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Abstract

In the past twenty vears, the study of the conjunction of chaos and
cryptography has attracted much interest but also met with many prob-
lems. Today the security of chaos-based encryptions is usually not con-
sidered comparable to those based on number theoretic functions. In this
paper, instead of making an encryption system, we focus on the more fun-
damental notion of one-way function, which is a well-defined function that
is easy to evaluate but hard to invert. We see that it is more natural to
compare chaotic systems with one-way functions, and such a study could
possibly give new insights for chaos-based cryptosystems. We propose
a function based on Chebyshev polynomials, and we argue it is likely a
one-way function.

1 Introduction

1.1 Chaos and Cryptography

The study of cryptography using nonlinear dyvnamics and chaotic systems be-
gan more than twenty vears ago. Generally, there is a hope that the long-term
unpredictability of chaotic systems can be used as a source of computational
complexity in certain encryption systems. Most chaotic systems have very sim-
ple descriptions (using small amount of memory in computational terms), but
their behavior cannot be predicted. This makes them promising candidates for
cryptographic applications. But since the unpredictability only comes in the
long run, it is not easy to be used effectively. This is inevitable since chaotic
systems are usually continuous, unlike the discrete, number theoretic functions
normally found in modern public-key cryptosystems.

At some point, chaos cryptography has gathered much interest in the main-
stream cryptography community, but also demonstrated its difficulties. In 1991,
in a major conference in cryptography. a chaotic cryptosystem has been pro-
posed [9] and then (partially) broken [4] in very short time within the conference.
Ten years after that, the interest of chaos-based cryptography has faded, and
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is mostly limited to the nonlinear systems community only. During this period
there are also some reviews of the problems and properties of chaos-based cryp-
tography like [11] and [7], attempting to sort out new strategies. Since then,
opinions are divided while research continues. In some cases, for example, when
the plaintext is itself is a continuous signal, or when a trade-off between security
and system speed is required, chaos-based encrvptions are still believed to be
possibly advantageous.

1.2 Chaos and Chebyshev Polynomials

The fact that Chebyshev polynomials is a source of chaotic dvnamics has been
known for a long time. They also have an interesting commutative property.
Based on such properties, a public-key encrvption scheme based on Chebyshev
polynomials was proposed in [13]. But the first system working on the real num-
ber domain is found to be flawed later by [3] and [5]. A symmetric-key scheme
using a polynomial with similar properties [2] is also known to be insecure [1].
In [12], the Chebyshev polynomials are used in the discrete sense, working on a
finite field. It is so far considered secure, but with some issues [15, 6].

In this paper, instead of a cryptosystem, we try to create a one-way function,
which is a more fundamental and natural concept. In our case, the one-way prop-
erty relies on the unpredictable dynamics generated by iterations of Chebyshev
polynomials. Bearing similarities with [13], we try to avoid the known weakness
of [13] in our proposal.

1.3 Notion of One-way Functions

One-way function is a very fundamental concept in cryptography [8]. In a one-
way function, it is easy to compute the function itself, but it is hard to reverse
the process to find any pre-image of a randomly given image.

The definition of one-way function is based on computational complexity
theory. The existence of one-way function requires P # NP, but P # NP
does not directly imply the existence of one-way functions [17]. Since whether
P = NP is still a long standing problem in complexity theory, there are no
proven one-way functions. Currently we can only have candidates of functions
believed to be one-way. Such candidates are abundant, and they are used in
cryptography practically. The most obvious examples include discrete exponen-
tiation (as opposed to discrete logarithm), integer multiplication (as opposed to
factorization).

1.4 Applications of One-way Functions

One-way functions are important to cryptography in both theory and practice.
In the theoretic side, the existence of one-way function is a necessary condi-
tion for the existence of most cryptographic primitives [10]. In the practical
side, it is also a sufficient condition for many common cryptographic primitives



and functions. The latter fact is shown by explicit constructions of the eryp-
tographic functions from one-way functions. Examples include symmetric-key
encryptions, commitments schemes and pseudorandom generators.

When a cryptographic primitive is created based on one-way functions, an
important separation of system function and security can be achieved. Due
to the simple definition of a one-way function, it is often easier to verify its
one-way property than to try to show the security of the whole cryptographic
primitive constructed, which may have many components. Also, in case a one-
way function is shown to be flawed, the cryptographic primitives using it can
immediately switch to another candidate of one-way function, possibly with a
slight modification of settings, and remain secure based on the new one-way
function.

2 Preliminaries

2.1 One-way Functions

The definition of one-way function is straightforward [8]. For a well-defined
function f(x), it is a one-way function if:

e There is a polynomial time, deterministic algorithm to evaluate f(z) cor-
rectly. This algorithm is known explicitly.

e For any probabilistic polynomial time algorithm A trying to invert the
function f(x), we have Pr[f(A(f(z))) = f(z)] < 1/p(m) for every positive
polynomial p, where m is the length of = as a binary string, and z is taken
uniformly random.

That is, given an image f(z), it is hard to find any pre-image y such that
fly) = f(z). It is not necessary to find the original z. Also note that the
definition of one-way function does not say anything about the difficulty to
obtain partial information of the pre-image. In other words, an attacker of the
one-way function is given an image z, and the attack is considered successful if
and only if he finds y such that z = f(y). The attack is not a success even if a
few bits of y are recovered.

2.2 Chebyshev Polynomials

There are actually two kinds of Chebyshev polynomials. We only consider the
more commonly known first kind. The definition of Chebyshev polynomials
Ty (z) is:

To(x) = 1
Ti(zx) = =
Ti(z) = 22Ti1(x) — Ti—2(x). (1)

The first few of them that demonstrate chaotic properties are:

To(z) = 222-1



Ty(z) = 42 -3z
Ti(z) = 8z'—8z>+1. (2)

In this paper, we basically only use T5(z), in order to make use of the chaotic
properties with minimal computations. Chaotic properties appear only for z €
(=1,1). So we will assume that x is in this range.

The Chebyshev polynomials have many interesting properties. The follow-
ing two properties would be of special interest. First, the polynomial can be
expressed using cosines.

Ti(x) = cos(kcos™ ' z). (3)

Next, the compositions of Chebyshev polynomials are also Chebyshev polyno-
mials. In particular,

T (Ts(z)) = Ts(Tr(x)) = Tsr(x). (4)

This is known as the commutative property of Chebyshev polynomials.

3 Our Construction

As a function, the Chebyshev polynomial Tj(z) is not hard to invert when &
is relatively small. It is just solving an equation with a polynomial of degree k
in real number domain. To make k large, we can make use of the commutative
property of Chebyshev polynomials, that T(7-(z)) = Ts-(x). That is, if we
apply Ty(x) = 22® — 1 on an input repeatedly for n times, the result is Tha (x).
Also, if =1 < x < 1, it will be true that —1 < Tj(z) < 1 for any k. Therefore
the numbers involved in every step will not go out of range. This is the core
idea of our one-way function. Note that the function 75(x) is homomorphic to
the logistic map L(x) = 4x(1 — z), which is more popular in chaos generation
[16]. An orbit of logictic map (generated by applying the map repeatedly to an
initial value) can be mapped to an orbit of T5(z) by the simple function 1 — 2z.
That means the dynamics of L(z) and T>(x) are the same.

3.1 Domain Issue

The discussion above suggests that we can evaluate Ts«(x) in just n steps of
evaluating 75(x). But one problem to use it as a one-way function is that it
is easy to invert the algorithm step by step. Each step involves solving = with
a known T(z). This will always give two roots {z', —z'}. The adversary can
choose one randomly in order to proceed, and will finally get a candidate of the
original input. Even though it is not likely the real original input, the function
T5n(x) has been inverted anyway, and the one-way function is broken according
to the definition.

To make T~ (z) hard to invert against this method, we can limit the domain
for the original input . For example, let the actual input i be a binary string



(treated as a number) of fixed length m;, we add a random key p of binary
length m». Using a fixed point notation of numbers, the concatenation of i and
p is used as the binary digits below the fixed point, with p being less significant
than i in it. In other words, we treat i and p as positive integers in binary form,
and define z = i27™* 4 p27™17 ™2 The constructed number z is used as the
input to the Chebyshev polynomial. It is of m = m; + ms bit precision. In this
case, if the adversary tries to obtain just any pre-image z’ for an image of the
function, it is unlikely that it will match the given p. The set of parameters
(p,n,m1,m2) can be published to specify a particular one-way function using
T5(x) with this method.

3.2 Algorithm and Precision

In order to make sure that the function can be evaluated efficiently, we must
limit the precision as it is a function of real numbers. The exact algorithm can
be as follows. The input to the first step has m digits below the fixed point.
Evaluating 22 — 1 exactly requires no more than double the space, which is 2m
bits. Of course, we need to modify it, or the number of digits will be doubled
every round. We do not need to store the sign of the number, except for the
final round. This is because the sign of x is irrelevant in the next step, which
only needs to know z2. So, after expressing the number in 2m bits, we simply
truncate the result back to m bits for the next round. This is the common
approach to simulate chaotic functions with digital computers.

Repeat the procedure above for n times, we produce a number with m bits.
Finally this m bit result is truncated to m; bits, such that the final output has
the same length as the original input. We call the final new one-way function
defined this way G,,(i). Due to the truncation error, the result will not be the
same as T~ (z). It can be viewed as a noisy version of a chaotic dynamic sys-
tem based on Chebyshev polynomials. Due to sensitivity to initial conditions in
chaotic systems, the noisy and noiseless versions behave differently. This differ-
ence is an advantage, and is critical to security. Since Ty (z) = cos(kcos™' ),
the attacker may try to recover z from T (x) using this expression. Same as the
known weakness of [13], this attack is actually possible and practical. But due
to the truncations in the algorithm of our one-way function, G, (i) and Ts- ()
are different. In fact, any attack directly using shortcuts to invert Chebyshev
polynomials will not succeed in attacking this one-way function.

For a more precise description of the one-way function, we first define the
following algorithm g(x):

1. Input number z. It is required that —1 < z < 1.

2. Ignore the sign of = and treat it as a binary number with m bits precision.
That is, we compute
X = [27)a]) /2" (5)

where |z| means the largest integer smaller than z for a real number z.



3. Calculate y = 2X? — 1 accurately, which can be represented in 2m binary
digits.

4. Output y.

Next, the definition of algorithm G, (i) is as follows. It is assumed that there is
a system parameter p of mo bits.

1. Input 7. It is required that it is a binary string of m; bits. Then treat i
and system parameter p as binary integers.

2. Calculate x = i27 ™1 4 p2~ ™1~ M2,

3. Using z as the first input, iterate g(z) for n times. Set the last output to
y.

4. Truncate y such that only m; bits remain. Output the result.

In the algorithm of G, (i), g(x) is repeated n times and the final result is trun-
cated back to m, bits. The last truncation step further ensures that the informa-
tion given to the adversary is limited. This is reasonable because the input and
output now have the same binary length. G, (i) is our final one-way function.

The evaluation of G, (i) is rather efficient as it takes n steps and each step
is mainly squaring a number of m bits. The memory usage is also extremely
efficient, as we only need enough space for the computation of the current stage
from the previous stage. Of course, a space for step counting up to n is also
required.

4 Security Issues

First, it is reasonable to set m; = ms. due to the unavoidable brute-force
attacks. If the attacker, given an image z, just randomly chooses some input i
and evaluate G, (7), his success rate for z = G, (i) is in order of 27™1. If the
attacker try to invert G, (i) up to getting a candidate of x as defined in the
beginning steps of G, (i), the chance that z is consistent with p is in order of
27 mz2,

Also, we require n > m. This is necessary if we want every bit of G, (i) to
be sensitive to every bit of x = i27™t 4 p27™17™2_ The Lyapunov exponent
of T>(z) is In2, meaning that on average a change in the least significant bit
of = takes m iterations of Th(z) to affect the most significant bit of the result,
where m is the number of bits in z. For a lower n, a small change in z may not
produce enough change in the output. In this case, some kinds of attacks would
be possible, because similar inputs would be mapped to similar outputs.

Another possible problem is concerned with the size of the actual range of our
function. T»(z) is a two-to-one mapping in the real number domain. From all
the possible inputs going through the iterations of g(x), the number of possible
outputs may decrease every time g(x) is applied, because different inputs could
be mapped to the same output. If the final range of the function is too small,



it will not be a good one-way function. We argue that this question can be
answered together with the next problem below.

With any fixed i, it is clear that G, (i) is eventually periodic in n. If we write
the series g(x), g*(x)..., where g’ (x) is the iteration of g(x) for j times, there
will be some smallest k and k' > k such that g*(z) = g* (z). Obviously it also
means g¥t7(z) = g¥'*+i(z) for every j. The value of k' — k is called the period
of the orbit, and the series g(z), g(z)...¢* "1 (z) is called the transient orbit.

This is a common problem for digitized chaotic systems [14], which is in-
herently different from their analog counterparts. If the period is too small,
the one-way function may be vulnerable. A study in [18] shows that in gen-
eral the average period length is proportional to the square root of the do-
main size of the function. Intuitively, this observation makes sense due to the
birthday paradox. If g(x) is behaving like a random function, then the series
g(z), g°(x)... are random numbers in the domain. A periodic orbit is found when
g(g*1(z)) = g(¢¥ ~'(z)) but g*'(x) # ¢* ~'(z). This is a collision of g(z)
and on average it would happen when the sample size is near the square root of
domain size. A more detailed study of this issue is shown in [16] for the logistic
map, which automatically applies to T»(z) as well.

It means the period length increases exponentially with the precision used.
Thus it is not a problem in our one-way function, as our n is much smaller than
the average period. It also implies that the size of the range of our function is
at least in order of the square root of the domain size. Our domain size is 2™,
and so the range size is at least in order of 2% , which is acceptable.

4.1 Numerical Illustrations

Just for example let n = 60. Set m; = ms = 30. Let the user’s input be
i = 322122547, which is smaller than 2. Let p = 332859965. Setting z =
(123° + p) /259, we have

r = 345876451500165693/25°
Ga(i) —956954862/230. (6)

For robustness against attacks, we can first see the sensitivity of G, (i) to x.
Set p = 332859966:

7' 345876451500165694 /2%
Gal(i) —480296176 /2. (7)

Next we try to compare Ts- (z) and G, (i) to show that solving Ts-(z) is not
effective to attack the one-way function. The accurate evaluation of Ts. () can
be done by the cosine based form of Chebyshev polynomials, up to any desired
precision.

r = 345876451500165693 /25
Ton(z) ~ —0.7712
Gn(i) = —956954862/2% ~ —0.8912. (8)



4.2 Open Challenge

Here we post a challenge. If n = m = 128 and m; = m» = 64 with p = 0, can
anyone solve i in:

G, (i) = 12395610133708948990/2%* (9)

with any efficient algorithm that runs in significantly fewer than 2% steps?

5 Conclusion

Taking m = n and m; = mo, the final family of our one-way functions using
T5(x) is indexed by n and p only. One announces the choice of n and p to
specify a one-way function. Due to sensitivity to initial condition of a chaotic
system based on the Chebyshev polynomials, a slightly different p will give a
very different one-way function. The security parameter is simply n and thus
the security is scalable. Currently there seems to be no known method that
could invert this function, and therefore we argue that it is a candidate for
one-way functions.
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