
Implementing AES via an Actively/Covertly Secure
Dishonest-Majority MPC Protocol

I. Damg̊ard1, M. Keller2, E. Larraia2, C. Miles2, and N.P. Smart2

1 Department of Computer Science,
University of Aarhus,

IT-parken, Aabogade 34, DK-8200 Aarhus N,
Denmark.

2 Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

Abstract. We describe an implementation of the protocol of Damg̊ard, Pastro, Smart and Zakarias
(SPDZ/Speedz) for multi-party computation in the presence of a dishonest majority of active adver-
saries. We present a number of modifications to the protocol; the first reduces the security to covert
security, but produces significant performance enhancements; the second enables us to perform bit-wise
operations in characteristic two fields. As a bench mark application we present the evaluation of the
AES cipher, a now standard bench marking example for multi-party computation. We need examine
two different implementation techniques, which are distinct from prior MPC work in this area due to
the use of MACs within the SPDZ protocol. We then examine two implementation choices for the finite
fields; one based on finite fields of size 28 and one based on embedding the AES field into a larger finite
field of size 240.

1 Introduction

The invention of secure multi-party computation is one of the crowning achievements of theoretical cryptog-
raphy, yet despite being invented around twenty-five years ago it has only recently been implemented and
tested in practice. In the last few years a number of MPC “systems” have appeared [4, 7–9, 12, 15, 22], as
well as experimental research results [13, 16, 21, 25, 26].

The work (both theoretical and practical) can be essentially divided into two camps. On one side we have
techniques based on Yao circuits [28], which are mainly focused on two party computations, and on the other
we have techniques based on secret sharing [6, 11], which can be applied to more general numbers of players.
This is rather a coarse divide as some techniques, such as that from [25], only apply in the two party case
but it is based on secret sharing as opposed to Yao circuits. Following this coarse divide we can then divide
work into those which consider only honest-but-curious adversaries and those which consider more general
active adversaries.

As in theory, it turns out that in practice obtaining active security is a much more challenging task;
requiring more computational and communication resources. All prior implementation reports to our knowl-
edge for active adversaries have either been in the two party setting, or have restricted themselves to the
multi-party setting with honest majority. In the two party setting one can adopt specialist protocols, such
as those based on Yao circuits, whilst the restriction to honest majority in the multi-party setting means
that cheaper information theoretic constructions can be employed. Recently, Damg̊ard et al [14] following on
from work in [5], presented an actively secure protocol (dubbed “SPDZ” and pronounced “Speedz”) in the
multi-party setting which is secure in the presence of dishonest majority. The paper [14] contains some simple
implementation results, and extrapolated estimates, but it does not report on a fully working implementation
which computes a specific function.

Whilst active security is the “gold standard” of security, many applications can accept a weaker notion
called covert security [1, 2]. In this model a dishonest party deviating from the protocol will be detected with
high probability; as opposed to the overwhelming probability required by active security. Due to the weaker
requirements, covert security can often be achieved for less computational effort.

Our Contribution. As already remarked much progress has been made on implementation of MPC protocols
in the last few years, but most of the “fast” implementations have been for simpler security models. For ex-
ample prior work has focused on protocols for two party computation only, or honest-but-curious adversaries
only, or for threshold adversaries only. In this work we extend the prior implementation work to the most
complex setting namely covert and active security against a dishonest majority. In addition we examine more
than four players; with some experiments being carried out with ten players. Thus our work shows that even
such stringent security requirements and parameter settings are beginning to be within reach of practical
application of MPC technology.

More concretely, we show how to simplify the SPDZ protocol so that it achieves covert security for
a greatly improved computational performance, we present the first implementation results for the SPDZ
protocol (in both the active and covert cases), and we describe an evaluation of the AES functionality with
this protocol. Our protocol implementation is in the random oracle model, specifically the zero-knowledge
proofs required by SPDZ are implemented using the Fiat–Shamir heuristic. We also simplify some other
parts of the SPDZ protocol in the random oracle model (details are provided below), and present extensions
to enable bit-wise operations in characteristic two fields.

Since the work of [26] it has become common to measure the performance of an MPC protocol with the
time it takes to evaluate the AES functionality. This is for a number of reasons: Firstly AES provides a
well understood function which is designed to be highly non-linear, secondly AES has a regular and highly
mathematical structure which allows one to investigate various different optimization techniques in a single
function, and thirdly “oblivious” evaluation of AES on its own is an interesting application which if one
could make it fast enough could have practical application.

The paper is structured as follows. We start by covering details of prior work on using MPC to implement
AES. In Section 3 we detail the basics of the SPDZ protocol and the minor changes we made to the pre-
sentation in [14]. Then in Section 4 we describe how we implemented the S-Box, this is the only non-linear
component in AES and so it is the only part which requires interaction. Finally in Section 5 we present our
implementation results.

2 Prior Work on Evaluating AES via MPC Protocols

As noted earlier the first MPC evaluation of the AES functionality was presented in [26]. This paper presented
a protocol for the case of two parties, using Yao circuits as the basic building block. On their own Yao circuits
only provide security against semi-honest adversaries, and in this case the authors obtained a run-time of
7 seconds to evaluate a single AES block (the model being that party A holds the key, and party B holds
a message, with B wishing to obtain the encryption of their message under A’s key). To obtain security
against active adversaries a variant of the cut-and-choose methodology of Lindell and Pinkas [20] was used,
this resulted in the run-time dropping to 19 minutes to evaluate an AES encryption.

In [15] Henecka et al again look at two-party computation based on Yao circuits, but restrict to the case
of semi-honest adversaries only. They reduce the run time per block from the previous 7 seconds down to 3.3
seconds. Huang et al [16] improve this even further obtaining a time of 0.2 seconds per block for semi-honest
adversaries.

In [25] the authors present a two party protocol, but instead of their protocol being based on Yao circuits
they instead base it on OT extension in the Random Oracle Model, and a form of “secret sharing with MACs”
(similar to the SPDZ protocol which we examine below). This enables the authors to obtain active security
and to improve on the prior performance of other implementations. The run time for a single evaluation of
the AES circuit is 64 seconds, however this drops to around 2.5 seconds when amortized over a number of
encryption blocks.

2

The most recent result in the two party setting is [17], which returns to using Yao circuit based protocols.
By use of clever engineering of the overall run-time design the authors are able to significantly improve the
execution time for a single AES evaluation down to 1s in the case of active adversaries.

Moving to the case of more than two players, all prior implementation results have either been for three
or four players; and have been in the semi-honest setting for the case of three players. Like our work, in this
setting one utilizes secret sharing but prior work has been based on Shamir secret sharing, or specialised
protocols; and in the case of active security has been based on Verifiable Secret Sharing.

The main paper which is related to our work is that of [13], so we now spend some time to explain the
differences between our approach and that of [13]. In [13] the authors examine an AES implementation in
the case of standard threshold-secret-sharing based MPC protocols. An implementation for one semi-honest
adversary amongst three players and one active adversary amongst four players is described using the VIFF
framework [12]. The VIFF framework works much like the SPDZ protocol, in that it utilizes Beaver’s [3]
method for MPC evaluation. In an Offline Phase “multiplication triples” are produced, and then in an Online
Phase the function specific calculation is performed. The two key differences between the protocol in [13]
and the use of SPDZ is that the method to produce the triples is different, and the method to ensure non-
cheating adversaries during the evaluation of the circuit is also different. These differences are induced since
[13] is interested in threshold adversary structures, whereas we are interested in the more challenging case
of dishonest majority.

The protocol of [13] is however similar to our work in that it looks at the AES circuit as a circuit over
the finite field F28 , and not as an arbitrary binary circuit. The S-Box in AES is (usually) composed of two
operations an inversion in the field F28 followed by a linear operation on the bits of the resulting element. In
[13] the authors discuss various techniques for computing the inversion, and for the bitwise linear operation
they utilize a trick of bit-decomposition of the shared value. This bit-decomposition is itself implemented
using the technique of pseudorandom secret sharing (PRSS) of bits.

For MPC protocols based on Shamir secret sharing, obtaining a PRSS is relatively straight forward, indeed
it is a local operation assuming some set-up. However, for protocols using secret sharing with MACs (as in
our approach) it is unknown how to build a PRSS in such a clean way. Thus we produce such shared random
bits by executing another stage in the Offline Phase of the SPDZ protocol. We also present a simplification
of the technique in [13] to use such bit-decompositions to implement the S-Box. This approach does however
assume that the Offline Phase somehow “knows” that the computed function will required shared random
bits; which defeats the point of having a function independent Offline stage and also adds to the run time of
the Offline stage. Thus we also present a distinct approach which utilizes a surprising algebraic formulation
of the S-Box.

The implementation of [13] required less than 2 seconds per AES block (including key expansion) when
computing with three players and at most one semi-honest adversary, and less than 7 seconds per AES block
when computing with four players and at most one active adversary. These times include the time for the
Offline Phase. If one is only interested in the Online Phase times, then the active adversary case can be
executed in between three and four seconds per AES block.

More recent work has focused on the case of semi-honest adversaries and three players only. Two recent
results [18, 19] have used an additive secret sharing scheme and a novel multiplication protocol to perform
semi-honest three party MPC in the presence of at most one adversary. In [18] the authors present an AES
implementation using a novel implementation of the S-Box component via an MPC table-lookup procedure.
They report being able to perform 67 AES block cipher evaluations per second. In [19] the authors report
on an implementation of AES, using the Sharemind framework [7], in which they can accomplish over one
thousand AES block cipher evaluations per second.

In summary Table 1 summarizes the different performance figures and security models for prior work
on implementing AES using multi-party computation, with also a comparison with our own work. Like
all network based protocols a significant time can be spent waiting for data, thus authors have found that
executing many calculations in parallel (as in for example AES-CTR mode) can have significant performance
enhancements. Thus for papers which report such results we give the improved amortized costs for multiple
executions (or just the blocks-per-second count for a single execution if no improvement via amortization

3

occurs). Single execution costs are still important since this deals with the case of AES-CBC mode. In our
implementation we found little gain in performing multiple AES evaluations in parallel.

Total Max (Amortized)
Number Number Time per Blocks Expanded

Paper Security Parties Dishonest AES Block per Sec Key3 Notes

[26] semi-honest 2 1 7.0s 0.1 N Yao
[15] semi-honest 2 1 3.3s 0.3 N Yao
[16] semi-honest 2 1 0.2s 2.0 Y Yao

[26] active 2 1 19m ≈ 0 N Yao
[25] active 2 1 4.0s 5.2 N OT
[17] active 2 1 1.0s 1.0 Y Yao

[13] semi-honest 3 1 1.2s 0.9 N Shamir
[18] semi-honest 3 1 0.015s 67 Y Additive
[19] semi-honest 3 1 0.001s 1893 Y Additive

This work covert 2 1 0.13s 7.6 Y SPDZ
This work covert 3 2 0.14s 7.1 Y SPDZ
This work covert 4 3 0.15s 6.7 Y SPDZ
This work covert 5 4 0.18s 5.5 Y SPDZ
This work covert 10 9 0.29s 3.4 Y SPDZ

[13] active 4 1 2.10s 0.5 N Shamir
This work active 2 1 0.24s 4.2 Y SPDZ
This work active 3 2 0.24s 4.2 Y SPDZ
This work active 4 3 0.25s 4.0 Y SPDZ
This work active 5 4 0.28s 3.6 Y SPDZ
This work active 10 9 0.34s 2.9 Y SPDZ

Table 1. A comparison of different MPC implementations of AES. We only give the online-times for those protocols
which have a pre-processing phase. We also note whether the implementation assumes a pre-expanded key or not.

3 The SPDZ Protocol

We now give an overview of the SPDZ protocol, for more details see [14]. The reader should however note
we make a number of minor alterations to the basic protocol, all of which are describe below. Some of these
alterations are due to us working in the random oracle model (which enables us to simplify a number of
sub-protocols), whilst some are simply a functional change in terms of how inputs to the parties are created
and distributed. In addition we describe how to simplify the SPDZ protocol to the case of covert adversaries.

The SPDZ protocol, being based on the Beaver circuit randomization technique [3], comes in two phases.
In the first phase a large number of random triples are produced, such that each party holds a share of
the triple, and such that the underlying values in the triple satisfy a multiplicative relation. This phase is
referred to as the “Offline Phase” since the triples do not depend on either the function to be evaluated
(bar their number should exceed a constant multiple of the number of multiplication gates in the evaluated
function), and the triples do not depend on the inputs to the function to be evaluated. In the second phase,
called the “Online Phase” the triples are used to evaluate the function on the given input.

The key to understanding the SPDZ protocol is to note that all values are shared with respect to a non-
standard secret sharing scheme, which incorporates a MAC value. To describe this secret sharing scheme we
fix a finite field Fq. The MAC keys are values αj ∈ Fq for 1 ≤ j ≤ nMAC such that player i holds the share
αj,i ∈ Fq where

αj = αj,1 + · · ·+ αj,n.

4

The shared values are then given by the following sharing of a value a ∈ Fq,

〈a〉 := (δ, (a1, . . . , an), (γj,1, . . . , γj,n)nMAC
j=1),

where a is the shared value, δ is public and we have the equalities

a = a1 + · · ·+ an,

αj · (a+ δ) = γj,1 + · · ·+ γj,n for 1 ≤ j ≤ nMAC.

Given this data representing a shared value a each player Pi holds the data (δ, ai, {γj,i}nMAC
j=1). To ease

notation we write γj,i(a) to denote the share of the jth MAC on item a held by party i. Arithmetic in this
representation is componentwise, more precisely we have

〈a〉+ 〈b〉 = 〈a+ b〉, e · 〈a〉 = 〈e · a〉 and e+ 〈a〉 = 〈e+ a〉,

where
e+ 〈a〉 = (δ − e, (a1 + e, a2, . . . , an), (γj,1, . . . , γj,n)nMAC

j=1).

The simplicity of the above method for adding a constant value to 〈a〉 is the reason of the public value δ. In
[14] the presentation is simplified to having only nMAC = 1, however the case of more general values of nMAC

is discussed. In our implementation having nMAC > 1 will be vital to ensure active security when dealing
with small finite fields, thus we present the more general case above.

The SPDZ protocol can tolerate active adversaries and dishonest majority (ignoring the case where one
of the dishonest players aborts) amongst a total of n parties. Thus we can assume that n−1 of the parties are
dishonest and will arbitrarily deviate from the protocol. The SPDZ protocol guarantees that if the protocol
terminates then the honest parties know that their resulting output is correct, except with a negligible
probability. For active adversaries we set this probability, to mirror the choice in [14], to 2−40. For covert
adversaries we adapt the protocol so that the probability that a cheating adversary will be detected is lower
bounded by

min
{

1− q−nMAC , 1− q−nSAC ,
1

2 · (n− 1)

}
,

where nMAC and nSAC are parameters to be discussed later and Fq is the finite field over which our triples
are defined.

3.1 Offline Phase

The Offline Phase makes use of a somewhat homomorphic encryption (SHE) scheme, with a distributed
decryption procedure, and zero-knowledge proofs. In our implementation we use the optimized non-interactive
zero-knowledge proofs of knowledge (NIZKPoKs) derived from the Fiat–Shamir heuristic which are described
in [14]. Thus our Offline Phase is only secure in the Random Oracle model.

The specific SHE scheme used is a variant of the BGV scheme [10] over the mth cyclotomic field. We
thus have lattices of dimension φ(m), over a modulus of size Q. Each ciphertext consists of two (or three)
polynomials modulo Q of degree less than φ(m). The underlying plaintext space can hold an element of
(Fq)`.

The Offline Phase produces many triples of such sharings 〈a〉, 〈b〉, 〈c〉 such that c = a · b, where these
values are authenticated via a global set of nMAC shared MAC keys as described above. The NIZKPoKs
mentioned above have soundness error 1/2, and so in [14], we “batch” together sec executions so as to reduce
the soundness error to 2−sec. This batching, combined with the vectoral plaintext space, means that a single
execution of the Offline phase produces sec · ` triples.

We can trivially modify the Offline Phase so that it also outputs, for characteristic two fields, a set of
shared random bits and their associated MACs. We can produce one such shared bit for roughly one third
of the cost of one shared triple. As for the shared triples, each invocation of the method to produce shared
random bits will produce sec · ` bits in one go.

5

The main cost of the Offline phase is in the production and verification of the zero-knowledge proofs.
For n players, for each proof that a player needs to produce he will need to verify n− 1 proofs of the other
players. For the case of covert adversaries we simplify the Offline Phase as follows. We do not batch together
proofs, i.e. we take sec = 1, which results in soundness error for each proof of 1/2. In addition each player
when it receives n− 1 proofs from all other players only verifies a random proof. This means that a cheating
player will be detected with probability at least 1/(2 · (n− 1)) in the Offline phase, as opposed to 1− 2−40

when we use the standard actively secure Offline Phase.

3.2 Online Phase

Given that our Offline Phase is given in the Random Oracle Model we alter the Online Phase from [14] so
that it too utilizes Random Oracles. This means we can present a more efficient Online Phase than that
used in [14]. Our Online Phase makes use of three hash functions: The first one H1 is used to ensure that
broadcast has happened, for this hash function we require it is one which supports an API of standard hash
functions consisting of Init,Update and Finalise methods. The second hash function H2 is used to generate
random values for checking the linear MAC equations and the triples. The third hash function H3, which we
model as a random oracle, is used to define a commitment scheme as follows: To commit to a value x, which
we denote by Commit(x), one generates a random value r ∈ {0, 1}sec, for some security parameter sec, and
computes comm = H3(x‖r). To open Open(comm, x, r) one verifies that comm = H3(x‖r) returning x if this
is true, and ⊥ if it is not.

The first change we make is in how we guarantee that consistent broadcast occurs. For the Online phase
we assume that the point-to-point links between the parties are authenticated, but we need to guarantee
that a dishonest party is not allowed to send different messages to different players when he is required to
broadcast a single value to all players. This is done by modifying the notion of a “partial opening” from [14]
and the notion of “broadcast”. The “broadcasts” are ensured to be correct via the parties maintaining a
hash of all values received. This is checked before the output is reconstructed; thus in the final broadcast to
recover the output we utilize the re-transmit method from [14] to check consistency of the final broadcast.

In the original protocol “partial opening” just means a broadcast of the share of a value held by a party,
but not the broadcast of the share of the MAC on that value. Thus only the value is opened, not the MAC
on the value. However, we each ensure player maintains the running totals of the linear equations they will
eventually check. In [14] these linear equations were of the form

∑
k e

kak, for some random agreed value e.
This gives an error probability of T/q, where T is the number of partial openings in an execution of the
Online Phase. For small values of q this is not effective, thus we replace the values ek by the output of hash
function H2. In Figure 1 we describe our modified partial opening, and broadcast protocol, which maintains
a hash value of all values broadcast; as well as a method for checking consistency.

In the Online Phase the key issue is that the triples produced by the Offline Phase may not satisfy the
relation c = a · b, nor may the MACs verify. This is because we do not ensure that the dishonest parties
were “well behaved” in the Offline Phase. Thus these two properties must be checked. The Online Protocol
of [14] does this as follows: To check that c = a · b for the triples, we will use for the MPC evaluation we
“sacrifice” a set of nSAC extra triples per evaluated triple. For the sacrificing method in our implementation,
we adopted the näıve method of [14]. This results in consuming more triples, but is simpler computationally.
To check the MAC values a series of nMAC linear equations are checked at the end of the Online Phase.

Each triple sacrifice and MAC equation check can be made to hold by the adversary with probability 1/q.
Thus to reduce this to something negligible we sacrifice many triples, and utilize many MAC equations. But
in the case of covert adversaries we select nMAC = nSAC = 1, and so the probability of a cheating adversary
being detected is bounded from below by 1− 1/q.

Both of these checks require that the parties agree on some global random values at different points in
the protocol. In [14] these extra shared values are determined in the Offline Phase, via a different form of
secret sharing; with the sharings being opened at the critical point in the Online protocol. The benefit of this
approach is that one obtains a protocol which is UC secure without the need for Random Oracles; however
the down-side is that the Offline Phase becomes relatively complex. In our work we take the view that since

6

Init(): We initialize the following data:
1. Party i executes H1.Init().
2. Party i sets cnti = 0.
3. For j = 1, . . . , nMAC

(a) Party i sets âj,i = 0 and γj,i = 0.
4. Party i generates a random value seedi ∈ {0, 1}sec and sends it to all other players.

Broadcast(vi): We broadcast vi and receive the equivalent broadcasts from other players:
1. Party i sends vi to each player.
2. On receipt of {v1, . . . , vn} \ {vi} execute H1.Update(v1‖ . . . ‖vn).
3. Return {v1 + · · ·+ vn}.

PartialOpen(〈a〉): Party i obtains the partial opening of the shared value and updates their partial sums:
1. Execute {a1, . . . , an} = Broadcast(ai).
2. a = a1 + · · ·+ an.
3. (e1‖ . . . ‖enMAC) = H2(0‖seed1‖ . . . ‖seedn‖cnti) ∈ Fq.
4. cnti = cnti + 1
5. For j = 1, . . . , nMAC

(a) âj,i = âj,i + ej · (a+ δa).
(b) γj,i = γj,i + ej · γj,i(a).

6. Return a.
Verify(): We check all broadcasts have been consistent:

1. Party i computes hi = H1.Finalise() and sends hi to each player.
2. On receipt of hj from player j, if hi 6= hj then abort.

Fig. 1. Methods for Partial Opening and Broadcast for Party i

Random Oracles have been used in the Offline Phase one might as well exploit them in the Online Phase.
Thus these shared values are obtained via a Random Oracle based commitment scheme as we now describe.

The next alteration we make to the Online Phase of [14] is that we assume that the players shares of
the input values are “magically distributed” to them. This can be justified in two ways. Firstly we are only
interested in timing the main Offline and Online Protocol and the input distribution phase is just an added
complication. Secondly, a key application scenario for MPC is when the players are computing a function on
behalf of some client. In such a situation the players do not themselves have any input, it is the client which
has input. In such a situation the players would obtain their respective input shares directly from the client;
thus eliminating the need entirely for a special protocol to deal with obtaining the input shares.

Our final alteration is that we utilize a new online operation, in addition to local addition and multi-
plication, called BitDecomposition. We first note that we can given a sharing 〈a〉 of a finite field element
a ∈ F2k = F2[X]/F (X), and a set of k randomly shared bits 〈ri〉 for i = 0, . . . , k − 1. Suppose we write a as∑k−1

i=0 ai ·Xi, our goal is to produce 〈ai〉. Firstly via a local operation we compute a sharing of r =
∑
ri ·Xi

by computing 〈r〉 =
∑
〈ri〉 ·Xi. Then we produce a masked value of a, via 〈c〉 = 〈a〉+ 〈r〉. The value of 〈c〉

is then opened to reveal c and we compute the decomposition c =
∑
ci ·Xi. Then we can locally compute

〈ai〉 = ci + 〈ri〉. Note, if a is known to be in a subfield of F2k , as it will be in one of our implementations
for k = 40, we can utilize the embedding of the subfield into the larger field to reduce the number of shared
random bits needed for this decomposition down to the degree of the subfield. We refer to Appendix C for
more details.

Given these alterations to the Online Phase of [14] we present the modified protocol in Figure 2 of the
Appendix.

4 S-Box Implementation

We present two distinct methodologies to implement the S-Box. The first requires the Offline Phase to only
produce multiplication triples, and utilizes the algebraic properties of the S-Box. The second requires the
Offline Phase to also produce sharings (and associated MACs) of random bits.

7

4.1 S-Box Via Algebraic Operations

A key design criteria of any block cipher is that it should be highly non-linear. In addition it should be hard
to write down a series of simple algebraic equations to describe the cipher. Since such equations could give
rise to an attack via algebraic cryptanalysis. Indeed one reason for choosing AES as an example benchmark
for MPC protocols, is that being a block cipher it should be highly non-linear and hence a challenge for MPC
protocols. However, as was soon realised after the standardization of AES the S-Box (the only non-linear
component in the entire cipher) can be represented in a relatively clean algebraic manner.

Our algebraic method to implement the S-Box operation is based on the analysis of AES of Murphy
and Robshaw [23]. In this work the authors demonstrate that actually AES can be described by (relatively
simple) algebraic formulae over F28 , in other words the transform between byte-wise and bit-wise operations
in the standard representation of the AES S-Box is a bit of a MacGuffin.

Recall the AES S-Box consists of an inversion in F28 (which is indeed a highly non-linear function)
followed by a linear operation over the bits of the result. This is usually explained that the mixture of the
two operations in two distinct finite fields “breaks any algebraic structure”. This was shown to be false in
[23]. Indeed one can express the S-Box calculation via the following simple polynomial

S-Box(z) = 0x63 + 0x8F · z127 + 0xB5 · z191 + 0x01 · z223 + 0xF4 · z239

+ 0x25 · z247 + 0xF9 · z251 + 0x09 · z253 + 0x05 · z254.

where (as is usual) operations are in the finite field defined by F28 = F2[x]/(x8 + x4 + x3 + x + 1) and the
notation 0x12 represents the element defined by the polynomial x4 + x. That the operation can be defined
by a polynomial of degree bounded by 255 is not surprising, since by interpolation any functions from F28 to
F28 can be represented in such a way. What is surprising is that the polynomial is relatively sparse, however
this can be easily shown from first principles.

Lemma 1. The AES S-Box can be represented by a polynomial which has a non-zero coefficient for the term
i if and only if i ∈ {0, 127, 191, 223, 239, 247, 251, 253, 254}.

The proof can be found in Appendix B.
Finally to implement the S-Box we therefore need an efficient method to obtain from an shared input

value z, the shared values of the elements {z127, z191, z223, z239, z247, z251, z253, z254}. This is equivalent to
finding a short addition chain for the set {127, 191, 223, 239, 247, 251, 253, 254}. We found the shortest such
addition chain consists of eighteen additions and is the chain

{1, 2, 3, 6, 12, 15, 24, 48, 63, 64, 96, 127, 191, 223, 239, 247, 251, 253, 254}.

Thus to evaluate a single S-Box requires eighteen MPC multiplication operations, as well as some local
computation. Hence, to evaluate the entire AES cipher we require 18 · 16 · 10 = 2880 MPC multiplications.

Looking ahead each multiplication operation will require interaction, and to reduce execution times we
need to ensure that each player is kept “busy”, i.e. is not left waiting for data to arrive. To do this we will
interleave various different multiplications together; essentially exploiting the instruction level parallelism
(ILP) within the basic AES algorithm. Clearly one can execute each of the 16 S-Box operations in a single
round in parallel, thus obtaining an immediate 16-fold factor of ILP. However, further ILP can be exploited
in the addition chain above as can be seen from its graphical realisation in Figure D in the Appendix. We
see that the addition chain can be executed in twelve parallel multiplication steps; thus the total number of
rounds of multiplication need for the entire AES cipher will be 12 · 10 = 120.

4.2 S-Box Via BitDecomposition

As explained in [13] the S-Box can be implemented if one has access to shared random bits, via the Bit-
Decomposition operation. In our second implementation choice we extend this technique, and reduce even
further the amount of interaction needed to compute the S-Box.

8

We use this BitDecomposition trick in two ways. The first way is to decompose an element in F28 into
it’s bit components, so as to apply the linear map of the S-Box. This part is exactly as described in [13];
except when we open the value of 〈c〉 we perform a partial opening, leaving the checking of the MACs until
the end.

In our second application of BitDecomposition we use BitDecomposition to implement the operation
x −→ x254. This done as follows: We decompose x into it’s constituent bits. Then the operations x −→ x2,
x −→ x4 are all linear operations, and so can be performed locally. Finally the value of x254 = x−1 is
computed via the combination

x254 =
((
x2 · x4

)
·
(
x8 · x16

))
·
((
x32 · x64

)
· x128

)
,

which requires a total of six multiplications. We could reduce this down to four multiplications by applying
the Frobenius map to other elements [27]; but this will consume even more random bits per S-Box thus we
settled for the above implementation which consumes 16 sharings of random bits per S-Box invocation.

5 Experimental Results

We implemented the SPDZ protocol over finite fields of characteristic two and used it to evaluate the AES
function, with the S-Box implemented using both the algebraic formulation described earlier and the variant
by BitDecomposition. As described earlier we examined the case of dealing with both covert adversaries and
fully malicious (a.k.a. active) adversaries (with cheating probability of 2−40). We note that the probability
of 2−40 could be extended to smaller values, but we used 2−40 so as to be comparable with the theoretical
run-time estimates given in [14]. For example to reduce the probability down to 2−80 would essentially require
a doubling of the cost of both the Offline and Online stages.

The first decision one needs to take is as to what finite field one should work with. Since we are evaluating
AES it is natural to pick the field

K8 = F2[x]/(x8 + x4 + x3 + x+ 1).

Another choice, particularly suited to our active adversary cheating probability of 2−40, would be to use the
field

K40 = F2[y]/(y40 + y20 + y15 + y10 + 1).

Using this finite field has the advantage that, for active adversaries, we only need to keep one MAC share
per data item, and only one triple per multiplication needs to be sacrificed. In addition the field K8 lies in
K40 via the embedding x = y5 + 1. We also for means of comparison of the Offline phase implemented the
Offline protocol over a finite field Fq with q a 64-bit prime.

We also experimented with various numbers of players, and different values of nMAC and nSAC. As explained
in [14] all such variants lead to different basic parameters (m,Q, `) of the underlying SHE scheme. In
Appendix A we summarize such parameter choices for the SHE scheme, and detail the specific choices
we made. Recall that one invocation of the Offline Phase produces sec · ` triples; thus using the choices
from Appendix A we obtain the following summary table, where “# Trip/# Bits” denotes the number of
triples/bits produced per invocation of the Offline Phase.

Adversary nMAC # Trip/
Field Type sec = nSAC # Bits
K8 covert 1 1 512
K8 active 40 5 12800
K40 covert 1 1 240
K40 active 40 1 12800

We ran the Offline phase on machines with Intel i5 CPU’s running at 2.8 GHz. with 4 GB of RAM. The
ping between machines over the local area network was approximately 0.3 ms. We obtained the executions

9

time given in Table 2 and Table 3, for the two different finite field choices and covert/active security choices,
and various numbers of players. We did not run an example with ten players and active adversaries since
this took too long. We first ran the Offline Phase in each example to produce a minimum of 5000 triples.
Clearly for some parameter sets a single run produced much more than 5000, whilst for others we required
multiple runs so as to reach 5000 triples. These results are in Table 2. These runs are compatible with our
algebraic S-Box formulation.

This table also presents the average time needed to produce each triple, plus also the amortized time to
produce triples per AES invocation (in the case where one wants to evaluate the AES functionality many
times). Recall to evaluate the AES functionality with our method requires 10 · 16 · 18 = 2880 multiplications
in total; thus the number of triples needed is 2880 · (nSAC + 1), since each multiplication consumes nSAC + 1
triples. What is clear from the table is that if one is wishing to obtain security against covert adversaries
then utilizing the field K8 is preferable. However, for security against active adversaries the field K40 is to
be preferred.

Covert Security Active Security
Total Total Time per Offline Time Total Total Time per Offline Time

Number Number Time Triple per AES Block Number Time Triple per AES Block
Field Players Triples (h:m:s) (seconds) (h:m:s) Triples (h:m:s) (seconds) (h:m:s)

K8 2 5120 0:01:31 0.018 0:01:42 12800 1:25:57 0.403 1:56:02
K8 3 5120 0:01:32 0.018 0:01:43 12800 1:50:25 0.518 2:29:03
K8 4 5120 0:01:32 0.018 0:01:43 12800 2:14:16 0.629 3:01:15
K8 5 5120 0:01:33 0.018 0:01:44 12800 2:37:30 0.738 3:32:37
K8 10 5120 0:01:48 0.021 0:02:01 12800 4:40:15 1.314 6:18:20

K40 2 5040 0:05:08 0.061 0:05:52 12800 0:29:34 0.136 0:13:18
K40 3 5040 0:05:13 0.062 0:05:57 12800 0:38:18 0.180 0:17:14
K40 4 5040 0:05:14 0.062 0:05:58 12800 0:46:02 0.216 0:20:42
K40 5 5040 0:05:17 0.063 0:06:02 12800 0:55:51 0.262 0:25:07
K40 10 5040 0:06:02 0.072 0:06:53 12800 1:39:14 0.465 0:44:39

Table 2. Offline Run Time Examples For The Algebraic S-Box Method

We then run an Offline phase tailored to our BitDecomposition S-Box formulation. Here we need to
perform 10 ·16 ·6 = 960 multiplications, and thus we require 960 · (nSAC +1) triples to evaluate a single block.
But we also require 10 · 16 · 16 = 2560 shared random bits so as to perform two eight bit, BitDecompositions
per S-Box invocation. Thus in Table 3 we present run times for a second invocation of the Offline Phase in
which we aimed to produce a minimum of 5000 triples and 6600 shared random bits (which is the correct
ratio for covert security). Due to the inbalance between Triple and Bit production the “Offline Time per AES
Block” column needs to be taken as rough estimate. Again we see that for covert security K8 is preferable,
and for active security K40 is preferable.

But, these run times do not seem comparable with the 13ms per triple estimated by the authors of [14]
for the Offline Phase. However, this discrepancy can easily be explained. The run time estimates in [14] are
given for arithmetic circuit evaluation over a finite field of prime characteristic of 64-bits. With the parameter
choices in [14] this means one can select parameters for the SHE scheme which enable a 16000-fold SIMD
parallelism. For our finite fields of degree two the amount of SIMD parallelism in the Offline Phase is much
lower than this. To see the difference that using large prime characteristic fields makes to the Offline Phase
we implemented it, using the parameters from Appendix A to obtain the results in Table 4. As can be seen
from the table we produce triples for prime fields of 64-bits in size around twice as fast as the estimates in
[14] would predict.

We now turn to the Online Phase; recall that this itself comes in two steps (and two variants). In the
first step we evaluate the function itself (consuming the triples produced in the Offline Phase), whereas in
the second step we check the MAC values and open the final result. In Table 5 we present the run-times to

10

Covert Security Active Security
Total Total Offline Time Total Total Offline Time

Number Number Time per AES Block Number Time per AES Block
Field Players Triples/Bits (h:m:s) (h:m:s) Triples/Bits (h:m:s) (h:m:s)

K8 2 5120/6656 0:02:07 0:00:47 12800/12800 1:54:42 0:51:36
K8 3 5120/6656 0:02:10 0:00:49 12800/12800 2:26:21 1:05:51
K8 4 5120/6656 0:02:13 0:00:50 12800/12800 2:56:47 1:19:33
K8 5 5120/6656 0:02:36 0:00:52 12800/12800 3:29:49 1:34:25
K8 10 5120/6656 0:02:33 0:00:58 12800/12800 6:06:20 2:44:51

K40 2 5040/6720 0:07:12 0:02:43 12800/12800 0:36:14 0:05:26
K40 3 5040/6720 0:07:12 0:02:43 12800/12800 0:47:30 0:07:07
K40 4 5040/6720 0:07:19 0:02:47 12800/12800 0:58:55 0:08:57
K40 5 5040/6720 0:07:24 0:02:49 12800/12800 1:10:33 0:10:34
K40 10 5040/6720 0:08:32 0:03:15 12800/12800 2:10:03 0:19:32

Table 3. Offline Run Time Examples For The S-Box Via BitDecomposition

Covert Security Active Security
Total Total Time per Total Total Time per

Number Number Time Triple Number Time Triple
Players Triples (h:m:s) (seconds) Triples (h:m:s) (seconds)

2 11970 0:00:27 0.002 669120 1:10:48 0.006
3 11970 0:00:27 0.002 669120 1:32:13 0.008
4 11970 0:00:28 0.002 669120 1:55:05 0.010
5 11970 0:00:29 0.002 669120 2:20:42 0.013
10 11970 0:00:31 0.002 669120 4:17:10 0.023

Table 4. Offline Run Time Examples For Fp With p ≈ 264

evaluate the AES functionality for the various parameter sets generated above using our algebraic formulation
of the S-Box. These are average run-times from all the players, executed over 20 different runs. The Online
Phase was run on the same machines as in the Offline Phase. In Table 6 we present the same times using
the S-Box variant utilizing the BitDecomposition method.

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.284 0.017 0.301 1.319 0.031 1.350
K8 3 0.307 0.062 0.369 1.381 0.035 1.416
K8 4 0.316 0.027 0.343 1.422 0.028 1.450
K8 5 0.344 0.034 0.378 1.461 0.018 1.479
K8 10 0.617 0.068 0.685 2.778 0.062 2.840

K40 2 0.449 0.012 0.461 0.460 0.021 0.481
K40 3 0.486 0.022 0.498 0.475 0.025 0.500
K40 4 0.490 0.042 0.532 0.486 0.055 0.541
K40 5 0.508 0.037 0.544 0.510 0.026 0.536
K40 10 1.345 0.032 1.378 1.176 0.065 1.241

Table 5. Online Phase Runtime Examples (all in seconds) – Algebraic S-Box

11

Covert Security Active Security
Number Function Checking Total Function Checking Total

Field Players Evaluation Step Time Evaluation Step Time

K8 2 0.119 0.010 0.129 0.576 0.016 0.592
K8 3 0.130 0.007 0.137 0.617 0.013 0.630
K8 4 0.140 0.011 0.151 0.636 0.017 0.653
K8 5 0.160 0.024 0.184 0.663 0.016 0.679
K8 10 0.261 0.033 0.294 1.010 0.026 1.036

K40 2 0.228 0.007 0.235 0.229 0.007 0.236
K40 3 0.235 0.012 0.247 0.233 0.008 0.241
K40 4 0.250 0.013 0.263 0.241 0.008 0.249
K40 5 0.263 0.015 0.278 0.262 0.015 0.277
K40 10 0.519 0.027 0.546 0.312 0.023 0.335

Table 6. Online Phase Runtime Examples (all in seconds) – S-Box Via BitDecomposition

The networking between players was implemented in a point-to-point fashion with each player acting as
both a server and a client. We ensured that data was sent over the sockets as soon as it was ready by disabling
Nagle’s algorithm [24]. To complete the function evaluation each player first parses a program written in a
specialised instruction language. This allows our implementation to take advantage of the instruction level
parallelism as described above so as to schedule many multiplication operations to happen in parallel.

Again we see that if security against covert adversaries is the goal then using the field K8 is to be preferred.
However, for security against active adversaries the field K40 performs better. We also ran the Online Phase
in a run which performed ten AES encryptions in parallel. This resulted in only a small improvement in
time per AES block over executing just one AES encryption at a time, thus we do not present these figures.
Improving the throughput for parallel execution is the subject of future research.

Overall, the two methods of AES evaluation are roughly comparable. The method via BitDecomposition
being faster, and significantly faster when one also takes into account the associated cost of the Offline Phase.
However, as remarked previously this method does not result in a generic Offline Phase; since the Offline
Phase needs to “know” the expected ratio of Bits to Triples that it needs to produce for the actual function
which will be evaluated in the Online Phase.

In summary we have presented the first experimental results for running MPC protocols with large
numbers of players (10 as opposed to the four or less of prior work), and for a dishonest majority of active
or covert adversaries (as opposed to threshold adversaries). It is expected that our reported execution times
will fall as dramatically as those have done for two party MPC protocols in the last couple of years. Thus
we can expect actively/covertly secure MPC protocols for dishonest majority to be within reach of some
practical applications within a few years.

6 Acknowledgements

The first author acknowledges the support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of
Interactive Computation, within which [part of] this work was performed; and also from the CFEM research
center (supported by the Danish Strategic Research Council) within which part of this work was performed.

The second, third and fifth author were partially supported by EPSRC via grant COED–EP/I03126X.
The fifth author was also supported by the European Commission through the ICT Programme under Con-
tract ICT-2007-216676 ECRYPT II and via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) un-
der agreement number FA8750-11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government
is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon. The views and conclusions contained herein are those of the authors and should not be

12

interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

References

1. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries.
Theoretical Cryptography Conference – TCC 2007, Springer LNCS 4392, 137–156, 2007.

2. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols for realistic adversaries. J.
Cryptology, 23, 281–343, 2010.

3. D. Beaver, Correlated pseudorandomness and the complexity of private computations. Symposium on Theory of
Computing – STOC 1996, ACM, 479–488, 1996.

4. A. Ben-David, N. Nisan and B. Pinkas. FairplayMP: a system for secure multi-party computation. Computer
and Communications Security – CCS 2008, ACM, 257–266, 2008.

5. R. Bendlin, I. Damg̊ard, C. Orlandi and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
Advanced in Cryptology – EUROCRYPT 2011, Springer LNCS 6632, 169–188, 2011.

6. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. Symposium on Theory of Computing – STOC 1988, ACM, 1–10, 1988.

7. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations.
European Symposium on Research in Computer Security – ESORICS 2008, Springer LNCS 5283, 192–206, 2008.

8. P. Bogetoft, D.L. Christensen, I. Damg̊ard, M. Geisler, T. Jakobsen, M. Krøigaard, J.D. Nielsen, J.B. Nielsen,
K. Nielsen, J. Pagter, M. Schwartzbach and T. Toft. Secure multiparty computation goes live, Financial
Cryptography and Data Security – FC 2009, Springer LNCS 5628, 325–343, 2009.

9. P. Bogetoft, I. Damg̊ard, T. Jakobsen, K. Nielsen, J. Pagter. and T. Toft. A practical implementation of secure
auctions based on multiparty integer computation. Financial Cryptography and Data Security – FC 2006, Springer
LNCS 4107, 142–147, 2006.

10. Z. Brakerski, C. Gentry and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. IACR
e-print 2011/277, http://eprint.iacr.org/2011/277, 2011.

11. D. Chaum, C. Crepeau and I Damg̊ard. Multiparty unconditionally secure protocols. Symposium on Theory of
Computing – STOC 1988, ACM, 11–19, 1988.

12. I. Damg̊ard, M. Geisler, M. Kroig̊ard, and J.B. Nielsen. Asynchronous multiparty computation: Theory and
implementation. Public Key Cryptography – PKC 2009, Springer LNCS 5443, 160–179, 2009.

13. I. Damg̊ard and M. Keller. Secure multiparty AES. Financial Cryptography and Data Security – FC 2010,
Springer LNCS 6051, 367–374, 2010.

14. I. Damg̊ard, V. Pastro, N.P. Smart and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. To appear Advances in Cryptology – CRYPTO 2012, IACR e-print 2011/535, http://eprint.iacr.
org/2011/535, 2011.

15. W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for automating secure
two-party computations. Computer and Communications Security – CCS 2010, ACM, 451–462, 2010.

16. Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party computation using garbled circuits. Proc.
USENIX Security Symposium, 2011.

17. B. Kreuter, a. shelat, and C.-H. Shen. Towards billion-gate secure computation with malicious adversaries. IACR
e-print 2012/179, http://eprint.iacr.org/2012/179, 2012.

18. J. Launchbury, A. Adams-Moran, and I. Diatchki. Efficient lookup-table protocol in secure multiparty compu-
tation. Manuscript, 2012.

19. S. Laur, R. Talviste, and J. Willemson. AES block cipher implementation and secure database join on the
SHAREMIND secure multi-party computation framework. Manuscript, 2012.

20. Y. Lindell and B. Pinkas. An efficient protocol for secure two-party computation in the presence of malicious
adversaries. Advances in Cryptology – EUROCRYPT 2007, Springer LNCS 4515, 52–78, 2007.

21. Y. Lindell, B. Pinkas, N.P. Smart. Implementing two-party computation efficiently with security against malicious
adversaries. Security and Cryptography for Networks – SCN 2008, Springer LNCS 5229, 2–20, 2008.

22. D. Malkhi, N. Nisan, B. Pinkas and Y. Sella. Fairplay — a secure two-party computation system. Proc. USENIX
Security Symposium, 2004.

23. S. Murphy and M.J.B. Robshaw. Essential algebraic structure within the AES. Advances in Cryptology –
CRYPTO 2002, Springer LNCS 2442, 1–16, 2002.

24. J. Nagle. Congestion control in IP/TCP internetworks. IETF RFC 896, 1984.

13

25. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S. Sheshank Burra. A new approach to practical active-secure
two-party computation. IACR e-print 2011/91, http://eprint.iacr.org/2011/91, 2011.

26. B. Pinkas, T. Schneider, N.P. Smart, and S.C. Williams. Secure two-party computation is practical. Advances
in Cryptology – ASIACRYPT 2009, Springer LNCS 5912, 250–267, 2009.

27. M. Rivain and E. Prouff. Provably secure higher-order masking of AES. Cryptographic Hardware and Embedded
Systems – CHES 2010, Springer LNCS 6225, 413–427, 2010.

28. A. Yao. Protocols for secure computation. Proc. Foundations of Computer Science – FoCS 1982, IEEE Press,
160–164, 1982.

A SHE Parameters

We determine values of (m,Q, `) for our SHE scheme given a specific finite field Fq (or in the case of q prime
a rough size for q), a value for the sec (the number of NIZKPoKs we run in parallel in the Offline stage),
and the number of players n. As a “lattice security parameter” we selected δ = 1.0052 which corresponds to
roughly 128 bits of symmetric security.

We required finite fields Fq of size F28 and F240 , as well for comparison a finite field where q was a 64-bit
prime. We also looked for parameters for n ∈ {2, 3, 4, 5, 10} and sec ∈ {1, 40}. As in [14] we first search for
rough estimate of the parameters (m,Q) which fit these needs:

char(Fq) n sec φ(m) ≥ log2(Q)
2 2 ≤ n ≤ 10 40 12300 370
2 2 ≤ n ≤ 5 1 8000 200
2 10 1 8000 210
≈ 264 2 ≤ n ≤ 10 40 16700 500
≈ 264 2 ≤ n ≤ 5 1 11000 330
≈ 264 10 1 11300 340

We then selected values for m as follows:

F28 and F240 , sec = 40: We select m = 17425, which gives us φ(m) = 12800. The polynomial Φm(X) factors
modulo two into ` = 320 factors each of degree 40. Thus these parameters can support both our finite fields
F28 and F240 .

F28 , sec = 1: We select m = 13107, which gives us φ(m) = 8192. The polynomial Φm(X) factors modulo
two into ` = 512 factors each of degree 16.

F240 , sec = 1: We select m = 13175, which gives us φ(m) = 9600. The polynomial Φm(X) factors modulo
two into ` = 240 factors each of degree 40.

p ≈ 264, sec = 40: We select, as in [14], p = 264 + 4867 and m = 16729 so that ` = φ(m) = 16728.

p ≈ 264, sec = 1: We select, as in [14], p = 264 + 8947 and m = 11971 so that ` = φ(m) = 11970.

B Proofs

Proof of Lemma 1:

Proof. Recall the AES S-Box consists first of inversion z → z−1 = y followed by an F2 linear operation
w = A · yT + b on the bits of the result, where y are the bits in y. The bit matrix A and the bit vector b
are fixed. The final result is obtained by forming the dot-product of the (F2)8 vector w with the fixed vector
x = (1, x, x2, x3, x4, x5, x6, x7) ∈ (F28)8.

14

First note that inversion in F28 can be accomplished by computing z−1 = z254, since z255 = 1 for all
z 6= 0. The AES standard “defines” 0−1 = 0, and so the formula of z254 can be applied even when z = 0 as
well.

We then note that extracting the bits y = (y0, . . . , y7) ∈ (F2)8 of an element y = y0 + y1 · x+ · · ·+ y7 · x7

can be obtained via a linear operation on the action of Frobenius on y. This follows since Frobenius acts
as a linear map, and hence by applying Frobenius eight times we find eight linear equations linking the set
{y0, . . . , y7} with the Frobenius actions on y. This in turn allows us to solve for the bits y = (y0, . . . , y7).
Thus there is matrix B ∈ (F28)8×8 such that

y = B · (y, y2, y4, y8, y16, y32, y64, y128)T.

Hence, the output of the S-Box can be written as

S-Box(z) = x · (A · y + b),

= x · (A ·B) · (y, y2, y4, y8, y16, y32, y64, y128)T + x · b,
= s · (1, y, y2, y4, y8, y16, y32, y64, y128)T

where s is a fixed nine dimensional vector over F28 . On replacing y with z254 in the above equation, using
z255 = 1 for all z 6= 0, we obtain our result. With the result also following for z = 0 by inspection.

C Generalized BitDecomposition

In this section, we describe a generalized variant of BitDecomposition, which includes bit-decomposition in
K8 as a subfield of K40.

Let f : V → W be a linear map between two vector spaces over F2. Then, 〈r〉 and 〈f(r)〉 for a random
element r ∈ V allows to securely compute 〈f(x)〉 for any 〈x〉 by computing and opening 〈x + r〉, and then
computing 〈f(x)〉 = f(x+ r) + 〈f(r)〉.

For bit-decomposition in K8, define f : K8 → F8
2 by

f
(7∑

i=0

ai ·Xi
)

:= (a0, . . . , a7).

This function clearly is linear over F2. In the offline phase, it suffices to generate 〈(r0, . . . , r7)〉 = (〈r0〉, . . . , 〈r7〉)
for random bits (r0, . . . , r7) because 〈r〉 =

∑7
i=0〈ri〉 ·Xi can be computed locally. Note that r0, . . . , r7 are

understood as elements of K8, like all variables in the protocol over K8. Therefore, one has to make sure
that they are in fact 0 or 1 and not another element of K8. This is done by modifying the Offline Phase; in
particular each party encrypts a random bit and proves that it is actually a bit. The homomorphic structure
of the NIZKPoKs makes this straight-forward. As with the triples components, the secret bit is defined as
the sum of all inputs, and the secret sharing with MAC is computed by multiplication via the homomorphic
property of the ciphertexts and threshold decryption.

We now move to bit-decomposition for K8 embedded in K40. Let ı denote the embedding of K8 in
K40. This embedding is a field homomorphism and thus a linear map between vector spaces over F2. The
bit-decomposition for ı(K8) is defined by f : ı(K8)→ F8

2,

f
(
ı
(7∑

i=0

ai ·Xi
))

:= (a0, . . . , a7).

Again, f is linear over F2, and thus, the protocol explained above is applicable. Similarly to the case of K8,
it suffices to generate eight bits (〈r0〉, . . . , 〈r7〉) in the offline phase. There is one peculiarity in this case: We
defined f over ı(K8) ⊂ K40, not K40. That means, we assume that the input of f is an element of ı(K8),
not an arbitrary element. This is guaranteed in our application, but may not be true in general.

15

In general the function f can easily be extended to f ′ : K40 → F8
2 by defining f ′(x) := f(pı(K8)(x))

for pı(K8) denoting the natural projection to ı(K8). However, masking an arbitrary element x ∈ K40 with
a random element of ı(K8) reveals x− pı(K8)(x). Therefore, one has to mask x additionally with a random
r′ ∈ K40/ı(K8) before opening it, i.e., compute and open 〈x+ı(

∑7
i=0 ri ·Xi)+r′〉. As above, the homomorphic

structure of the NIZKPoKs allow to generate 〈r′〉 with the same cost as a random element.
The above discussion re F28 and F240 can be extended to an arbitrary field F2n and a subfield F2m if

required.

D Figures

16

Online Protocol

Initialize: We assume the parties have already invoked the Offline Phase to obtain a sufficient number of
multiplication triples (〈a〉, 〈b〉, 〈c〉), and each party holds its share of the global MAC keys αj,i. In addition
we assume that the parties have obtained (by some means) the 〈·〉 sharing of the input values to the
computation.
1. The parties execute Init() to initialize their local copy of the hash function H1, and the values seedi,

cnti, âj,i, and γj,i.
2. The parties generate global random values tj ∈ Fq for j = 1, . . . , nSAC by computing (t1‖ . . . ‖tnSAC) =

H2(1‖seed1‖ . . . ‖seedn).
Then the steps below are performed in sequence according to the structure of the circuit to compute.

Add: To add two representations 〈x〉, 〈y〉,the parties locally compute 〈x〉+ 〈y〉.
Multiply: To multiply 〈x〉, 〈y〉 the parties do the following:

1. They take nSAC+1 triples (〈a〉, 〈b〉, 〈c〉), (〈fi〉, 〈gi〉, 〈hi〉)nSAC
i=1 from the set of the available ones (and update

this latter list by deleting these triples).
2. For j = 1, . . . , nSAC player Pi computes

(a) ρj = PartialOpen(tj · 〈a〉 − 〈fj〉).
(b) σj = PartialOpen(〈b〉 − 〈gj〉).
(c) τj = PartialOpen(tj · 〈c〉 − 〈hj〉 − σj · 〈fj〉 − ρj · 〈gj〉 − σj · ρj).
(d) If τj 6= 0 then abort.

3. If no player has aborted we accept the triple (〈a〉, 〈b〉, 〈c〉) is accepted as valid, and so the parties execute
ε = PartialOpen(〈x〉 − 〈a〉) and δ = PartialOpen(〈y〉 − 〈b〉).

4. The parties locally compute the answer 〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ
BitDecomposition: This produces the BitDecomposition of a shared value 〈a〉. We present a simplified protocol

for when q = 2k, the extension to smaller k is immediate.

1. c = PartialOpen
“
〈a〉+

Pk−1
i=0 〈ri〉 ·Xi

”
.

2. Write c =
Pk−1

i=0 ci ·X
i.

3. Output 〈ai〉 = ci + 〈ri〉.
Output: We enter this stage when the players have 〈y〉 for the output value y, but this value has not yet been

opened. This output value is only correct if players have behaved honestly, which we now need to check. Let
a1, . . . , aT be all values publicly opened so far, where 〈ak〉 = (δk, (ak,1, . . . , ak,n), (γj,1(ak), . . . , γj,n(ak))

nMAC
j=1).

1. Player Pi computes (commi, ri) = Commit(yi‖(γj,i(y))
nMAC
j=1), for his share of the output value held in the

sharing 〈y〉.
2. The players execute {comm1, . . . , commn} = Broadcast(commi).
3. For j = 1, . . . , nMAC the players execute

(a) Player Pi computes (commj,i, rj,i)← Commit(γj,i).
(b) Execute {commj,1, . . . , commj,n} = Broadcast(commj,i).
(c) Execute {αj,1, . . . , αj,n} = Broadcast(αj,i).
(d) Player Pi computes αj = αj,1 + · · ·+ αj,n.
(e) All players now open the commitments commj,i to γj,i (via a call to Broadcast), the commitments

are checked and if Open returns ⊥ for a player then it aborts.
(f) Each player verifies that αj · âj,i =

P
i γj,i for his own stored values of âj,i.

4. The players execute Verify() to confirm all broadcasts so far have been consistent valid.
5. To obtain the output value y, the commitments to yi, γj,i(y) are opened via each player transmitting

to their openings to each player, and each player transmitting what it receives to each other to check
consistency.

6. Now, y is defined as y :=
P

i yi and each player checks that αj ·(y+δy) =
P

i γj,i(y), for j = 1, . . . , nMAC.

Fig. 2. The (slightly) modified SPDZ online phase.

17

1

�
��

2

@
@I6

3

6

6

6

12

�
��3

�
�
�
�
�
�
�
�
�
��

15

6

24

6

48

�
�
�3 6

63

6

96

6

�64

J
J
J
J
J
JJ]

Q
Q

Qk

127

6
�
�
��3

191

6

- 223

66

239

6

- 247

�

�
��

254

6
@

@I

251-

@
@I

253

Fig. 3. Data flow graph of our addition chain

18

