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Abstract. Recent research has shown that many popular web applications are vulnerable to side-channel
attacks on encrypted streams of network data produced by the interaction of a user with an application.
As a result, private user data is susceptible to being recovered by a side-channel adversary. A recent focus
has been on the development of tools for the detection and quantification of side-channel information
leaks from such web applications. In this work we describe a model for these web applications, analyse
the effectiveness of previous approaches for the quantification of information leaks, and describe a robust,
effective and generically applicable metric based on a statistical estimation of the mutual information
between the user inputs made in the application and subsequent observable side-channel information.
We use our proposed metric to construct a test capable of analysing sampled traces of packets to detect
information leaks, and demonstrate the application of our test on a real-world web application.

1 Introduction

A pervasive theme in recent web application development is a move toward increasingly complex, interactive
programs, with more and more computation being moved into the cloud. This has resulted in an increase in
user data being retained in cloud services and accessed by the user using a web browser on any type of client
device. Consequently, a significant amount of personal information is now being transferred across networks as
users interact with these web applications day-to-day.

A passive adversary eavesdropping on the network traffic between a client and the web application server will
be able to capture IP packets and reconstruct the data being sent to and from the web application if the data
is unencrypted. If the web application is processing user-entered data that a user wishes to remain private, the
server hosting the web application will typically deploy the TLS protocol over HTTPS to encrypt the data with
the goal of ensuring that an adversary eavesdropping on the traffic resulting from web application transitions
cannot learn the inputs entered by the user or the particular state the web application is in.

However, as first pointed out by Chen et al. [8], side-channel observations made on network traffic between
a client and a server during the execution of a web application can reveal information about the user inputs
made at a particular state or personal information stored in server databases. Chen et al. illustrated that an
adversary can utilise knowledge of tuples of packet sizes and directions to reveal user choices made in financial,
medical and search applications.

Follow-on work has focused on developing strategies and tools for web application designers and implementors
with which to find such information leakages in order to secure their applications against side-channel adversaries
[5,32]. A key point in this work is to spot and quantify when/where the information leaks from a web application
within the network traffic. The approaches currently available all come with several caveats, such as high
dependency on chosen metric [5] or the inability to deal with noisy observations [32].

Our work is motivated by the desire to avoid the aforementioned caveats. Our proposed solution is to model
the system as a classical information-theoretic channel, with the application inputs considered as the hidden
channel inputs and any data available to an eavesdropping network adversary as the channel output. We use
statistical sampling to produce an estimate (and, in the case of discrete data, confidence intervals) for the
mutual information between the web application inputs and side-channel observations.



One advantage of using mutual information over alternative heuristic-based classifiability metrics is that it allows
us to compute the information leakage for a given usage pattern for the web application, or by computing the
channel capacity allows us to determine the usage pattern of the application that leaks the most information.
A second advantage of our mutual information metric is that in the discrete case derived confidence intervals
provide a degree of rigour unavailable in previous approaches to solving this problem.

We outline a suitable leak-detection technique capable of mechanically and quickly identifying the majority
of simple information leaks. Our technique involves considering the time-series of the sequence of packets
produced by the communication between the client computer and the web server and computing the mutual
information between the application inputs and selected properties of the packets at each position in the
sequence. Considering the distributions of individual packets allows us to quickly detect the most common
types of information leak; the joint distribution of multiple packets can be computed to detect more complex
leaks.

This paper is structured as follows. We provide a formal model for a web application in section 2 and review
related literature. In section 3 we discuss previous approaches and related work for this problem. Our choice
of metric is detailed (as well as its pros and cons) in section 4. Thereafter we formally describe our leakage
detection test and illustrate it on (a part of) the NHS direct website1 in section 5. Finally, in section 6 we
demonstrate further the application of our test in analysing the effectiveness of several countermeasures.

2 Modelling web applications

Every web application can be formalised as an input-driven finite state machine. A web application always
exists in some state that waits for some user-specific input that may be one or more combinations of mouse-
clicks, form elements, database data or key presses. The combination of these inputs determines the new state
the web application should transition to. Inputs may be selected on both the client and server machines, either
directly by the user (for example through selecting hyperlinks or filling out HTML forms), generated by the web
application itself (e.g. cookies, unique identifer strings or internal program variables), or taken from database
storage (e.g. user account information). We hence formally describe a web application as follows below.

Model. A web application may be represented as the following quintuple (S,O,A, f, g):

– S – A web application is always in one of m = |S| possible states s ∈ S. We define a state to be a unique
configuration of the web browser DOM on a client machine.

– A – Each state is associated with a set of inputs A. At each state a subset of inputs a ∈ A are sent to
server and used to determine the next state the web application should transition to.

– f – Each transition from one state to another is defined according to some (potentially probabilistic) function
f : S × A → S. The evaluation of f is made by the application web server, and the next application state
is transferred back across the network to the client machine.

– O – State transitions cannot be observed directly, but each transition is associated with one of n = |O|
observable side-channel outputs o ∈ O. We call these outputs a trace. Note that each observable output is
a single trace.

– g – The observable outputs are generated according to a function g : S × A → O, where g(s, a) = o ◦ ε,
with ε representing the noise in the observations.

We now discuss further the properties of our observables, i.e. traces, in practice.

1 This is a free web application provided by the UK national health service. The part of the application that we
investigate is a confidential symptoms checker.



2.1 Traces

Traces are the result of a state transition within a web application: when an input to a particular web application
state is made by a user, the client’s browser first sends the input data to the server hosting the web application,
which then responds with additional data or a new web page corresponding to the next web application state.
The nature of this outgoing and incoming traffic to the client is therefore dependent on the particular data
being entered into the web application and the corresponding state the web application is in.

Non-deterministic traces. A key factor to consider is the non-deterministic nature of network traces gener-
ated from the selection of an input at a particular state. Variation in sampled traces comes from the fact that
in practice, network traffic between a client machine and a server hosting a web application is dependent on
many factors. For instance:

– Network quality/congestion/latency and the user’s geographic location at the time of data capture will
affect total traffic size and packet arrival timings;

– Web pages themselves vary over time, for instance through dynamic content, different advertisements and
varying time-dependent information, which affects total traffic size;

– The connection type and medium (‘normal’, VPN, Tor; fibre-optic, satellite) will heavily affect all types of
packet features;

– Traffic information may be added at layers below the application layer in the network model, which may
affect packet sizes;

– Users may click to transition to a new state before the current state has finished loading, artificially
shortening the trace;

– Proposed application, transport and link-layer countermeasures typically attempt to randomly distort net-
work traces.

Clearly it becomes important to either control for these factors within any leakage detection strategy or ensure
that they are clearly defined as assumptions in the implementation configuration, e.g. : This web application has
leakage X when a user connects through Tor. The division of the factors into these two categories is determined
by whether a factor can be accounted for in the description of the implementation environment or not. For
example, variation in web page content as a result of advertising is difficult to control for, but will result in
variable trace sizes when the web application is repeatedly executed with the same inputs. Summarising: it is
critical that any leakage detection strategy can incorporate probabilistic output traces.

Trace features A network trace o is a multi-dimensional object, consisting of multiple packets each of which
have multiple properties: for example a hypothetical trace may consist of 20 TCP packets, each of which have
their own arrival time, payload size, direction (to the server, to the client) and set TCP options. We define a
trace feature to be a particular function of a subset of packet properties taken over all the packets in a trace.
Example features may be the total size of all of the trace packets, the size of a particular packet, the order of
the communication between the client and the server or inter-packet arrival timings. Figure 1 illustrates a trace
sampled from our online health website.

Not all of the information contained within a network trace will be dependent on the input choices made by
the user. In many cases the inter-packet arrival timings may be entirely independent of the input choice made
by a user, for instance. Taking the perspective of a Bayesian adversary, the challenge is to identify the trace
features that most strongly distinguish one input choice from another, and then use these efficiently in an
attack algorithm. Dyer et al. make a similar claim in their recent work on subverting common traffic analysis
countermeasures [12]. From the perspective of a person attempting to assess the information leakage of the
application, the challenge is somewhat different: to identify the trace features that leak the most information
about the input choices and if possible mitigate this leakage.

Example. As a toy example, we will consider a very simple hypothetical web application consisting of three
states S1, S2 and S3. At S1 the user picks one of two inputs a and ab. If the user chooses a, then the web
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Example trace sampled from a popular online health website

Fig. 1. A packet trace sampled from a popular online health website. The total size in bytes of each individual packet
is represented as the trace feature.

application transitions to the new state S2, and in the case of b transitions to S3. A key difference between
the two states S2 and S3 is that S3 is approximately 10000 bytes in size, 2000 bytes larger than S2 at 8000
bytes. In this case, trace features that will leak information are the total size of the server response, and the
presence of additional packets in the longer traces produced when the user selects b. A visual representation of
the application is in Figure 2.

s1

s3

a b

oa= 8kb ob= 10kb

s2

Fig. 2. A simple hypothetical application with three states, two inputs and differing server response sizes.

2.2 Designer and adversary strategies

The steps required in the processes of quantifying information leakage from a designer’s perspective and at-
tacking a web application from an adversarial perspective are outlined in Figure 3. We can see that the first
two steps are equivalent for the roles of designer and adversary. As in practice a web application has to be
treated like a black-box, to understand the behaviour of the application outputs both roles have to sample
the web application in its deployed state. It is critical for both roles to sample the application well enough to
accurately estimate the trace behaviour. A different way of describing this is to say that the success of an attack
or leak quantification method is essentially dependent on the underlying ability of the designer or adversary
to successfully estimate the probability distribution of the trace outputs given the secret inputs. An adversary
may or may not have full access to every area of the application, so in some cases the adversary’s ability may be
diminished in this area. As network traces are significantly multi-dimensional, time-ordered vectors of features,
the next challenge for an adversary and a designer is to identify the feature(s) or transformation of features
that contain the most information about the secret inputs. This stage is highly similar to the feature extraction
and feature selection problems in machine-learning.

The final stage for the designer is to quantify the information contained in the selected trace features. The
adversary is faced with a classification problem; given new data, he or she has to guess the class of inputs
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Fig. 3. Schematic defining the differing approaches taken by an application designer looking to identify information
leaks, and an adversary attempting to attack the application.

the data resulted from. In this supervised learning context, empirical studies indicate that the most common
attack strategy is a Bayesian classifier [3,16,18,23], so typically the adversary next has to select an appropriate
classification strategy, and train the resulting method using the data sampled in step 1. Finally, the adversary
will execute their attack using one or more traces captured during the interaction of a user with the web
application.

So whilst an application designer attempting to detect information leaks and an adversary attempting to attack
an application have the dual goal of identifying (and thus quantifying) the trace features that leak the most
information, the feedback required by the designer and the adversary is different. An adversary is concerned
with the power of his or her attack, and hence requires a metric capable of quantifying the practical performance
of the attack strategy. The designer is concerned with the size of the information leak itself; not with precisely
evaluating the exact ability of any single adversary to exploit it.

3 Previous work

Previous work in the area focuses on two distinct questions. The first is how to construct successful attacks (i.e.
the focus is on exploitation of leakage; we described this as the attacker’s perspective previously). The second
question is how to detect and mitigate leakage (i.e. the focus is on leakage detection; we described this as the
designer’s perspective previously).

It is critical that any leakage metric be sufficiently generic to be able to directly compare two different imple-
mentations of an application. The performance of attack strategies will vary across different applications, and
hence by recording the success of an attack alone we can only make comparisons that assess information leakage
against that particular adversary. The most common attack strategy is a Bayesian classifier, and that of the
various inputs to the classifier that affect its success, the choice of trace feature(s) is paramount [12]. Hence,
we suggest that a suitable leakage metric should be able to quantify the information contained in a set of trace
features. Standaert et al. take the same approach of distinguishing between metrics for assessing security and
metrics to quantify the quality of attacks in their framework for the evaluation of side-channel key-recovery
attacks [27].

We now focus on previous work concerned with leak detection and leakage metrics.

3.1 Leak detection/quantification

There have been two different approaches towards quantifying side-channel information leakage in the context
of web applications: using information theory to estimate the reduction in entropy of the application inputs



after the adversary has seen the observable outputs, and using metrics to quantify the classifiability of the
secret inputs given the observable outputs.

Chen et al. [32] propose using the conditional entropy of the secret inputs after the trace outputs have been
observed. They describe rerun testing, which samples the channel distribution by running the web application
source code, and then computes the conditional entropy between the application inputs and the sampled
observations. The conditional entropy metric estimates the remaining uncertainty about the tested inputs
given the sampled observations, and so can be used directly as a quantification metric.

Rerun testing is a white-box strategy that does not incorporate any probabilistic trace information; in the data
acquisition phase any trace features that vary are discarded. Noise will be present in a situation where a web
application is deployed as a live system, as described in section 2, so a strategy of retaining only invariant trace
features will often result in valuable information being discarded. In our own experiments we have observed
situations in which strongly distinguishing packets are sometimes noisy; an adversary will only sometimes be
able to determine the input choice made, but the information leak may be significant.

Chapman and Evans [5] describe two different classifiability-based quantification metrics that estimate infor-
mation leakage by clustering sampled trace features using several distance metrics derived from an analysis of
trace features, and then a quantify the quality of the clustering to capture the size of a leak. Informally, the
hypothesis is that clusters that are more strongly separated should produce a lower estimate of information
leakage.

Their first metric estimates the ambiguity set reduction of the input space in terms of loss of entropy. An
ambiguity set is a set of inputs that an adversary cannot distinguish from each other. To decide when two
inputs are indistinguishable, Chapman and Evans take the center of each cluster of sampled outputs and
determine a threshold distance around each cluster center that includes a certain percentage of the sampled
outputs for that input. If the center of a cluster is inside the threshold distance of another cluster, then those
two clusters are considered indistinguishable to an adversary. An inherent problem with this strategy is that the
leakage result becomes very sensitive to the almost arbitrary choice of threshold distance. The only feedback
mechanism to aid in the establishment of the threshold distance is the success of an attack; hence it is likely
that a leakage result calculated using this method will estimate the strength of the attack, rather than the size
of the information leak itself. Additionally, the linearity of the probability distribution of the features is not
taken into account. In some situations, there may be no natural ordering to the feature distribution; treating
the sampled features as continuous, ordered data will in some cases not make use of this property.

Chapman and Evans’ second metric directly estimates the clustering quality by computing the Fisher criterion
([14]), a function that is typically used in linear discriminant analysis (LDA) to estimate classifiability for use
in feature extraction. The Fisher criterion computes the ratio between the inter- and intra-cluster variance;
hence two heavily overlapping clusters will have a low Fisher criterion, and as clusters become more strongly
separated, the Fisher criterion will tend to infinity. The Fisher criterion is a capable metric in the case of
two clusters being linearly separated, but its suitability will degrade as the relationship between two clusters
becomes increasingly non-linear, or as the sampled data becomes decreasingly less continuous. In general, it
may be that a particular classifiability metric works well for a data set captured from one web application,
but not another, or works well for a particular type of trace feature and not others. Any classifiability result is
sensitive to the choice of distance metric, the feature chosen from the traffic traces, and the combined challenge
of selecting an appropriate distance metric for the feature. For continuous data, such as packet sizes, the choice
of distance metric may be fairly straightforward, but for other features such as the control flow of the trace data,
the answer is less obvious, and for trace features considered jointly, the answer becomes increasingly difficult.

A general limitation with a leakage result derived from an approach attempting to quantify classifiability is
that it cannot include any information contained in the a-priori distribution of the inputs. If the users of a web
application follow a particular usage pattern, the leakage metric cannot incorporate this additional information.

Example. Returning to the toy example outlined in section 2, we can construct a situation where the classifia-
bility and entropy metrics as described will fail to detect a leak. Let us now consider a scenario whereby the size
of each state is as before, but an object approximately 6000 bytes in size (perhaps a particularly large advert)
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Fig. 4. (Left) Our modified toy example, with strongly varying server response sizes for each input choice. (Right)
Visualisation of sampled data for our modified toy example. The samples corresponding to the different inputs are
represented by light circles and squares, and the centroids are marked by the darker symbols.

appears at both s2 and s3 50% of the time, independently of the input choice made by the user. Therefore, the
traces produced when the user selects a are approximately 8000 bytes in size half the time, and 14000 bytes in
size in the rest of the time. The traces produced as a result of b are 10000 and 16000 bytes in size respectively.
The left-hand side of Figure 4 gives a visual representation of this modified application. The centroid of the
traces corresponding to a will be approximately 10000 bytes, and for b, 12000 bytes.

The inter-class variance now will be significantly smaller than the intra-class variance, resulting in a Fisher
criterion score significantly less than 1 (in fact, assuming 200 samples and low noise, approximately 0.1). A
low Fisher criterion score is difficult to interpret meaningfully, and here could quite easily be interpreted as
evidence for the sets of traces being indistinguishable. However, it is clear that an adversary observing a trace
size close to one of the 4 possible values can always determine whether the user chose a or b. The right-hand
side of Figure 4 indicates visually using hypothetical sampled data why the linear Fisher criterion metric fails
to detect a leak. The samples corresponding to input a are represented by circles, and for b by squares. With
this distribution of the outputs there is no way to linearly separate the two classes of samples. We can see
straightforwardly that a similar failure to detect the leak will occur using the centroid-based entropy metric.

Similar situations to our toy example can occur in practice; any fixed-size object that randomly occurs in traces
has a chance of creating non-linear cluster relationships. As a more subtle example, packet re-transmissions
can result in trace sizes being increased by multiples of (approximately) a fixed amount. This can result in the
distribution of trace sizes being only locally continuous; any underlying difference in the sizes of two traces has
a good probability of being preserved despite the presence of the re-transmissions. In this situation, clusters of
trace sizes will have non-linear relationships.

4 Mutual Information based Leakage Detection

We hope to have convinced the reader that there is little hope in finding a generically applicable metric through
a quantification of feature classifiability. We hence advocate the use of a different approach all together. In what
follows we assume the reader knows basic facts about information theory2.

The problem of inferring the input choices made by a user from within the set of all possible inputs bears a
significant resemblance to the problem of the anonymity of a user within a set. Initial approaches for quantifying
user anonymity assumed protocols were deterministic in nature, and used the concept of an anonymity set
[2,7,17]. Since then, there has been a large body of research into the construction of metrics for quantifying
anonymity. In particular, work has focused on information theoretic metrics capable of analysing probabilistic
systems and the relationship between covert channel capacity and anonymity [11,20,21,22,26,33], with a smaller
body of work investigating metrics based on combinatorics [13,15].

A definition of the coverage of a metric is important. Clauß and Schiffner generalised all entropy metrics
(Shannon entropy, min-entropy, max-entropy) using Reyńı entropy, and established a division between global

2 We provide the few facts needed in Appendix A.



metrics that assess the anonymity loss of a system and local metrics that assess the loss of anonymity for an
individual user [10]. Tóth et al. analyse two entropy-based metrics and their applications in assessing local
anonymity [29].

4.1 Using Mutual Information in the Context of Leakage Detection

Assuming the case of discrete random variables, the notation we will use in this paper is as follows. For
random variables X and Y , the marginal probability mass function for X is defined as px = Pr{X = x}.
The joint and conditional probability mass functions are similarly defined as px,y = Pr{X = x, Y = y} and
px|y = Pr{X = x|Y = y} respectively.

We model the side-channel aspect of a web application as an information-theoretic channel; the set of secret
user inputs A are considered as the channel input alphabet, and the observed features O as the channel output
alphabet. The channel conditional probability distribution D = Pr{O = o|A = a} gives us the probability
of a side-channel adversary seeing trace feature outputs for a given input choice. The mutual information
I(A;O) = I(A;O) = H(A)−H(A|O) gives the average reduction in uncertainty about the application inputs
A after the adversary has knowledge of the observable outputs O. If A and O are independent, then the mutual
information will be zero. When A is completely determined by O, the mutual information will be at its maximum
value of H(A).

Input distribution. To compute the mutual information we require a prior distribution for the secret inputs
Pr{A = a}. To accurately estimate information leakage in a real-life scenario, a web application owner may wish
to use an input distribution itself estimated from the usage habits of (possibly a subset of) the user population.
For example, the medical conditions common for South American users of an international health application are
likely to prove to be different for those from East Asian users; two leakage results using distributions calculated
from both populations will be more informative and useful than one derived from a single, unrepresentative
generic distribution.

Capacity. Alternatively, a worst-case estimate for the information leakage can be computed using the capacity
of the channel. In essence, the computation of the channel capacity finds the input distribution that leaks the
most information across into the trace output distribution. The capacity is defined as follows:

C(D) = max
Pr{A}

I(A;O).

Leakage Detection vs. Exploitation The relationship in general between side-channel information and
security is a very complex one. Standaert et al. study the relationship between conditional entropy and the
success rates of an adversary in the context of side-channel key-recovery attacks [27], and come to the conclusion
that in general, the relationship between the success of an adversary and the conditional entropy of a leakage
distribution cannot be fully determined. In our web application context we face a similar problem; the exact
structure of the leakage distribution is unknown to the designer as well as the adversary, and, without access to
a computationally unbounded sampling phase, cannot be perfectly approximated. As a result we cannot make
any definitive conclusions about the success rates of a Bayesian adversary directly from the mutual information
or capacity of our application alone. In practice, to be able to concretely assess the true vulnerability of the
application it becomes necessary that a leakage evaluation should always be complimented by a separate security
evaluation of appropriately defined adversaries.

Nevertheless, mutual information is still an appropriate tool for leakage detection: recent progress ([6]) has
been made in constructing a sound test for distinguishing between zero and non-zero mutual information.
This distinction between zero and non-zero mutual information serves as a highly useful decision criterion in
the engineering problems of identification and mitigation of leaks. In particular, we place significance on this
distinction between zero and non-zero mutual information in our design for a leak detection test in section 5.



Finally we note that in our web application context, we are typically less concerned with information leaks for a
particular instance of a secret input, and the input space is often very small. It therefore makes sense to evaluate
web applications using a global security metric. In this context, a local metric such as min-entropy gives us the
worst-case information leak for a particular input value, but does not give us any further information about the
information revealed in the rest of the system. The Shannon entropy computes the average loss of information
in the system, and hence is likely to be more suitable in capturing the application performance as a whole.

4.2 Leak Detection Testing Procedure

In practice, the leakage distribution D is unknown to the application designer, and has to be estimated by
statistical sampling. When the web application has been sampled n times we obtain an estimated distribution
D̂n = P̂r{O = o|A = a}. In turn, this means we are estimating the mutual information În(A;O), and similarly
will produce an estimate of the capacity Ĉn(D̂n). The variables we require or produce as part of a side-channel
leakage quantification test are detailed in Table 1.

Table 1. Variables required and values computed during a test

A the web application input(s) we wish to assess for information leakage
O the set of trace features produced as a result of executing the web application with inputs A

n the number of samples taken from the web application

D̂n = P̂r{O = o|A = a} the conditional probability distribution estimated from n samples

În(A;O) the estimated mutual information for the application inputs and features, using n samples

Ĉn(D̂n) the estimated capacity computed using the estimated conditional probability distribution

The quality of the estimation of the probability distribution D is now important, as it introduces a source of
error into the estimation of the mutual information and capacity values. Several techniques exist for distribution
estimation. The simplest non-parametric approach is the histogram technique; more complicated non-parametric
techniques are kernel density estimation, vector quantization, and strategies based around clustering of the data.
Parametric approaches under the presence of assumptions could improve the quality of the estimation, but are
unlikely to be viable in this context. We note that the importance of the estimation quality here has two-fold
implications. Assuming the selection of a suitable estimator, if a designer is unable to sample enough data to
approximate the distribution sufficiently well in a particular amount of computational time, then any adversary
bounded by the same level of computational power cannot either. This indicates the support size for a successful
attack on a web application is a useful consideration.

In [6] Chatzikokolakis et al. find a confidence interval for the estimation of mutual information and capacity
over a channel as outlined here. Let I = |A| and J = |O| be the sizes of the input and output domains. A
result of their work is that when the true mutual information I(A;O) = 0, for large n the value 2nÎ(A;O) is
approximately χ2 distributed with (I − 1)(J − 1) degrees of freedom, with a mean of (I − 1)(J − 1)/2n and
variance (I − 1)(J − 1)/2n2.

Alternatively, when I(A;O) > 0 the estimate is instead approximately normally distributed, with a mean of
I(A;O) + (I − 1)(J − 1)/2n+O(1/n2) and a variance v (see Theorem 6.1 in [6]). The approximate bias of the
estimator is (I − 1)(J − 1)/2n, and the authors show that the variance of the estimator in both the zero and
non-zero cases is bounded above by IJ/n.

This result means that the accuracy of the estimates can be increased by taking a number of samples larger
than the product of the sizes of the input and output domains; keeping the estimate variance low. The ability
of the designer to sample enough data to reduce the variance of the test to a reasonable level therefore indicates
the applicability of this test in a particular setting. Our web application context is characterised by low-entropy
input spaces, and common trace features will typically have fairly small ranges, so it is likely that in most cases
the designer will be able to do this.



Defining the estimator result as e = Î(A;O), let pe = max(0, e− (I − 1)(J − 1)/2n) be the point estimate for
the mutual information. Following Chatzikokolakis et al., if 2ne is inside the 95% confidence interval of the
χ2((I − 1)(J − 1)) distribution then the confidence interval for the capacity or mutual information is:(

0, pe+ 1.65
√
v
)
,

and if 2ne is outside the 95% confidence interval of the χ2((I − 1)(J − 1)) distribution then the confidence
interval is: (

pe− 1.96
√
v, pe+ 1.96

√
v
)
,

where v is the variance of the estimated mutual information as defined previously.

A key point to make is that these particular confidence intervals are defined only in the case of discrete trace
features. In the context of web applications, packet arrival times are likely to be the most common continuous
feature containing useful side-channel information. For such continuous features, there are two options:

– Use bucketing strategies to treat the continuous data as discrete. Due to the data processing inequality3

under a bucketing strategy the mutual information estimate will be a lower bound on the true value.
– Compute an estimate of the continuous mutual information4 (see Appendix A for a definition).

A cautionary note in the continuous case is that finding good estimators for mutual information is difficult; the
optimal estimator is dependent on the (unknown) underlying structure of the data, and there is no universal rate
of convergence of an estimator to the true value [24]. Chothia and Guha have devised a statistical hypothesis test
for mutual information in the case of discrete inputs and continuous outputs by establishing a rate of convergence
for the estimator in the case of zero mutual information [9]. Their result guarantees a good convergence rate
in the case of two possible inputs only, but their test is demonstrated to show good performance in the case of
multiple inputs.

Multivariate extensions. If more than one feature is to be included in a leak quantification, then there are
two options. Denoting the ith feature as Oi:

1. Compute the mutual information between the inputsA and n trace features considered jointly: I(A; (O1, . . . , On));
2. Compute the multivariate mutual information between the inputsA and n trace features: I(A;O1;O2; . . . ;On).

The definition of multivariate mutual information I(X;Y ;Z) between the triple ensemble of three random
variables X,Y and Z essentially describes the gain or loss of information from the set of two variables given
knowledge of the third. The definition can be extended to any number of variables and is defined inductively
using the definition of conditional mutual information. The conditional mutual information I(X;Y |Z) considers
the expected value of I(X,Y ) given the value of Z. In terms of probability mass functions, it is defined as:

I(X;Y |Z) = EZ(I(X;Y |Z)) =
∑
z∈Z

pz
∑
y∈Y

∑
x∈X

px,y|z log
px,y|z

px|zpy|z

Multivariate mutual information is defined inductively using this conditional mutual information. For n + 1
random variables X1, . . . , Xn+1:

I(X1; . . . ;Xn;Xn+1) = I(X1; . . . ;Xn)− I(X1; . . . ;Xn|Xn+1).

Figure 5 shows the relationship of these two approaches. Whilst both definitions of mutual information are
equally viable, the interpretation of ‘true’ multivariate mutual information is perhaps less intuitive, is more
computationally expensive to compute, and there is no result to our knowledge on bounding the estimate for
multivariate mutual information. The alternative definition using the features considered jointly captures more
information about the inputs, so with these properties in mind we suggest computing the mutual information
between the application inputs and trace features considered jointly.

3 I(f(X); g(Y )) ≤ I(X;Y ) for any random variables X and Y and any functions f and g on the range of X and Y .
4 Formally, we require a mutual information definition for one discrete and one continuous random variable.
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Fig. 5. An information-theoretic representation of the two approaches for estimating leakage resulting from the consid-
eration of two trace features.

5 The Leak Detection Test illustrated with an Example

Using our leakage metric proposal, in the following section we describe a leak detection test capable of identifying
the presence of many common information leaks.

Let P = {p1, . . . , pn} be a trace consisting of n packets sampled from a web application. Each trace is reduced to
a corresponding vector of features O = {o1, . . . ,on} with each oi being a feature vector of length k representing
the values of a set of k selected features considered jointly for the packet pi at position i in the trace. Defining
N as the length of the longest trace, we construct a set Oi that contains the feature values at the ith position in
each of the sampled traces, for i ∈ {1, . . . , N}. For example, O3 might contain the set of sizes of the third packet
in each sampled trace. We then estimate the conditional probability distribution D̂i(Oi, A) = P̂r{Oi = o|A = a}
of the selected packet features Oi at each possible position in a trace, for i ∈ {1, . . . , N}. Finally, using the
estimated distributions we estimate mutual information values v̂i = Î(A;Oi) between the application inputs
A and the packet features Oi. Using the test of Chatzikokolakis et al., we then compute corresponding 95%
confidence intervals for zero and non-zero mutual information for each of the i ∈ {1, . . . , N} estimates.

We identify leaks by checking the confidence intervals for zero mutual information: an estimated mutual in-
formation value at position i that falls outside of the 95% confidence interval for zero mutual information can
be taken as evidence of an information leak at position i. A positive result at a particular position will not
necessarily describe the true size of the information leak; a confidence interval for the point estimate of non-zero
mutual information that is further away from the corresponding interval for zero mutual information suggests a
larger information leak than a confidence interval for the point estimate that is closer to the confidence interval
for zero mutual information, but does not guarantee it. Careful interpretation of the leak detection results is
paramount, and a security analysis to complement an information-theoretic analysis is always recommended.

A common example of a detectable information leak in practice occurs when two subsets of the application
inputs each redirect the user to a differently sized web page. The leak detection test will identify the information
leak towards the end of the subsection of the trace that corresponds to the server response; given the sequence
of packets that correspond to the server returning the new web page, the initial packets are all likely to be
equivalent in size, typically of the maximum segment size (MSS) for the TCP session, but the length of the
sequence is likely to be longer, or the final packet larger, for the larger web page.

The left-hand side of Figure 6 shows a graph of mutual information estimates and corresponding zero and
non-zero confidence intervals extracted from a particular state within our online health application, using the
presence of a TCP acknowledgement flag as a packet feature. The state consists of a ‘Yes or No’ style question,
with the user being redirected to different web pages depending on their choice. One web page is slightly larger
in size due to the inclusion of additional text on the page. The highest peak in the graph occurs at position 22



in the sequence. The choice that leads to the larger web page results in extra packets being downloaded, and
as a result a larger amount of acknowledgement packets are present in traces for that choice. A conclusion to
draw here is that in this circumstance, an information leak is present that does not take into account packet
sizes at all, illustrating that the depth of potential side-channel attacks on web applications extends beyond an
analysis of packet sizes.
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Fig. 6. Mutual information estimates at each index in a sequence of packets, (left) using the presence of a TCP acknowl-
edgement flag as a packet feature, and (right) using the packet size as a packet feature. There are two possible inputs
to the application at this state, with the maximum entropy for these two inputs represented by the horizontal line.

Multivariate extensions. It is possible that a detection test considering additional packet positions jointly
(estimating I(A;Oi, . . . , Oj)) may detect an information leak that a univariate test could not: I(A;Oi) = 0
and I(A;Oj) = 0, but I(A;Oi, . . . , Oj) > 0. The identification and selection of the additional positions is
a non-trivial task that will typically require additional domain knowledge from the designer. An exhaustive
multivariate test is computationally feasible when considering the joint distribution of a small number of packet
positions; for instance. given a trace of length n, we can check all possible pairs of packets in O(n2) time.

A second consideration is whether a combination of packet features (e.g. combining packet size and direction)
could result in the identification of an information leak that would not be detected by an individual analysis of
packet size and direction. Again, additional knowledge from the designer is likely to be required in identification
of appropriate feature combinations, but the cardinality of the set of possible packet features is not particularly
large; perhaps in the order of 10 or so, and the combination of some of these features will not always make sense,
so it may be possible to exhaustively search the joint feature space. A general benefit of mutual information as
our proposed metric choice is that it extends quite naturally into the multivariate setting and is applicable in
these sorts of scenarios, whereas other metrics are not necessarily quite as easily extended.

6 Using the Test in the Presence of Countermeasures

Countermeasures against side-channel attacks on web applications vary in terms of how well they are supported
by servers or client software, have different efficiency overheads and the effectiveness of many is dependent on
the powers of a considered adversary. In general a rough rule-of-thumb is that an adversary with visibility of
communication at a particular network layer will be able to subvert countermeasures applied at that layer. Many
of the countermeasures have been suggested in the context of defending against website fingerprinting attacks,
and are suitably generic in their approach as a result. In our web application context, it is likely that with a
thorough leakage analysis, countermeasures can be applied in a more targeted, application-specific fashion, and



hence potentially at a smaller cost in overhead. In Table 2 we provide a tabular representation of some of the
most popular transport and application-layer countermeasures as considered in the research community and
the packet/trace features affected most by the countermeasure. A more detailed discussion of the effectiveness
of the countermeasures is beyond the scope of this paper, but can be found in the referenced publications.

Countermeasure OSI Layer Main features affected

HTTP header padding[19,28] Application Packet sizes, no. of packets
HTTP Range property[19,28] Application Packet sizes, no. of packets
HTTP Pipelining[19,28] Application No. of packets, web object sizes
Injecting useless requests[19] Application No. of packets, trace size
Background loading of random page[23,28] Application No. of packets, packet sizes & timings
Object prefetching[28,31] Application No. of packets, trace size

TLS/IPSec padding[12] Presentation/Network Packet sizes
Direct traffic sampling[30] Transport No. of packets, packet sizes & timings
Traffic morphing[28,30] Transport No. of packets, packet sizes & timings
Extending TCP Option field[19,12] Transport Packet sizes
TCP Maximum Segment Size (MSS) renegotiation[19] Transport Packet sizes, no. of packets
TCP advertising window[19] Transport Packet sizes, no. of packets
Forced TCP retransmissions[19] Transport No. of packets, web object size
Delaying requests and ACK responses[19] Transport Packet arrival times

Table 2. Proposed transport and application-layer countermeasures for mitigation of side-channel attacks on web
applications and website fingerprinting attacks

In the following section we demonstrate the usefulness of applying our quantification metric and leak detection
strategy in an analysis of countermeasure effectiveness, using our online health application example. We use our
metric to detect and quantify the information leaked through packet sizes in the presence of frequently proposed
countermeasures. Our aim is not to provide a comprehensive analysis of every plausible countermeasure; rather
we demonstrate the applicability of our strategy in general.

Several countermeasures require modifying traffic emanating from the host web server, and so we are unable
to directly apply those countermeasures when testing live web applications we do not control. Additionally,
the applicability of several countermeasures is dependent on the particular web server software hosting the
application. As a result, and as we are not attempting an exhaustive comparison of all countermeasures, we
constructed two distinct countermeasures that mitigate information leaks within packet sizes, and simulated
their application on real sampled data. The following list outlines our choices and our approach for their
simulation:

– Individual packet padding: for each captured packet, we artificially increase its size. The size can
be increased by a random amount, or can be fixed to a pre-determined amount. In practice, the random
strategy can be achieved by padding the TCP options field uniformly at random, by re-negotiating the TCP
maximum segment size (MSS) for a session, or by randomly increasing the size of requests and responses
at the application layer. The fixed-sized strategy is more difficult to apply in practice, but is an interesting
option for comparison. We simulate both approaches on our sampled packets: in the random approach, we
retrieve the TCP header and randomly add bytes to the option field, and in the fixed-size approach we
artificially increase the packet size to the Ethernet Maximum Transmission Unit (MTU) size. Intuitively,
this countermeasure can be expected to ‘shrink’ the vector of mutual information estimates, but is limited
by being restricted to modifying packets that are present only.

– Insertion of fixed-size dummy packets: for each sampled trace, we insert a random amount of fixed-
size dummy packets into the server response at various positions in the sequence. An obvious strategy at
the application layer for obfuscating information leaks resulting from varying server response sizes is to
add random noise to the response. In practice this can be achieved by re-downloading data at random,
pipelining, injecting useless requests, padding HTTP headers, or even by the application itself generating



randomly-sized data in response traffic. The expected effect on our traces should again be to shrink the
vector of estimates, by in some sense shuffling the order of the packets within a trace.

To aid in an analysis of their efficiency, the effects of these two countermeasures are deliberately intended
not to overlap. The first countermeasure affects traces in the vertical direction, by distorting the properties of
individual packets, and the second acts in the horizontal direction by diffusing the distributions at each packet
position across into neighbouring positions. In reality, the most effective side-channel countermeasure is likely
to be one that affects traces in both these ways. Exempting the case of object pre-fetching, all countermeasures
designed to effect leaks resulting from the size of an object within a trace can clearly only increase the size of
a trace. Since the majority of such leaks are likely to result from systematic differences in the total size of the
server response, countermeasures have the choice of making the distributions of the responses indistinguishable
by attempting to make the response sizes the same, or by attempting to make the response sizes sufficiently
random. The application of our simulated dummy packet countermeasure follows the latter paradigm; by
inserting a random number of packets into the trace in the appropriate locations, the countermeasure attempts
to make the size distributions under each input less distinguishable.

6.1 Results with regards to Countermeasures

We tested the same online health application state we used to describe our leak detection test previously, and
consider a scenario in which a user connects to the application using a normal Internet connection protected
only by HTTPS, with the adversary able to capture packets at the transport-layer (the adversary can ‘see’
TCP and TLS headers). To test the application, we sampled the state repeatedly using automated browser
testing software called Selenium [25], and captured packets using a native pcap library. We first ran our leak
detection test without any countermeasures applied, using packet sizes as a feature. The results are shown in
the right-hand side of Figure 6. An analysis indicates that there are two leak sources present that result from
information contained in packet sizes: the size of the first packet, sent by the client, is extremely distinguishing,
and the server response towards the middle of the trace is also strongly distinguishing.

Figure 7 shows the results of our leak detection test re-run in the presence of our four countermeasures applied
individually, and Table 3 gives the mean increase in size of the sampled traces as a result of the application of
each countermeasure.

Table 3. The average size increase of captured traces in the presence of the four considered countermeasures.

Countermeasure Mean size overhead (%)

Randomly padding TCP option field 1.2
Padding each packet to the Ethernet II MTU size 95.4
Randomly inserting 10-15 dummy packets into all traces 48.1
Joint combination of insertion and random padding strategies 49.9

We simulated a limited packet-padding countermeasure by emulating the TCP option field padding strategy;
the TCP option field can contain at most 40 bytes, so we pad each packet uniformly at random in the range of
0 to 40 bytes. We can see that this countermeasure has a very strong effect on the leak resulting from the size of
the first packet in the trace, but a negligible effect on the leak resulting from the size of the server response. An
analysis of the source code of the application reveals that the difference in size between the two possible client
requests is slightly smaller than the maximum size of the TCP option field; hence the small amount of noise
added is sufficient to disguise the information leak in this case. The difference in size of the packets between
positions 20 and 30 is typically larger than 40 bytes, and hence the countermeasure is insufficient to disguise
the leak from the server response. Finally, the countermeasure cannot disguise the fact that traces are slightly
longer when the user selects the input that corresponds to the larger web page, and we can see that peaks in
the graph at the final few packet positions are indicative of this information leak.
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Fig. 7. Leak detection results analysing the distribution of the sequence of packet sizes, in the presence of (top-left)
randomly padding the TCP option field, (top-right) padding each packet to the Ethernet MTU, (bottom-left) adding
randomly-sized dummy packets to the server response and (bottom-right) combining dummy packet insertion and random
individual packet padding strategies

To simulate the fixed-sized packet-padding approach, we artificially set the size of each packet to the Ethernet
II MTU of 1500 bytes. This countermeasure has a much larger overhead than the padding of TCP option fields
(95.4% to 1.2%), but eliminates the information leak contained in the first packet and from the server response
packets in the middle of the sequence. Again, the individual packet padding strategy employed here suffers
from being unable to disguise the longer traces for one of the inputs, and so the end few positions of the packet
sequence show a significant information leak.

Modifying the server response by adding between 10 and 15 dummy packets into the trace has a noticeable
reductive effect on the size of the leak. An increased amount of the point estimates are now within the 95%
confidence intervals for zero information leakage. However, in the middle and towards the end of the trace
we can see that there are still packet positions with estimates noticeably outside of the interval for zero
information leakage. A conclusion to draw in this scenario is that the number of packets randomly inserted
is both insufficient for nullifying the leak in the middle of the trace, and for nullifying the effect of the larger
server response producing longer traces.

Finally, we tested the combination of the TCP option field individual packet padding strategy and the insertion
of dummy packets jointly. We first inserted the dummy packets, and then applied the random padding. The
reductive effect on the mutual information estimates corresponding to the server response is clearly the best so
far. To determine whether this level of protection is sufficient, the designer should consider their security goals



with these results and with the results from a separate security analysis. Whilst the translation of our particular
simulated countermeasures into a practical implementation is not straightforward, these results are indicative
of how our detection test can be used to analyse the effectiveness of noise-based side-channel countermeasures.

7 Conclusion

We have discussed the challenges involved in the detection (and quantification) of information leaks in the
context of side-channel attacks on web applications, and focused on dissimilarities between evaluating the
strength of an adversary and quantifying the strength of an information leak. In our approach we consider
a web application as an information theoretic channel, with the application inputs considered as the channel
inputs, and features extracted from network traces as the channel outputs. Under this model, we have proposed
using an estimate of the mutual information or capacity of the channel as a metric for detecting instances of
information leakage in a web application. Our approach has the benefit of a degree of statistical rigour, can
cope with non-deterministic traces, and does not require application-specific distance metrics or thresholds for
classifications.

We use our proposal to construct a leak detection test for the identification of information leaks, and present an
example application of it in analysing potential side-channel analysis countermeasures using a popular online
health website. The leak detection test outlined here will aid in the automatic detection of the majority of
information leaks from web applications. To accurately quantify the size and implications of the information
leak detected by the test, additional domain knowledge from the application designer is likely to be required.
An interesting research challenge is to construct methods that detect leaks by mechanically and efficiently
analysing combinations of features and packet positions over the entire feature space. This problem is very
similar to the challenge of feature extraction considered in the field of machine learning, and so further research
in this direction may yield useful results.
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17. Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-Go-MIXes Providing Probabilistic Anonymity in an

Open System. In Information Hiding, pages 83–98, 1998.
18. Marc Liberatore and Brian Neil Levine. Inferring the source of encrypted HTTP connections. In ACM Conference

on Computer and Communications Security, pages 255–263, 2006.
19. Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee, Rocky K. C. Chang, and Roberto Perdisci. HTTPOS:

Sealing Information Leaks with Browser-side Obfuscation of Encrypted Flows. In NDSS, 2011.
20. Ira S. Moskowitz, Richard E. Newman, Daniel P. Crepeau, and Allen R. Miller. Covert channels and anonymizing

networks. In WPES, pages 79–88, 2003.
21. Ira S. Moskowitz, Richard E. Newman, and Paul Syverson. Quasi-anonymous channels. In IASTED CNIS, pages

126–131, 2003.
22. Richard E. Newman, Vipan R. Nalla, and Ira S. Moskowitz. Anonymity and Covert Channels in Simple Timed

Mix-Firewalls. In Privacy Enhancing Technologies, pages 1–16, 2004.
23. Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website Fingerprinting in Onion Routing

Based Anonymization Networks. In WPES, 2011.
24. Liam Paninski. Estimation of Entropy and Mutual Information. Neural Computation, 15(6):1191–1253, 2003.
25. Selenium. Selenium remote control. http://seleniumhq.org, 2004-2012.
26. Andrei Serjantov and George Danezis. Towards an Information Theoretic Metric for Anonymity. In Privacy

Enhancing Technologies, pages 41–53, 2002.
27. François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework for the Analysis of Side-Channel Key

Recovery Attacks. In EUROCRYPT, pages 443–461, 2009.
28. Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan, and Lili Qiu. Statistical

Identification of Encrypted Web Browsing Traffic. In IEEE Symposium on Security and Privacy, pages 19–30, 2002.
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A Basic information theory

Assuming the case of discrete random variables, the notation we will use in this paper is as follows. For
random variables X and Y , the marginal probability mass function for X is defined as px = Pr{X = x}.
The joint and conditional probability mass functions are similarly defined as px,y = Pr{X = x, Y = y} and
px|y = Pr{X = x|Y = y} respectively.

Shannon entropy. Let X and Y be two discrete random variables, supported on X and Y respectively. The
Shannon entropy of X is defined as the average uncertainty about X. Mathematically it is defined as:

H(X) = −
∑
x∈X

Pr{X = x} log Pr{X = x},



and when the logarithm is taken with base 2 measures the remaining uncertainty about X in bits. The con-
ditional entropy H(X|Y ) gives the remaining average uncertainty about the variable X when the value Y has
taken is known, and is defined similarly as

H(X|Y ) = −
∑
y∈Y

Pr{Y = y}
∑
x∈X

Pr{X = x|Y = y} log Pr{X = x|Y = y}.

Mutual information. The mutual information I(X;Y ) between X and Y computes the information gained
about X if we observe Y , and is related to the marginal and conditional entropies as follows:

I(X;Y ) = H(X)−H(X|Y ).

If X and Y are independent, then the mutual information will be zero. When X is completely determined by
Y , the mutual information will be at its maximum value of H(X).

Channels. An information-theoretic channel takes inputs from an input alphabet X and sends across the
channel outputs from a set of channel outputs Y. The channel itself is described by the probability distribution
Q, where Q(y|x) = Pr{Y = y|X = x} gives the probability of seeing a particular output given a particular
input. The mutual information I(X;Y ) describes the amount of information that can be sent over the channel.
Contextually this gives us the average amount of side-channel information available to an adversary.

Note that the input probability distribution affects the mutual information result. Hence, the worst-case in-
formation leakage occurs when the amount of information sent over the channel is maximised. The channel
capacity is defined as the mutual information of the channel maximised over all possible input distributions:

Capacity(Q) = max
Pr{X}

I(X;Y ).

The capacity can be approximated to within a specified error using the iterative Blahut-Arimoto algorithm
[1,4].

Other definitions of entropy. The Shannon entropy as described above gives the average uncertainty about a
random variable; however alternative definitions exist. The min-entropy, defined asH∞(X) = − log maxx∈X Pr{X =
x}, gives the amount of uncertainty needed to be overcome to be able to identify the most likely element only.
Shannon entropy and min-entropy are both specific instances of Reyńı entropy:

Hα(X) =
1

1− α
log

(∑
x∈X

Pr{X = x}α
)
.

Intuitively, we can see that if α = 1, then Reyńı entropy is equivalent to Shannon entropy, and as α approaches
infinity, Reyńı entropy tends to min-entropy. One can also see that increasing the parameter α can aid in
eliminating outliers from the entropy calculation. Clauß and Schiffner discuss the applicability of these metrics
in anonymity-scenarios in [10].

Continuous mutual information. In the context of discrete inputs and continuous outputs we require a
slightly different construction for mutual information. For a discrete random variable X and a continuous
random variable Y , the equation for mutual information becomes

I(X;Y ) =
∑
x∈X

∫
Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dy.


