
Passive Corruption in Statistical Multi-Party Computation⋆

Martin Hirt1, Christoph Lucas1, Ueli Maurer1, and Dominik Raub2

1 Department of Computer Science, ETH Zurich, Switzerland
{hirt, clucas, maurer}@inf.ethz.ch

2 Department of Computer Science, University of Århus, Denmark
raub@cs.au.dk

Abstract. The goal of Multi-Party Computation (MPC) is to perform an arbitrary computation in a
distributed, private, and fault-tolerant way. For this purpose, a fixed set of n parties runs a protocol
that tolerates an adversary corrupting a subset of the parties, preserving certain security guarantees
like correctness, secrecy, robustness, and fairness. Corruptions can be either passive or active: A pas-
sively corrupted party follows the protocol correctly, but the adversary learns the entire internal state
of this party. An actively corrupted party is completely controlled by the adversary, and may deviate
arbitrarily from the protocol. A mixed adversary may at the same time corrupt some parties actively
and some additional parties passively.
In this work, we consider the statistical setting with mixed adversaries and study the exact con-
sequences of active and passive corruptions on secrecy, correctness, robustness, and fairness sep-
arately (i.e., hybrid security). Clearly, the number of passive corruptions affects the thresholds for
secrecy, while the number of active corruptions affects all thresholds. It turns out that in the statisti-
cal setting, the number of passive corruptions in particular also affects the threshold for correctness,
i.e., in all protocols there are (tolerated) adversaries for which a single additional passive corrup-
tion is sufficient to break correctness. This is in contrast to both the perfect and the computational
setting, where such an influence cannot be observed. Apparently, this effect arises from the use of
information-theoretic signatures, which are part of most (if not all) statistical protocols.

Keywords: Multi-party computation, passive corruption, statistical security, hybrid security, mixed
adversaries.

1 Introduction

1.1 Secure Multi-Party Computation

Multi-Party Computation (MPC) allows a set of n parties to securely perform an arbitrary com-
putation in a distributed manner, where security means that secrecy of the inputs and correct-
ness of the output are maintained even when some of the parties are dishonest. The dishon-
esty of parties is modeled with a central adversary who corrupts parties. The adversary can
be passive, i.e. can read the internal state of the corrupted parties, or active, i.e., can make the
corrupted parties deviate arbitrarily from the protocol.

MPC was originally proposed by Yao [Yao82]. The first general solution was provided
in [GMW87], where, based on computational intractability assumptions, security against a
passive adversary was achieved for t < n corruptions, and security against an active ad-
versary was achieved for t < n

2
corruptions. Information-theoretic security was achieved in

[BGW88, CCD88] at the price of lower corruption thresholds, namely t < n
2

for passive and
t < n

3
for active adversaries. The latter bound can be improved to t < n

2
if both broadcast chan-

nels are assumed and a small error probability is tolerated [RB89, Bea89]. These results were
generalized to the non-threshold setting, where the corruption capability of the adversary is
not specified by a threshold t, but rather by a so called adversary structure Z , a monotone
collection of subsets of the player set, where the adversary can corrupt the players in one of
these subsets [HM97].

All mentioned protocols achieve full security, i.e. secrecy, correctness, and robustness. Se-
crecy means that the adversary learns nothing about the honest parties’ inputs and outputs

⋆ An extended abstract of this paper appeared at ICITS 12 [HLMR12]. This work was partially supported by the
Zurich Information Security Center.

(except, of course, for what can be derived from the corrupted parties’ inputs and outputs).
Correctness means that all parties either output the right value or no value at all. Robustness
means that the adversary cannot prevent the honest parties from learning their respective out-
puts. This last requirement turns out to be very demanding. Therefore, relaxations of full secu-
rity have been proposed, where robustness is replaced by weaker output guarantees: Fairness
means that the adversary can possibly prevent the honest parties from learning their outputs,
but then also the corrupted parties do not learn their outputs. Agreement on abort means that
the adversary can possibly prevent honest parties from learning their output, even while cor-
rupted parties learn their outputs, but then the honest parties at least reach agreement on this
fact (and typically make no output). In our constructions, all abort decisions are based on pub-
licly known values. Hence, we have agreement on abort for free.3

The traditional setting of MPC has been generalized in two directions. On the one hand, the
notion of hybrid security was introduced to allow for protocols with different security guaran-
tees depending on the number of corrupted parties [Cha89, FHHW03, FHW04, IKLP06, Kat07,
LRM10, HLMR11]. Intuitively, the more corrupted parties, the less security is guaranteed. This
model also allows to analyze each security guarantee separately and independent of other
guarantees. On the other hand, protocols were presented that do not restrict the adversary to
a single corruption type [Cha89, DDWY93, FHM98, FHM99, BFH+08, HMZ08, HLMR11]. The
mixed adversaries considered there can perform each corruption with one out of several cor-
ruption types. This allows to consider e.g. active and passive corruption in the same protocol
execution.

1.2 Contributions

In this work, we consider a setting with mixed adversaries and hybrid security. This allows,
for the first time, to separately analyze the relation between passive corruption and the various
security guarantees. It turns out that, in the statistical model, passive corruption does not only
affect secrecy, but in particular also correctness. In most statistically secure protocols, some
kind of information-theoretic signature is used. When combining active and passive corrup-
tions, one inherent problem of any kind of information-theoretic signature is that passively
corrupted parties cannot reliably verify signed values. Existing protocols for the statistical set-
ting assume an honest majority. Therefore, a simple majority vote on the signature guarantees
reliable verification even for passively corrupted parties. In this work, we show that this as-
sumption is too strong, and that signatures can be used even without an honest majority. As
the main technical contribution, we provide optimal protocols for both general and threshold
adversaries that cope with this issue. As a new technique for the setting with general adver-
saries, we introduce group commitments, a non-trivial extension of IC-Signatures, which might
be of independent interest.

Furthermore, we introduce the notion of multi-thresholds. To the best of our knowledge,
all known protocols for threshold mixed adversaries (e.g. [FHM98]) characterize the tolerable
adversaries with a single pair of thresholds (one threshold for the number of actively, and
one for the number of passively corrupted parties). This pair represents the single maximal
adversary that can be tolerated. We generalize this basic characterization to allow for several
incomparable maximal adversaries. It turns out that, in our setting, multi-thresholds allow
to construct protocols that tolerate strictly more adversaries than a single pair of thresholds,
without losing efficiency.

3 The impossibility proof holds even when agreement on abort is not required.

2

1.3 Model

We consider n parties p1, . . . , pn, connected by pairwise synchronous secure channels and au-
thenticated broadcast channels4, who want to compute some probabilistic function over a finite
field F, represented as circuit with input, addition, multiplication, random, and output gates.
This function can be reactive, where parties can provide further inputs after having received
some intermediate outputs.

There is a central adversary with unlimited computing power who corrupts some parties
passively (and reads their internal state) or even actively (and makes them misbehave arbi-
trarily). We denote the actual sets of actively (passively) corrupted parties by D∗ (E∗), where
D∗ ⊆ E∗. Uncorrupted parties are called honest, non-actively corrupted parties are called cor-
rect. The security of our protocols is statistical, i.e. information-theoretic with a small error
probability. We say a security guarantee holds statistically if it holds with overwhelming proba-
bility. The guaranteed security properties (secrecy, correctness, fairness, robustness, agreement
on abort) depend on (D∗, E∗).

For ease of notation, we assume that if a party does not receive an expected message (or
receives an invalid message), a default message is used instead. Furthermore, we use subpro-
tocols that might abort. Such an abort is always global, i.e., if any subprotocol aborts, the whole
protocol execution halts.

In the analysis of our protocols, we assume “instant randomness”, i.e. parties generate their
randomness on the fly when needed in the protocol run. This allows even passively corrupted
parties to e.g. choose challenges in zero-knowledge proofs that are unpredictable to the adver-
sary. Note that in a setting without secrecy, we have no input independence5. Hence, standard
techniques (e.g. Blum coin-toss) to jointly generate these challenges are insecure.

1.4 Outline of the paper

The paper is organized as follows: In Sec. 2, we present information checking, which is used
as a basic primitive in our protocols. As a main technical contribution, in Sections 3 and 4, we
present protocols for the model with mixed adversaries and hybrid security for both general
and threshold adversaries, together with optimal bounds. In Sec. 5, we provide conclusions of
our results.

2 Information Checking

Information checking (IC) [RB89, CDD+99] is a primitive that allows a sender to send a value
to an intermediary, such that when the receiver obtains this value from the intermediary, he
can check that this is indeed the value from the sender. When all parties act as receivers, this
primitive is called IC signature, and the sender is called signer. IC signatures are realized using
a pair of protocols IC-SIGN and IC-REVEAL. IC-SIGN allows a signer to sign a value for a
particular intermediary (while providing secrecy with respect to the remaining parties), and
IC-REVEAL allows this intermediary to verifiably forward this value to all other parties. In the
following, we assume that each pair of parties (pi, pj) has a value αij which only they know.
This setup can easily be achieved for each pair (pi, pj) by having pi chose and send αij to pj

before the protocol starts.

Definition 1 (α-consistent). A triple (v, y, z) is α-consistent, if z = (y − v)α + v, i.e. if the points
(0, v), (1, y), and (α, z) lie on a line.

4 In [PW92] it is shown how broadcast can be implemented given a setup.
5 That means, the adversary can choose the inputs of actively corrupted parties after learning the inputs of correct

parties.

3

Definition 2 (IC-Signature). A value v is IC-signed (or simply signed) by signer pi for interme-
diary pj , denoted by 〈v〉i,j , if pj holds values v, y1, ..., yn and each pk ∈ P holds a value zk such that
(v, yk, zk) is αik-consistent. In analogy to traditional signatures, we equivalently say that the interme-
diary pj holds the signature 〈v〉i,j .

Note that a default signature 〈v〉i,j can be generated given that all parties know the value v.
Furthermore, given v, αik, and zk, a value yk can be computed efficiently such that (v, yk, zk)
are αik-consistent. This implies in particular that if the intermediary is actively corrupted, then
any z-values held by the (correct) recipients constitute a valid signature for v. Additionally,
IC-signatures are linear, i.e. the sum of two signatures 〈v〉i,j and 〈v′〉i,j from signer pi to inter-
mediary pj for values v and v′, respectively, is a signature from pi to pj for the sum v + v′.

The IC Sign Protocol. The IC sign protocol assumes that the signer and the intermediary both
know a value v, e.g. that the signer has already sent v to the intermediary. The protocol either
computes a valid signature on v, or outputs ⊥ to all parties.

Protocol IC-SIGN: Given a signer pi and an intermediary pj that both know a value v, either compute a valid
signature 〈v〉i,j on this value, or output ⊥ to all parties.

1. For each recipient pk ∈ P :
(a) pi chooses v′

k, yk, y′
k uniformly at random and sets zk and z′

k such that (v, yk, zk) and (v′, y′
k, z′

k) are both
αik-consistent. pi sends v′

k, yk, y′
k to pj , and zk, z′

k to pk.
(b) pk broadcasts a uniform random challenge rk. Then, both pi and pj broadcast v′′ := v′

k + rkv and
y′′ := y′

k + rkyk.
(c) If in the previous step pi and pj did not broadcast the same values, all parties output ⊥.
(d) pk broadcasts “accept” if (v′′, y′′, z′

k + rkzk) is αik-consistent. Otherwise, pk broadcasts (“reject”,αik ,zk),
and pj sets yk such that (v, yk, zk) are αik-consistent.

2. pj outputs v, y1, . . . , yn, and each pk outputs zk.

Fig. 1. The IC-Sign protocol.

Lemma 1. Given a signer pi and an intermediary pj that both know the same value v. If pi and pj are
correct, IC-SIGN correctly computes a valid signature 〈v〉i,j on v while providing secrecy with respect
to the remaining parties. Otherwise, IC-SIGN either correctly computes a valid signature 〈v〉i,j on v,
or all (correct) parties output ⊥, with overwhelming probability. IC-SIGN is always secret and robust.

Proof. CORRECTNESS: If pi and pj are both correct, it is trivial to see that the output is a valid
signature (and not ⊥). Else, if the intermediary pj is corrupted, either the output of the correct
parties trivially corresponds to a valid signature, or all parties output ⊥. Otherwise, if the inter-
mediary pj is correct, we have to show that for all correct receivers pk it holds that (v, yk, zk) is
αik-consistent. If pk is correct, the adversary does not know rk in advance, and an inconsistent
triple (v, yk, zk) would be detected by pk with overwhelming probability.
SECRECY: For a corrupted pk, both v′′ and y′′ look uniformly random. Hence, pk obtains no
information apart from his intended output. Furthermore, the value αik is broadcasted in
Step 1.d) only if pi or pk are actively corrupted. Hence, the adversary knew the value already
beforehand.
ROBUSTNESS: It follows from inspection that the protocol does not abort. ⊓⊔

The IC Reveal Protocol. If a value v is IC-signed (e.g. if the IC-SIGN protocol resulted in a valid
signature and did not terminate with output ⊥), the IC-REVEAL protocol allows to verifiably
reveal the value v to all parties.

Lemma 2. Given a signature 〈v〉i,j , IC-REVEAL robustly computes the output
xk ∈ {(“accept”, v′), “reject”} for each pk. We have the following correctness guarantees:

4

Protocol IC-REVEAL: Given a signature 〈v〉i,j , reveal a value v′ to all parties.

1. pj broadcasts (v, y1, . . . , yn).
2. Each receiver pk outputs (“accept”, v) if (v, yk, zk) is αik-consistent, and “reject” otherwise.

Fig. 2. The IC-Reveal protocol.

1. If pj is correct, all correct parties pk output xk = (“accept”, v).
2. Else, if both pi and pk are honest, then xk ∈ {(“accept”, v), “reject”} (with overwhelming proba-

bility, even when pj is active).

Note that there is no agreement on the output of correct parties. Furthermore, if pj is active
and pi or pk is not honest, then pk might output xk = (“accept”, v′) for v′ 6= v.

Proof. CORRECTNESS: If pj is correct, it broadcasts values in Step 1, which are αik-consistent
and hence accepted. If pj is actively corrupted, but both pi and pk are honest, then pj does not
know αik. Hence, for v′ 6= v, pj cannot produce a value y′k where (v′, y′k, zk) are αik-consistent,
except with negligible probability.
ROBUSTNESS: It follows from inspection that the protocol does not abort. ⊓⊔

3 MPC with General Adversaries

Traditionally, protocols for general adversaries are characterized by an adversary structure Z
that specifies the tolerated subsets of the player set [HM97]. For our setting, we have to extend
this basic representation: On the one hand, we consider mixed adversaries, which are charac-
terized by adversary structures consisting of tuples (D, E) of subsets of P, where the adversary
may corrupt the parties in E passively, and the parties in D ⊆ E even actively. On the other
hand, each security guarantee depends on the sets of actually corrupted parties (D∗, E∗). We
consider four security guarantees, namely correctness, secrecy, robustness, and fairness. This
is modeled with four adversary structures Zc, Zs, Zr, and Zf , one for each security require-
ment6: Correctness is guaranteed for (D∗, E∗) ∈ Zc, secrecy is guaranteed for (D∗, E∗) ∈ Zs,
robustness is guaranteed for (D∗, E∗) ∈ Zr, and fairness is guaranteed for (D∗, E∗) ∈ Zf . We
have the assumption that Zr ⊆ Zc and Zf ⊆ Zs ⊆ Zc, as secrecy and robustness are not well
defined without correctness, and as fairness cannot be achieved without secrecy.

Our protocol for general adversaries is based on [HMZ08], which is an adaptation of the
perfectly secure protocol of [Mau02] to the statistical case. For a generic protocol construction,
it is sufficient to consider two parameters [HLMR11]: First, the state that is held in the protocol
is defined in terms of a parameter that influences the secrecy. This parameter is the sharing
parameter S , a collection of subsets of P that defines which party obtains which values. Sec-
ond, the reconstruct protocol is expressed in terms of an additional parameter determining
the amount of error correction taking place. This parameter is the reconstruction parameter R.
In contrast to the perfect case, here we need to consider both active and passive corruption.
Therefore, the reconstruction parameter is a monotone collection of pairs (D, E) of subsets of
P where D ⊆ E : If all errors can be explained with an adversary (D, E) ∈ R, the errors are
corrected and the protocol continues; otherwise it aborts. This implies that the protocol aborts
only if the actual adversary is not in R. Such aborts are global, i.e., if some subprotocol aborts,
the entire protocol execution halts.

3.1 A Parametrized Protocol for General Adversaries

In the following, we present the parametrized subprotocols for general adversaries and an-
alyze them with respect to correctness, secrecy, and robustness. The main result (including

6 Since all our protocols achieve agreement on abort for free, we do not introduce a separate structure for this
security property.

5

fairness) is discussed in Sec. 3.2. As a first step, we introduce group commitments which are a
generalization of IC signatures that allow even passively-corrupted parties to reliably verify
signatures even without an honest majority. We then use these group commitments to con-
struct a verifiable secret-sharing scheme, and describe how to perform computations on shared
values.

Group Commitments. As a first step, we introduce the notion of group commitments, which
is a pair of protocols GROUPCOMMIT and GROUPREVEAL . GROUPCOMMIT allows a group
G to commit to a value v on which they agree (while providing secrecy with respect to the
remaining parties P \G), and GROUPREVEAL allows them to reveal this value to the remaining
parties. Our definitions and protocols for group commitments are based on the IC signatures
introduced in Sec. 2.

Definition 3 (IC Group Commitment). A group G is IC group committed (or simply committed)
to a value v, denoted by 〈〈v〉〉G , if for all pairs (pi, pj) ∈ G × G, v is IC-signed with 〈v〉i,j .

Note that a default group commitment 〈〈v〉〉G can be generated given that all parties in P know
the value v. Furthermore, if all parties in G are actively corrupted, then any values held by
correct parties constitute a valid group commitment. Additionally, group commitments inherit
linearity from the underlying IC signature scheme.

Protocol GROUPCOMMIT: Given a set G of parties that agree on a value v, compute a valid group commitment
〈〈v〉〉G on v.

1. For each pair (pi, pj) ∈ G × G invoke IC-SIGN on v with signer pi and intermediary pj .
2. If any invocation of IC-SIGN outputs ⊥, all parties output ⊥. Otherwise, each party outputs the concatena-

tion of the outputs of the invocations of IC-SIGN.

Fig. 3. The group commit protocol for a group G.

Lemma 3. Given a set G of parties that agree on a value v. If all parties in G are correct (i.e. G ∩
D∗ = ∅), GROUPCOMMIT correctly computes a valid group commitment 〈〈v〉〉G on v. Otherwise,
GROUPCOMMIT either correctly computes a valid group commitment 〈〈v〉〉G on v, or all parties in
P output ⊥. GROUPCOMMIT is always secret and robust.

Proof. SECRECY and ROBUSTNESS follow immediately by inspection. For CORRECTNESS, we
first have to show that if the protocol outputs a group commitment, then all signatures held
by correct parties pj are for the value v. This follows immediately from the fact that IC-SIGN

always results either in a correct signature 〈v〉i,j or in ⊥, even when the signer (or intermediary)
is actively corrupted. Second, if all parties in G are correct, then it follows from the properties
of IC-SIGN that it never outputs ⊥. ⊓⊔

If a group G is committed to a value v (e.g. if the GROUPCOMMIT protocol resulted in a valid
group commitment and did not output ⊥), the GROUPREVEAL protocol reveals the value v

to all parties in P. During the protocol run, the adversary might be able to provoke conflicts
that depend on the sets D∗ and E∗ of corrupted parties. Therefore, we introduce a parameter
R, which is a monotone collection of pairs (D, E) of subsets of the player set, where D ⊆ E :
Whenever all conflicts in a given situation can be explained with an adversary (D, E) ∈ R, the
corresponding values are ignored (corrected), and the protocol proceeds; otherwise it aborts.
Note that GROUPREVEAL is the only subprotocol that might abort. All other protocols abort
only if they use GROUPREVEAL as a subprotocol. Therefore, it is sufficient to discuss agreement
on abort only for this protocol.

6

We emphasize that the conflicts in GROUPREVEAL do not only depend on the set D∗ of
actively corrupted parties, but also on the set E∗ of passively corrupted parties, due to their
inability to reliably verify IC-signatures. That means, in this protocol, even passive corruptions
have a strong impact on correctness (and robustness).

Protocol GROUPREVEAL: Given the set G and a group commitment 〈〈v〉〉G , reveal v to all parties.

1. For each party pi ∈ G:
(a) pi broadcasts v. Denote the broadcasted value with ui.
(b) For each party pj ∈ G: Invoke IC-REVEAL on 〈v〉j,i.
(c) A party pk ∈ P \ G accepts ui if all invocations of IC-REVEAL output (“accept”, ui).

2. For each party pk ∈ P \ G:
(a) If pk accepted at least one value in Step 1(c), and all accepted values are the same, then set uk to this

value. Else set uk := ⊥.
(b) pk broadcasts uk.

3. Let Vu denote the set of parties that broadcasted u in Step 1(a) of 2(b), respectively. If ∃(D, E) ∈ R and a
value v′, such that P \ (V⊥ ∪ Vv′) ⊆ D ∧

`

G ⊆ E ∨ P \ Vv′ ⊆ E
´

then output v′. Else abort.

Fig. 4. The group reveal protocol for a group G.

Lemma 4. Given the reconstruction parameter R, the commitment group G, and a group commit-
ment 〈〈v〉〉G for a value v, GROUPREVEAL reveals v to all parties. The protocol is statistically correct if
G 6⊆ D∗ and

∀(D, E) ∈ R : G \ D 6⊆ D∗ ∨ (G 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (G 6⊆ E∗ ∧ P \ E∗ 6⊆ D).
The protocol is statistically robust if additionally (D∗, E∗) ∈ R, and always guarantees agreement on
abort.

Proof. CORRECTNESS: Consider an actual protocol execution with correct value v and an ad-
versary corrupting (D∗, E∗). Denote with {Vu} the resulting collection of subsets of P in Step 3.

We first show that given the precondition G 6⊆ D∗, we have(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

The precondition G 6⊆ D∗ implies that there is at least one correct party pi ∈ G. In Step 1, this
pi broadcasts its value ui(= v) and invokes IC-REVEAL on the signatures 〈v〉j,i for pj ∈ G. It
follows from the properties of IC-REVEAL that all correct parties accept all these signatures.
Hence, all correct parties in P \ G accept the value ui(= v), and broadcast either v or ⊥ in
Step 2, but not a wrong value, i.e. P \ (V⊥ ∪ Vv) ⊆ D∗. Furthermore, either G ⊆ E∗, or there
is an honest party pj ∈ G. In the latter case, an actively corrupted pi ∈ G can only forge the
signatures 〈v〉j,i towards passively corrupted parties. Hence, it is guaranteed that all honest
parties pk broadcast the correct value uk = v in Step 2, and we have P \ Vv ⊆ E∗.

Second, we show that given the precondition in the lemma, the protocol execution under
consideration does not output an (incorrect) value v′ 6= v, i.e., for all v′ 6= v and (D, E) ∈ R the
condition in Step 3 is violated. To arrive at a contradiction, assume that for some v′ 6= v and
(D, E) ∈ R it holds that(

P \ (V⊥ ∪ Vv′) ⊆ D
)
∧

(
G ⊆ E ∨ P \ Vv′ ⊆ E

)
. (I)

From above, we have that(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
. (II)

Furthermore, by assumption we have that the precondition in the lemma is fulfilled. We split
the proof according to which or-term of the second part of this precondition is fulfilled for the
given (D, E):

Case G \ D 6⊆ D∗: Since P \ (V⊥ ∪ Vv′) ⊆ D (I) and G ⊆ P, we have G \ (V⊥ ∪ Vv′) ⊆ D. It
follows by inspection of the protocol that G and V⊥ are disjoint. Hence we have G \Vv′ ⊆ D.
Analogously, it follows from P \ (V⊥ ∪ Vv) ⊆ D∗ (II) that G \ Vv ⊆ D∗. Therefore we have
that G ⊆ D ∪ D∗, which is a contradiction to G \ D 6⊆ D∗.

7

Case G 6⊆ E ∧ P \ E 6⊆ D∗: Since G 6⊆ E , we have P \ Vv′ ⊆ E (I). Furthermore, we have that
P \ (V⊥ ∪ Vv) ⊆ D∗ (II). It follows by inspection from the protocol that V⊥, Vv′ , and Vv are
pairwise disjoint. Hence, we have that P ⊆ D∗ ∪ E , which is a contradiction to P \ E 6⊆ D∗.

Case G 6⊆ E∗ ∧ P \ E∗ 6⊆ D: This proof is identical to the previous case, with the only differ-
ence that (D∗, E∗) is swapped with (D, E) and v with v′.

ROBUSTNESS: In the proof of correctness, we have shown that(
P \ (V⊥ ∪ Vv) ⊆ D∗

)
∧

(
G ⊆ E∗ ∨ P \ Vv ⊆ E∗

)
.

Hence, given the correctness condition and (D∗, E∗) ∈ R, it follows immediately that the con-
dition in Step 3 is fulfilled for the correct value v and (D∗, E∗), i.e., that the protocol terminates
without abort.

AGREEMENT ON ABORT: Since the abort decision is based only on broadcasted values, we
always have agreement on abort. ⊓⊔

Verifiable Secret Sharing. The state of the protocol is maintained with a sum-sharing, where
each party holds several summands. Furthermore, for each summand si, the group of those
parties that hold si is committed to it.

Definition 4 (S-Sharing). A value s is S-shared for sharing specification S = (S1, . . . , Sℓ) if (1)
there are values s1, . . . , sℓ, such that s1 + . . . + sℓ = s, (2) for all i, every (correct) party pj ∈ Si

holds the summand si, and (3) each group Si is committed to si with a group commitment 〈〈si〉〉Si
.

A sharing specification S is D-permissive, if each summand is held by at least one party outside D,
i.e. ∀i : Si \ D 6= ∅.

Lemma 5. Let S be the sharing specification. An S-sharing is secret if ∃Si ∈ S : Si ∩ E∗ = ∅, and
uniquely defines a value if S is D∗-permissive.

Proof. Secrecy follows from the fact that E∗ lacks at least one summand si. Furthermore, given
that S is D∗-permissive, each summand si is held by at least one correct party. Hence, the secret
s is uniquely defined by s = s1 + . . . + sℓ. ⊓⊔

The share protocol takes as input a secret s from a dealer, and outputs an S-sharing of s (see
Fig. 5).

Protocol SHARE
GA : Given input s from the dealer, compute an S-sharing of this value.

1. The dealer chooses uniformly random summands s1, . . . , sℓ with
Pℓ

i=1
si = s, where ℓ = |S|. Then, for each

Si ∈ S , the dealer sends si to every party pj ∈ Si.
2. For all Si ∈ S : Every party pj ∈ Si sends si to every other party in Si. Then, every party in Si broadcasts a

complaint bit, indicating whether it observed an inconsistency.
3. For all Si ∈ S , for which no inconsistency was reported, GROUPCOMMIT is invoked to compute 〈〈si〉〉Si

.
4. The dealer broadcasts each summand si for which either an inconsistency was reported (Step 2), or the

output of GROUPCOMMIT was ⊥ (Step 3). The players in Si accept this summand, and a default group
commitment is used. If the dealer does not broadcast a summand si, the parties use si = 0 with a default
group commitment.

5. Each party pj outputs its share {si | pj ∈ Si} together with its part of the group commitments.

Fig. 5. The share protocol for general adversaries.

Lemma 6. Let S be the sharing specification. On input s from the dealer, SHARE
GA correctly, secretly

and robustly computes an S-sharing. If S is D∗-permissive, and if the dealer is correct, the sharing
uniquely defines the secret s.

8

Proof. SECRECY: Given a correct dealer, the summands distributed in the first step are con-
sistent. In the remaining protocol run, no additional information is revealed to the adver-
sary: A summand si is broadcasted only if a party pj ∈ Si reported an inconsistency, or
GROUPCOMMIT outputs ⊥. Yet, this occurs only if one of the parties in Si is actively corrupted,
i.e., when the adversary knew si already beforehand. Furthermore, it follows from the proper-
ties of GROUPCOMMIT that secrecy is maintained during its invocations.
CORRECTNESS: First, we have to show that the protocol outputs a valid S-sharing. Due to the
bilateral checks, any inconsistency in the summands held by correct parties is detected in Step 2
and resolved in Step 4. Furthermore, it follows from the properties of GROUPCOMMIT that in
Step 3, either a correct group commitment is computed, or all parties output ⊥. In the latter
case, a default (and hence correct) group commitment is used (Step 4). Therefore, the output
is a valid S-sharing. Second, we have to show that if S is D∗-permissive and if the dealer is
correct, then the shared value equals the input of the dealer. A correct dealer always responds
on reported inconsistencies with the original summands. Hence, the unique value defined by
the sharing is the secret s.
ROBUSTNESS: It follows from inspection that the protocol does not abort. ⊓⊔

For the public reconstruction7 of a shared value (Fig. 6), we use the fact that there is a group
commitment for each summand of the sharing. These commitments allow to reliably reveal
each summand using GROUPREVEAL.

Protocol PUBLIC RECONSTRUCTION
GA : Given an S-sharing of some value s, reconstruct s to all parties.

1. For each summand si, invoke GROUPREVEAL on 〈〈si〉〉Si
.

2. Each party outputs the secret s = s1 + . . . + sℓ.

Fig. 6. The public reconstruction protocol for general adversaries.

Lemma 7. Given the sharing specification S , the robustness parameter R, and an S-sharing of some
value s, PUBLIC RECONSTRUCTION GA reconstructs s to all parties. The protocol is correct if

∀(D, E) ∈ R, S ∈ S : S 6⊆ D∗ ∧
(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)

and robust if additionally (D∗, E∗) ∈ R.

Proof. Given the condition for correctness in the lemma, all invocations of GROUPREVEAL are
correct. The same holds for robustness. Then, all security properties follow directly from the
security of GROUPREVEAL.

Addition, Multiplication, and Random Values. Linear functions (and in particular additions)
can be computed locally, since S-sharings and group commitments are linear. In particular,
given sharings of a and b, and a constant c, one can easily compute sharings of a + b, ca, and
a + c. Computing a shared random value can be achieved by letting each party pi share a
random value ri, and computing a sharing of r = r1 + . . . + rn.

For the multiplication of two values a and b, we adapt the protocol from [HMZ08] by using
our modified share and reconstruct protocols (Fig. 7). The multiplication protocol exploits the

fact that ab =
∑ℓ

i=1

∑ℓ
j=1

aibj : For each aibj , one party that knows ai and bj computes vij =
aibj , shares it, and proves that the sharing contains the correct value. Then, the parties compute
the linear function described above on these sharings.

7 Private reconstruction can easily be reduced to public reconstruction [CDG88, HLMR11].

9

In order to prove that the sharing contains the correct value, the corresponding party pro-
vides a zero-knowledge proof by invoking ABC-PROOF

GA on sharings of ai, bi, and vij . If this
proof is not accepted, this party (the prover) is actively corrupted, and the summands ai and bj

can be reconstructed without violating secrecy. This zero-knowledge proof requires that ai and
bj are S-shared, which we achieve by invoking GROUPSHARE

GA, a subprotocol that allows to
share individual summands.

Protocol MULTIPLICATION
GA : Given [a] and [b], compute [c] for c = ab.

1. For each pair Si, Sj ∈ S , let pij denote the party with the smallest index in Si ∩ Sj .
(a) pij computes vij = aibj and invokes SHARE

GA on it, resulting in [vij].
(b) Invoke GROUPSHARE

GA on 〈〈ai〉〉Si
and 〈〈bj〉〉Sj

both with dealer pij , resulting in [ai] and [bj].

(c) Invoke ABC-PROOF
GA on [ai], [bj], and [vij] with prover pij . If the proof is rejected, invoke

PUBLIC RECONSTRUCTION
GA on [ai] and [bj], and use a default S-sharing of vij := aibj .

2. The parties (distributively) compute the sum of all sharings [vij], resulting in a sharing of c = ab.

Fig. 7. The multiplication protocol for general adversaries.

Lemma 8. Given the sharing specification S , the robustness parameter R, and S-sharings of a and
b, MULTIPLICATION

GA computes an S-sharing of the product c = ab. The protocol is correct if
∀S, S′ ∈ S : S ∩ S′ 6= ∅ and

∀(D, E) ∈ R, S ∈ S : S 6⊆ D∗ ∧
(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)
,

robust if additionally (D∗, E∗) ∈ R, and always secret.

Proof. The condition ∀S, S′ ∈ S : S∩S′ 6= ∅ implies that every value aibj can be computed by at
least one party. Furthermore, given the condition for correctness in the lemma, all subprotocols
are correct. The same holds for robustness. All subprotocols are always secret. Given these
observations, it follows by inspection that the protocol is secure. ⊓⊔

The GROUPSHARE
GA subprotocol (Fig. 8) allows to reshare summands: Given a group Si of

parties that is committed to a value si with a group commitment 〈〈si〉〉Si
and a dealer p ∈ Si, the

protocol GROUPSHARE
GA computes an S-sharing [si] of the value si, given that at least one

party in Si is correct.

Protocol GROUPSHARE
GA : Given a group Si, a group commitment 〈〈si〉〉Si

, and a dealer p ∈ Si, compute [si].

1. p invokes SHARE
GA on si, resulting in [si].

2. For each pj ∈ Si: Invoke PRIVATE RECONSTRUCTION
GA on [si] for pj . If the reconstructed value is not si, pj

broadcasts “reject”. Otherwise, it broadcasts “accept”.
3. If some pj ∈ Si broadcasted “reject”, invoke GROUPREVEAL on 〈〈si〉〉Si

, and use a default sharing of si.
4. Each party outputs its share of [si], and p outputs the vector of summands of [si].

Fig. 8. The group share protocol for general adversaries.

Lemma 9. Given the sharing specification S , the reconstruction parameter R, a group Si ∈ S , a group
commitment 〈〈si〉〉Si

, and a dealer p ∈ Si, GROUPSHARE
GA computes [si]. The protocol is correct if

Si\D
∗ 6= ∅ and the subprotocols are correct against (D∗, E∗). Furthermore, it guarantees secrecy and/or

robustness against (D∗, E∗) whenever the subprotocols provide the corresponding guarantee against
(D∗, E∗).

10

Proof. CORRECTNESS: Since Si \ D∗ 6= ∅, there is at least one correct party that observes any
inconsistency and complains. Hence, the shared value is correct.
SECRECY: In Step 3, si is publicly reconstructed only if either p or some pj ∈ Si is actively
corrupted. Hence, the adversary knew the value already before.
ROBUSTNESS: It follows from inspection that the protocol does not abort. ⊓⊔

Next, we present a subprotocol that allows a prover p to prove that a given sharing [c] contains
the product of the values of two other given sharings [a] and [b] (Fig. 9). The protocol is along
the lines of the protocol in [CDD+99].

Protocol ABC-PROOF
GA : Given [a], [b], and [c], where prover p knows a, b, and c, check whether c = ab.

1. For each party pj ∈ P , carry out a sub-proof:
(a) p chooses a uniformly random b′, computes c′ = ab′, and invokes SHARE

GA on both b′ and c′, resulting
in [b′] and [c′].

(b) pj broadcasts a uniformly random challenge r.
(c) Compute [b′′] = r[b] + [b′] and invoke PUBLIC RECONSTRUCTION

GA on [b′′].
(d) Compute [z] = b′′[a] − r[c] − [c′] and invoke PUBLIC RECONSTRUCTION

GA on [z].
(e) If z = 0 the sub-proof is accepted. Otherwise, it is rejected.

2. If any of the sub-proofs was rejected, output “reject”. Otherwise output “accept”.

Fig. 9. The protocol for proving that c = ab for general adversaries.

Lemma 10. Given are the sharing specification S , the reconstruction parameter R, and S-sharings [a],
[b], and [c], where prover p knows a, b, and c. Assume that the subprotocols are correct against (D∗, E∗).
If p is correct and c = ab, then ABC-PROOF

GA outputs “accept”. If c 6= ab, then ABC-PROOF
GA

outputs “reject” with overwhelming probability. Furthermore, the protocol guarantees secrecy and/or
robustness against (D∗, E∗) whenever the subprotocols provide the corresponding guarantee against
(D∗, E∗).

Proof. CORRECTNESS: If the dealer is correct and c = ab, then it follows by simple arithmetic
that all sub-proofs are accepted. It remains to show that if c 6= ab, then at least one sub-proof
is rejected with overwhelming probability. We first show that if z = 0 for any two challenges r

and r′ where r 6= r′, then we must have c = ab: If z = 0 for r and r′, then a(rb + b′) − cr − c′ =
a(r′b + b′) − cr′ − c′. This can be written as ab(r − r′) = c(r − r′). Since, r 6= r′, it follows that
c = ab. Hence, if c 6= ab, then the sub-proof is accepted for at most one challenge. Since an
actively corrupted prover does not know the challenges from correct parties in advance, an
incorrect c is detected with overwhelming probability.
SECRECY: The only values revealed during the protocol are b′′ and z. If p is correct, then b′′ is
perfectly blinded by b′, and z = 0.
ROBUSTNESS: It follows from inspection that the protocol does not abort. ⊓⊔

The Security of the Parametrized Protocol. Considering the security of the subprotocols de-
scribed above, we can derive the security of the parametrized protocol, denoted by πS,R:

Lemma 11. Given the sharing specification S and the reconstruction parameter R, the protocol πS,R

guarantees statistical correctness if

∀(D, E) ∈ R, S, S′ ∈ S : S ∩ S′ 6= ∅ ∧ S 6⊆ D∗ ∧(
S \ D 6⊆ D∗ ∨ (S 6⊆ E ∧ P \ E 6⊆ D∗) ∨ (S 6⊆ E∗ ∧ P \ E∗ 6⊆ D)

)

Furthermore, the protocol guarantees statistical secrecy if additionally ∃S ∈ S : S ∩ E∗ = ∅, and/or
statistical robustness if additionally (D∗, E∗) ∈ R.

11

Proof. πS,R provides a certain security guarantee against (D∗, E∗) if all subprotocols (cf. Lem-
mas 3 to 10) and the sharing (cf. Lemma 5) provide this guarantee against (D∗, E∗). For each
guarantee, it can easily be verified that the condition in the lemma implies the conditions in
the corresponding lemmas. ⊓⊔

3.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for general adver-
saries with both mixed adversaries and hybrid security. We show that the bound is sufficient
for MPC by providing parameters for the generalized protocols described above. In the next
section, we prove that the bound is also necessary.

Theorem 1. In the secure channels model with broadcast and general adversaries, statistically se-
cure (reactive) MPC among n ≥ 2 parties with respect to (Zc,Zs,Zr,Zf), where Zr ⊆ Zc and
Zf ⊆ Zs ⊆ Zc, is possible if

Zs = {(∅, ∅)} ∨

∀(·, Es), (·, Es′) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :

Es ∪ Es′ 6= P ∧ Es ∪ Dc 6= P ∧
(
Dc ∪ Dr ∪ Es 6= P ∨ (Es ∪ Er 6= P ∧ Dc ∪ Er 6= P) ∨ (Es ∪ Ec 6= P ∧ Dr ∪ Ec 6= P)

)

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

Proof (Sufficiency). If Zs = {(∅, ∅)}, there is no secrecy requirement, and we can directly use the
trivial non-secret protocol described in the Appendix of [HLMR11]. Otherwise, we employ the
protocol πS,R described in Sec. 3.1. We set S := {Es | (·, Es) ∈ Zs} and R = Zr ∪ Zf .

We apply Lemma 11 to derive correctness, secrecy and robustness: Given the bound in the
theorem, the choice of the structures S and R, and the fact that (D∗, E∗) is an element of the
corresponding adversary structure, it is easy to verify that the condition for each property is
fulfilled. In particular, note that the correctness condition is also fulfilled for (D, E) ∈ Zf : Using
that Zf ⊆ Zs, we have that Es∪E ⊆ Es∪Es′ 6= P (for some Es′) and Dc∪E ⊆ Dc∪Es 6= P (where
the inequalities follow from the second line of the condition in the theorem). This implies the
condition for correctness.

Note that by our choice of R, we have Zf ⊆ R. Hence, for (D∗, E∗) ∈ Zf the protocol is
robust, and the adversary cannot abort. ⊓⊔

3.3 Proofs of Necessity

In this section, we prove that the bounds in Theorems 1 and 2 are necessary, i.e. if violated,
MPC is impossible.8 The bound in Thm. 1 is violated if

Zs 6= {(∅, ∅)} ∧

∃(·, Es), (·, Es ′) ∈ Zs : Es ∪ Es′ = P (1)

∨ ∃(·, Es) ∈ Zs, (Dc, ·) ∈ Zc : Es ∪ Dc = P (2)

∨ ∃(·, Es) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc : (3)

Dc ∪Dr ∪ Es = P ∧ (Es ∪ Er = P ∨ Dc ∪ Er = P) ∧ (Es ∪ Ec = P ∨ Dr ∪ Ec = P)

We split this condition according to which OR-term is fulfilled:

Case (1): Assume that Zs 6= {(∅, ∅)} ∧ ∃Es, Es′ : Es ∪ Es′ = P. Due to monotonicity, we can
assume that Es and Es′ are disjoint and (since n ≥ 2) non-empty. In this case, impossibility
of MPC follows from [RB89, Kil00].

8 Note that the impossibility holds even when agreement on abort is not required.

12

Case (2): Assume that Zs 6= {(∅, ∅)} ∧ ∃Es,Dc : Es ∪ Dc = P. Due to monotonicity, we can
assume that Es and Dc are disjoint. Furthermore, since Zs 6= {(∅, ∅)}, we can assume that
Es is non-empty. If Dc is empty, we have Es = P, which is covered by the previous case.
Otherwise, impossibility of MPC can easily be derived from the impossibility of IT secure
commitments: Trivially, the impossibility holds for |Dc| = |Es| = 1. All other cases can be
reduced to the 2-party case by having each of the two parties emulate the parties in Dc and
Es, respectively.

Case (3): Assume that Zs 6= {(∅, ∅)} ∧ ∃(·, Es) ∈ Zs, (Dr, Er) ∈ Zr, (Dc, Ec) ∈ Zc :
Dc ∪Dr ∪ Es = P ∧ (Es ∪ Er = P ∨ Dc ∪ Er = P) ∧ (Es ∪ Ec = P ∨ Dr ∪ Ec = P).
Due to monotonicity, we can assume that the sets Es, Dr, and Dc are disjoint, that
Er = Dr ∪ Dc or Er = Dr ∪ Es, and that Ec = Dc ∪ Dr or Ec = Dc ∪ Es. Furthermore,
we can assume that all these sets are non-empty: Since Zs 6= {(∅, ∅)}, we have Es 6= ∅. If
either Dr = ∅ or Dc = ∅, we have a reduction to the commitment impossibility.
Now, impossibility of MPC can be derived from Lemma 12: This is straight-forward for
|Es| = |Dc| = |Dr| = 1. All other cases can be reduced to the 3-party case by having each of
the three parties emulate the parties in Es, Dr, and Dc, respectively.

Reactive functionalities must be able to generate and hold a secret state (typically, this is
achieved using a secret-sharing scheme). We prove that it is impossible to generate a state
in a specific 3-party setting. This proof is inspired by [BFH+08, HLMR11].

Definition 5 (State and State Generation). A state for n parties p1, . . . , pn is a tuple (s1, . . . , sn)
that defines a value r ∈ {0, 1,⊥}, where party pi holds si. A protocol SHARE for state generation
allows a dealer to generate a state for an input bit s. Protocol SHARE must achieve

1. secrecy: The corrupted parties obtain no information about the bit s. In particular, the state infor-
mation held by corrupted parties contains no information about the bit s.

2. correctness: The resulting state uniquely defines a value r, where r ∈ {s,⊥} if the dealer is honest.
3. robustness: The resulting state uniquely defines a value r ∈ {0, 1}.

Lemma 12. Given three parties A, B, and C . On input a bit s from dealer C , the parties cannot
generate a state (a, b, c) that defines s providing the following guarantees:

1. Statistical secrecy in case of a passively corrupted A.
2. Statistical correctness and robustness in case of an actively corrupted B and either passively cor-

rupted A or passively corrupted C .
3. Statistical correctness (without agreement on abort) in case of an actively corrupted C and either

passively corrupted A or passively corrupted B.

Proof. Denote by TA the transcript observed by party A during SHARE, and let a, b, and c be
the resulting state information held by A, B, and C respectively.

To arrive at a contradiction, assume that (a, b, c) is a state generated by SHARE on input
s = 0 (i.e., due to completeness, it defines 0 with overwhelming probability). Due to secrecy in
case of a passively corrupted A, for any a, with overwhelming probability, there exist b′ and c′

such that (a, b′, c′) is a state defining s = 1 with overwhelming probability. The state (a, b′, c′)
occurs with (nearly, i.e. negligible distance) the same probability as (a, b, c) (otherwise, a would
give information about s).

Due to correctness and robustness in presence of an actively corrupted B, the state (a, ·, c)
defines the value 0 with overwhelming probability (where · is a placeholder for an arbitrary
state information held by B). Due to correctness in presence of an actively corrupted C , the
state (a, b′, ·) defines either 1 or ⊥ with overwhelming probability.

Consider the following attack by an adversary actively corrupting B and passively cor-
rupting A or C : The adversary behaves honest during SHARE, with input s = 0. Denote the re-
sulting state with (a, b, c). The adversary knows the transcript TA of party A. As a consequence,
he can compute b′ and c′ (with overwhelming probability), and achieve the state (a, b′, c).

13

However, with the same probability, this state could have been achieved by an adversary
actively corrupting C and passively corrupting A or B, mounting an analogous attack: Again,
the adversary behaves honest during SHARE, but with input s = 1. Denote the resulting state
with (a, b′, c′). As in the previous case, the adversary knows the transcript TA of party A. As a
consequence, he can compute b and c (with overwhelming probability), and also achieve the
state (a, b′, c).

Hence, the state (a, b′, c) must define both 0 and either 1 or ⊥ with overwhelming probabil-
ity, which is a contradiction. ⊓⊔

4 MPC with Threshold Adversaries

Trivially, the protocol for general adversaries can also be applied to the special case of thresh-
old adversaries. Yet, protocols for general adversaries are superpolynomial in the number of
parties for most adversary structures. Therefore, we present a protocol that exploits the sym-
metry of threshold adversaries, and is efficient in the number of parties.

The characterization for general adversaries (Sec. 3) can be adjusted for threshold adver-
saries: A mixed adversary is characterized by two thresholds (ta, tp), where he may corrupt
up to tp parties passively, and up to ta of these parties even actively. The level of security (cor-
rectness, secrecy, robustness, and fairness) depends only on the number (|D∗|, |E∗|) of actually
corrupted parties. In the perfect setting [HLMR11], this is modeled with four pairs of thresh-
olds, one for each security requirement, specifying the upper bound on the number of corrup-
tions that the adversary may perform, such that the corresponding security requirement is still
guaranteed. In the statistical setting, it follows from the bound for general adversaries that we
need to consider multiple pairs of thresholds for each security guarantee. Consider the follow-
ing example: Let n = 6 and tsp = 2. It is possible to obtain correctness for (|D∗|, |E∗|) ≤ (2, 6)
and (|D∗|, |E∗|) ≤ (3, 3), and robustness for (|D∗|, |E∗|) ≤ (1, 6) and (|D∗|, |E∗|) ≤ (2, 3) in the
same protocol. Yet, correctness and robustness cannot be guaranteed for (|D∗|, |E∗|) ≤ (3, 6)
and (|D∗|, |E∗|) ≤ (2, 6), respectively. Hence, this situation cannot be captured using only a sin-
gle pair of thresholds for each security guarantee. Therefore, we introduce multi-thresholds T ,
i.e. collections of pairs of thresholds (ta, tp).

We consider the four multi-thresholds T c, T s, T r, and T f :9 Correctness is guaranteed for
(|D∗|, |E∗|) ≤ T c,10 secrecy is guaranteed for (|D∗|, |E∗|) ≤ T s, robustness is guaranteed for
(|D∗|, |E∗|) ≤ T r, and fairness is guaranteed for (|D∗|, |E∗|) ≤ T f . Again, we have the assump-
tion that T r ≤ T c and T f ≤ T s ≤ T r,11 as secrecy and robustness are not well defined without
correctness, and as fairness cannot be achieved without secrecy.

For threshold adversaries, we proceed along the lines of the general adversary case: We
generalize the protocol of [FHM98, CDD+99] and introduce the sharing parameter d (corre-
sponding to S), and the reconstruction parameter E (corresponding to R). Since we consider
multi-thresholds, the reconstruction parameter E is a list of pairs (ea, ep) where ea ≤ ep. Since
for secrecy the actively corrupted parties D∗ are not relevant, there cannot be two incompara-
ble maximal adversaries. Hence, a single threshold is sufficient.

In this section, we assume that each party pi is assigned a unique and publicly known
evaluation point αi ∈ F \ {0}. This implies that the field F must have more than n elements.

9 As in the setting with general adversaries, we do not introduce a separate multi-threshold for agreement on
abort.

10 We write (ta, tp) ≤ T if ∃(t′a, t′p) ∈ T : (ta, tp) ≤ (t′a, t′p), where (ta, tp) ≤ (t′a, t′p) is a shorthand for ta ≤ t′a and
tp ≤ t′p.

11 We write T1 ≤ T2 if ∀(ta, tp) ∈ T1,∃(t′a, t′p) ∈ T2 : (ta, tp) ≤ (t′a, t′p).

14

4.1 A Parametrized Protocol for Threshold Adversaries

In the following, we present the parametrized subprotocols and analyze them with respect
to correctness, secrecy, and robustness. The main result (including fairness) is discussed in
Sec. 4.2. The protocol is based on IC signatures as introduced in Sec. 2.

Verifiable Secret Sharing. The state of the protocol is maintained with a Shamir sharing
[Sha79] of each intermediate result.

Definition 6 (d-Sharing). A value s is d-shared when (1) there is a polynomial ŝ(x) of degree d with
ŝ(0) = s, and every party pi holds a share si = ŝ(αi), (2) for each share si, pi holds a share polynomial
ŝi(y) of degree d with ŝi(0) = si, and every party pj holds a share share sij = ŝi(αj), and (3) for
each share share sij , party pi holds a signature 〈sij〉j,i, and pj holds a signature 〈sij〉i,j . We denote a
d-sharing of s with [s], and the share si with [s]i. A sharing parameter d is t-permissive, if the shares
of all but t parties uniquely define the secret, i.e., n − t > d.

Note that it follows from the linearity of Shamir sharings (i.e. a polynomial ŝ(x) with ŝ(0) = s

where each party pj ∈ P holds ŝ(αj)) and IC signatures, that d-sharings are linear.

Lemma 13. Let d < n be the sharing parameter. A d-sharing is secret if |E∗| ≤ d, and uniquely defines
a value if d is |D∗|-permissive.

Proof. It follows directly from the properties of a polynomial of degree d that secrecy is guar-
anteed if the number |E∗| of (actively or passively) corrupted parties is at most d. Furthermore,
n− |D∗| > d implies that there are at least d + 1 correct parties whose shares uniquely define a
share polynomial. ⊓⊔

The share protocol takes as input a secret s from a dealer, and outputs a d-sharing [s] (see
Fig. 10).

Protocol SHARE: Given input s from the dealer, compute a d-sharing [s] of this value.

1. The dealer chooses a random (bivariate) polynomial g(x, y) with g(0, 0) = s, of degree d in both variables,
and sends to each party pi ∈ P the (univariate) polynomials ki(y) = g(αi, y) and hi(x) = g(x,αi).

2. For each pair of parties (pi, pj): pi sends ki(αj) to party pj , and pj checks whether ki(αj) = hj(αi). If this
check fails, it broadcasts a complaint.

3. For all ki(αj), for which no inconsistency was reported, IC-SIGN is invoked once with signer pj and inter-
mediary pi to compute the signature 〈ki(αj)〉j,i, and once with signer pi and intermediary pj to compute the
signature 〈ki(αj)〉i,j .

4. The dealer broadcasts each value for which either an inconsistency was reported (Step 2), or the output of
IC-SIGN was ⊥ (Step 3), and a default signature is used.

5. If some party pi observes an inconsistency between the polynomials received in Step 1 and the broadcasted
values in Step 4, it accuses the dealer. The dealer answers the accusation by broadcasting both ki(y) and
hi(x). Now, if some other party pj observes an inconsistency between the polynomial received in Step 1
and these broadcasted polynomials, it also accuses the dealer. This step is repeated until no additional party
accuses the dealer. For all broadcasted values, default signatures are used.

6. If the dealer does not answer some complaint or accusation, or if the broadcasted values contradict each
other, the parties output a default d-sharing of a default value (with default signatures).
Otherwise, each party pi outputs the share si := ki(0), the share polynomial ŝi(y) := ki(y) with signatures
〈ŝi(αj)〉j,i (for j = 1, . . . , n), and the share shares sji := hi(αj) with signatures 〈sji〉j,i (for j = 1, . . . , n). The
dealer outputs ŝ(x) := g(x,0).

Fig. 10. The share protocol for threshold adversaries.

Lemma 14. Let d < n be the sharing parameter. On input s from the dealer, SHARE correctly, secretly,
and robustly computes a d-sharing. If d is |D∗|-permissive, and if the dealer is correct, the sharing
uniquely defines the secret s.

15

Proof. SECRECY: It follows from the properties of a bivariate polynomial that g(x, y) reveals no
more information about s than the specified output. After Step 1, the adversary does not obtain
any additional information: In Step 4, a value sij is broadcasted only if pi, pj or the dealer is
actively corrupted, i.e., the adversary knew the value already beforehand. Hence, the protocol
does not leak more information than the specified output, and thus always provides secrecy.
CORRECTNESS: First, we have to show that the protocol outputs a valid d-sharing. Due to the
bilateral consistency checks, any inconsistency in the values held by correct parties is detected
in Step 2 and resolved in Step 4. Therefore, the values held by correct parties uniquely define
a polynomial g′(x, y) of degree d, which implies that g′(x, 0) is of degree d. Furthermore, it
follows from the properties of IC-SIGN that in Step 3, either a correct IC-signature is computed,
or all parties output ⊥. In the latter case, a default (and hence correct) IC-signature is used.
Therefore, the output is a valid d-sharing. Second, we have to show that if d is |D∗|-permissive
and if the dealer is correct, then the shared value equals the input of the dealer. A correct dealer
can always consistently answer all complains and accusations with the correct values. Hence,
if d is |D∗|-permissive, the unique value defined by the sharing is the secret s.
ROBUSTNESS: By inspection, the protocol does not abort. ⊓⊔

The public reconstruction protocol (Fig. 11) proceeds sharewise: For each share si, first party pi

broadcasts the share si together with the sharing polynomial ŝi(y), and opens the signatures
on all share shares ŝi(αj). Second, all parties broadcast their share shares sij , and open the
corresponding signatures. If active corruption took place, these two steps might produce con-
flicts between certain parties. Note that these conflicts do not only depend on the actively, but
also on the passively corrupted parties, due to their inability to reliably verify IC-signatures. If
these conflicts can be explained with an adversary corrupting (|D∗|, |E∗|) ≤ E, then the share
is accepted. Otherwise it is ignored. This technique allows also passively-corrupted parties
to reliably verify signatures and therefore reconstruct the correct value. Finally, the secret is
reconstructed using the accepted shares. Note that PUBLIC RECONSTRUCTION is the only sub-
protocol that might abort. All other protocols abort only if they use PUBLIC RECONSTRUCTION

as a subprotocol and the invocation thereof aborts. Therefore, it is sufficient to discuss agree-
ment on abort only for this protocol.

Protocol PUBLIC RECONSTRUCTION: Given a d-sharing [s] of some value s, reconstruct s to all parties.

1. For each party pi:
(a) pi broadcasts ŝi(y) and invokes IC-REVEAL on the signatures 〈ŝi(αj)〉j,i (j = 1, . . . , n) of all share

shares.
(b) Each pj broadcasts its share share sij and invokes IC-REVEAL on the corresponding signature 〈sij〉i,j .
(c) Voting: Each pk checks whether

i. the polynomial ŝi(y) broadcasted in Step 1(a) is consistent with its share share, i.e. sik = ŝi(αk),
ii. the output of all invocations of IC-REVEAL in Step 1(a) was “accept”,

iii. for all sij broadcasted in Step 1(b) either sij = ŝi(αj) or the output of IC-REVEAL on the corre-
sponding signature 〈sij〉i,j was “reject”.

pk broadcasts “yes” if all checks succeed, “no” if check i. or ii. fails, and ⊥ otherwise. Let a and r denote
the number of parties broadcasting “yes” and “no”, respectively.

(d) Decision: Accept si if ∃(ea, ep) ∈ E : r ≤ ea ∧ (ep + d ≥ n ∨ a ≥ n − ep). Otherwise ignore si.
2. Output: If at least d + 1 shares are accepted, interpolate these shares with a polynomial ŝ′(x) and output

ŝ′(0). Otherwise abort.

Fig. 11. The public reconstruction protocol for threshold adversaries.

In the voting process, a “yes” means that party pi (the party currently revealing its share si)
seems to be correct (which holds unless there are less than d + 1 correct parties), and a “no”
means that pi is clearly actively corrupted. A ⊥ means that the voter does not know which is
the case, because there were two or more inconsistent values with valid signatures. Note that a

16

wrong value with a valid signature may appear in case of an actively corrupted intermediary
and either a passively corrupted signer or receiver.

Lemma 15. Given the sharing parameter d, the reconstruction parameter E, and a d-sharing [s] of
some value s, PUBLIC RECONSTRUCTION reconstructs s to all parties. The protocol is statistically
correct if |D∗| < n − d and

∀(ea, ep) ∈ E : |D∗| < n − d − ea ∨

(d + ep < n ∧ |D∗| < n − ep) ∨ (|E∗| < n − d ∧ |E∗| < n − ea).

Furthermore, it is statistically robust if additionally (|D∗|, |E∗|) ≤ E, and always guarantees agreement
on abort.

Proof. CORRECTNESS: The protocol outputs a value only if at least d + 1 shares are accepted.
Trivially, the output is correct if all accepted shares are correct, i.e., when incorrect shares are
not accepted. More precisely, we have to show that for any incorrect share s′i 6= si and for each
(ea, ep) ∈ E, the condition in Step 1(d) is violated. In this proof, we distinguish three cases,
depending on which or-term of the condition in the lemma is fulfilled:

i. Case |D∗| < n − d − ea:
In order to broadcast a wrong share s′i 6= si, an actively corrupted party pi has to change
the value of at least n− d share shares. At least n− d− |D∗| of these share shares belong to
correct parties that subsequently vote “no”, i.e. r ≥ n − d − |D∗|. Since |D∗| < n − d − ea,
this implies r > ea, and the share is not accepted.

ii. Case d + ep < n ∧ |D∗| < n − ep:
Since |D∗| < n − d, there are at least d + 1 correct parties. Hence, in order to broadcast
a wrong share s′i 6= si, an actively corrupted party pi has to change the value of at least
one share share belonging to a correct party. In Step 1(b), this correct party broadcasts the
correct share share with a valid signature, and no correct party accepts the wrong share s′i,
i.e. a ≤ |D∗|. Since |D∗| < n − ep, we have a < n − ep. Since we also have d + ep < n, the
share is not accepted.

iii. Case |E∗| < n − d ∧ |E∗| < n − ea:
Since |E∗| < n − d, there are at least d + 1 honest parties. Hence, in order to broadcast
a wrong share s′i 6= si, an actively corrupted party has to change the value of at least
one share share belonging to an honest party, and to create the signature on this (incor-
rect) share share. All honest parties notice that this signature is not valid and reject, i.e.,
r ≥ n − |E∗|. Since |E∗| < n − ea, we have r > ea, and the share is not accepted.

ROBUSTNESS: Given that the correctness condition holds, the protocol guarantees robustness
if enough (i.e. d + 1) shares are accepted. Let (ea, ep) ∈ E such that (|D∗|, |E∗|) ≤ (ea, ep). First,
observe that if party pi is correct, then r ≤ ea: All share shares and signatures broadcasted in
Step 1(a) are correct and valid. Therefore, no correct party votes “no”. Furthermore, if party pi

is honest, then a ≥ n−ep: If some pj broadcasts a contradicting (wrong) share share in Step 1(b),
then the signature on this share share is invalid for all honest parties.

It follows from the two observations above that shares from honest parties are always ac-
cepted. If ep +d < n, then there are at least d+1 honest parties and the protocol does not abort.
Otherwise, if ep + d ≥ n, then also shares from correct parties are accepted. Since |D∗| < n − d

there are always at least d + 1 correct parties and the protocol does not abort.
AGREEMENT ON ABORT: Since the abort decision is based only on broadcasted values, we
always have agreement on abort. ⊓⊔

Addition, Multiplication, and Random Values. Linear functions (and in particular additions)
can be computed locally, since d-sharings are linear: Given sharings [a] and [b], and a constant

17

c, one can easily compute the sharings [a] + [b], c[a], and [a] + c. Computing a shared random
value can be achieved by letting each party pi share a random value ri, and computing [r] =
[r1] + . . . + [rn].

For the multiplication of two shared values, we first provide a non-robust multiplication
protocol, which we then make robust using dispute control [BH06] and circuit randomization
[Bea91].

Non-robust Multiplication. The product c of two d-shared values a and b is computed as follows
[GRR98]: Each party multiplies its shares ai and bi, obtaining vi = aibi. This results in a sharing
of c with a polynomial v̂(x) of degree 2d. We reduce the degree by having each party d-share
its value vi (resulting in [vi]), and employing Lagrange interpolation to distributedly compute
[v̂(0)], which is a d-sharing of the product c. In order to prevent an active party from sharing a
wrong value v′i 6= vi, each party has to prove in zero-knowledge that vi = aibi. If this proof is
not accepted, the non-robust multiplication protocol is aborted.

Protocol MULTIPLICATION
NR : Given [a] and [b], compute [c] for c = ab.

1. For each party pi:
(a) pi computes vi = aibi, and invokes SHARE on vi, resulting in [vi].

(b) Invoke ABC-PROOF
NR on âi(x), b̂i(x), and v̂i(x) (where âi(x) and b̂i(x) denote the share polynomials

of ai and bi, respectively, and v̂i(x) denotes the main polynomial of the sharing [vi]). If the proof is not
accepted, the protocol is aborted.

2. All parties distributively compute the Lagrange interpolation on [v1], . . . , [vn] for c = v(0), and output the
resulting [c], i.e., [c] =

P

λi[vi] for Lagrange coefficients λi.

Fig. 12. The non-robust multiplication protocol for threshold adversaries.

Lemma 16. Given are the sharing parameter d, and d-sharings of a and b. If 2d < n and the sub-
protocols are correct against (|D∗|, |E∗|), MULTIPLICATIONNR either outputs a correct d-sharing of
the product c = ab, or it aborts. It aborts only if some party deviates. Furthermore, it is secret against
(|D∗|, |E∗|) whenever the subprotocols are secret against (|D∗|, |E∗|).

Proof. In Step 2, the parties interpolate a polynomial of degree 2d using n evaluation points.
Since 2d < n, this interpolation computes the correct result. Given this observation, it follows
by inspection that the protocol is as secure as the subprotocols. ⊓⊔

The ABC-PROOF
NR subprotocol (Fig. 13) allows a prover p to prove that for three shared val-

ues a, b, and c it holds that c = ab. For this subprotocol, it is sufficient that the values are shared
with a simple Shamir sharing, i.e., there is a polynomial â(x) with â(0) = a that is known to p,
and each party pj ∈ P holds â(αj) (for b and c analogously). The protocol is along the lines of
the protocol in [CDD+99].

Lemma 17. Given are the sharing parameter d, and shared polynomials â(x), b̂(x), and ĉ(x) of degree d

that are known to party p. If ĉ(0) = â(0)b̂(0) and no party deviates, the protocol outputs “accept” (com-
pleteness). If |D∗| < n−d and ĉ(0) 6= â(0)b̂(0), then, with overwhelming probability, ABC-PROOF

NR

does not output “accept” (correctness). Furthermore, the protocol is secret against (|D∗|, |E∗|) whenever
the subprotocols are secret against (|D∗|, |E∗|).

Proof. COMPLETENESS: It follows from inspection and simple arithmetic that if ĉ(0) = â(0)b̂(0)
and no party deviates from the protocol description, the protocol outputs “accept”.
CORRECTNESS: If any (correct) party detects an inconsistency and complains (Step 1.c.ii), the
protocol outputs “fail”. Otherwise, since |D∗| < n − d (i.e. there are at least d + 1 correct
parties), both b̂′′(x) and ẑ(x) are correctly computed. In that case, it follows along the lines of

18

Protocol ABC-PROOF
NR : Given polynomials â(x), b̂(x), and ĉ(x) of degree d that are known to party p, and

where each party pj ∈ P holds â(αj), b̂(αj), and ĉ(αj), check whether ĉ(0) = â(0)b̂(0).

1. For each party pi ∈ P , carry out a sub-proof:
(a) p chooses a uniformly random b′, computes c′ = ab′, and invokes SHARE on both b′ and c′, resulting in

sharings [b′] and [c′] with main polynomials b̂′(x) and ĉ′(x), respectively.
(b) pi broadcasts a uniformly random challenge r.
(c) Assisted reconstruction:

i. p computes and broadcasts the polynomials b̂′′(x) = rb̂(x)+ b̂′(x) and ẑ(x) = b′′â(x)−rĉ(x)− ĉ′(x),

where b′′ = b̂′′(0).
ii. Each pj broadcasts a complaint bit indicating whether b̂′′(αj) 6= rb̂(αj)+b̂′(αj) or ẑ(αj) 6= b′′â(αj)−

rĉ(αj) − ĉ′(αj). If any party complains, output “fail” (and stop the execution).
(d) Verification: If ẑ(0) = 0 then the sub-proof is accepted. Otherwise it is rejected.

2. If any of the sub-proofs was rejected, output “reject”. Otherwise output “accept”.

Fig. 13. A protocol for proving that c = ab for threshold adversaries.

the proof in the case for general adversaries that if ĉ(0) 6= â(0)b̂(0), then the proof is rejected
with overwhelming probability.
SECRECY: The only values revealed during the protocol are the polynomials b̂′′(x) and ẑ(x). If
p is correct, then b̂′′(x) is perfectly blinded by b̂′(x), and ẑ(0) = 0. ⊓⊔

Robust Multiplication. We make the above protocol robust in two steps (Fig. 14): First, using
dispute control [BH06], we repeatedly invoke MULTIPLICATIONNR on two random values x and
y until the subprotocol succeeds. Dispute control is based on the fact that complete protocols
abort only if some party deviates from the protocol description, which leads to a detectable
dispute with other parties. By keeping track of these disputes, the protocol can be adjusted
to limit the number of repetitions. Second, we use circuit randomization [Bea91] to compute
[c] = [ab] = (a−x)(b− y)+ (a−x)[y] + (b− y)[x] + [xy]. Given shared values x, y, and z where
z = xy, this is a linear computation with two public reconstructions of (a − x) and (b − y).

Protocol MULTIPLICATION: Given [a] and [b], compute [c] for c = ab.

1. Create sharings [x] and [y] of random values x and y.
2. Invoke MULTIPLICATION

NR on [x] and [y] to compute [z] for z = xy.
3. If MULTIPLICATION

NR succeeded, then invoke PUBLIC RECONSTRUCTION on [a − x] and [b − y], and com-
pute and output [c] = (a − x)(b − y) + (a − x)[y] + (b − y)[x] + [z].

4. If MULTIPLICATION
NR did not succeed, then

(a) Each party pi ∈ P broadcasts its randomness and all messages it has received during the creation of [x]
and [y], and MULTIPLICATION

NR . Then, each party retraces the execution of these steps locally to detect
disputing parties.12

(b) Repeat the protocol, where (1) private channels between any two disputing parties are replaced with
broadcast channels, and (2) parties that are in dispute with all other parties are simulated locally on
default randomness, and messages towards these parties are broadcasted.

Fig. 14. The robust multiplication protocol for threshold adversaries.

Lemma 18. Given the sharing parameter d, the reconstruction parameter E, and d-sharings of a and b,
MULTIPLICATION computes a d-sharing of the product c = ab. The protocol guarantees correctness
and/or secrecy against (|D∗|, |E∗|) whenever the subprotocols provide the corresponding security guar-
antee against (|D∗|, |E∗|). Furthermore, it is robust against (|D∗|, |E∗|) whenever
PUBLIC RECONSTRUCTION is robust against (|D∗|, |E∗|).

12 Two parties are in dispute if one party claims to have received a message from the other party that is incorrect
according to the preceding protocol execution.

19

Proof. The protocol is repeated until MULTIPLICATIONNR succeeds. In the repetitions where
MULTIPLICATIONNR does not succeed, correctness and secrecy of [x], [y], and [z] do not need
to be maintained. In the repetition where MULTIPLICATIONNR succeeds, we have z = xy and
therefore also c = ab. Furthermore, when a private channel is replaced with a broadcast chan-
nel because of a dispute, at least one of the two corresponding parties was actively corrupted.
Therefore, the secrecy of the subprotocols is maintained. Furthermore, since disputing par-
ties communicate via broadcast channels, each found inconsistency constitutes a new dispute.
Hence, the protocol is repeated at most n2 times. ⊓⊔

The Security of the Parametrized Protocol. Considering the security of the subprotocols de-
scribed above, we can derive the security of the parametrized protocol, denoted by πd,E :

Lemma 19. Let d be the sharing parameter, and E be the reconstruction parameter, the protocol πd,E

guarantees statistical correctness if d < n − |D∗|, 2d < n, and

∀(ea, ep) ∈ E : |D∗| < n − d − ea ∨

(d + ep < n ∧ |D∗| < n − ep) ∨ (|E∗| < n − d ∧ |E∗| < n − ea).

Furthermore, the protocol guarantees statistical secrecy if additionally |E∗| ≤ d, and/or statistical
robustness if additionally (|D∗|, |E∗|) ≤ E.

Proof. πd,E provides a certain security guarantee against (|D∗|, |E∗|) if all subprotocols (cf. Lem-
mas 14 to 18) and the sharing (cf. Lemma 13) provide this guarantee against (|D∗|, |E∗|). For
each guarantee, it can easily be verified that the condition in the lemma implies the conditions
in the corresponding lemmas. ⊓⊔

4.2 Main Result

The following theorem states the optimal bound for statistically secure MPC for threshold
adversaries with both mixed adversaries and hybrid security. We show that the bound is suf-
ficient for MPC by providing parameters for the generalized protocols described above. The
necessity of the bound follows directly from the corresponding proof for general adversaries
(Sec. 3.3).

Theorem 2. In the secure channels model with broadcast and threshold adversaries, statistically secure
(reactive) MPC among n ≥ 2 parties with multi-thresholds T c, T s, T r, and T f , where T f ≤ T s ≤ T c

and T r ≤ T c, is possible if

T s = {(0, 0)} ∨

∀(tca, t
c
p) ∈ T c, (tra, t

r
p) ∈ T r, (·, tsp), (·, t

s
p
′) ∈ T s :

tsp + tsp
′ < n ∧ tsp + tca < n ∧

(
tca + tra + tsp < n ∨ (tsp + trp < n ∧ tca + trp < n) ∨ (tsp + tcp < n ∧ tra + tcp < n)

)

This bound is tight: If violated, there are (reactive) functionalities that cannot be securely computed.

Proof (Sufficiency). If T s = {(0, 0)}, there is no secrecy requirement, and we can directly use the
trivial non-secret protocol described in the Appendix of [HLMR11]. Otherwise, we employ the
parametrized version πd,E of the protocol of [BGW88] described in Sec. 4.1 with d := t̃sp and

E := T r ∪ T f , where t̃sp = max{tsp | (·, tsp) ∈ T s}.
We apply Lemma 19 to derive correctness, secrecy and robustness: Given the bound in

the theorem, the choice of the parameters d and E, and the fact that (|D∗|, |E∗|) is below the
corresponding threshold, it is easy to verify that the condition for each property is fulfilled.
In particular, note that the correctness condition is also fulfilled for (ea, ep) ∈ T f : Using that

20

T f ≤ T s, we have d + ep ≤ 2t̃sp < n and ea + ep ≤ tca + d < n (where the inequalities follow

from the second line of the condition in the theorem with tsp = tsp
′ = t̃sp).

For fairness, note that T f ≤ E. Hence, for (|D∗|, |E∗|) ≤ (tfa, t
f
p) the protocol is robust, and

the adversary cannot abort. ⊓⊔

5 Conclusion

Our results provide insights into the relations between passive corruption and different secu-
rity requirements. The bounds presented in this work quantify the impact of passively cor-
rupted parties on all security guarantees. We have shown that, in the statistical setting, pas-
sively corrupted parties play a significant role for all security guarantees, and not only for
secrecy. Consider the following example: Let n = 4, tca = 2, tcp = 2, tra = 1, trp = 2, and tsp = 1.
For this choice of thresholds, the construction in this paper provides a protocol that is cor-
rect and robust (given that the adversary remains below the corresponding thresholds). Yet,
we show that it is impossible to construct a protocol that tolerates a single additional passive
corruption.

Furthermore, in addition to the known tradeoff between different security guarantees like
robustness and correctness [HLMR11], we obtain a novel tradeoff between active and passive
corruptions even when only considering a single security guarantee.

Solutions for the setting with general adversaries encompass all possible adversary struc-
tures. Yet, these protocols are usually superpolynomial in the number of parties. Therefore,
protocols for the setting with threshold adversaries are of more practical relevance. In this
work, we provide the first protocol allowing for multi-thresholds, a setting that is strictly more
flexible than single-thresholds. This constitutes a substantial step towards general adversaries
without losing efficiency in the number of parties.

References

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In CRYPTO ’89, pages 560–
572. Springer, 1989.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO ’91, pages
420–432. Springer, 1991.

[BFH+08] Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs.
SFE: Perfect security in a unified corruption model. In TCC 2008, pages 231–250. Springer, 2008.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88, pages 1–10. ACM, 1988.

[BH06] Zuzana Beerliova-Trubiniova and Martin Hirt. Efficient multi-party computation with dispute con-
trol. In TCC 2006, pages 305–328. Springer, 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols.
In STOC ’88, pages 11–19. ACM, 1988.

[CDD+99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin. Efficient mul-
tiparty computations secure against an adaptive adversary. In EUROCRYPT ’99, pages 311–326.
Springer, 1999.

[CDG88] David Chaum, Ivan Damgård, and Jeroen van de Graaf. Multiparty computations ensuring privacy
of each party’s input and correctness of the result. In CRYPTO ’87, pages 87–119. Springer, 1988.

[Cha89] David Chaum. The spymasters double-agent problem: Multiparty computations secure uncondi-
tionally from minorities and cryptographically from majorities. In CRYPTO ’89, pages 591–602.
Springer, 1989.

[DDWY93] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. Perfectly secure message transmission.
Journal of the ACM, 40(1):17–47, 1993.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broadcast
and detectable multi-party computation. In EUROCRYPT 2003, pages 51–67. Springer, 2003.

[FHM98] Matthias Fitzi, Martin Hirt, and Ueli Maurer. Trading correctness for privacy in unconditional multi-
party computation (extended abstract). In CRYPTO ’98, pages 121–136. Springer, 1998.

[FHM99] Matthias Fitzi, Martin Hirt, and Ueli Maurer. General adversaries in unconditional multi-party
computation. In ASIACRYPT ’99, pages 232–246. Springer, 1999.

21

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with hybrid
security. In EUROCRYPT 2004, pages 419–438. Springer, 2004.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC ’87, pages 218–229. ACM, 1987.

[GRR98] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fast-track multiparty com-
putations with applications to threshold cryptography. In PODC ’98, pages 101–111. ACM, 1998.

[HLMR11] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Graceful degradation in multi-party
computation. In ICITS 2011, pages 163–180. Springer, 2011.

[HLMR12] Martin Hirt, Christoph Lucas, Ueli Maurer, and Dominik Raub. Passive corruption in statistical
multi-party computation (extended abstract). In ICITS 2012. Springer, 2012.

[HM97] Martin Hirt and Ueli Maurer. Complete characterization of adversaries tolerable in secure multi-
party computation. In PODC ’97, pages 25–34. ACM, 1997.

[HMZ08] Martin Hirt, Ueli Maurer, and Vassilis Zikas. MPC vs. SFE: Unconditional and computational secu-
rity. In ASIACRYPT 2008, pages 1–18. Springer, 2008.

[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with guar-
anteed output delivery in secure multiparty computation. In CRYPTO 2006, pages 483–500. Springer,
2006.

[Kat07] Jonathan Katz. On achieving the ”best of both worlds” in secure multiparty computation. In
STOC ’07, pages 11–20. ACM, 2007.

[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In STOC ’00,
pages 316–324. ACM, 2000.

[LRM10] Christoph Lucas, Dominik Raub, and Ueli Maurer. Hybrid-secure MPC: Trading information-
theoretic robustness for computational privacy. In PODC ’10, pages 219–228. ACM, 2010.

[Mau02] Ueli Maurer. Secure multi-party computation made simple. In SCN ’02, pages 14–28. Springer, 2002.
[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any number of

faulty processors. In STACS ’92, pages 339–350. Springer, 1992.
[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest ma-

jority. In STOC ’89, pages 73–85. ACM, 1989.
[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In FOCS ’82, pages 160–164.

IEEE, 1982.

22

