protocol only allows modeling attacks on the employed PUF. Depending on the crypto-
graphic hardness of the PUF, our protocol can remain secure if 2λ/2 CRPs (or even more) have been read out,
as long as a large fraction of the remaining2λ − 2λ/2 ≈ 2λ other CRPs remains relatively hard to predict. The
protocol security can then be amplified exponentially by applying the technique of Damgard et al.

Security in the PAM and the bad PUF model. Protocol 8 is not secure in the PAM or the bad PUF model.
A malicious receiver with posterior access to the PUF can learn both stringss0 ands1, and the same holds for a
malicious receiver employing a simulatable PUF. The attacks are very similar to the attacks in Appendices C and
D. The details are straightforward and omitted for space reasons.

10

3.3 Bit Commitment

It is also possible to devise a BC protocol based on PUFs and interactive hashing. Our upcoming protocol is the
first direct BC-construction that relies on the unpredictability of the PUF alone. Earlier approaches utilized the
non-invertability of Physical One-Way Functions [32], or reduced BC to OT [7, 8].

LetP be a PUF withgP : {0, 1}λ → {0, 1}λ. Let the employed interactive hashing scheme be the four message
IH scheme of Ding et al. [4], whose security is described in Lemma 3. We assume that the sender (=committer)
initially holds a bitb and the PUF. Our protocol works as follows.

Protocol 8: PUF-BASED BIT COMMITMENT IN THE STAND-ALONE, GOOD PUF SETTING

Commit Phase:

1. The sender uniformly chooses a random challengec and applies it to the PUF, obtaining the responser.

2. The sender transfers the PUF to the receiver.

3. The sender and receiver execute an IH protocol, where the sender has inputc. Both get outputc0, c1. Let i
be the value whereci = c.

4. The sender sendsb′ = b⊕ i to the receiver.

Reveal Phase:

1. The sender sendsi, r to receiver.

2. The receiver challenges the PUF withci and verifies if the response he obtains is equal tor.

Security in the Stand-Alone, Good PUF Model. The security analysis of the BC-Protocol 8 in the stand-alone,
good PUF model is very similar to Protocol 4, whence we only sketch it. The perfect concealing property follows
from a proof similar to that of Lemma 5: Lemma 3 implies that value i is uniform and unknown to the receiver.
So,b′ does not give away any information about whetherb = 0 or b = 1.

With respect to the binding property: If the sender wants to commit to bothb = 0 andb = 1, then he must be
able to guess bothr0 andr1. However, the PUF is not in the sender’s possession in the IH step of the protocol.
Therefore, the proof of Lemma 6 is applicable and the bindingproperty holds with probability≥ 1 −

√
40λǫ for

the parameter selection in Lemma 6.

Security in the PAM and the bad PUF model. We observe that Protocol 4 is still secure in the PAM, i.e., if
the sender and receiver can only access the PUF after the protocol’s end (=after the end of the reveal phase). The
reason is that nothing needs to remain secret in a BC protocolafter the reveal phase. The protocol is no longer
secure if the sender can access the PUF before the reveal phase (the binding property gets lost), but this access
during the protocol is not allowed in the PAM. Furthermore, the binding property vanishes if the sender uses a
simulatable PUF. The details of the attacks are relatively similar to the attacks in Appendices C and D, and are
omitted for space reasons. General impossibility proofs that include the insecurity of the above protocols in the
PAM and bad PUF model are presented in Section 5.

3.4 Key Exchange

Let us finally give a protocol for PUF-based key exchange in the stand-alone setting. Generally, PUF-based KE
protocols have been around as folklore in the community for quite some time. The earliest mentioning of “key
establishment” as a PUF-application to our knowledge was made by Pappu et al. in 2002 [33]. The first concrete
protocol for PUF-based KE was probably given by van Dijk in 2004 [12]. Brzuska et al. describe a similar KE
protocol in a UC-setting in 2011 [7]. The protocol that we provide below slightly deviates from earlier approaches,
as it does not assume an authenticated physical channel. More precisely, we assume the following communication
channels between Alice and Bob:

1. A binary channel, which is authenticated.

11

2. A physical channel, over which the PUF is transferred. It is assumed to be insecure4 in the following sense:

— In the good PUF model, the PUF be accessed by the adversary for CRP measurements or exchanged
against another good PUF by him.

— In the bad PUF model, the adversary is potentially allowed not only to access the PUF, but also to
manipulate it arbitrarily or to exchange it against a bad PUF.

Now, letP be a PUF withgP : {0, 1}λ → {0, 1}λ, which is originally held by Alice. Our key exchange protocol
works as follows.

Protocol 9: PUF-BASED KEY EXCHANGE IN THE STAND-ALONE, GOOD PUF SETTING

1. Alice chooses two challengesc andc∗ uniformly at random, and measures the two corresponding responses
r andr∗.

2. Alice sends the PUFP to Bob.

3. When Bob receives a PUF, he sends a message “Got it!” over thebinary channel.

4. Upon receipt of this message, Alice sends(c, r), c∗ to Bob.

5. Bob applies the challengesc to the PUF he received in Step 3. If the obtained response is unequal tor, he
aborts.

6. (Applies only in the super-bad PUF model):Bob shields the PUF from any external communication for the
rest of the protocol.

7. Bob applies the challengec∗ to the PUF, obtaining responser∗.

8. Alice and Bob derive a key from the responser∗, which is now known to both of them.

The security in the stand alone, good PUF model follows almost immediately: The adversary can only predict
r∗ with probability ǫ. Furthermore, he can only exchange the PUF against another good PUF without being
detected with equally small probability.

It is relatively easy to see that the protocol is no longer secure in the PAM: An adversary eavesdrops the binary
communication in the protocol and learnsc∗. He appliesc∗ in his posterior access phase to the PUF, obtainsr∗,
and derives the same key.

Interestingly, the protocol is still secure in the stand-alone, bad PUF model. To see this, convince yourself that
Alice and Bob will not benefit from using bad PUFs in this setting: They fight a joint adversary, and the PUF will
not be re-used by other parties in the stand-alone setting. The adversary cannot replace the PUF against a new,
possibly bad PUF due to the authentication step. Please notealso that a standard challenge-logging PUF will not
help the adversary, since he will not have access any more to the PUF and hence cannot read out the challenge
logger (recall that we are in the stand alone model). If super-bad PUFs are allowed, the adversary could attempt
the following strategy: He might add a PUF-response transmitter, which does not change the input-output behavior
of the PUF, but transmits wirelessly all responses obtainedfrom the PUF by other parties to the malicious party.
However, this is prevented by the shielding step 6.

4 Formal Foundations for the Upcoming Impossibility Proofs

We now turn to the second part of the paper, in which we prove a number of impossibility results for protocols
whose security is solely based on PUFs. Before we can lead these proofs in Section 5, we will lay the mathematical
foundations in this Section 4. The main observation behind our impossibility proofs is that ideal PUFs with multi-
bit outputs (such as the PUFs used in [7, 8] and in this paper) bear some similarity with random oracles. It is long

4Please note that insecure physical channel, for example the possibility to exchange PUFs, marks one difference between our protocol and
the protocol of Brzuska et al. [7]. In the latter, it is assumedthat also the physical channel is authenticated, and that the PUF is somehow
certified.

12

known that the power of the latter for implementing cryptographic protocols is limited, as stated in the well-known
result of Impagliazzo and Rudich [22].

Before this observation can lead to a formal impossibility proof, several non-trivial problems need to be solved,
however. First, the mathematical concepts relevant to the work of Impagliazzo and Rudich need to be adapted to
PUFs, which is a subtle and tricky task. It involves a clarification of questions like: What is the view of a player in
a PUF-protocol? While the knowledge of players in binary protocols continuously increases (they can record and
store all bit strings they have ever seen), the knowledge or ability of players in PUF protocols may decrease once
they give away the PUFs they previously held in possession. How can this property of the view in PUF-protocols
be modeled?

Another central problem in the application of Impagliazzo-Rudich to PUFs is that a random oracle can be
accessed by all parties continuously throughout a protocol, while a PUF can only be accessed by the player
who currently holds possession of it. This issue seems so severe at first sight that it prevents the application
of Impagliazzo-Rudich to PUFs at all. We circumvent it by proving the impossibility of PUF-protocols in a semi-
honest setting5, and by exploiting the specific properties of our two attack models: Both in the bad PUF model
and in the PAM, we eventually arrive in a situation where onlythe accumulated knowledge and access to the PUFs
at the end of the protocolis relevant, and where the adversary has got free access to this accumulated knowledge
(details follow below). Nevertheless, this proof strategystill requires a formal definition of semi-honest behavior
in the context of PUFs and of several other formal notions, which is the purpose of this section.

4.1 Physical Unclonable Functions and Random Oracles

Meaningful cryptographic protocols that use PUFs should atleast be secure if the employed PUFs have ideal
input-output complexity and randomness. This case occurs if the input and output behavior of the PUF is per-
fectly random, or similar to a random permutation oracle. Any impossibility proofs which hold for such idealized
PUFs (as the proofs in the upcoming sections) carry over to all reasonable and possibly weaker PUF-definitions,
since these definitions will include PUFs with perfect randomness as special cases. This motivates the following
mathematical model for “ideal” PUFs.

Definition 10 (PUF-Families). We say thatP = (Mλ)λ∈N is a PUF-family if eachMλ = {Pλ
1 , . . . , P

λ
kλ
} is a

finite set of PUFs, each of which has challenge set{0, 1}λ.

Definition 11 (Ideal PUF Model). A family of PUFsP = (Mλ)λ∈N is called an ideal family of PUFs if:

1. For all λ ∈ N, each PUF inMλ has challenge and response set{0, 1}λ.

2. For any probabilistic polynomial time (inλ) algorithmD, and for sufficiently largeλ, the advantage by
whichD can distinguish between a random permutation oracle and an oracle for the functiongPλ , where
Pλ is uniformly drawn from all PUFs inMλ, is negligible inλ.

We would like to comment that it is necessary to work with an asymptotic treatment here, since Impagliazzo-
Rudich is formulated in such a manner. This poses no restriction to our results.

4.2 Physical Unclonable Functions in Protocols

In this section, we need to clarify a few notions that are related to the use of PUFs in cryptographic protocols. They
include the concept of a protocol that is solely based on PUFs, the views of the parties in PUF protocols, and the
meaning of semi-honest behavior in a PUF-protocol.

Definition 12 (PUF-Protocols). A two-party protocolΠ is called a two-party PUF-protocol if the parties have a
binary channel and a physical channel (over which they can exchange physical objects) at their disposal, and if at
least one of the parties at least once has a PUF in his possession during the protocol.

A two-party protocolΠ is solely based on a family of PUFsP = (Mλ)λ∈N (for the securiy parameterλ) if

(i) It is a PUF-protocol,

5Please note that this is no restriction: If a PUF-protocol isalready provably impossible when the parties behave semi-honestly, it is even
more so when the parties may act fully dishonestly.

13

(ii) the parties can draw PUFs uniformly at random from the set Mλ, whereλ is the security parameter, and

(iii) no other ideal functionality or computational assumption (like, e.g., trapdoor one-way permutations) and no
other set-up assumptions (such as an initial common reference string) are used.

We note that we will often leave away the explicit reference to the security parameterλ, and will simply write
that a protocol“is solely based on a family of PUFsP” .

As discussed at the beginning of Section 4, we require a definition of semi-honest behavior in the context of
PUFs for our impossibility proofs. It is perhaps interesting to start by having a look at the standard definition
of semi-honest behavior in the deterministic case from Goldreich [19], which is given in Appendix A. In this
standard semi-honest model without transfer of physical objects (where the adversary follows the protocol with
the exception that it keeps the values of all its intermediate computations), the joint views of the adversary and the
honest player must be close to a simulated view in the ideal model. Therefore, it is not important at what time the
adversary knew a value, but only that he knows it in the end.

In PUF-protocols, however, we are not only interested in a party’s knowledge of (digital) values, but also
in indirect knowledge of values that a party can obtain by querying PUFs while they are in the party’s physical
possession. Therefore, a party’s view does not only containall known digital values but also knowledge on the
PUFs in his possession. Since PUFs are transfered between parties during a protocol, the possible knowledge that
can be acquired by the adversary at a given point in time (as represented by his view) may decrease. This is in
strong opposition to the semi-honest model without PUFs, since a party can always keep a copy of any binary string
that is transfered. This implies that in protocols where physical objects such as PUFs are transfered, the adversary’s
final view of what he could have computed using the PUFs duringthe times they were in his possession is most
relevant.

The following Definition 13 stipulates a notation for recording which physical objects (PUFs) each party pos-
sesses at each point in time. This leads to an extended definition of the view of each party in the definition. By
using the extended definition of views, the knowledge each party could possibly acquire while in possession of
physical objects can then be put down in Definition 14.

Definition 13 (Re-defining the view in PUF-protocols). Let Π be a PUF-protocol solely based on a familiy of
PUFsP. The distribution of PUFs during the execution ofΠ on input(x, y) is represented as follows: Lett0 be
the time at which the execution ofΠ on (x, y) starts. We partition the time axis for the first (resp., second) party
in intervals [t0, t1], [t1, t2], . . ., [tn−1, tn = ∞), whereti corresponds to the time of thei-th transmission of a
message by the first (resp., second) party to the second (resp., first) party. LetSi ⊆ {1, 2, . . . , kλ}, 1 ≤ i ≤ n,
represent the indices of the PUFs inMλ = {Pλ

1 , . . . , P
λ
kλ
} that were at one time or another available to the first

(resp., second) party during the time interval[ti−1, ti].6

Let setTi, 1 ≤ i ≤ n, represent the challenge-response pairs collected duringthe protocol execution in interval
[ti−1, ti] by the first (resp., second) party . SetTi contains triples(j, c, gj(c)), where we write for simplicitygj
instead ofgPλ

j
.

Without loss of generality, we assume that thei-th messagemi, 1 ≤ i ≤ n, received by the first (resp., second)
party is in interval[ti−1, ti] (herem1 or mn may equal the empty message). The finalview of the first (resp.,
second) party is redefined asviewΠ

1 = (x, r,m1, S1, T1, . . . ,mn, Sn, Tn) (resp.,viewΠ
2 = (y, r,m1, S1, T1, . . . ,

mn, Sn, Tn)), wherer represents the outcome of the first (resp., second) party’s internal coin tosses.7

BySΠ(x, y) we denote the set of indices corresponding to the actual physical objects used in the execution of
Π on (x, y).8

We will now define into what extent parties can extract knowledge from the physical objects that are in their
possession. We say that a semi-honest party still complies with a protocolΠ that involves transfer of physi-
cal objects if he queries physical objects that are in his possession in order to gain extra knowledge. Since a

6Since one protocol execution may interfere (be executed in parallel) with other protocol executions by the same and other parties, a PUF
may at one time or another be in possession of both the first and the second party during an interval[ti−1, ti]. If there is no interference with
other protocol executions, thenSi for the first party is disjoint fromSi for the second party.

7The final view needs to record all the challenge-responses that were queried before, since a physical object that was queried may not be
accessible after the end of the protocol execution.

8Since each party may at one time or another have possession of physical objects that are not used during the execution ofΠ, setsSi are not
necessarily subsets ofSΠ(x, y). We notice that PUFs in the PAM are accessible by both partiesat the end of the protocol execution in which
caseSΠ(x, y) ⊆ Sn for both parties.

14

party’s internal coin tosses can be computed before the start of protocolΠ, the first (resp., second) party can use
the physical objects inSi to compute new challenge response pairs based on(x, r,m1, T1, . . . ,mi, Ti) (resp.,
(y, r,m1, T1, . . . ,mi, Ti)). For 1 ≤ i ≤ n, let zi denote the set of challenge response pairs gathered up to
the time right beforemi has been received. Letz0 = ∅. Notice thatzi−1 ⊆ zi and Ti ⊆ zi. Based on
(x, r,m1, . . . ,mi, Si, zi−1) (resp.,(y, r,m1, . . . ,mi, Si, zi−1)) the first (resp., second) party may use a proba-
bilistic polynomial time algorithmAi with oracle access to{gj}j∈Si

to compute and add new challenge-response
pairs tozi. This leads to the following definition.

Definition 14 (Knowledge extraction). LetMλ = {Pλ
1 , . . . , P

λ
kλ
} be a set of PUFs with set of associated functions

G = {g1, . . . , gkλ
}. 9 A probabilistic polynomial time algorithmK1 with oracle access toG, denotedKG1 , is called

a knowledge extraction algorithm for the first party if it is composed of algorithmsA1, A2, etc., such that on input
viewΠ

1 (x, y) = (x, r,m1, S1, T1, . . . ,mn, Sn, Tn,S) it iterates, for1 ≤ i ≤ n andz0 = ∅,

zi ← A
{gj}j∈Si

i (x, r,m1, . . . ,mi, Si, zi−1) ∪ zi−1 ∪ Ti

and outputs(x, r,m1, . . . ,mn, zn). In a similar way, we define knowledge extraction algorithmsK2 for the second
party.

Based on knowledge extraction, we are now able to define semi-honest behavior with transfer of physical ob-
jects. The definition is subtle in that it almost resembles the definition of privacy in the semi-honest model without
transfer of physical objects for oracle-aided protocols (see Appendix A). The difference is that computational in-
distinguishability is now defined with respect to how knowledge can be extracted from a view: A machineD that
distinguishes a simulated view from a real view does not haveaccess to all functionalities inG, it may only use
knowledge extractors. We model this by first explicitly transforming a real view by using a knowledge extractor
after whichD proceeds its computation without access toG. (The simulator algorithms do have access toG in
order to obtain challenge-response pairs that cannot be distinguished from the ones recorded in the views.)

Definition 15 (Privacy w.r.t. semi honest behavior in the deterministic case with PUFs). Letf : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a deterministic functionality, and denote the first (resp., second) output off(x, y) byf1(x, y)
(resp.,f2(x, y)). LetΠ be a two-party protocol for computingf during which PUFs from a setMλ with associated
functions in a setG are transferred.

We say thatΠ privately computesf if there exist probabilistic polynomial time algorithms, denotedS1 andS2,
such that, for all knowledge extraction algorithms for the first and second party10, denotedK1 andK2,

{SG1 (x, f1(x, y))}x,y∈{0,1}∗
c≡ {KG1 (viewΠ

1 (x, y))}x,y∈{0,1}∗
{SG2 (x, f2(x, y))}x,y∈{0,1}∗

c≡ {KG2 (viewΠ
2 (x, y))}x,y∈{0,1}∗

where|x| = |y|.

Based on these definitions, we have laid the foundation for the impossibility results in the next section.

5 Impossibility Results

In this section, we will prove impossibility results for certain two-party protocols in the posterior access and bad
PUF models. They apply to a semi-honest behavior in these twomodels. Please note that this is no restriction: If
a protocol is impossible already if the parties behave semi-honestly, it is even more so in the case the parties are
fully malicious.

5.1 Impossibility of OT and KE in the Posterior Access Model

In the semi-honest model, we model posterior access by giving each party access to all the used PUFsafter each
execution of a protocol (or protocol (sub-)session, if there are any):

9As in Definition 13, we writegi instead ofg
Pλ
i

.
10Here, computational indistinguishability is defined with respect to machines that do not have oracle access toG.

15

Definition 16 (Privacy w.r.t. the posterior access model). LetΠ be a two-party protocol solely based on a family
of PUFsP for privately computingf . LetΠ′ be the protocol which on input(x, y) executesΠ after which all the
PUFs corresponding toSΠ(x, y) are made physically accessible to the first party and the second party. We sayΠ
privately computesf solely based onP in the posterior access model if protocolΠ′ privately computesf .

The following lemma reduces protocols that use PUFs in the PAM to protocols that use a random oracle.

Lemma 17. LetΠ be a two-party protocol solely based on a family of PUFsP for privately computingf . If Π
privately computesf in the posterior access model, then protocolΠ, where each query to a PUF is replaced by a
call to a random oracle, privately computesf .

Proof. Let λ be the security paremeter, and letG = {g1, . . . , gkλ
} be the set of associated functions to the set of

PUFsMλ of P. LetA1, A2, . . ., define a knowledge extraction algorithmK. Since the PUFs that are used inΠ
are uniformly drawn fromMλ, and since outputs of different PUFs are uncorrelated, we may restrictAi’s oracle
access to{gj}j∈Si

to oracle access to the subset{gj}j∈S∗

i
, whereS∗i represents the PUFs inSi that were actually

used in the protocol execution.
SinceΠ privately computesf with respect to PUFs in the PAM, we assume that, without loss of generality, for

all inputs(x, y), a protocol executionΠ on (x, y) has the property thatSΠ(x, y) is a subset ofSn in the view of
the first party as well as a subset ofSn in the view of the second party, hence,S∗i ⊆ Sn. Therefore, without loss
of generality, the knowledge extraction algorithmK may postpone all the computations inA1, A2, to An−1 till
the very end inAn. In other words,K effectively takes as input a non-extended view(x, r,m1, . . . ,mn) (resp.,
(y, r,m1, . . . ,mn), re-computes all the challenge-response pairsT1, . . ., Tn that were used during the protocol
execution, and computes the new challenge-response pairs in zn by using oracle access toS∗n = SΠ(x, y). Since
outputs of different PUFs are uncorrelated, we may as well giveK oracle access to all ofG (since this will not help
a machine that attempts to distinguish simulated views fromreal views).

The non-extended view(x, r,m1, . . . ,mn) (resp.,(y, r,m1, . . . ,mn)) are the views of a protocolΠ′ that
proceeds as inΠ but without transfer of physical objects and where queries to physical objects are replaced by
oracle access toG. So, Definition 15 holds for any probabilistic polynomial time algorithmsK1 andK2 with
oracle access toG whereviewΠ

1 (x, y) andviewΠ
2 (x, y) are replaced byviewΠ′

1 (x, y) andviewΠ′

2 (x, y). Now,
we may discardK1 andK2 if we allow the distinguisher oracle access toG. This corresponds to Definition 13 for
an oracle-aided protocol with access to oracleG. According to the PUF model,G cannot be distinguished from the
random oracle, which proves the lemma.

The Impagliazzo-Rudich result says that there are no black-box implementations of OT and KE from the
random permutation oracle11 [22, 14]. Together with the previous lemma this proves:

Theorem 18. There does not exist a two-party protocol for privately computing oblivious transfer (OT) solely
based on an ideal family of PUFs in the posterior access model.

We notice that the parties in KE collaborate in order to obtain a shared key; they will execute the KE protocol
without cheating. Therefore, since this section assumes semi-honest behavior by the parties that execute protocols
between themselves, the analysis in this section does not apply to KE.

In KE we consider a third party: the adversary, who is intercepting and resending the communication between
the two honest parties. In the PAM the adversary has access tothe used PUFs after the protocol execution. So,
in the semi-honest model with transfer of physical objects (generalized in the natural way to multiple parties) the
views of the honest parties and the adversary are the same as in the KE protocol where all queries to PUFs are
replaced by calls to a random oracle (a detailed proof of thisstatement is similar to the proof of Lemma 17). Since
this is impossible by Impagliazzo-Rudich, we obtain

Theorem 19. There is no secure two-party key exchange (KE) protocol solely based on an ideal family of PUFs
in the posterior access model.

We notice without proof that KE based on so-called erasable PUFs [41] in the posterior access model is possi-
ble: An erasable PUF [41] is a PUF that allows its owner to selectively erase responses to single challenges without
affecting the responses to the other challenges.12 Since an erasable PUF changes its input-output behavior over

11See [14, 35, 6] for KE protocols based on OT.
12Again note the similarity with an established concept in classical cryptography here, namely with the idea of a reusable common reference

string with erasing parties [10].

16

time, it does not satisfy Definition 11 and is therefore not covered by the theorem. KE based on an erasable PUF
P can be constructed in a straightforward way as follows. For arandom challengec, Alice obtains a responser
fromP . Alice transmitsP to Bob, who acknowledges receipt ofP . Once the acknowledgement is received, Alice
transmitsc to Bob, who obtainsr from P and erases the challenge-response pair(c, r) from P . An adversary
only knowsc at the end of the protocol whenP is not in his possession, after the protocol execution the adversary
may gain access toP , however,r has been erased in the meantime. Similarly, OT based on erasable PUFs in the
posterior access model is possible, too.

5.2 Impossibility of OT in the Stand-Alone, Bad PUF Model

We continue by showing a general impossibility result on OT in the stand-alone, bad PUF model: If malicious
parties are allowed to use bad PUFs that are simulatable and challenge-logging at the same time, then there are
no protocols that securely implement OT by using at mostO(log λ) different PUFs. The proof even applies to the
stand-alone setting, which is strictly weaker than a standard UC-setting.

Our argument works as follows. We say that a two-party protocol Π privately computesf even if it is based on
a family of bad PUFs if (1)Π can be solely based on a family of (proper) PUFs and privatelycomputef , and (2)
Π still privately computesf if the parties use bad PUFs. More specifically, we consider adversarial behavior of the
following form: The adversary always followsΠ as the honest player; but instead of honestly producing PUFs, he
always chooses a random one-way permutationg and produces a bad PUF that implementsg and has at the same
time a challenge-logger as described in Section 2. Whenever he gets a PUF back, he reads out all the challenges
from the logger. Whenever the PUF is not in his possession, he still has access to the input-output functionality of
the PUF, as he knowsg. Let the set of all adversaries of this form beA.

We now change protocolΠ in the following way:

a) If a PUF always ends up on the side of the party who created the PUF, then we replace the PUF by queries.
So instead of sending the PUF to the other party, this other party sends the challenges he wants to learn to
the creator of the PUF, who responds with the corresponding PUF-response.

b) If a PUF always ends up on the party’s side who did not createit, we replace the PUF by a random oracle.
This means that both parties have an oracle implementing thesame function as the PUF already at the
beginning of the protocol, and do not need to transfer the PUF.

Let this modified protocol beΠ′.

Lemma 20. LetΠ be a two-party protocol solely based on an ideal family of PUFsP for privately computingf .
If Π privately computesf solely based onP in the bad PUF model and if every PUF used inΠ always ends up
on the same side, thenΠ′ privately reduces13 f to the random oracle.

A detailed proof is given below. We first provide a sketch: A semi-honest adversary in the random permutation
oracle model follows the protocol, but may ask some additional queries to the permutation oracle before outputting
his view. We want to show that for any such adversaryA, there exists an adversaryA′ ∈ A for the protocolΠ such
that the joint views of the adversary and the honest party areidentical in both settings.

• For the PUFs replaced in step a): For all PUFs where the adversary is not the creator, the two settings are
identical. For the PUFs where the adversary is the creator,A will learn the queries of the other party to the
PUF. But since we assume that he always gets the PUF back and that he installed a logger,A′ will eventually
also learn the queries.

• For the PUFs replaced in step b):A may ask the permutation oracle some extra queries during or at the end
of the protocol. But sinceA′ always has a copy of the PUF at the end of the protocol, he may atthe end of
the protocol ask the same queries asA.

Therefore, the views of the two parties at the end of the protocol are the same in both settings, which implies the
statement.

13We refer to Appendix A for a formal definition of privately reducing a function to an oracle.

17

Proof. In order to prove thatΠ′ privately reducesf to the random permutation oracle, we show that its views are
identical to those ofΠ in which each PUF is replaced by a bad PUF. Then, sinceΠ privately computesf even if
based on a family of bad PUFs, the lemma follows.

Let P 1 (resp.,P 2) be the set of bad PUFs created by the first (resp., second) party in Π. LetD1 ⊆ P 1 (resp.,
D2 ⊆ P 2) be the subset of bad PUFs that ends up at the second (resp., first) party. Notice that, since the PUFs are
simulatable, both parties have access to the functionalities ofD1 ∪D2 at the end of protocolΠ.

The bad PUFs inP 1 \D1 end up at the first party and are replaced by queries in protocol Π′, i.e., the second
party replaces the PUF queries by queries to the first party. The view of the second party does not change due to
this substitution; for any knowledge extraction algorithmK2,

K2(view
Π
2) = K2(view

Π”
2), (3)

whereΠ” is the protocol where the second party replaces the PUF queries toP 1 \D1 by queries to the first party.
The view of the first party does change. However, since the first party has access toP 1 \ D1, a knowledge

extraction algorithm can access the corresponding challenge loggers at the end of the protocol by using the secret bit
strings (access challenges) for accessing the loggers (this is possible because, these secret bit strings are recorded
in the view of the first party). This means that such a knowledge extraction algorithm reproduces the queries made
by the second party. So, for such key extraction algorithmsK1,

K1(view
Π
1) = K1(view

Π”
1). (4)

By a similar argument, for all knowledge extraction algorithmsK1 andK2, that access the loggers inP 1 \D1

andP 2 \ D2 resp., equations (3-4) hold forΠ” defined as protocolΠ where the second party replaces the PUF
queries toP 1 \D1 by queries to the first party and where the first party replacesthe PUF queries toP 2 \D2 by
queries to the second party. Therefore, sinceΠ privately computesf even if based on a family of bad PUFs, also
Π” privately computesf even if based on a family of bad PUFs.

Notice that, at the end of protocolΠ”, SΠ”(x, y) = D1 ∪ D2 since the PUFs inP 1 \ D1 andP 2 \ D2 are
replaced by queries. Since both parties have access to the functionalities ofD1 ∪D2 at the end of protocolΠ”, Π”
also privately computesf if solely based on PUFs in the PAM. Hence, we may apply Lemma 17from which the
lemma follows.

Lemma 20 does not cover a third kind of PUFs, however: PUFs forwhich it is not known at the beginning of
the protocol on which side the PUF will end up. In order to close this gap, we change protocolΠ in the following
way:

Suppose thatΠ uses a fixed number ofO(log λ) PUFs. For simplicity, we assume that both the first and
second party draw/createm PUFs each.14 Then, for all inputs(x, y) and every protocol executionΠ on (x, y),
|SΠ(x, y)| = 2m = O(log λ). We useΠ to obtain a protocolΠ∗ whose aim is to evaluatef for some random input
(hence,Π∗ does not take any input itself, the random input is constructed by the two parties during the execution
of Π∗):

a) By coin tossing, the two parties createn = poly(λ) random inputs{(xi, yi)}1≤i≤n. For each random input
they execute protocolΠ where each PUF challenge is replaced by a call to a random oracle. During the
protocol execution they track for the first (resp., second) party where thei-th PUF drawn/created by the
first (resp., second) party would have ended up. Since the parties follow the protocol honestly and since
proper PUFs cannot be distinguished from random permutations, the distribution among the two parties of
the2m "tracked PUFs" at the end of the execution has the same statistics as the distribution of PUFs inΠ for
random inputs. Since2m = O(log λ), then = poly(λ) executions are sufficient to estimate the most likely
distribution; at least a distributionD that occurs with probabilityp(D) ≥ (1/22m)/2 = 1/O(poly(λ)) can
be estimated.

b) LetΠ′ be the protocol as defined before forΠ by assumingD, the likely distribution of PUFs computed as
a result of the previous phase. Again, the two parties createn = poly(λ) random inputs{(xi, yi)}1≤i≤n.
For each random input they now execute protocolΠ′. During the execution ofΠ′ they again track for
the first (resp., second) party where thei-th PUF drawn/created by the first (resp., second) party would

14If for some protocol executions less thanm PUFs are drawn/created by one of the parties, then we simply append to the protocol additional
steps during which the parties draw/create extra PUFs.

18

have ended up. If the resulting distribution equalsD for some input(xi, yi), then the parties conclude
the protocol with output(xi, f1(xi, yi)) for the first party and(yi, f2(xi, yi)) for the second party. Since
p(D) = 1/O(poly(λ)), the protocol will find such an input(xi, yi) with high probability.

The above protocolΠ∗ is a probabilisticpoly(λ) time protocol using a random oracle (and no PUFs) that
evaluatesf for some random input, in other words,Π∗ computesrandomizedf . Since the parties followΠ∗

honestly, Lemma 20 proves:

Lemma 21. LetΠ be a two-party protocol solely based on an ideal family of PUFs P for privately computing
f . If Π privately computesf solely based onP in the bad PUF model by using at mostO(log λ) different PUFs
during each protocol execution, thenΠ∗ privately reduces randomizedf to the random permutation oracle.

We notice that [5] proves: ifΠ∗ privately reduces randomized OT to the random permutation oracle, then there
exists a protocol that privately reduces OT to the random permutation oracle. The Impagliazzo-Rudich result says
that there are no black-box implementations of OT from the random permutation oracle [22, 14]. Together with
the previous lemma this proves:

Theorem 22. There does not exist a two-party protocol solely based on an ideal family of PUFs in the bad PUF
model for privately computing oblivious transfer (OT) by using at mostO(log λ) different PUFs in each protocol
execution.

We notice that randomized KE is equivalent to KE (since the output of randomized KE can be used as the
agreed upon key). The parties in KE collaborate in order to obtain a shared key, therefore, they will execute the KE
protocol without cheating. It does not make sense for the twoparties to create and use bad PUFs, and if they do,
they will use the challenge-loggers to achieve KE more directly. Therefore, since this section assumes semi-honest
behavior by the parties that execute protocols between themselves, the analysis in this section does not apply to
KE. In KE we consider a third party: the adversary, who is intercepting and resending the communication between
the two parties. KE in a stand-alone, bad PUF model thus remains secure, since the parties have no incentive to
use bad PUFs. KE with posterior access (i.e., in multiple sequential protocol executions) and with bad PUFs is
impossible, since KE is already impossible in the posterioraccess model alone (as shown in the previous section).

6 The Case of Bit Commitment

We now turn to the third part of the paper, in which we analyze PUF-based bit commitment in several scenarios. It
turns out that BC is special in a number of aspects. One reasonis that at the end of a BC protocol (i.e., at the end
of the reveal phase), nothing needs to remain secret. In OT and KE protocols, to the opposite, certain information
must be kept secret forever: The “other” strings1−b and the choice bitb in OT, and the exchanged key in KE. This
allows secure BC protocols in circumstances where secure OTand KE are provably impossible.

For space reasons, we merely sketch our constructions and security arguments in this section. In particular, we
would like to stress that we assume that a random one-way function can be derived from the unpredictability of
the PUF without giving an explicit construction to this end.Methods how to achieve this may be given in future
versions of this paper.

6.1 Impossibility of BC in the Bad PUF Model with Access before the Reveal Phase

We start by showing that there are also scenarios in which BC based solely on PUFs is provably impossible.
This holds, for example, if malicious parties are allowed touse simulatable and challenge-logging PUFs, and if
they have access to all employed PUFs before the reveal phase. Similar as in the proofs in Section 5, we may
then replace each challenge to a PUF by a challenge to the party who created the PUF.15 The resulting protocol
achieves BC without access to a random oracle, without any set-up assumption and without access to any other
ideal functionality. This means that the resulting protocol achieves BC unconditionally, which is not possible
according to [13].

15Since the PUF is accessible after each message transmission, the party who created the PUF is able to read out the challenge-logger. So,
replacing each challenge to a PUF by a challenge to the party who created the PUF keeps the views of both parties identical to that ofΠ.

19

Theorem 23. There does not exist a two-party protocol for privately computing bit commitment solely based on
an ideal family of PUFsP in the bad PUF model if the malicious party has got access to the used PUFs before
the reveal phase.

6.2 Secure Bit Commitment in the Posterior Access, Bad PUF Model

We present below a BC scheme that is secure in the posterior access, bad PUF model. More precisely, it is secure
under the following presumptions:

• Bad PUFs (including SIM- and CL-PUFs) may be used be by the malicious players, but no super-bad PUFs
are allowed. That is, the input-output behavior of the PUFs cannot be remotely accessed and altered, the
challenges applied to the PUF are not communicated remotely(i.e., to parties without physical access to the
PUF), and the CRP-behavior of the PUF does not change automatically after some time interval.

• The malicious party can physically access the PUF after the reveal phase (i.e., after the end of a protocol
(sub-)session), as standard in the PAM), but not before the start of the reveal phase.

The scheme is the first PUF protocol in literature which explicitly uses two PUFs. The scheme shows that we
are not helplessly extradited to bad PUFs. If careful protocol design and reasonable hardware assumptions come
together, security can still be guaranteed. Due to the dual PUF transfer, it mainly has theoretical value; we leave it
as an open question if there are protocols whose security is solely based on PUFs, which are secure in the bad PUF
model, and which require only one PUF transfer.

We assume that the sender holds a PUFS, and the receiver a PUFR at the beginning of the protocol, and denote by
S(·) andR(·) the one-way permutations corresponding to these two PUFs (see remark at the beginning of Section
6). We assume that the sender wishes to commit a bitb.

Protocol 24: BIT COMMITMENT IN THE POSTERIORACCESS, BAD PUF MODEL

Commit Phase:

1. The sender chooses at random a challengec and obtainsS(c) by measurement.

2. The sender transmits the PUFS to the receiver. The receiver keepsS in his possession until the reveal phase
has been completed.

3. The receiver chooses challengesc1, . . . , ck at random and usesR to measure corresponding responses
r1, . . . , rk. He transmitsR to the sender.

4. The sender obtainsR(c) by measurement and chooses a randomy ∈ {0, 1}λ. The sender computes
(y, S(c) ⊕ R(c), b ⊕ 〈y, c〉) and transmits this triple to the receiver. The sender keepsR in his possession
until the start of the reveal phase.

Reveal phase:

1. The sender transfers(y, c) andR to the receiver.

2. The receiver applies the challengesc1, . . . , ck to R and obtains responsesr1, . . . , rk. He compares these
responses to those measured in step 3 of the commit phase in order to verify thatR has not been exchanged
against a bad PUF with collisions.

3. The receiver obtains by measurementS(c) ⊕ R(c) and checks this against what he received before. The
receiver extracts bitb.

With respect to the concealing property of Protocol 24, notethatR is not in the receiver’s possession before
the reveal phase, so any potential challenge-logging functionality cannot yet be used. Since we are in the bad
PUF model, we need to assume that the receiver did design the functionality ofR such that he can easily compute
inverses as well, however.

20

SinceS(·) is a random function,S(c)⊕R(c) randomizesR(c) completely. This means that even ifR(·) is an
easy to invert function constructed maliciously by the receiver,S(c)⊕R(c) does not reveal any information about
c. Therefore〈y, c〉 randomizesb, sincec is random, andy is with overwhelming probability unequal to0. The
concealing property of the scheme follows.

Interestingly, the concealing property does even hold if the parties are allowed “super-bad PUFs”, i.e., if they
may use “PUFs” whose challenge-response behavior can be fully determined in real-time by wireless communi-
cation by the PUF-creator and the PUF. Such super-bad PUFs donot even need to possess response consistency;
their responses can be adjusted on the fly by their creator viawireless communication. Nevertheless, Protocol 24
maintains its concealing property even in the presence of super-bad PUFs. The reason is that the sender will always
use a random permutationS to guarantee the concealing property in his own interest. The fact thatS is a random
permutation alone already suffices to make the scheme concealing.

With respect to the binding property of the scheme: If the sender wants to be able to commit to both0 or 1,
then he must be able to generate two different challengesc1 andc2 such that:

S(c1)⊕R(c1) = S(c2)⊕R(c2),

that is,
S(c1)⊕ S(c2) = R(c1)⊕R(c2).

The sender committed himself to the functionality ofS before having possession ofR. So, we may assume without
harming the security of the scheme that by using a bad PUF (which is simulatable) the sender can easily invertS.
We may even assume that, for all vectorsv ∈ {0, 1}λ, the sender can easily compute two valuesc1 andc2 such
thatS(c1)⊕ S(c2) = v.

However, this does not help the sender: Lets(x) = s(x1, x2) = S(x1) ⊕ S(x2) andr(x) = r(x1, x2) =
R(x1)⊕R(x2), both be functions from{0, 1}2λ to {0, 1}λ.

Sincer(x) looks random in the sender’s view, computing a collisions(x) = r(x) is as hard as choosing a vector
y = s(x) in {0, 1}λ and then choosing a random vectorz (representingr(x)) in {0, 1}λ and repeat this process
until y = z. Sincez is random,y = z with probability2−λ. Hence, the sender cannot open the commitment to
both0 and1. The binding property of the scheme follows.

We notice that the above analysis only holds if PUFS does not change its challenge-response behavior over
time. If S is super-bad, then the sender could open the commitment in both ways. Furthermore, ifS would
automatically (without wireless communication as in a super-bad PUF) change its input-output behavior after
some time interval, then the sender could flip his commitmentby introducing some delay to the start of the reveal
phase.

6.3 Bit Commitment in the Good PUF Model with Access between Commit and Reveal
Phase

We conclude with a construction for a PUF-based bit commitment scheme which remains secure even if the sender
gains access to the PUF before the reveal phase. We assume that the sender holds a PUFS with challenges and
responses of lengthλ, and denote byS : {0, 1}λ → {0, 1}λ the one-way permutation derived fromS (see remark
at the beginning of Section 6). Our construction is reminiscent of the well-known Goldreich-Levin approach [20],
and of an earlier bit commitment protocol by Pappu (see section 9.3 of [32]).

Protocol 25: BIT COMMITMENT WITH ACCESS BETWEENCOMMIT AND REVEAL PHASE

Commit Phase:

1. The sender holds the PUFS and a bitb. He chooses a random vectory ∈ {0, 1}λ and a random challenge
c ∈ {0, 1}λ.

2. The sender transmits the PUFS together with the information(y, S(c), b ⊕ 〈y, c〉) to Bob (where〈·, ·〉
denotes the scalar product).

21

Reveal Phase:

1. The sender sendsc to the receiver.

2. The receiver verifies that the information sent to him in step 2 of the the commit phase was correct: Denoting
the tuple which he received by(d, e, f), he verifies thate = S(c) by measurement on the PUF, and extracts
b = f ⊕ 〈d, c〉. If this is the case, he accepts the reveal phase.

Protocol 25 is concealing even in the PAM, because a receiverwho has got access to the PUF before the
reveal phase and who wants to recoverb must recover〈y, c〉 giveny andS(c). This means that recoveringb with
probability greater than1/2 is as hard as inverting the random functionS(·) derived from the PUF. The protocol is
binding since it is hard to produce two differentc0 andc1 such thatS(c1) = S(c2). This once more follows from
the assumption thatS(·) is a random function.

The protocol is not secure in the bad PUF model, however. The sender could create a simulatable PUF such
that he knows a pairc0, c1 for which the responsesr0 andr1 collide. As an alternative scheme, the next subsection
discusses the security of Protocol 24 which is secure in the bad PUF model.

7 Summary and Conclusions

We examined the use of Physical Unclonable Functions (PUFs)in advanced cryptographic protocols, considering
the same type of PUFs that was investigated most earlier workin this topic (e.g. [33, 32, 39, 7, 8]): Namely
PUFs with a large (preferably exponential) number of CRPs, whose challenge-response interface is accessible by
everyone who holds physical possession of the PUF. Such PUFshave sometimes been referred to as Strong PUFs
or Physical Random Functions in the literature.

In the first part of the paper, we presented partly new protocols for OT, KE and BC, which have certain practi-
cality and security advantages over existing schemes. For example, our OT-protocol has constant rounds due to a
new interactive hashing step compared to an earlier scheme of Rührmair [38], or does not allow quadratic attacks
such as the scheme of Brzuska et al. [7]. We gave a new and relatively simple PUF-definition, which focuses
on single PUFs, average case security, and unpredictability with respect to one CRP only. We showed that this
definition is useful in leading security proofs for our protocols.

In the second part of the paper, we introduced two new and realistic attack models, the so-called posterior
access model (PAM) and the bad PUF model. Both models constitute viable and hard-to-prevent attack strategies
in practice, so we argued, and are close to practical PUF usage. We observed that the recently suggested PUF-
protocols of Rührmair and Brzuska et al. [7, 8, 38] for oblivious transfer (OT), bit commitment (BC) and key
exchange (KE) can be attacked in these two new and realistic models. This posed the question if there might be
other PUF-protocols that can withstand the PAM and bad PUF attacks. Our main contribution here is a collection
of impossibility results. First, no secure protocols for KEand OT exist in the posterior access model. In a nutshell,
the reason is that the responses of the employed PUFs remain accessible in unaltered form and can be read out at
later points in time. This highlights an important difference between PUFs and other alternative approaches like
the bounded storage model (BSM) [29, 3] or noise-based cryptography [49, 15, 30]. The latter also exploit natural
and uncontrollable randomness for cryptographic protocols, but differ from PUFs as some form of information
loss is implicit (e.g., part of the broadcast bitstream in BSM is inevitably lost forever). Our results indicate that
such information loss is essential for achieving security.Secondly, we moved away from the PAM and considered
a stand alone model for protocol execution. Are there secureprotocols for PUF-based OT at least in this restricted
setting? We proved that this is not the case if the adversary is allowed to use “bad PUFs” that are simulatable and
challenge-logging at the same time. Our findings in the bad PUF model stress that PUFs are not easily controllable
binary strings, but complex hardware that may possess unwanted additional properties. In a typical two-party
protocol such as OT, a PUF originating from a malicious partyis nothing else than an untrusted piece of hardware
that stems from the adversary.

In the third and final part of the paper, we dealt with PUF-based BC, which is special in a number of aspects.
One reasons is that in opposition to OT and KE, at the end of a BC-protocol, nothing needs to remain secret We
showed that no secure protocol for BC exist if challenge logging and simulatable bad PUFs are allowed, and if the
malicious party has got access to the PUF between the commit and the reveal phase. Furthermore, we provided
a construction for BC that is secure in the PAM even if bad PUFsare allowed, and a construction for BC that is

22

secure in the good PUF model, even if the adversary has got access to the PUF between the commit and the reveal
phase.

Our impossibility results illustrate that in order to be applicable as a general cryptographic tool, PUFs require
new hardware properties: The responses of the PUFs must be selectively erasable, which is a concept introduced
under the name “erasable PUF” in [41]. Secondly, mechanismsfor PUF-certification must be developed which
should work offline and detect bad PUFs, including bad PUFs that have been created by maliciously adding extra
hardware to a proper PUF. This consequence of our results poses new challenges to the PUF hardware community.

Acknowledgements

We would like to thank Jürg Wullschleger and Stefan Wolf for several substantial suggestions and enjoyable dis-
cussions on this manuscript.

References

[1] A. Kerckhoff: La cryptographie militaire. Journal des sciences militaires, Vol. IX, pp. 5-38, 1883.

[2] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, François-Xavier Standaert, Christian Wachsmann:
A Formalization of the Security Features of Physical Functions.IEEE Symposium on Security and Privacy
2011: 397-412

[3] Y. Aumann, Y. Z. Ding, M. O. Rabin:Everlasting security in the bounded storage model. IEEE Transactions
on Information Theory, 48(6):1668-1680, 2002.

[4] Yan Zong Ding, Danny Harnik, Alon Rosen, Ronen Shaltiel:Constant-Round Oblivious Transfer in the
Bounded Storage Model. J. Cryptology 20(2): 165-202 (2007)

[5] Donald Beaver:Correlated Pseudorandomness and the Complexity of PrivateComputations.STOC 1996:
479-488

[6] Manuel Blum:How to Exchange (Secret) Keys (Extended Abstract)STOC 1983: 440-447.

[7] C. Bruzska, M. Fischlin, H. Schröder, S. Katzenbeisser:Physical Unclonable Functions in the Universal
Composition Framework.CRYPTO 2011.

[8] C. Bruzska, M. Fischlin, H. Schröder, S. Katzenbeisser:Physical Unclonable Functions in the Universal
Composition Framework.. Full version of the paper. Available from Cryptology ePrint Archive, 2011.

[9] Ran Canetti:Universally Composable Security: A New Paradigm for Cryptographic Protocols. FOCS 2001:
136-145. Full and updated version available from Cryptology ePrint Archive.

[10] Ran Canetti, Marc Fischlin:Universally Composable Commitments.CRYPTO 2001: 19-40

[11] Ivan Damgard, Joe Kilian, Louis Salvail:On the (Im)possibility of Basing Oblivious Transfer and BitCom-
mitment on Weakened Security Assumptions. EUROCRYPT 1999: 56-73

[12] Marten van Dijk:System and method of reliable forward secret key sharing with physical random functions.
US Patent No. 7,653,197, October 2004.

[13] Ivan Damgård, Joe Kilian, Louis Salvail:On the (Im)possibility of Basing Oblivious Transfer and BitCom-
mitment on Weakened Security Assumptions.EUROCRYPT 1999: 56-73

[14] Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, Mahesh Viswanathan:The Relationship between
Public Key Encryption and Oblivious Transfer.FOCS 2000: 325-335

[15] I. Csiszar, J. Körner:Broadcast channels with confidential messages.IEEE Transactions on Information
Theory, Vol. 24 (3), 1978.

23

[16] S. Even, O. Goldreich, and A. Lempel:A Randomized Protocol for Signing Contracts. Communications of
the ACM, Volume 28, Issue 6, pg. 637-647, 1985.

[17] Blaise Gassend, Dwaine E. Clarke, Marten van Dijk, Srinivas Devadas:Silicon physical random functions.
ACM Conference on Computer and Communications Security 2002: 148-160

[18] B. Gassend, D. Lim, D. Clarke, M. v. Dijk, S. Devadas:Identification and authentication of integrated
circuits. Concurrency and Computation: Practice & Experience, pp. 1077 - 1098, Volume 16, Issue 11,
September 2004.

[19] O. Goldreich:Foundations of Cryptography: Volume II (Basic Applications). Cambridge University Press,
2004.

[20] O. Goldreich and L.A. Levin:A Hard-Core Predicate for all One-Way Functions.STOC 1989: 25-32.

[21] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, Pim Tuyls: FPGA Intrinsic PUFs and Their Use for
IP Protection. CHES 2007: 63-80

[22] Russell Impagliazzo, Steven Rudich:Limits on the Provable Consequences of One-Way Permutations.STOC
1989: 44-61

[23] Kilian, J.: Founding cryptography on oblivious transfer. STOC (1988)

[24] J.-W. Lee, D. Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas.A technique to build a secret key
in integrated circuits with identification and authentication applications.In Proceedings of the IEEE VLSI
Circuits Symposium, June 2004.

[25] Daihyun Lim: Extracting Secret Keys from Integrated Circuits. MSc Thesis, MIT, 2004.

[26] Sandeep S. Kumar, Jorge Guajardo, Roel Maes, Geert Jan Schrijen, Pim Tuyls:The Butterfly PUF: Protecting
IP on every FPGA.HOST 2008: 67-70

[27] M. Majzoobi, F. Koushanfar, M. Potkonjak:Lightweight Secure PUFs.IC-CAD 2008: 607-673.

[28] M. Majzoobi, F. Koushanfar, M. Potkonjak:Testing techniques for hardware security.In

[29] U. Maurer:Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology,
5(1):53-66, 1992.

[30] Ueli M. Maurer: Protocols for Secret Key Agreement by Public Discussion Based on Common Information.
CRYPTO 1992: 461-470

[31] R. Ostrovsky, A. Scaffuro, I. Visconti, A. Wadia:Universally Composable Secure Computation with (Mali-
cious) Physically Uncloneable Functions.Cryptology ePrint Archive, March 16, 2012.

[32] R. Pappu:Physical One-Way Functions. PhD Thesis, Massachusetts Institute of Technology, 2001.

[33] R. Pappu, B. Recht, J. Taylor, N. Gershenfeld:Physical One-Way Functions, Science, vol. 297, pp. 2026-
2030, 20 September 2002.

[34] Dusko Pavlovic:Gaming security by obscurity.CoRR abs/1109.5542: (2011)

[35] M.O. Rabin:Digitalized signatures and public-key functions as intractable as factorization.MIT/LCS/TR-
212, 1979.

[36] Ron Rivest:Illegitimi non carborundum. Invited keynote talk, CRYPTO 2011.

[37] U. Rührmair:SIMPL Systems, Or: Can we build cryptographic hardware without secret key information?.
SOFSEM 2011, Springer LNCS, 2011.

[38] U. Rührmair: Oblivious Transfer based on Physical Unclonable Functions(Extended Abstract). TRUST
Workshop on Secure Hardware, Berlin (Germany), June 22, 2010. Lecture Notes in Computer Science, Vol-
ume 6101, pp. 430 - 440. Springer, 2010.

24

[39] U. Rührmair, H. Busch, S. Katzenbeisser:Strong PUFs: Models, Constructions and Security Proofs.In A.-R.
Sadeghi, P. Tuyls (Editors): Towards Hardware Intrinsic Security: Foundation and Practice. Springer, 2010.

[40] U. Rührmair, M. van Dijk:Practical Security Analysis of PUF-based Two-Player Protocols.In submission,
2012.

[41] U. Rührmair, C. Jaeger, M. Algasiner:An Attack on PUF-based Session Key Exchange, and a Hardware-
based Countermeasure: Erasable PUFs.Financial Cryptography and Data Security 2011.

[42] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber:Modeling Attacks on Physical
Unclonable Functions. ACM Conference on Computer and Communications Security, 2010.

[43] U. Rührmair, J. Sölter, F. Sehnke:On the Foundations of Physical Unclonable Functions.Cryptology e-Print
Archive, June 2009.

[44] George Savvides:Interactive Hashing and reductions between Oblivious Transfer variants. PhD Thesis,
McGill University, 2007.

[45] G. E. Suh, S. Devadas:Physical Unclonable Functions for Device Authentication and Secret Key Generation.
DAC 2007: 9-14

[46] Pim Tuyls, Boris Skoric, S. Stallinga, Anton H. M. Akkermans, W. Ophey:Information-Theoretic Security
Analysis of Physical Uncloneable Functions. Financial Cryptography 2005: 141-155

[47] P. Tuyls, B. Skoric:Strong Authentication with Physical Unclonable Functions. In: Security, Privacy and
Trust in Modern Data Management, M. Petkovic, W. Jonker (Eds.), Springer, 2007.

[48] Pim Tuyls, Geert Jan Schrijen, Boris Skoric, Jan van Geloven, Nynke Verhaegh, Rob WoltersRead-Proof
Hardware from Protective Coatings.CHES 2006: 369-383

[49] A. D. Wyner: The wire-tap channel.Bell Systems Technical Journal, 54:1355-1387, 1975.

A The Semi-Honest Model Without Transfer of Physical Objects

We quote the standard definition of semi-honest behavior in the deterministic case (without the transfer of physical
objects) from [19]:

Definition 26 (Privacy w.r.t. semi-honest behavior in the deterministiccase [19]). Let f : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a deterministic functionality, and denote the first (resp., second) output off(x, y) byf1(x, y)
(resp.,f2(x, y)). LetΠ be a two-party protocol for computingf . Theview of the first (resp., second) party during
execution ofΠ on(x, y), denotedviewΠ

1 (x, y) (resp.,viewΠ
2 (x, y)), is(x, r,m1, . . . ,mt) (resp.,(y, r,m1, . . . ,mt)),

wherer represents the outcome of the first (resp., second) party’s internal coin tosses, andmi represents thei-th
message it has received.

We say thatΠ privately computesf if there exist probabilistic polynomial time algorithms, denotedS1 andS2,
such that16

{S1(x, f1(x, y))}x,y∈{0,1}∗
c≡ {viewΠ

1 (x, y)}x,y∈{0,1}∗ (5)

{S2(x, f2(x, y))}x,y∈{0,1}∗
c≡ {viewΠ

2 (x, y)}x,y∈{0,1}∗ (6)

where|x| = |y|.
An oracle-aided protocolΠ using oracle-functionalityO is said to privately computef if there exist probabilis-

tic polynomial time algorithmsS1 andS2 satisfying (5-6), where the corresponding views of the execution of the

16Here,
c

≡ denotes computational indistinguishability by non-uniform families of polynomial-size circuits such that indistinguishability also
holds with respect to probabilistic polynomial-time machinesthat obtain (non-uniform) auxiliary inputs.

25

oracle-aided protocol are defined in the natural manner.17 An oracle-aided protocolΠ is said to privately reduce
f toO, if it privately computesf when using the oracle-functionalityO (this is also called a black-box reduction).

B A Quadratic Attack

In this appendix, we will describe a quadratic attack on the OT- and BC-protocols of Brzuska et al. [7]. It works
fully in their own communication model, i.e., it does not assume new attack models such as the PAM or the bad
PUF model. As discussed in detail in the upcoming Section B.3, it has the practical effect that the protocol is
insecure when used with optical PUFs a la Pappu [33, 32] and with electrical PUFs that have medium challenge
length of 64 bit, say. This is of particular relevance, sinceBrzuska et al. had explicitly suggested the use of optical
PUFs in connection with their protocols (Section 8 of [8]). Our attack is regardless of the cryptographic hardness
and unpredictability of the PUF, and only relates to the number of possible challenges a PUF possesses.

The attack has been described for the first time by Rührmair and van Dijk in [40]. Since this document is in
submission and currently not publicly available, we excerpt from it in this appendix.

B.1 The OT- and BC-Protocol of Brzuska et al.

We start by describing the two protocols by Brzuska et al. in order to achieve a self contained treatment. To keep
our exposition simple, we will not use the full UC-notation of [7], and will present the schemes mostly without
error correction mechanisms, since the latter play no role in the context of our attack.

The protocols use two communication channels between the communication partners: A binary channel, over
which all digital communication is handled. It is assumed that this channel is non-confidential, but authenticated.
And secondly an insecure physical channel, over which the PUF is sent. It is assumed that adversaries can measure
adaptively selected CRPs of the PUF while it is in transitionover this channel.

B.1.1 Oblivious Transfer

The OT protocol of [7] implements one-out-of-two string oblivious transfer. It is assumed that in each subsession
the senderPi initially holds two (fresh) bitstringss0, s1 ∈ {0, 1}λ, and that the receiverPj holds a (fresh) choice
bit b.

Brzuska et al. generally assume in their treatment that after error correction and the application of fuzzy ex-
tractors, a PUF can be modeled as a functionPUF : {0, 1}λ → {0, 1}rg(λ). In the subsequent protocol of Brzuska
et al., it is furthermore assumed thatrg(λ) = λ, i.e., that the PUF implements a functionPUF : {0, 1}λ → {0, 1}λ
[7, 8]. Please note that we used this model throughout this paper, too.

Protocol 27: PUF-BASED OBLIVIOUS TRANSFER([7], SLIGHTLY SIMPLIFIED DESCRIPTION)

External Parameters: The protocol has a number of external parameters, includingthe security parameterλ, the
session identifiersid, a numberN that specifies how many subsessions are allowed, and a pre-specified PUF-
family P, from which all PUFs which are used in the protocol must be drawn.

Initialization Phase: Execute once with fixed session identifiersid:

1. The receiver holds a PUF which has been drawn from the family P.

2. The receiver measuresl randomly chosen CRPsc1, r1, . . . , cl, rl from the PUF, and puts them in a list
L := (c1, r1, . . . , cl, rl).

3. The receiver sends the PUF to the sender.
17I.e., the view of the first (resp., second) party also recordsall queries by the first (resp., second) party toO. Computational indistinguisha-

bility is now defined with respect to machines that have oracleaccess toO. This allows such machines to extract from the first (resp., second)
view information aboutx andy (more than what can be constructed from the inputx (resp.,y) and output(x, f1(x, y)) (resp.,(y, f2(x, y)))
alone) that needs oracle access toO in order to interpret the view. Also the simulator algorithmsS1 andS2 have access toO in order to
simulate the recorded oracle queries by the views. Summarizing, O is treated as a black-box accessible to all algorithms and protocols.

26

Subsession Phase:Repeat at mostN times with fresh subsession identifierssid:

1. The sender’s input are two stringss0, s1 ∈ {0, 1}λ, and the receiver’s input is a bitb ∈ {0, 1}.

2. The receiver chooses a CRP(c, r) from the listL at random.

3. The sender chooses two random bitstringsx0, x1 ∈ {0, 1}λ and sendsx0, x1 to the receiver.

4. The receiver returns the valuev := c⊕ xb to the sender.

5. The sender measures the responsesr0 andr1 of the PUF that correspond to the challengesc0 := v⊕ x0 and
c1 := v ⊕ x1.

6. The sender sets the valuesS0 := s0 ⊕ r0 andS1 := s1 ⊕ r1, and sendsS0, S1 to the receiver.

7. The receiver recovers the stringsb that depends on his choice bitb assb = Sb ⊕ r. He erases the pair(c, r)
from the listL.

Comments. The protocol implicitly assumes that the sender and receiver can interrogate the PUF whenever they
have access to it, i.e., that the PUF’s challenge-response interface is publicly accessible and not protected. This
implies that the employed PUF must possess a large number of CRPs. Using a PUF with just a few challenges does
not make sense: The receiver could then create a full look-uptable for all CRPs of such a PUF before sending it
away in Step 3 of the Initialization Phase. This would subsequently allow him to recover both stringss0 ands1 in
Step 6 of the protocol subsession, as he could obtainr0 andr1 from his look-up table. Similar observations hold
for the upcoming protocol 28. Indeed, all protocols discussed in this paper require PUFs with a large number of
challenges and publicly accessible challenge-response interfaces. These PUFs have sometimes been referred to as
Physical Random Functionsor also asStrong PUFsin the literature [21, 43, 42].

Furthermore, please note that the PUF is not transferred during the subsessions. According to the model of
Brzuska et al., an adversary only has access to it during the initialization phase, but not between the subsessions.
This protocol use has some similarities with a stand-alone usage of the PUF, in which exactly one PUF-transfer
occurs between the parties.

B.1.2 Bit Commitment

The second protocol of [7] implements PUF-based Bit Commitment (BC) by a generic reduction to PUF-based OT.
The BC-sender initially holds a bitb. When the OT-Protocol is called as a subprotocol, the roles ofthe sender and
receiver are reversed: The BC-sender acts as the OT-receiver, and the BC-receiver as the OT-sender. The details
are as follows.

Protocol 28: PUF-BASED BIT COMMITMENT VIA PUF-BASED OBLIVIOUS TRANSFER ([7], SLIGHTLY

SIMPLIFIED DESCRIPTION)

Commit Phase:

1. The BC-sender and the BC-receiver jointly run an OT-protocol (for example Protocol 27).

(a) In this OT-protocol, the BC-sender acts as OT-receiver and uses his bitb as the choice bit of the OT-
protocol.

(b) The BC-receiver acts as OT-sender. He chooses two stringss0, s1 ∈ {0, 1}λ at random, and uses them
as his inputs0, s1 to the OT-protocol.

2. When the OT-protocol is completed, The BC-sender has learned the stringv := sb. This closes the commit
phase.

Reveal Phase:

1. In order to reveal bitb, the BC-sender sends the string(b, v) (with v = sb) to the BC-receiver.

27

Comments. The security of the BC-protocol is inherited from the underlying OT-protocol. Once this protocol is
broken, also the security of the BC-protocol is lost. This will be relevant in the upcoming sections.

B.2 A Quadratic Attack on Protocols 27 and 28

We will now discuss a cheating strategy in Protocols 27 and 28. Compared to an attacker who exhaustively queries
the PUF for all of itsm possible challenges, we describe an attack on Protocols 27 and 28 which reduces this
number to

√
m. As we will argue later in Section B.3, this has a particularly strong effect on the protocol’s security

if an optical PUF is used (as has been explicitly suggested by[8]), or if electrical PUFs with medium challenge
lengths of 64 bits are used.

Our attack rests on the following lemma.

Lemma 29. Consider the vector space({0, 1}λ,⊕), λ ≥ 2, with basisB = {a1, . . . , a⌊λ/2⌋, b1, . . . , b⌈λ/2⌉}. Let
A be equal to the linear subspace generated by the vectors inBA = {a1, . . . , a⌊λ/2⌋} and letB the linear subspace
generated by the vectors inBB = {b1, . . . , b⌈λ/2⌉}. DefineS := A ∪B. Then it holds that:

(i) Any vectorz ∈ {0, 1}λ can be expressed asz = a⊕ b with a, b ∈ S, and this expression (i.e., the vectorsa and
b) can be found efficiently (i.e., in at mostpoly(λ) steps).

(ii) For all distinct vectorsx0, x1, v ∈ {0, 1}λ there is an equal number of combinations of linear subspacesA
andB as defined above for whichx0 ⊕ v ∈ A andx1 ⊕ v ∈ B.

(iii) S has cardinality|S| ≤ 2 · 2⌈λ/2⌉.

Proof. (i) Notice that any vectorz ∈ {0, 1}λ can be expressed as a linear combination of all basis vectors: z =
∑

uiai +
∑

vjbj , i.e.,z = a ⊕ b with a ∈ A andb ∈ B. This expression is found efficiently by using Gaussian
elimination.

(ii) Without loss of generality, sincex0, x1 andv are distinct vectors, we may choosea1 = x0 ⊕ v 6= 0 and
b1 = x1 ⊕ v 6= 0. The number of combinations of linear subspacesA andB is independent of the choicea1 and
b1. (Notice that ifx0 6= x1 butv = x0, then the number of combinations is twice as large.)

(iii) The bound follows from the construction ofS and the cardinalities ofA andB, which are|A| = 2⌊λ/2⌋

and|B| = 2⌈λ/2⌉.

An Example. Let us give an example in order to illustrate the principle ofLemma 29. Consider the vector space
({0, 1}λ,⊕) for an evenλ, and choose as subbasesBA0

= {e1, . . . , eλ/2} andBB0
= {eλ/2+1, . . . , eλ}, whereei

is the unit vector of lengthλ that has a one in positioni and zeros in all other positions. Then the basisBA0
spans

the subspaceA0 that contains all vectors of lengthλ whose second half is all zero, andBB0
spans the subspace

B0 that comprises all vectors of lengthλ whose first half is all zero. It then follows immediately thatevery vector
z ∈ {0, 1}λ can be expressed asz = a⊕ b with a ∈ A0 andb ∈ B0, or, saying this differently, witha, b ∈ S and
S := A0 ∪B0. It also immediate thatS has cardinality|S| ≤ 2 · 2λ/2.

Relevance for PUFs. The lemma translates into a PUF context as follows. Suppose that a malicious and an
honest player play the following game. The malicious playergets access to a PUF with challenge lengthλ in an
initialization period, in which he can query CRPs of his choice from the PUF. After that, the PUF is taken away
from him. Then, the honest player chooses a vectorz ∈ {0, 1}λ and sends it to the malicious player. The malicious
player wins the game if he can present the correct PUF-responsesr0 andr1 to two arbitrary challengesc0 andc1
which have the property thatc0 ⊕ c1 = z. Our lemma shows that in order to win the game with certainty,the
malicious player does not need to read out the entire CRP space of the PUF in the initialization phase; he merely
needs to know the responses to all challenges in the setS of Lemma 29, which has a quadratically reduced size
compared to the entire CRP space. This observation is at the heart of the attack described below.

In order to make the attack hard to detect for the honest player, it is necessary that the attacker chooses random
subspacesA andB, and does not use the above trivial choicesA0 andB0 all the time. This fact motivates the
random choice ofA andB in Lemma 29. The further details are as follows.

28

The Attack. As in [7, 8], we assume that the PUF has got a challenge set of{0, 1}λ. Given Lemma 29, the
OT-receiver (who initially holds the PUF) can achieve a quadratic advantage in Protocol 27 as described below.

First, he chooses uniformly random linear subspacesA andB, and constructs the setS, as described in Lemma
29. While he holds possession of the PUF before the start of theprotocol, he reads out the responses to all
challenges inS. Since|S| ≤ 2 · 2⌈λ/2⌉, this is a quadratic improvement over reading out all responses of the PUF.

Next, he starts the protocol as normal. When he receives the two valuesx0 andx1 in Step 3 of the protocol, he
computes two challengesc∗0 andc∗1 both in setS such that

x1 ⊕ x2 = c∗0 ⊕ c∗1.

According to Lemma 29(i), this can be done efficiently (i.e.,in poly(λ) operations). Notice that, since the receiver
knows all the responses corresponding to challenges inS, he in particular knows the two responsesr∗0 andr∗1 that
correspond to the challengesc∗0 andc∗1.

Next, the receiver deviates from the protocol and sends the valuev := c∗0 ⊕ x0 in Step 4. For this choice ofv,
the two challengesc0 andc1 that the sender uses in Step 5 satisfy

c0 := c∗0 ⊕ x0 ⊕ x0 = c∗0

and
c1 := c∗0 ⊕ x0 ⊕ x1 = c∗0 ⊕ c∗0 ⊕ c1 = c∗1.

By Lemma 29(ii), Alice cannot distinguish the received value v in Step 4 from any random vectorv. In other
words, Alice cannot distinguish Bob’s malicious behavior (i.e., fabricating a specialv with suitable properties) from
honest behavior. As a consequence, Alice continues with Step 6 and transmitsS0 = s0 ⊕ r∗0 andS1 = s1 ⊕ r∗1 .
Since Bob knows bothr∗0 andr∗1 , he can recover boths0 ands1. This breaks the security of the protocol.

Please note the presented attack is simple and effective: Itfully works within the original communication model
of Brzuska et al. [7, 8]. Furthermore, it does not require laborious computations of many days on the side of the
attacker (as certain modeling attacks on PUFs do [42]). Finally, due to the special construction we proposed, the
honest players will not notice the special choice of the value v, as the latter shows no difference from a randomly
chosen value.

Effect on Bit Commitment (Protocol 28). Due to the reductionist construction of Protocol 28, our attack on
the oblivious transfer scheme of Protocol 27 directly carries over to the bit commitment scheme of Protocol 28 if
Protocol 27 is used in it as a subprotocol. By using the attack, a malicious sender can open the commitment in both
ways by reading out only2 · 2⌈λ/2⌉ responses (instead of all2λ responses) of the PUF. On the other hand it can be
observed easily that the hiding property of the BC-Protocol28 is unconditional, and is not affected by our attack.

B.3 Practical Consequences of the Attack

What are the practical consequences of our quadratic attack,and how relevant is it in real-world applications?
The situation can perhaps be illustrated via a comparison toclassical cryptography. What effect would a quadratic
attack have on schemes like RSA, DES and SHA-1? To start with RSA, the effect of a quadratic attack here is rather
mild: The length of the modulus must be doubled. This will lead to longer computation times, but restore security
without further ado. In the case of single-round DES, however, a quadratic attack would destroy its security, and
the same holds for SHA-1. The actual effect of our attack on PUF-based OT and BC has some similarities with
DES or SHA-1: PUFs are finite objects, which cannot be scaled in size indefinitely due to area requirements,
arising costs, and stability problems. This will also become apparent in our subsequent discussion.

B.3.1 Electrical Integrated PUFs

We start our dicussion by electrical integrated PUFs, and take the well-known Arbiter PUF as an example. It has
been discussed in theory and realized in silicon mainly for challenge lengths of 64 bits up to this date [17, 18, 24,
45]. Our attack on such a 64-bit implementation requires theread-out of2 · 232 = 8.58 · 109 CRPs by the receiver.
This read-out can be executed before the protocol, not during the protocol, and will hence not be noticed by the
sender. Assuming a MHz CRP read-out rate [24] of the Arbiter PUF, the read-out takes8.58 · 103 sec, or less than
144min.

29

Please note that the attack is independent of the cryptographic hardness of the PUF, such as its resilience
against machine learning attacks. For example, a 64-bit, 8-XOR-Arbiter PUF (i.e., an Arbiter PUF with eight
parallel standard 64-bit Arbiter PUFs whose single responses are XORed at the end of the structure) is considered
secure in practice against all currently known machine learning techniques [42]. Nevertheless, this type of PUF
would still allow the above attack in72min.

Our attacks therefore enforce the use of PUFs with a challenge bitlength of 128 bits or more in Protocols 27
and 28. Since much research currently focuses on 64-bit implementations of electrical PUFs, publication and
dissemination of the attack seems important to avoid their use in Protocols 27 and 28. Another aspect of our attack
is that it motivates the search for OT- and BC-protocols thatare immune, and which can safely be used with 64-bit
implementations. The reason is that the usage of 128-bit PUFs doubles the area consumption of the PUF and
negatively affects costs.

B.3.2 Optical PUFs

Let us now discuss the practical effect of our attack on the the optical PUF introduced by Pappu [32] and Pappu
et al. [33]. The authors use a cuboid-shaped plastic token ofsize1 cm× 1 cm× 2.5 mm, in which thousands
of light scattering small spheres are distributed randomly. They analyze the number of applicable, decorrelated
challenge-response pairs in their set-up, arriving at a figure of 2.37 · 1010 [33]. Brzuska et al. assume that these
challenges are encoded in a set of the form{0, 1}λ, in which caseλ = ⌈log2 2.37 · 1010⌉ = 35. If this number
of 235 is reduced quadratically by virtue of Lemma 29, we obtain on the order of2 · 218 = 5.2 · 105 CRPs that
must be read out by an adversary in order to cheat. It is clear that even dedicated measurement set-ups for optical
PUFs cannot realize the MHz rates of the electrical example in the last section. But even assuming mild read-out
rates of 10 CRPs or 100 CRPs per second, we still arrive at small read-out times of5.2 · 104 sec or 5.2 · 103 sec,
respectively. This is between14.4 hours (for 10 CRPs per second) or87 minutes (for 100 CRPs per second). If a
malicious receiver holds the PUF for such a time frame beforethe protocol starts (which is impossible to control
or prevent for the honest players), he can break the protocol’s security.

Can the situation be cleared by simply scaling the optical PUF to larger sizes? Unfortunately, also an asymptotic
analysis of the situation shows the same picture. All variable parameters of the optical PUF [33, 32] are thex-y-
coordinate of the incident laser beam and the spatial angleΘ under which the laser hits the token. This leads to a
merely cubic complexity in the three-dimensional diameterd of the cuboid scattering token.18 Given our attack,
this implies that the adversary must only read outO(d 1.5) challenges in order to cheat in Protocols 27 and 28. If
only the independent challenges are considered, the picture is yet more drastic: As shown in [46], the PUF has at
most a quadratic number ofindependentchallenges ind. This reduces to a merelylinear number of CRPs which
the adversary must read out in our attack. Finally, we remarkthat scaling up the size of the PUF also quickly
reaches its limits under practical aspects: The token considered by Pappu et al. [33, 32] has an area of 1 cm× 1
cm. In order to slow down the quadratic attack merely by a factor of 10, a token of area 10 cm× 10 cm would
have to be used. Such a token is too large to even fit onto a smartcard.

Overall, this leads to the conclusion that optical PUFs likethe ones discussed in [32, 33] cannot be used safely
with the Protocols 27 and 28 in the face of our attack. Due to their low-degree polynomial CRP complexity, and due
to practical size constraints, simple scaling of the PUFs constitutes no efficient countermeasure. This distinguishes
the optical approach from the electrical case of the last section. This observation has a particular relevance, since
Brzuska et al. had explicitly suggested optical PUFs for theimplementation of their protocols (see Section 8 of
[8]).

B.4 Are There Counter Measures?

Let us quickly consider potential countermeasures againstour attacks and their practical feasibility in this section.
One first idea is: Can we bind the time in which the malicious player has got access to the PUF? The current
Protocols 27 and 28 obviously are unsuited to this end; but could there be modifications of theirs which have this
property? A simple approach would be to introduce one additional PUF transfer from the sender to the receiver
in the initialization phase. This assumes that the sender initially holds the PUF, transfers it to the receiver, and

18Please note in this context that the claim of [8] that the number of CRPs of an optical PUF is super-polynomial must have been made
erroneously or by mistake; our above brief analysis shows that it is at mostly cubic. The low-degree polynomial amount of challenges of the
optical PUF is indeed confirmed by the entire literature on thetopic, most prominently [33, 32, 46].

30

measures the time frame by which the receiver returns the PUF. The period in which the receiver had access to
the PUF gives a bound on the number of CRPs he knows. This can beused in the protocols to guarantee security.
Please note that a long and uncontrolled access time for the sender is no problem for the protocol’s security, so we
only need to bind the access time of the receiver by the above approach.

On closer inspection, however, there are some problems withthis technique. The first and foremost problem
is its mediocre practicality. In general, each PUF-transfer in a protocol is very costly. If executed via physical,
postal delivery over long distances between arbitrary parties, it might cost days. Having two such transfers in one
protocol is devastating for the protocol’s practicality.

A second issue is that binding the adversarial access time ina tight manner by the suggested procedure is very
difficult. How long will the physical transfer take? 1 day? What if the adversary or someone else can do it faster,
and the adversary uses the gained time for executing measurements on the PUF? What if the adversary executes
the physical transfer himself, and can measure the PUF whileit is in transit? Obtaining a tight and short bound on
the adversary’s access time seems impossible here.

In summary, there are only very, very few circumstances where enforcing a time bound on the receiver’s access
time is possible in a realistic setting. The above idea is hence interesting for future PUF-protocol design, but cannot
be considered a general countermeasure.

C Behavior of Known PUF-Protocols in the PAM

We will now illustrate how several known two-party PUF-protocols behave in the posterior access model (PAM),
i.e., under the assumption that the adversary gains access to the PUF after a subsession of the protocols. For
space reasons, we will carry out only one exemplary analysis, namely for the OT- and BC-protocol of Brzuska et
al. The other cases (Brzuska’s KE protocol and Rührmair’s OTprotocol) are somewhat similar. The well-known
CRP-based PUF-identification protocol [32, 33] is not affected in the PAM. In order to achieve a self-contained
treatment, the OT- and BC-protocol of Brzuska et al. have been described as Protocols 27 and 28 in Section B.1.1.

C.1 Brzuska et al.’s OT and BC Protocol in the PAM

Let us start by describing an attack on the OT-protocol of Brzuska et al. (which was described as Protocol 27 in
Section B.1) in the PAM. In terms of notation, we relate to theterminology of Protocol 27 in our attack. The attack
rests on the followingassumptions:

1. The initialization phase of the OT-Protocol 27 is carriedout between the sender and the receiver.

2. Later, different subsessions of the protocol are run. We assume that there is a subsessionssid with the
following properties:

• Eve was able to eavesdrop the binary communication between the sender and the receiver in the sub-
sessionssid.

• Eve can read-out CRPs from the PUF after the end of the subsession ssid, for example before a new
subsessionssid′ is started.

Under these provisions, Eve can learn both bitss0 ands1 used by the sender in subsessionssid. This breaks the
security of this subsession. The attack works as follows:

1. When the subsessionssid is run, Eve eavesdrops the messages in Steps 3, 4 and 6. She therefore learns the
valuesx0, x1, v (:= c⊕ xb), S0 (:= s0 ⊕ r0) andS1 (:= s1 ⊕ r1), hence,r0 andr1 are the responses to the
challengesc0(:= v ⊕ x0) andc1(:= v ⊕ x1).

2. When Eve has got physical access to the PUF after the subsession ssid, she computes the challengesc0 :=
v ⊕ x0 andc1 := v ⊕ x1 herself. She applies these challenges to the PUF, and obtains the responsesr0 and
r1.

3. Eve derivess0 ands1 by computing the valuesS0⊕r0 = s0⊕r0⊕r0 = s0 andS1⊕r1 = s1⊕r1⊕r1 = s1.
This breaks the security of the subsessionssid.

31

Please note that an attacker cannot learn the receiver’s choice bit b by a similar attack, since the secrecy of the
choice bit is unconditional and does not rely on the employedPUF.

Consequences for Bit Commitment. Since Protocol 28 is a direct reduction of BC to OT, the above attack
directly affects Protocol 28 whenever it employs Protocol 27 as a subprotocol. A BC-sender who acts as adversary
in Protocol 28 learns boths0 ands1 by applying our above attack, under the provision that he gets access to the
PUF between the commit phase and the reveal phase, or simply after the commit phase in the case that the reveal
phase is never executed. Knowledge ofs0 ands1 enable him to open his commitment in both ways: to open the
value “0”, he sends(0, s0) in the reveal phase, and to open the value “1”, he sends(1, s1). Note that the hiding
property of the BC-Protocol 28 is not affected by our attack,since it is unconditional and independent of the PUF.
Furthermore, we comment that the attack does not work if the adversary or malicious players get access to the PUF
only after the end of the reveal phase. In this case, the BC-protocol remains secure.

Relevance for the OT-Protocol of Rührmair [38]. Please note that the above attack strategy directly carries
over to the OT-protocol of Rührmair [38], which consequently is also not secure in the PAM. The details are
straightforward and left to the reader for space reasons. For reasons of fairness, we would also like to remark that
the protocol of Rührmair was merely suggested in a stand-alone setting from the start. Nevertheless, our attack
indicates that the picture drastically changes in the PAM.

C.2 Conclusions

The security of many currently known PUF-protocols, including the protocols of Brzuska et al., is not maintained
in PAM. Westressthat these protocols were not designed for the PAM, and that the corresponding security proofs
do not assume posterior access. On the other hand, the PAM constitutes a practically very viable attack scenario
in most PUF applications, as argued in detail in Section 2. Ifthe protocols of Brzuska et al. or of Rührmair were
used in these applications, they would likely be faced with our attacks. This makes the behavior of the protocols
in the PAM a relevant issue.

D Behavior of Known PUF-Protocols in the Bad PUF Model

We now briefly investigate the behavior of known PUF-protocols in the bad PUF model. Exemplarily, we will
examine the security of the OT- and BC-protocol of Brzuska etal. [7] under the assumption that the players may
generate and use simulatable PUFs. In order to achieve a self-contained treatment, the OT- and BC-protocol of
Brzuska et al. have been described as Protocols 27 and 28 in Section B.1.1.

D.1 Brzuska et al.’s OT- and BC-Protocol and Simulatable PUFs

We start by the attack on the OT-protocol of Brzuska et al. Theattack makes the following single assumption:

1. The receiver hands over a simulatable bad PUF instead of a proper PUF in the initialization phase, and
furthermore possesses a simulation algorithm for this PUF.

The attack itself works as follows:

1. The receiver follows Protocol 27 as specified, and carriesout a subsessionsid.

2. When the subsession is completed, the receiver computes the two challengesc0 := v⊕x0 andc1 := v⊕x1.
He can do so since he knowsv, x0 andx1 from earlier protocol steps.

3. The receiver uses his simulation algorithm in order to compute the two responsesr0 andr1 which correspond
to the challengesc0 andc1.

4. The receiver derives both valuess0 ands1 by computingS0 ⊕ r0 = s0 ⊕ r0 ⊕ r0 = s0 andS1 ⊕ r1 =
s1 ⊕ r1 ⊕ r1 = s1. He can do so since he knowsS0, S1 from step 6 of the OT-protocol. This breaks the
security of the protocol.

32

Consequences for the Bit Commitment Protocol of [7]. The BC-protocol of Brzuska et al. is a direct reduction
of BC to OT. The above attack on their OT-protocol hence transfers to their BC-protocol if the OT-protocol is used
as a subprotocol therein. The BC-sender will be able to open his commitment in two ways. The hiding property of
the BC-protocol is not affected; it is unconditional and independent of the used PUF.

Relevance for the OT-Protocol of Rührmair [38]. Please note that the above attack strategy directly carries
over to the OT-protocol of Rührmair [38], which consequently is also not secure in the bad PUF model. The details
are straightforward and left to the reader for space reasons.

D.2 Conclusions

The security of the OT- and BC-protocol of Brzuska et al. is not maintained under the use of simulatable PUFs.
We stressthat these protocols are not designed for such use, and that the corresponding security proofs do not
assume simulatable PUFs. On the other hand, simulatable PUFs do constitute a practically viable attack scenario
in many PUF applications: Physical authentication of PUFs is difficult and very laborious in practical settings, and
bad PUFs introduced by the parties in two-party protocols are particularly difficult to detect, as we argued in all
detail in Section 2. If the protocols of Brzuska et al. were used in practice, they would likely be faced with this
class of attacks.

Please note that the previous discussion does not consider the effect of challenge-logging PUFs. The corre-
sponding attacks are somewhat similar, but require the assumption that the PUFs are re-used in protocols with
other players. The details are left to the readers for space reasons.

E Two Further Implementations of Simulatable Bad PUFs

In Section 2 we argued that a straightforward implementation of simulatable PUFs is the use of a pseudorandom
number generator with a seeds that is known to the malicious party. We present two other viable constructions
in this section to interested readers. They use existing PUF-designs and modify them in such a way that the PUF-
manufacturer can machine learn and hence simulate them. Theextra wires which allow this machine learning
option are disabled before the PUF is released to the field, meaning that other parties will not be able to use them.
The details are described in the next sections.

E.1 Simulatable PUFs by XOR Arbiter PUFs with Extra Wires

Currently, the most compact and secure electrical Strong PUF implementation probably are XOR Arbiter PUFs. In
these constructions, several of the well-known Arbiter PUFs [17, 18, 24, 45] are used in parallel, and their outputs
are XORed in order to obtain the output. Such XOR-constructions have explicitly been described and examined in
[25, 45, 27].

Arbiter PUFs were tested for their security against machinelearning-based modeling attacks in a number of
publications, including [25, 28, 42]. In these attacks, an adversary collects a large set of CRPs of the PUF, and
feeds them into a machine learning algorithm. The algorithmtries to derive a numeric simulation model of the
PUF. If successful, the PUF-responses can afterwards be predicted numerically by this algorithm. The results of
[25, 42] were as follows: (i) A single Arbiter PUF can be learned and predicted very efficiently (i.e., with very few
CRPs and with very small computation times). (ii) The XOR of several single Arbiter PUF is increasingly hard to
learn. Constructions which employ more than six single Arbiter PUFs and XOR their single outputs in order to
create a single bit as the overall output cannot be machine learned efficiently with current methods.

PUF designers whose aim is the construction of secure PUFs thus will make sure that the adversary cannot
access the outputs of the single Arbiter PUFs before they areXORed. Otherwise, an adversary could collect the
CRPs from the single Arbiter PUFs, and so machine learn the behavior of each single Arbiter PUF. And once she
can predict each single Arbiter PUF, she can also predict theXOR of all single Arbiter PUFs.

This situation on the forefront of electrical Strong PUF implementations leads to a very simple strategy for the
fabrication of simulatable PUFs. The malicious party uses an XOR Arbiter PUF with, for example, eight single
Arbiter PUFs, but with a little twist: There are extra wires which transfer the responses of the single Arbiter PUFs
to the outside before they are fed into the XOR-operation. Inan initial phase after fabrication, the malicious party

33

uses these extra wires in order to collect CRPs from each single Arbiter PUF, allowing her to machine learn the
behavior of each single Arbiter PUF. This enables the malicious party to create a simulation algorithm for the
responses of the entire XOR Arbiter PUF. Once this algorithmhas been created, the extra wires are permanently
disabled. The situation is depicted schematically in Figure 1.

One advantage of this XOR-based implementation of simulatable PUFs is the following: The resulting PUF
hasexactlythe same output as a “normal” XOR Arbiter PUF, since the extrawires have no effect on this output.
The simulatable XOR Arbiter PUF hence cannot be distinguished from a normal XOR Arbiter PUF by the honest
party via mere CRP measurement, while the malicious party holds a simulation algorithm for it.

E.2 Optical Simulatable Bad PUFs

An interesting question is whether there are optical simulatable PUFs. For example: Is there a simulatable version
of Pappu’s optical PUF [33]? Currently, it seems impossibleto answer this question with definiteness. Speculating
about future developments, it may well be possible to arrange the scattering centers of Pappu’s PUF in a way that
simplifies the output. For example, using very few scattering centers may lead to a simplified or even trivial input-
output behavior. Current protocols do not test or exclude this possibility: In Protocols 27, 28 and 9, the malicious
party could even use a plastic token that does not contain anyscattering centers at all (and which produces trivial
outputs) without being detected, and could use this to cheat. Generally, the question whether optical PUFs a la
Pappu [33] can be made simulatable seems undecided.

On the other hand, integrated optical PUFs are known to be attackable by machine learning methods in certain
settings. This has been shown first in [37], which described attacks on a real optical system in the appendix of
[37]. Integrated optical PUFs could hence in principle be used by malicious parties as simulatable PUFs.

Let us elaborate on this in more detail. Figure 2 shows a schematic example of an integrated optical PUF. The
input and output of challenges and responses is in digital form. [37] proved that on the basis of a large number
of plain scattering images (i.e., those images that have notyet been processed by some image transformation), the
input-output behavior can be machine learned and simulatedwith very high accuracy. This can be exploited by a
malicious party can to build an optical simulatable PUF in a straightforward fashion: She builds on option to read
out the CCD images directly into the PUF. Once the PUF has beenmachine learned and the simulation algorithm
has been constructed, this option is permanently disabled,similar to the electrical construction based on XOR
Arbiter PUFs. The adversary then possesses a simulation model of the PUF and can use this to break protocols in
which this PUF is used. For further details on the machine learning of integrated optical PUFs we refer the reader
to [37].

34

Arb PUF No. 1

Global Challenge C

Arb PUF No. 2

Challenge C

Arb PUF No. 3

Challenge C
Global

Response R

Arb PUF No. 8

Challenge C

XOR

Challenge C

Malicious party collects responses of

the single Arbiter PUFs in order to

create a simulation algorithm.

Afterwards, the red wires are disabled.

Figure 1: A schematic illustration of an XOR Arbiter PUFs used to create a simulatable PUF.

35

Response

Image

Transformation

Challenge

(e.g. Gabor Hash)

Diode array with n

(phase-locked) diodes

Challenges C determines

which diodes are

switched on and off

Transparent medium with

randomly distributed light

scattering elements

Sensor array, for example CCD, that

records interference images.

The malicious party will directly use

these images to machine learn the

PUF and build a simulation algorithm.

Malicious party directly collects these

images (before the image transformation)

in order to create a simulation algorithm.

Afterwards, connection is disabled.

Figure 2: A schematic illustration of an integrated opticalPUF that is used to create a simulatable PUF.

36

