
Computationally-Fair Group and Identity-Based Key-Exchange∗

Andrew C. Yao† Yunlei Zhao‡

Abstract

In this work, we re-examine some fundamental group key-exchange and identity-based key-
exchange protocols, specifically the Burmester-Desmedet group key-exchange protocol [7] (re-
ferred to as the BD-protocol) and the Chen-Kudla identity-based key-exchange protocol [9]
(referred to as the CK-protocol). We identify some new attacks on these protocols, showing in
particular that these protocols are not computationally fair. Specifically, with our attacks, an
adversary can do the following damages:

• It can compute the session-key output with much lesser computational complexity than
that of the victim honest player, and can maliciously nullify the contributions from the
victim honest players.

• It can set the session-key output to be some pre-determined value, which can be efficiently
and publicly computed without knowing any secrecy supposed to be held by the attacker.

We remark these attacks are beyond the traditional security models for group key-exchange
and identity-based key-exchange. Then, based on the computationally fair Diffie-Hellman key-
exchange in [21], we present some fixing approaches, and prove that the fixed protocols are
computationally fair.

1 Introduction

Key-exchange (KE) protocols are basic to modern cryptography and to secure systems in general.
KE protocols are used to generate a common secret-key among a set of users for encryption,
authentication and for enforcing access-control policies. Among them, the Diffie-Hellman key-
exchange (DHKE) protocol marked the birth of public-key cryptography, and serves as the basis
for most key-exchange protocols.

Usually, key-exchange (particularly DHKE) protocols are considered in the two party setting un-
der a public-key infrastructure (PKI). Two important extension dimensions are group key-exchange
(GKE) and identity-based key-exchange (IBKE). Group key-exchange extends the standard two-
party KE protocol to the multiple-party case. The Burmester-Desmedet group key-exchange proto-
col [7] (referred to as the BD-protocol) is an extension of DHKE into the group setting, which is one
of the most fundamental group key-exchange protocols and serves as a basis for many group key-
exchange protocols in the literature. Identity-based key-exchange simplifies public-key certificate
management in traditional PKI-based key-exchange, where users’ identities themselves can serve

∗Preliminary version of this work appears in the PCT patent file [20].
†Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing, China.

andrewcyao@tsinghua.edu.cn
‡Software School, Fudan University, Shanghai 200433, China. ylzhao@fudan.edu.cn

1



as the public-keys (but at the price of introducing a trusted authority called private key generator
that generates the secret-keys for all users). A list of identity-based key-exchange protocols have
been developed in the literature [8], among which the Chen-Kudla identity-based key-exchange
protocol [9] (referred to as the CK-protocol) is one of the most efficient IBKE protocols.

In this work, we re-examine the BD-protocol and the CK-protocol. We identify some new
attacks on these protocols, showing in particular that these protocols are not computationally fair.
Specifically, with our attacks, an adversary can do the following damages:

• It can compute the session-key output with much lesser computational complexity than that
of the victim honest player, and can maliciously make the contributions from the victim
honest players be of no effect.

• It can set the session-key output to be some pre-determined value, which can be efficiently
and publicly computed without knowing any secret value supposed to be held by the attacker.

We note these attacks are beyond the traditional security models for group key-exchange and
identity-based key-exchange. Then, based on the computationally fair Diffie-Hellman key-exchange
in [21], we present some fixing approaches, and prove that the fixed protocols are computationally
fair (in accordance with the definition of session-key computational fairness in [21]).

2 Preliminaries

If A is a probabilistic algorithm, then A(x1, x2, · · · ; r) is the result of running A on inputs x1, x2, · · ·
and coins r. We let y ← A(x1, x2, · · · ; r) denote the experiment of picking r at random and letting
y be A(x1, x2, · · · ; r). If S is a finite set then x ← S, sometimes also written as x ∈R S, is the
operation of picking an element uniformly from S. If α is neither an algorithm nor a set then x← α
is a simple assignment statement. A function f(λ) is negligible if for every c > 0 there exists a λc

such that f(λ) < 1
λc for all λ > λc.

Let G′ be a finite Abelian group of order N , G be a cyclic subgroup of prime order q in G′.
Denote by g a generator of G, by 1G the identity element, by G\1G = G−{1G} the set of elements
of G except 1G. Throughout this paper, unless explicitly specified, for presentation simplicity we
assume G is a multiplicative group, and use multiplicative notation to describe the group operation
in G′. (When G′ is defined w.r.t. elliptic curves over finite fields, usually addition notation is used
for the group operation in G′.)

Let (A = ga ∈ G, a) (resp., (X = gx ∈ G,x)) be the public-key and secret-key (resp., the
DH-component and DH-exponent) of player Â, and (B = gb ∈ G, b) (resp., (Y = gy ∈ G, y)) be the
public-key and secret-key (resp., the DH-component and DH-exponent) of player B̂, where a, x, b, y
are taken randomly and independently from Z∗

q . The (basic version of) DHKE protocol [11] works as

follows: after exchanging their DH-components X and Y , player Â (resp., B̂) computes the session-
key K = Y x = gxy (resp., K = Xy = gxy). The security of DHKE relies on the computational
Diffie-Hellman (CDH) assumption over G, which says that given X = gx, Y = gy ← G (i.e., each
of x and y is taken uniformly at random from Zq) no efficient (say, probabilistic polynomial-time)
algorithm can compute CDH(X,Y ) = gxy.

We consider an adversarial setting, where polynomially many instances (i.e., sessions) of a
Diffie-Hellman key-exchange protocol 〈Â, B̂〉 are run concurrently over an asynchronous network
like the Internet. To distinguish concurrent sessions, each session run at the side of an uncorrupted

2



player is labeled by a tag, which is the concatenation, in the order of session initiator and then
session responder, of players’ identities/public-keys and DH-components available from the session
transcript. For identity-based key-exchange, we also include the public-key of the private-key
generator (that is a trusted authority) into the session-tag. A session-tag is complete if it consists
of a complete set of all these components.

Admissible pairing: Let ê : G×G→ GT be an admissible pairing [2, 6], where G is a cyclic
multiplicative (or additive) group of order q generated by an element g. Here, an admissible pairing
ê satisfies the following three properties:

• Bilinear: If g1, g2 ∈ G, and x, y ∈ Zq, then ê(gx1 , g
y
2 ) = ê(g1, g2)

xy.

• Non-degenerate: ê(g, g) 6= 1GT
, where 1GT

is the identity element in GT . In particular, ê(g, g)
is the generator of GT in case GT is also a cyclic group of the same order q.

• Computable: If g1, g2 ∈ G, ê(g1, g2) ∈ GT can be computed in polynomial-time.

2.1 Non-Malleably Independent Dominant-Operation Values, and Session-Key

Computational Fairness

In this section, we review and discuss the notion of session-key computational fairness recently
introduced by Yao, et al [21].

For any complete session-tag Tag of a key-exchange protocol among n users {U1, · · · , Un} where
n ≥ 2, we first identify dominant-operation values w.r.t. Tag and each user Ui, (V

i
1 , · · · , V

i
m) ∈

G1 × · · · × Gm,m ≥ 2, which are specified to compute the session-key K by the honest player Ui

for a complete session specified by the complete session-tag Tag, where Gk, 1 ≤ k ≤ m is the
range of V i

k . Specifically, K = FK(V i
1 , · · · , V

i
m, Tag), where K is the session-key output by user Ui,

FK is some polynomial-time computable function (that is defined by the session-key computation
specified for honest players). We remark that dominant operations are specific to protocols, where
for different key-exchange protocols the dominant operations can also be different.

Then, roughly speaking, we say that a key-exchange protocol enjoys session-key computa-
tional fairness w.r.t some pre-determined dominant operations, if for any complete session-tag Tag,
the session-key computation involves the same number of non-malleably independent dominant-
operation values for each user Ui, 1 ≤ i ≤ n, whether it is honest or malicious.

Definition 1 (non-malleable independence) For the dominant-operation values,
(V i

1 , · · · , V
i
m) ∈ G1 × · · · × Gm, m ≥ 2 and 1 ≤ i ≤ n, w.r.t. a complete session-tag Tag on any

sufficiently large security parameter λ, we say V i
1 , · · · , V

i
m are computationally (resp., perfectly)

non-malleably independent, if for any polynomial-time computable (resp., any power unlimited)
relation/algorithm R (with components drawn from G1 × · · · × Gm × {0, 1}

∗) it holds that the
following quantity is negligible in λ (resp., just 0):

∣

∣Pr[R(V i
1 , · · · , V

i
m, Tag) = 1]− Pr[R(R1, · · · , Rm, Tag) = 1]

∣

∣ ,

where Ri, 1 ≤ i ≤ m is taken uniformly and independently from Gi, and the probability is taken
over the random coins of R (as well as the choice of the random function in the random oracle
model [3]).

3



As clarified in [21], the above Definition 1 is defined w.r.t. any complete session-tag and w.r.t.
some pre-determined dominant operations, which does not explicitly take the malicious player’s
ability into account. But, this definition ensures that, by the birthday paradox, for any successfully
finished session among a set of (malicious and honest) players, no matter how the malicious players
collude, it holds that: for any i, 1 ≤ i ≤ n and for any values (α1, · · · , αm) ∈ G1 × · · · × Gm, the
probability that Pr[V i

k = αi] is negligible for any k, 1 ≤ k ≤ m and any i, 1 ≤ i ≤ n.

Definition 2 ((session-key) computational fairness ) We say a key-exchange protocol enjoys
session-key computational fairness w.r.t. some pre-determined dominant operations, if for any
complete session-tag Tag on any sufficiently large security parameter λ, the session-key computation
involves the same number of (perfectly or computationally) non-malleably independent dominant-
operation values for any user Ui, 1 ≤ i ≤ n.

Note that, as clarified in [21], the notion of “(session-key) computational fairness” is defined w.r.t.
some predetermined dominant operations that are uniquely determined by the protocol specifica-
tion. We remark that it is the task of the protocol designer to specify the dominant operations (for
which computational fairness can be provably proved), which should also be natural and common
to the literature.

More detailed discussions and clarifications, on the formulation of non-malleable independence
and session-key computational fairness, are referred to [21].

3 Re-Examination of the Burmester-Desmedet Group Key-Exchange

Protocol

In this section, we re-examine the Burmester-Desmedet GKE protocol [7], referred to as the BD-
protocol for presentation simplicity. We show an attack against the BD-protocol, where some
malicious players can collude to nullify the effects of victim honest players, and discuss the con-
sequences of the identified attack. We then present a fixed protocol called computationally-fair
BD-protocol, and show the fixed protocol is computationally-fair (while the original BD-protocol
is not).

3.1 Brief Review of the Burmester-Desmedet Group Key-Exchange Protocol

Suppose U1, U2, · · · , Un, n ≥ 2, be a group of parties who want to share a common group key among
them. Let G be a cyclic group of order q generated by a generator g. The BD-protocol works as
follows:

• Each Ui, 1 ≤ i ≤ n, takes xi uniformly at random from Z∗
q , computes Xi = gxi , and finally

broadcasts Xi to all other users.

• After receiving Xj , for all j where 1 ≤ j 6= i ≤ n, each user Ui computes and broadcasts
Zi = (Xi+1/Xi−1)

xi , where the indices are taken in a cycle (i.e., mod n).

• Finally, each user Ui, 1 ≤ i ≤ n, computes the shared session-key K = (Xi−1)
nxi · Zn−1

i ·
Zn−2
i+1 · · ·Zi−2. Note that the session-key generated by all the users is the same, specifically

K = gx1x2+x2x3+···+xnx1 .

The tag for a complete BD-protocol session is defined to be (U1, U2, · · · , Un,X1,X2, · · · ,Xn).

4



3.2 An Attack Against the BD-Protocol

We demonstrate an attack against the BD-protocol. We illustrate our attack for the case n = 3,
where two malicious users U1 U2 collude to be against an honest user U3.

1. The attack works as
follows: U2 sets X2 to be X−1

1 (i.e., x2 = −x1), then the shared DH-secret is K1 = K2 = K3 = g−x2
1 ,

no matter what DH-exponent x3 is chosen by the honest U3.
Consequence of the attack: Note that, as x1 may be maliciously generated by U1 (i.e.,

x1 can be an arbitrary value in Zq), the shared DH-secret g−x2
1 can be an arbitrary value in G

with no guarantee on its randomness and independence. Furthermore, suppose the colluding U1

and U2 use the same X1 and X2 = X−1
1 in different sessions, then the shared session-keys among

different sessions are the same, i.e., always g−x2
1 , no matter what efforts are made desperately by

the third victim honest player. This is clearly unfair to the honest player U3. We note that even
the universally composable (UC) version of the BD-protocol, proposed in [15, 16], still does not
frustrate the above attack (specifically, the fairness issue and particularly the above attack were
not captured by the UC framework there).

The above concrete attack shows some unfairness, in generating group session-key, between
honest victim players and malicious colluding players, and such an unfairness issue can cause
essential damages.

3.3 Computationally-Fair Group Key-Exchange

We present a variant of the BD-protocol, computationally-fair BD-protocol (referred to as the
fBD-protocol for presentation simplicity). The fBD protocol works as follows:

• Each Ui, 1 ≤ i ≤ n, takes xi uniformly at random from Z∗
q , computes Xi = gxi , and finally

broadcasts Xi to all other users.

• After receiving Xj , for all j where 1 ≤ j 6= i ≤ n, each user Ui computes and broadcasts Zi =

X
xih(Ui,xi,xi+1)
i+1 /X

xih(Ui−1,xi−1,xi)
i−1 , where the indices are taken in a cycle, and h : {0, 1}∗ → Zq

is a hash function that is modeled to be a random oracle in security analysis. Note that, as

the indices are taken in a cycle of n (i.e., mod n), Zn = X
xnh(Un,xn,x1)
1 /X

xnh(Un−1,xn−1,xn)
n−1 .

• Finally, each user Ui, 1 ≤ i ≤ n, computes the shared session-key
K = (Xi−1)

nxih(Ui−1,Xi−1,Xi) · Zn−1
i · Zn−2

i+1 · · ·Zi−2. Note that the session-key output by all

the users is the same, specifically K = gx1x2h(U1,X1,X2)+x2x3h(U2,X2,X3)+···+xnx1h(Un,Xn,X1).

We note that the above fBD protocol can be converted into an authenticated group KE by the
general technique of [16], and password-based group KE by the technique of [1]. It’s easy to check
that our fBD-protocol ensures the following properties in the random oracle model: (1) For any
value α ∈ G/1G and any i, 1 ≤ i ≤ n, as long as Ui is honest, i.e., xi is distributed uniformly at
random over Z∗

q , it is guaranteed that the probability that the shared session-key K is equal to α
is negligible, no matter how the rest players collude against it. Formally, we have:

For the fBD-protocol and any complete session-tag Tag, the dominant-operation values specified
for user Ui, 1 ≤ i ≤ n, are {V i

1 = gx1x2h(U1,X1,X2), V i
2 = gx2x3h(U2,X2,X3), · · · , V i

n = gxnx1h(Un,Xn,X1)}.
The function FK is specified to be FK(V i

1 , V
i
2 , · · · , V

i
n, Tag) = V i

1 · V
i
2 · · ·V

i
n.

1The attack can be easily extended to the general case of n > 3, where some malicious players collude to be
against sets of honest players

5



For the original BD-protocol and any complete session-tag Tag, the dominant operation values
for user Ui can be specified as, 1 ≤ i ≤ n, are {V i

1 = gx1x2 , V i
2 = gx2x3 , · · · , V i

n = gxnx1}. The
function FK is specified to be FK(V i

1 , V
i
2 , · · · , V

i
n, Tag) = V i

1 · V
i
2 · · ·V

i
n.

Theorem 1 In the random oracle model where the hash function h is assumed to be a random
oracle, the fBD-protocol is session-key computationally fair, while the original BD-protocol is not,
w.r.t. the above specified dominant operations.

Proof (sketch). For both the BD-protocol and the fBD-protocol, the dominant-operation (in-
volved in session-key computation) is defined to be modular exponentiation. A complete session-tag
Tag consists of (U1, U2, · · · , Un,X1,X2, · · · ,Xn).

For the fBD-protocol and any complete session-tag Tag, the dominant-operation values specified
for user Ui, 1 ≤ i ≤ n, are {V i

1 = gx1x2h(U1,X1,X2), V i
2 = gx2x3h(U2,X2,X3), · · · , V i

n = gxnx1h(Un,Xn,X1)}.
The function FK is specified to be FK(V i

1 , V
i
2 , · · · , V

i
n, Tag) = V i

1 · V
i
2 · · ·V

i
n. Let G1 = G2 = · · · =

Gn = G, it is clear that, in the random oracle model assuming h : {0, 1}∗ → Zq to be an RO,
the distribution of (V i

1 , V
i
2 , · · · , V

i
n) is identical to the distribution of (R1, R2, · · · , Rn), where each

Rk, 1 ≤ k ≤ n is taken uniformly at random from G. That is, (V i
1 , V

i
2 , · · · , V

i
n) are perfectly non-

malleably independent, and each user involves computing the same number (say n) of non-malleably
independent dominant operations values. Thus, the fBD-protocol enjoys session-key computational
fairness.

For the original BD-protocol and any complete session-tag Tag, the dominant operation values
specified for user Ui, 1 ≤ i ≤ n, are {V i

1 = gx1x2 , V i
2 = gx2x3 , · · · , V i

n = gxnx1}. The func-
tion FK is specified to be FK(V i

1 , V
i
2 , · · · , V

i
n, Tag) = V i

1 · V
i
2 · · ·V

i
n. Clearly, with n = 3 as the

illustration example, our above attack shows that the distribution of (V i
1 , V

i
2 , V

i
3 ) under our at-

tack is (g−x2
1 , g−x1x3 , gx1x3), which is clearly different from the uniform independent distribution

(R1, R2, R3). Thus, the original BD-protocol is not of session-key computational fairness. �

4 Re-Examination of the Chen-Kudla Identity-Based Key-Exchange

Protocol

In this section, we re-examine the Chen-Kudla identity-based key-exchange protocol [9], referred
to as the CK-protocol for presentation simplicity. We show an attack against the CK-protocol
(for the case of Â = B̂), where an attacker can successfully finish a session with a victim honest
player but without knowing any secrecy supposed to be known by it. Moreover, the attacker
can set the session-key output to be some predetermined value with computational complexity
significantly lesser than that of the victim honest player. We then present a fixed protocol called
computationally-fair CK-protocol, and show that the fixed protocol is computationally-fair (while
the original CK-protocol is not).

4.1 Brief Review of the Chen-Kudla Identity-Based Key-Exchange Protocol

Let ê : G × G → GT be an admissible pairing, where G is a cyclic multiplicative (or additive)
group of order q generated by an element g. For presentation simplicity, below we assume G is
a cyclic multiplicative group. The (basic version of) Chen-Kudla protocol (with escrow) works as
follows [9]:

6



• Setup: The trusted authority, Private Key Generator (PKG), chooses a master secret-key
s ∈ Z∗

q , and computes the public-key S = gs. PKG also specifies a map-to-point hash
function H1 : {0, 1}∗ → G and a key-derivation function KDF . The public parameters are:
(G,GT , ê, g, S,H1,KDF ).

• User secret-key extract: For a user with identity Â, the public-key is given by A = H1(Â),
and the PKG generates the associated secret-key of the user as SA = As. Similarly, a user of
identity B̂ is of public-key B = H1(B̂) and secret-key SB = Bs.

• Key agreement between two users Â and B̂:

1. Â picks x ∈ Z∗
q at random, computes X = Ax and sends X to B̂.

2. B̂ picks y ∈ Z∗
q at random, computes Y = By and sends Y to Â.

3. Â computes K
Â

= ê(SA, Y Bx). Similarly, B̂ computes K
B̂

= ê(XAy, SB). Note that

if Â and B̂ follow the protocol, they will compute the same shared secret: K
Â

=

K
B̂

= ê(A,B)s(x+y). Then, the actual session-key is derived from K = KDF (K
Â
) =

KDF (K
B̂
).

The session-tag for a complete session of the CK-protocol is Tag = (S, Â, B̂,X, Y ).

4.2 An Attack on the CK-protocol for Â = B̂

In some scenarios, a party may want to establish a secure channel with itself (i.e., Â = B̂ in this
case). For example, a mobile user that communicates to its desktop computer, while both the
mobile device and the desktop have the same identity [17]. Below, we show an attack on the CK-
protocol, by which an adversary A can successfully finish a session with Â in the same name of
Â (i.e., impersonating B̂ = Â) but without knowing the corresponding DH-exponent y (i.e., the
discrete logarithm of Y ) or the secret-key SA. The attack works as follows:

After receiving X = Ax from Â, the adversary A (impersonating B̂ = Â) randomly selects
α ∈ Zq and sends back Y = gαX−1 in the same name B̂ = Â. Note that, denote Y = Ay = By

(recall A = B), Â does not know the secret exponent y. Finally, A computes K
B̂
= ê(S,A)α, and

then derives the session-key from K
B̂
. Note that, as B = A (and thus SA = SB) and Y = Ay = By

and XY = gα, ê(S,A)α = ê(gα, SA) = ê(XY,SA) = ê(XAy , SB) = K
B̂
. This shows that A

successfully finishes the session but without knowing either the DH-exponent y or the secret-key
SA. Moreover, suppose α = 0, then K

B̂
= K

Â
= 1GT

, where 1GT
is the identity element in GT . In

general, α can be a small number in Zq. This clearly indicates the unfairness between the attacker
A and the honest player Â in computing the session-key. The attacker can predicate the session-
key output and can only expend constant time (for the case α = 0) or one paring and one small
exponentiation (for the case of small non-zero α), while the honest player Â has to compute at
least one pairing and one full exponentiation.

4.3 Computational Fair Identity-Based Key-Exchange

In this section, we present a variant of the CK-protocol, referred to as computationally-fair CK-
protocol (fCK-protocol) for presentation simplicity. The only difference between the fCK-protocol

7



and the original CK-protocol is the way of computing K
Â

and K
B̂
. Specifically, in the fCK-

protocol, the values K
Â
and K

B̂
are set to be: K

Â
= ê(SA, B

xcY d) and K
B̂
= ê(XcAyd, SB), where

c = h(S, Â,X) and d = h(S, B̂, Y ) and S is the public-key of PKG and h : {0, 1}∗ → Zq is a hash
function that is modeled to be a random oracle in security analysis.

For both the CK-protocol and the fCK-protocol, the dominant operation (involved in session-
key computation) is defined to be modular exponentiation in the group GT . A complete session-
tag Tag consists of (S, Â, B̂,X, Y ). For the fCK-protocol and any complete session-tag Tag =
(S, Â, B̂,X, Y ), the dominant operation values specified for user Â (resp., B̂) are {V1 = ê(A,B)sxc, V2 =
ê(A,B)syd}, while for the original CK-protocol, the dominant operation values specified for player
Â (resp., B̂) are {V1 = ê(A,B)sx, V2 = ê(A,B)sy}.

Theorem 2 In the random oracle model where the hash function h : {0, 1}∗ → Zq is assumed to
be a random oracle, the fCK-protocol is of session-key computational fairness, while the original
CK-protocol is not, w.r.t. the dominant operations specified above.

Proof. Note that for fCK-protocol, K
Â

= K
B̂

= ê(A,B)sxc+syd, where c = h(S, Â,X) and

d = h(S, B̂, Y ). Recall that X = Ax and Y = By. Recalll that for both the CK-protocol and
the fCK-protocol, the dominant operation (involved in session-key computation) is defined to be
modular exponentiation in the group GT .

For the fCK-protocol and any complete session-tag Tag = (S, Â, B̂,X, Y ), the dominant oper-
ation values specified for user Â (resp., B̂) are {V1 = ê(A,B)sxc, V2 = ê(A,B)syd}. The function
FK is specified to be FK(V1, V2, Tag) = V1 · V2. Let G1 = G2 = GT , it is clear that, in the random
oracle model, the distribution of (V1, V2) is identical to the distribution of (R1, R2), where each
R1, 1 ≤ k ≤ 2 is taken uniformly at random from GT . That is, (V1, V2) are perfectly non-malleably
independent, and each user involves computing the same number (say 2) of non-malleably inde-
pendent dominant operations values. Thus, the fCK-protocol enjoys session-key computational
fairness.

For the original CK-protocol and any complete session-tag Tag = (S, Â, B̂,X, Y ), the dominant
operation values specified for player Â (resp., B̂) are {V1 = ê(A,B)sx, V2 = ê(A,B)sy}. The
function FK is specified to be FK(V1, V2, Tag) = V1 · V2. Let R1GT

be the NP-relation that
R1GT

(V1, V2, Tag) = 1 if V1 · V2 = 1GT
. Let Rα, for a value α ∈ Zq, be the NP-relation that

R1GT
(V1, V2, Tag) = 1 if V1 · V2 = ê(S,A)α. Then, our above attack shows that the original

CK-protocol does not enjoy session-key computational fairness (particularly with respect to the
relations R1GT

and Rα). �

References

[1] M. Abdalla, E. Bresson, O. Chevassut and D. Pointcheval. Password-based Group Key Ex-
change in a Constant Number of Rounds. International Conference on Theory and Practice in
Public-Key Cryptography (PKC 2006), pages 427-442, LNCS 3958, Springer-Verlag, 2006.

[2] S. Al-Riyami and K. Paterson. Certificateless Public-Key Cryptography. In Advances in
Cryptology-Proceedings of ASIACRYPT 2003, LNCS 2894, pages 452-473, Springer-Verlag,
2003.

[3] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. InACM Conference on Computer and Communications Security, pages 62-73, 1993.

8



[4] E. Bresson and M. Manulis. Securing Group Key Exchange Against Strong Corruptions.
ASIACCS’08, pages 249-260. ACM, 2008.

[5] J. M. Bohli, M. I. Gonzalez Vasco and R. Steinwandt. Secure Group Key Establishment
Revisited. International Journal of Information Security, 6(4):243-254, 2007.

[6] D. Boneh and M. Franklin. Identity-Based Encryption From the Weil Pairing. In E. F.
Brickell (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2001, LNCS 2139, pages
213-229, Springer-Verlag, 2001.

[7] M. Burmester and Y. Desmedt. A Secure and Efficient Conference Key Distribution System.
In Advances in Cryptology-Proceedings of EUROCRYPT 1994, pages 279-290, Springer-Verlag,
1994.

[8] M. Choudary Gorantla, R. Gangishetti and A. Saxena. A Survey on ID-Based Cryptographic
Primitives. Cryptology ePrint Archive, Report No. 2005/094.

[9] L. Chen and C. Kudla. Identity Based Key Agreement Protocols From Pairings. In IEEE
Computer Security Foundations Workshop, pages 219-233, 2002. Full version available at:
Cryptology ePrint Archive, Report 2002/184.

[10] Y. Desmedt, J. Pieprzyk, R. Steinfeld and H. Wang. A Non-Malleable Group Key Exchange
Protocol Robust Against Active Insiders. ISC’06, pages 459-475, LNCS 4176, Springer, 2006.

[11] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transaction on Information
Theory, 22(6): 644-654, 1976.

[12] J. A. Garay, P. D. MacKenzie, M. Prabhakaran and Ke Yang. Resource Fairness and Com-
posability of Cryptographic Protocols. Journal of Cryptology, 24(4): 615-658 (2011).

[13] S. Goldwasser and Y. Lindell. Secure Computation without Agreement. Journal of Cryptology,
18(3), 247C287 (2005).

[14] D. M. Gordon. A Survey of Fast Exponentiation Methods. Journal of Algorithms, 27(1):
129-146, 1998

[15] J. Katz and J. Shin. Modeling Insider Attackss on Group Key Exchange. ACM CCS 2005,
180-189.

[16] J. Katz and M. Yung. Scalable Protocols for Authenticated Group Key Exchange. In D.
Boneh (Ed.): Advances in Cryptology-Proceedings of CRYPTO 2003, LNCS 2729, pages 110-
125, Springer-Verlag, 2003.

[17] H. Krawczyk. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In V. Shoup
(Ed.): Advances in Cryptology-Proceedings of CRYPTO 2005, LNCS 3621, pages 546-566.
Springer-Verlag, 2005.

[18] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, 1995, pages 617-619.

9



[19] C. J. Mitchell, M. Ward and P. Wilson. Key Control in Key Agreement Protocols. Electronic
Letters, 34(10):980-981, 1998.

[20] A.C.Yao and Y. Zhao. Method and Structure for Self-Sealed Joint Proof-of-Knowledge and
Diffie-Hellman Key-Exchange Protocols. PCT Patent, No.PCT/CN2008/072794, August 2008.
Online available from Global Intellectual Property Office (GIPO).

[21] A. C. Yao and Y. Zhao. A New Family of Practical Non-Malleable Diffie-Hellman Protocols.
CoRR abs/1105.1071: (2011).

10


