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Abstract

The emergence and wide availability of remote storage service providers prompted work in
the security community that allows a client to verify integrity and availability of the data that
she outsourced to an untrusted remove storage server at a relatively low cost. Most recent
solutions to this problem allow the client to read and update (i.e., insert, modify, or delete)
stored data blocks while trying to lower the overhead associated with verifying the integrity
of the stored data. In this work we develop a novel scheme, performance of which favorably
compares with the existing solutions. Our solution enjoys a number of new features such as a
natural support for operations on ranges of blocks, revision control, and support for multiple
user access to shared content. The performance guarantees that we achieve stem from a novel
data structure termed a balanced update tree and removing the need to verify update operations.

1 Introduction

Cloud computing and storage services are commonplace today and enable on-demand access to
computing and data storage resources, which can be configured to meet unique constraints of the
clients and utilized with minimal management overhead. The recent rapid growth in availability
of cloud services makes such services attractive and economically sensible for clients with limited
computing or storage resources who are unwilling or unable to procure and maintain their own
computing infrastructure. It has been suggested, however, that the top impediment on the way of
harnessing the benefits of cloud computing to the fullest extent is security and privacy considerations
that prevent clients from placing their data or computations on the cloud (see, e.g., [1]). For that
reason, there has been an increased interest in the research community in securing outsourced data
storage and computation, and in particular, in verification of remotely stored data.

The line of work on proofs of retrievability (POR) or provable data possession (PDP) was
initiated in [4, 18] and consists of many results such as [11, 22, 5, 21, 17, 10, 26, 6, 8, 9, 15, 23, 24,
12, 25, 27] that allow for integrity verification of large-scale remotely stored data. At high level,
the idea consists of partitioning a large collection of data into data blocks and storing the blocks
together with the meta-data at a remote storage server. Periodically, the client issues integrity
verification queries (normally in the form of challenge-response protocols), which allow the client to
verify a number of data blocks using the meta-data such that the number of verified data blocks is
independent of the overall number of outsourced blocks, but allows with high probability to ensure
that all stored blocks are intact and available. Schemes that support dynamic operations [5, 17,
15, 23, 24, 27] additionally allow the client to issue modify, insert, and delete requests, after each
of which the integrity of the newly stored data is verified.
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The motivation for this work comes from (i) improving the performance of the existing schemes
when modifications to the data are common, and (ii) extending the available solutions with new
features such as support for revision control and multi-user access to shared data. Toward this
end, we design and implement a novel mechanism for efficient verification of remotely stored data
with support for dynamic operations. Our solution uses a new data structure, which we call a
balanced update tree. The size of the tree is independent of the overall size of the outsourced
storage, but rather depends on the number of updates (modifications, insertions, and deletions)
to the remote blocks. The data structure is designed to provide a natural support for handling
ranges of blocks (as opposed to always processing individual blocks) and is balanced allowing for
very efficient operations. A distinctive feature of our scheme is that all dynamic operations are
not followed by integrity verification, which results in substantial communication and computation
savings. Instead, verification can be performed at the time of retrieving the data or through periodic
challenge queries as in prior work. Verifying a subset of the stored blocks periodically can incur
larger overheads than verifying only the data which is being used, but can result in problems being
detected earlier.

Today many services outsource their storage to remote servers or the cloud, which can include
web services, blogs, and other applications in which there is a need for multiple users to access and
update the data, and modifications to the stored data are common. For example, many subscribers
of a popular blog hosted by a cloud-based server are allowed to upload, edit, or remove blog content
ranging from a short commentary to a large video clip. This demands support for multiple user
access while maintaining data consistency and integrity, which current schemes do not provide. In
addition to supporting this feature, our solutions provides support for revision control which can
be of value for certain applications as well. Because in the existing solutions the server maintains
only the up-to-date values of each data block, support for revision control can be added by means
of additional techniques (such as [3]), but they result in noticeable overhead per update. In our
solution, on the other hand, there is no additional cost for enabling retrieval and verification of
older versions of data blocks beyond the obvious need for the server to store them with small
metadata. Finally, because the size of the maintained data structure grows with the number of
dynamic operations, by issuing a commit command, the client will be able to keep the size of the
maintained update tree below a desired constant threshold if necessary.

To summarize, our solution enjoys the following features:

• Improved efficiency in handling dynamic operations. In our solution there is no need to verify
integrity of updates (e.g., a data block which is modified a large number of times and is con-
sequently deleted), while prior schemes invest resources in verifying correct implementation
of each user’s action by the storage server.
• Support for range operations. The natural support and use of range operations allows for

additional performance improvement of our scheme compared to the existing solutions.
• Balanced data structure. The update tree used for verifying correctness of the stored data

blocks is always balanced regardless of the number and order of dynamic operations on the
storage. This results in similar performance for locating information about each data block
in the tree and is logarithmic in the size of the tree.
• Size of the maintained data structure. In our solution the size of the maintained update

tree is independent of the outsourced data size, while it is linear for other solutions that
support dynamic operations. The size of the update tree grows with the number of dynamic
operations, but can be reduced by issuing a commit command.
• Support for multi-user access to the shared data. Unlike prior work, we add support for

multiple users which also includes conflict resolution for dynamic operations performed si-
multaneously on the same data block.
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• Support for revision control. We provide natural support for revision control which allows
clients to retrieve previous versions of their data and efficiently verify their integrity.

These features come at the cost of increased storage (compared to other schemes) at the client who
in our solution maintains the update tree locally. Because the size of the data structure is not
large (and is independent of the size of the outsourced data), we believe it is a reasonable tradeoff
for other improvements that we achieve. In particular, any PC-based client will not be burdened
by the local storage even if it reaches a few MB. Other weaker clients (such as mobile users) and
battery-operated devices in particular are power-bound and benefit from the reduced computation
in our scheme while still will be able to store the data structure locally.

As another tradeoff, our solution does not provide public verifiability that some of the solutions
in the prior literature achieve. Public verifiability allows the client to outsource periodic verification
of storage integrity to a third party auditor (who is different from the server). The need to verify
correct execution of dynamic operations by the client in such schemes, however, still remains (unless
the auditor is replaced by a constantly available intermediary who verifies all operations on behalf
of the client). Thus, in most circumstances the client’s overhead in our scheme is still lower than
the client’s overhead in other solutions with outsourced periodic integrity verification. We leave
public verifiability of our scheme as a direction of future work.

2 Related Work

In this section we review selected PDP/POR schemes from prior literature and their difference
with the proposed solution. In particular, we are interested in the schemes that support dynamic
operations on outsourced storage.

One line of research [18, 5, 23] relies on so-called sentinels which are outsourced together with the
client’s data and are used to verify remotely stored blocks. In the setup phase, the client generates
a predefined number of sentinels, each of which could be a function of κ data blocks (where κ is a
security parameter) chosen according to a pseudo-random function. The client encrypts all sentinels
and stores them together with the data blocks at a remote server. To invoke verification the ith
time, the client executes a challenge-response protocol with the server, as a result of which the
client is able to verify integrity and availability of the blocks contained in the ith sentinel. Besides
having a limited number of audits, a disadvantage of this scheme is in poor performance when
blocks need to be updated. In particular, when the client updates the jth data block, he needs to
retrieve all remaining sentinels which have not yet been consumed by the previous audit queries.
This is because the unused sentinels that cover the jth data block need to be modified based on
the new jth data block to prevent them from being invalidated. Furthermore, in order to prevent
the cloud service provider from learning any mapping between data blocks and sentinels, the client
has to retrieve all unused sentinels (regardless of whether they cover the data block being updated
or not). This is performed for every update operation and incurs a significant communication and
computation overhead.

Another line of research [15, 24, 17, 27] with support for dynamic operations utilizes specialized
data structures such as Merkle hash trees [24, 17] or skip lists [15] to organize the data blocks
outsourced to a server. When a Merkle hash tree is used, each leaf node corresponds to the hash of
an individual data block, and each internal node is assigned a value that hashes the concatenation
of its children’s values. The client locally keeps the root value of the tree in order to verify the
correctness of various operations. For example, if the server receives a read request on the ith block,
it sends to the client the block itself together with the sibling nodes that lie on the path from the
block to the root. The client then recomputes the root value based on the received information
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and compares it with the one locally stored. For an update request on the ith block, the client
retrieves the same information as that of the read request on the ith data block. After verifying
the correctness of the received information, the client computes a new root value based on the new
ith block, substitutes it for the previously stored root value, and uses it afterwards.

A disadvantage of Merkle hash tree based solutions is that the tree becomes unbalanced after a
series of insert and delete requests. In particular, a data block insert request at position i is handled
by locating the (i− 1)th block, replacing its node with a newly created one that has two children:
a node for the previously stored (i − 1)th and a node for the newly inserted ith block. Similarly,
a deletion request is handled by removing the corresponding node from the tree and making its
sibling take the place of its parent. As access patterns normally do not span across the stored data
at uniformly random locations, for instance, inserting multiple blocks at the same position i will
result in the height of the tree grow for each inserted data block. Because the tree can become
extremely unbalanced over time, there will be a large variance in the time needed to locate different
blocks within the data structure.

To mitigate the performance drawback of Merkle hash tree based solutions, [15] develops a
scheme based on a skip list. It extends the original skip list [20] by incorporating label [16] and
rank information to enable efficient authentication of client’s updates. Recall that in a skip list [20]
each node v contains two pointers rgt(v) and dwn(v) used for searching. In [16], each node is
also assigned a label f(v) computed by applying a commutative hash function to f(rgt(v)) and
f(dwn(v)) in a specific order to maintain the commutative property. Maintaining only the label of
the skip list’s start node is sufficient for the client to verify the integrity of various operations (the
verification process is the same as that of Merkle hash tree by considering rgt(n) and dwn(n) as
sibling nodes). To make verification efficient, the authors of [15] integrate rank information into
each node v which is the number of bottom-level nodes reachable from it. This allows for each
update to be verified in expected O(log n) time with high probability, where n is the size of the
skip list. The skip list remains balanced regardless of the client’s access or update patterns. The
authors also propose support for variable-sized blocks, which is achieved by handling a number
of fixed size blocks as a single block (in this case, a rank of a node denotes the number of bytes
reachable from it) and performing standard operations on it. While this approach guarantees the
integrity of variable-sized data blocks in their entirety, it becomes impossible to verify an individual
block upon receiving a request on it. Furthermore, the time to locate a fixed size block is linear in
the number of blocks stored in a node, which may dominate the overall time when a node contains
a large number of blocks in it.

The original Merkle hash tree and skip list schemes maintain only the most recent copy of data
and do not provide the ability to retrieve its previous versions. To incorporate the feature, [3] used
a persistent authenticated data structure, which copies the leaf-to-root path for each update and
the path is visited when searching for the updated node. The approach uses O(log n) extra space
for each update, where n is the number of nodes in the data structure.

The data structure that we build has three properties that make it favorably compare to the
existing schemes. First, each node in our update tree corresponds to a range of block indices (instead
of a specific index as in prior work) which is determined by a dynamic operation performed on a
range of consecutive blocks. The reason for assigning a range of block indices to a node is motivated
by a study [13] on user’s file access patterns that observed that a large number of file accesses are
sequential. Second, unlike maintaining a data structure of size linear in the number of outsourced
data blocks (as in Merkle hash tree or skip list schemes), in our solution it is independent of the size
of the stored data. Previously, the large size required the client to outsource the data structure to
the cloud while locally maintaining only a constant-size data for integrity verification. In our update
tree, on the other hand, a node represents a user-triggered dynamic operation, and additionally
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multiple updates issued on the same range of blocks can be condensed into a single node. Due to
its moderate size, the client can maintain the data structure locally, which makes the verification
process more efficient. Third, we can specify requirements that define when the data structure
should be rebalanced. That is, once the requirement is violated, the tree is re-organized to satisfy
the constraint. As an example, the constraint of AVL trees [2] can be used that requires that the
heights of a node’s subtrees must differ by at most 1.

As we support multi-user access, in a distributed setting we assume that the users can commu-
nicate directly and notify each other of the changes that they make to the repository. There are
alternatives to this solution, for instance, the approach employed in SUNDR [19] where the users
communicate through an untrusted server (with slightly weaker security guarantees). SUNDR and
similar solutions are therefore complimentary to our work.

Prior to this work, the notion of a range tree was used in the database domain to deal with
range queries [7]. The range tree data structure, however, is majorly dissimilar to our update trees.
For instance, range trees store one record per node as opposed to a range, are static as opposed to
be dynamically updated and balanced throughout system operation, etc. One of most significant
challenges of this work was to design a update tree that can be rebalanced at low cost after an
arbitrary changes to it. A balanced update tree is therefore one of the novel aspects of this work.

3 Problem Definition

We consider the problem in which a resource-limited client is in possession of a large amount of
data partitioned into blocks. Let N denote the initial number of blocks and mi denote the data
block at index i, where 1 ≤ i ≤ N . The client outsources her data to a storage or cloud server and
would like to be able to update and retrieve her data in a way that integrity of all returned data
blocks can be verified. If the data that the client wishes to outsource is sensitive and its secrecy
is to be protected from the server, the client should encrypt each data block using any suitable
encryption mechanism prior to storing it at the remote server. In that case, each data block mi

corresponds to encrypted data, and the solution should be oblivious to whether data confidentiality
is protected or not. We assume that the client and the server are connected by (or establish) a
secure authenticated channel for the purposes of any communication.

The primary feature that we would like a scheme to have is support for dynamic operations,
which include modifying, inserting, or deleting one or more data blocks. We also consider minimal-
overhead support for revision control as a desirable feature to have. This allows the client, in
addition to retrieving the most recent data, to access and verify previous versions of its data,
including deleted content. A commit command can be used for a certain range of data blocks
to permanently erase previous versions of the data and deleted blocks. Our scheme achieves this
property at no extra cost beyond maintaining previous versions by the server, but it is not strictly
necessary for a PDP scheme (i.e., the client can run her own revision control system on top of this
scheme, but enabling this feature in our scheme lowers the overall overhead).

We define a dynamic provable data possession scheme in terms of the following procedures:

• KeyGen(1κ) → {sk} is a probabilistic algorithm run by the client that on input a security
parameter 1κ produces client’s private key sk.
• Init(〈sk,m1, . . .,mN 〉, 〈⊥〉) → {〈MC〉, 〈MS , D〉} is a protocol run between the client and the

server, during which the client uses sk to encode the initial data blocks m1, . . .,mN and store
them at the server who maintains all data blocks outsourced by the client in D. Client’s and
server’s metadata are maintained in MC and MS , respectively.
• Update(〈sk,MC , op, ind, num,mind, . . .,mind+num−1〉, 〈MS , D〉) → {〈M′C〉, 〈M′S , D′〉} is a proto-
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col run between the client and the server, during which the client prepares num blocks starting
at index ind and updates them at the server. The operation type op is either modification
(0), insertion (1), or deletion (−1), where no data blocks are used for deletion.
• Retrieve(〈sk,MC , ind, num〉, 〈MS , D〉) → {〈mind, . . .,mind+num−1〉, 〈⊥〉} is a protocol run be-

tween the client and the server, during which the client requests num data blocks starting
from index ind, obtains them from the server and verifies their correctness.
• Commit(〈sk,MC , ind, num,mind, . . .,mind+num−1〉, 〈MS , D〉) → {〈M′C〉, 〈M′S , D′〉} is a protocol

run between the client and the server, during which the client re-stores num data blocks
starting from index ind at the server. The server erases all previous copies of the data blocks
in the range and as well as previously deleted by the client blocks that fall into the range if
they were kept as part of versioning control.

Our formulation of the scheme has minor differences with prior definitions of DPDP, e.g., as given
in [15]. First, update and retrieve operations are defined as interactive protocols rather than several
algorithms run by either the client or the server. Second, in addition to using the Retrieve proto-
col for reading data blocks, in the current formulation it is also used to execute periodic audits.
That is, verification of each read is necessary to ensure that correct blocks were received even if
the integrity of the overall storage is assured through periodic challenges, and the verification is
performed similar to periodic audits. In particular, because the Retrieve protocol is executed on
a range of data blocks and can cover a large number of blocks, verification is performed proba-
bilistically by checking a random sample of blocks of sufficient (but constant) size to guarantee
the desired confidence level. (And if the number requested blocks are below the constant, all of
them are verified.) This functionality can be easily adopted to implement periodic audits denoted
as Challenge(〈sk,MC〉, 〈MS , D〉)→ {〈mi1 , . . .,mic〉, 〈⊥〉} during which a random subset of blocks at
indices i1, . . . , ic is verified. To implement Challenge, we call Retrieve c (or fewer if the indices are
adjacent) times on indices i1, . . . , ic. We obtain that prior work requires verification for each block
update operation and a constant number of verifications per audit or read request. In our proposed
scheme, only read and audit requests need to be verified by checking a constant number of blocks
per request.

This constant c can be computed in our and prior work as follows: if num blocks need to be
checked and the server tampers with t of them, the probability that at least one of the verified
blocks matches at least one of the tampered blocks (i.e., the client can detect the problem) is
1 − ((num − t)/num)c. This gives us a mechanism for computing c as to achieve the desired
probability of detection for a chosen level of data corruption. For instance, to ensure that if the
server tampers 1% or more of the total or retrieved content, the client can detect this with 99%
probability, we need to set c = 460 regardless of the total number of blocks. This means that during
Retrieve or Challenge calls, min(c, num) data blocks need to be verified.

To show security, we follow the definition of secure dynamic PDP from prior literature. In this
context, the client should be able to verify the integrity of any data block returned by the server.
This includes the verification that the returned data block corresponds to the most recent version
of it (or, when revision control is used, a specific previous version, including deleted content, as
requested by the client). The server is considered fully untrusted and can modify the stored data
in any way it wishes (including deleting the data). Our goal is to design a scheme in which any
violations of data integrity or availability will be detected by the client. More precisely, in the
single-user setting the security requirements are formulated as a game between a challenger (who
acts as the client) and any PPT adversary A (who acts as the server):

Setup: the challenger runs sk← KeyGen(1κ). The adversary specifies the data blocks m1, . . .,mN

and their number N for the initialization and obtains initial transmission from the challenger.
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Queries: The adversary A specifies what type of a query to perform and on what data blocks. The
challenger prepares the query and sends it to A. If the query requires a response, A sends it
to the challenger, who informs the adversary about the result of verification. The adversary
can request any polynomial number of queries of any type, participate in the corresponding
protocols, and be informed of the result of verification.

Challenge: At some point, A decides on the content of the storage m1, . . .,mR on which it wants
to be challenged. The challenger prepares a query that replaces the current storage with
the requested data blocks and interacts with A to execute the query. The challenger and
adversary update their metadata according to the verifying updates only (non-verifying up-
dates are considered not to have taken place), and the challenger and adversary execute
Challenge(〈sk,MC〉, 〈MS, D〉). If verification of A’s response succeeds, A wins. The challenger
has the ability to reset A to the beginning of the Challenge query a polynomial number of
times with the purpose of data extraction. The challenger’s goal is to extract the challenged
portions of the data from A’s responses that pass verification.

When the setting is generalized to multiple users who would like to have access to a shared content,
we assume that the users trust each other, but not the server. This implies that the server does not
enforce any access control with respect to retrieving or modifying the outsourced data blocks by the
users. In environments where access control is to be enforced by a central entity (which could be
an organization to which the users belong or a service provider who lets its subscribers to retrieve
or modify certain data, while outsourcing the storage to a third party storage provider), the central
entity will assume the role of a proxy: it will receive access requests from the users, enforce access
control to the storage, submit queries to and verify responses from the storage server, and forward
the data to the appropriate user. In the multi-user environment, the security experiment can be
defined analogously, where the challenger now represents all users (who mutually trust each other).
In the event that the users choose to use different keys for different portions of the outsourced
storage (for access control or other purposes), the integrity and retrievability of the data can still
be shown using the same security definition, which is now invoked separately for each key.

Besides security, efficient performance of the scheme is also one of our primary goals. Toward
that goal, we would like to minimize all of the client’s local storage, communication, and com-
putation involved in using the scheme. We also would like to minimize the server’s storage and
computation overhead when serving the client’s queries. For that reason, the solution we develop
has a natural support for working with ranges of data blocks which is also motivated by users’
sequential access patterns in practice.

In what follows, we first present our basic scheme that works for a single user and does not have
full support for revision control. Later we extend it with features of multi-user access and support
for revision control in Section 7.

4 Proposed Scheme

4.1 Building blocks

In this work we rely on standard building blocks such as message authentication codes (MAC). A
MAC scheme is defined by three algorithms:

1. The key generation algorithm Gen, which on input a security parameter 1κ produces a key k.
2. The tag generation algorithm Mac, which on input key k and message m ∈ {0, 1}∗, outputs

a fixed-length tag t.
3. The verification algorithm Verify, which on input a key k, message m, and tag t outputs a bit
b, where b = 1 iff verification was successful.
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For compactness, we write t ← Mack(m) and b ← Verifyk(m, t). The correctness requirement is
such that for every κ, every k ← Gen(1κ), and every m ∈ {0, 1}∗, Verifyk(m,Mack(m)) = 1. The
security property of a MAC scheme is such that every PPT adversary A succeeds in the game below
with at most negligible probability in κ:

1. A random key k is generated by running Gen(1κ).
2. A is given 1κ and oracle access to Mack(·). A eventually outputs a pair (m, t). Let Q denote

the set of all of A’s queries to the oracle.
3. A wins iff both Verifyk(m, t) = 1 and m 6∈ Q.

4.2 Overview of the scheme

To mitigate the need for performing verifications for each dynamic operation on the outsourced
data, in our solution both the client and the server maintain metadata in the form of a binary tree
of moderate size. The size of the tree is independent of the number of data blocks that the client
outsourced to the server, but grows linearly with the number of updates for ranges of blocks.

We term the new data structure that we build for the purposes of this work a block update
tree. In the update tree, each node corresponds to a range of data blocks on which an update (i.e.,
insertion, deletion, or modification) has been performed. The challenge with constructing such
a tree was to ensure that (i) a data block or a range of blocks can be efficiently located within
the tree and (ii) we can maintain the tree to be balanced after applying necessary updates caused
by client’s queries. With our solution, we obtain that all operations on the remote storage (i.e.,
retrieve, insert, delete, modify, and commit) involve only work logarithmic in the tree size.

Each node in the update tree contains several attributes, one of which is the range of data
blocks [L,U]. Each time the client requests an update on a particular range, the client and the
server first need to find all nodes in the update tree with which the requested range overlaps (if
any). Depending on the result of the search and the operation type, either 0, 1, or 2 nodes might
need to be added to the update tree per single-block request. Operating on ranges helps to lower
the size of the tree. For any given node in the update tree the range of its left child always covers
data blocks at strictly lower indices than L, and the range of the right child always contains a
range of data blocks with indices strictly larger than U. This allows us to efficiently balance the
tree when the need arises using standard algorithms such as that of AVL trees [2]. Furthermore,
because insert and delete operations affect indices of the existing data blocks, in order to quickly
determine (or verify) the indices of the stored data blocks after a sequence of updates, we store an
offset value R with each node of the update tree which indicates how the ranges of the blocks stored
in the subtree rooted at that node need to be adjusted. Lastly, for each range of blocks stored in
the update tree, we record the number of times the blocks in that range have been updated. This
information will allow the client to verify that the data she receives corresponds to the most recent
version and integrity of the data (or, alternatively, to any previous version requested by the client).

At the initialization time, the client computes a MAC of each data block she has together with
its index and version number (which is initially set to 0). The client stores the blocks and their
corresponding MACs at the server. If no updates take place, the client will be able to retrieve
a data block by its index number and verify its integrity. To support dynamic operations, the
update tree is first initialized to empty. To modify a range of existing blocks, we insert a node
in the tree that indicates that the version of the blocks in the range has increased. To insert a
range of nodes, the client creates a nodes in the tree with the new blocks and also indicates that
the indices of the blocks that follow need to be increased by the number of inserted blocks. This
offset is stored at a single node in the tree, which removes the need to touch many nodes or data
blocks. To delete a range of blocks, the deleted blocks are marked with operation type “−1” in
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the tree and the offset of blocks that follow is adjusted accordingly. Then to perform an update
(insert, delete, or modify), the client first modifies the tree, computes the MACs of the blocks to be
updated, and communicates the blocks (for insertion and modification only) and the MACs to the
server. Upon receiving the request, the server also modifies the tree according to the request and
stores the received data and MACs. If the server behaves honestly, the server’s update tree will
be identical to the client’s update tree (i.e., all changes to the tree are deterministic). To retrieve
a range of blocks, the client receives a number of data blocks and their corresponding MACs from
the server and verifies their integrity by using information stored in the tree.

4.3 Update tree attributes

Before we proceed with the description of our scheme, we outline the attributes stored with each
node of the update tree, as well as global parameters. Description of the update tree algorithms is
deferred to Section 5.

With our solution, the client and the server maintain two global counters together with the
update tree, GID and CID, both of which are initially set to 0. GID is incremented for each insertion
operation to ensure that each insert operation is marked with a unique identifier. This allows
the client to order the blocks that have been inserted into the same position of the file through
different operations. CID is incremented for each commit operation and each commit is assigned
a unique identifier. For a given data block, the combination of its version number and commit ID
will uniquely identify a given revision of the block. In addition to global parameters, each node in
the update tree stores several attributes:

Node type Op represents the type of operation associated with the node, where values −1, 0, and
1 indicate deletion, modification, and insertion, respectively.

Data block range L,U represents the start and end indices of the data blocks, information about
which is stored at the node.

Version number V indicates the number of modifications performed on the data blocks associated
with the node. The version number is initially 0 for all data blocks (which are not stored in
the update tree), and the version is also reset to 0 during a commit operation for all affected
data blocks (at which point information about them is combined into a single node).

Identification number ID of a node has a different meaning depending on the node type. For a
node that represents an insertion, ID denotes the value of GID at the time of the operation,
and for a node that represents a modification or deletion, ID denotes the value of CID at the
time of the last commit on the affected data blocks (if no commit operations were previously
performed on the data blocks, the value will be set to 0). In order to identify the type of ID
(i.e., GID or CID) by observing its value, we use non-overlapping ranges to the values from
which IDs for the two different types will be assigned.

Offset R indicates the number of data blocks that have been added to, or deleted from, the range
of data block indices that precede the range of the node (i.e., [0, L − 1]). The offset value
affects all data blocks information about which is stored directly in the node as well as all
data blocks information about which is stored in the right child subtree of the node.

Pointers Pl and Pr point to the left and right children of the node, respectively, and pointer Pp

points to the parent of the node.

In addition to the above attributes, each node in the server’s update tree also stores pointers to
the data blocks themselves (and tags used for their verification).
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4.4 Construction

In this section, we provide the details of our construction. Because the solution relies on our update
tree algorithms, we outline them first, while their detailed description and explanation is given in
Section 5.

• UTInsert(T, s, e) inserts a range of new blocks into the update tree T, where the range starts
from index s and consists of (e − s + 1) data blocks. The function returns a node v that
corresponds to the newly inserted block range.
• UTDelete(T, s, e) marks blocks in the range [s, e] as deleted in the update tree T and adjusts

the indices of the data blocks that follow. The function returns an array of nodes C from T
that correspond to the deleted data blocks.
• UTModify(T, s, e) updates the version of the blocks in the range [s, e] in the tree T. If some

of blocks in the range have not been modified in the past (and therefore are not represented
in the tree), the algorithm inserts necessary nodes with version 1. The function returns all
the nodes in T that correspond to the modified data blocks.
• UTRetrieve(T, s, e) returns the nodes in T that correspond to the data blocks in the range

[s, e]. Note that the returned nodes are not guaranteed to cover the entire range as some data
blocks from the range have never been modified.
• UTCommit(T, s, e) removes the nodes in T that correspond to the data blocks in the range

[s, e], balances the remaining tree, and returns an adjusted lower bound and CID.

The protocols that define our solution are as follows:

1. KeyGen(1κ)→ {sk}: the client executes sk← Gen(1κ).

2. Init(〈sk,m1, . . .,mN 〉, 〈⊥〉)→ {〈MC〉, 〈MS , D〉}: the client and the server initialize the update
tree T to empty and set MC = T and MS = T. For each 1 ≤ i ≤ N , the client computes
ti = Macsk(mi||i||0||0||0), where “||” denotes concatenation and the three “0”s indicate the
version number, the CID, and the operation type, respectively. The client sends each 〈mi, ti〉
pair to the server who stores this information in D.

3. Update(〈sk,MC , op, ind, num,mind, . . .,mind+num−1〉, 〈MS , D〉) → {〈M′C〉, 〈M′S , D′〉}: the func-
tionality of this protocol is determined by the operation type op and is defined as follows:

(a) Insert op = 1: the client executes u← UTInsert(MC , ind, ind + num− 1).
Delete op = −1: the client executes C ← UTDelete(MC , ind, ind + num− 1).
Modify op = 0: the client executes C ← UTModify(MC , ind, ind + num− 1).
The client stores the updated update tree in M′C .

(b) For each u ∈ C (or a single u in case of insertion), the client locates the data blocks
corresponding to the node’s range from the mi’s, for ind ≤ i ≤ ind + num − 1, and
computes ti ← Macsk(mi||u.L + j||u.V||u.ID||op), where j ≥ 0 indicates the position of
the data block within the node’s blocks. The client sends op, ind, and num together with
the 〈mi, ti〉 pairs to the server, with the exception that for delete operations, the data
blocks themselves are not sent.

(c) Insert op = 1: the server executes u← UTInsert(MS , ind, ind + num− 1).
Delete op = −1: the server executes C ← UTDelete(MS , ind, ind + num− 1).
Modify op = 0: the server executes C ← UTModify(MS , ind, ind + num− 1).
The server stores the updated update tree in M′S and combines D with received data
(using returned u or C) to obtain D′.

Recall that the protocol does not involve integrity verification for each dynamic operation,
which removes a round of interaction between the client and server. Instead, the server records
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Figure 1: Example of update tree operations.

the operation in its metadata, which will be used for proving the integrity of returned blocks
at retrieval time.

4. Retrieve(〈sk,MC , ind, num〉, 〈MS , D〉)→ {〈mind, . . .,mind+num−1〉, 〈⊥〉}:
(a) The client sends parameters op, ind and num to the server.
(b) The server executes C ← UTRetrieve(Ms, ind, ind+ num− 1). For each u ∈ C, the server

retrieves the attribute values from u (i.e., L, U and pointer to the data blocks), locates
the data blocks and their tags 〈mi, ti〉 in D, and sends them to the client.

(c) Upon receiving the 〈mi, ti〉, the client executes C ← UTRetrieve(MC , ind, ind+ num− 1).
The client chooses a random subset of data blocks of size min(c, num) for verification
purposes. For each chosen data block mi, the client locates the corresponding u ∈ C
and computes bi ← Verifysk(mi||u.L + j||u.V||u.ID||u.Op, ti), where j is the data block
position within the node’s data blocks. If bi = 1 for each verified mi, the client is assured
of integrity of returned data.

5. Commit(〈sk,MC , ind, num,mind, . . .,mind+num−1〉, 〈MS , D〉)→ {〈M′C〉, 〈M′S , D′〉}:
(a) The client executes u← UTCommit(MC , ind, ind+num−1) and stores updated metadata

in M′C . The client next computes tind+i ← Macsk(mind+i||L + i||0||CID||0) for 0 ≤ i ≤
num− 1, and sends the tags together with parameters ind and num to the server.

(b) The server executes u ← UTCommit(MS , ind, ind + num − 1) and updates its metadata
to M′S . The server updates the tags of the affected blocks in D to obtain D′.

5 Update Tree Operations

In this section we describe all operations on the new type of data structure, balanced update
tree, that allow us to achieve attractive performance of the scheme. The need to keep track of
several attributes associated with a dynamic operation and the need to keep the tree balanced add
complexity to the tree algorithms. Initially, the tree is empty and new nodes are inserted upon
dynamic operations triggered by the client. All data blocks information about which is not stored
in the tree have not been modified and their integrity can be verified by assuming version number
and commit ID to be 0.

When traversing the tree with an up-to-date range [s, e] of data blocks, the range will be modified
based on the R value of the nodes lying on the traversal path. By doing that, we are able to access
the original indices of the data blocks (prior to any insertions or deletions) to either correctly
execute an operation or verify the result of a read request. We illustrate the tree operations on
the example given in Figure 1, in which the leftmost tree corresponds to the result of three modify
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Algorithm 1 UTInsertNode(u,w, dir)

1: if (dir = left) then
2: while (1) do
3: u.R = u.R + w.Op(w.U− w.L + 1)
4: if (u.Pl 6= NULL) then
5: u = u.Pl

6: else
7: insert w as u.Pl and exit;
8: end if
9: end while

10: else if (dir = right) then
11: while (1) do
12: if (u.Pr 6= NULL) then
13: u = u.Pr

14: else
15: insert w as u.Pr and exit;
16: end if
17: end while
18: end if

requests with the ranges given in the figure. We highlight modifications to the tree after each
additional operation.

The first operation is an insertion, the range of which falls on left side of node A’s range and
overlaps with the range of node B. To insert the blocks, we partition B’s range into two (by creating
two nodes) and make node D to correspond to an insertion (Op = 1). Note that the offset R of
node A is updated to reflect the change in the indices for the blocks that follow the newly inserted
blocks. The second operation is a modification, the range of which lies on the right to node A’s
range. When going down the tree, we modify the block range contained in the original request
based on A’s offset R (for the right child only), which now overlaps with node C’s range. To
accommodate the request, we increment the version of C’s blocks and insert two new nodes with
ranges before and after C’s range. The last operation is a deletion, the range of which likewise fall
on the right to A’s range and the indices in the original request are adjusted. Because the adjusted
range falls before all ranges in C’s subtree, it is inserted as the left child of E1 with type Op = −1
and the offset R of both C and E1 is adjusted to reflect the change in block indices for these nodes
and their right children.

We first present sub-routines called by the main algorithms followed by the algorithms for each
operation.

5.1 Sub-routines

UTInsertNode(u,w, dir) inserts a node w into a (sub-)tree rooted at node u. The routine is called
only in the cases when after the insertion, w becomes either the leftmost (dir = left) or the rightmost
(dir = right) node of the subtree. Its pseudo-code is given in Algorithm 1.

In the algorithm, lines 1–9 correspond to the case when the inserted node w belongs in the left
subtree of u and further becomes the leftmost node of the subtree; similarly, lines 10–18 correspond
to the the right subtree case. When the node w is inserted into the left subtree of node u, the offset
R of each node on the path should be updated (line 3) according to the range of indices of w when
the operation is insertion or deletion, because the new range lies to the left of the blocks of the
current u. When the node w is inserted into the right subtree of node u, the range of node w should
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Algorithm 2 UTFindNode(u, s, e, op)

1: S = ∅
2: while (1) do
3: if (s− u.R > u.U) then
4: s = s− u.R− u.Op(u.U− u.L + 1)
5: e = e− u.R− u.Op(u.U− u.L + 1)
6: if u.Pr 6= NULL then
7: u = u.Pr

8: else
9: u′ = UTCreateNode(s, e, 1− |op|, ID, op)

10: insert u′ as u.Pr, and exit the loop;
11: end if
12: else if ((op ≤ 0 and e− u.R < u.L) or (op > 0 and s− u.R < u.L)) then
13: u.R = u.R + op(e− s + 1)
14: if u.Pl 6= NULL then
15: u = u.Pl

16: else
17: u′ = UTCreateNode(s, e, 1− |op|, ID, op)
18: insert u′ as u.Pl, and exit the loop;
19: end if
20: else
21: if (u.Op 6= −1) then
22: S = S ∪ {〈u, s− u.R, e− u.R〉}
23: else if (u.Op = −1 and op = 1) then
24: S = S ∪ {UTFindNode(u.Pr, s + u.U− u.L + 1− u.R, e + u.U− u.L + 1− u.R, op)}
25: else if (u.Op = −1 and (op = 0 or op = −1)) then
26: if (s− u.R < u.L) then
27: S = S ∪ {UTFindNode(u, s, u.L− 1 + u.R, op)}
28: S = S ∪ {UTFindNode(u.Pr, u.U + 1, e− u.R + u.U− u.L + 1, op)}
29: else if (s− u.R ≥ u.L) then
30: S = S ∪ {UTFindNode(u.Pr, s− u.R + u.U− u.L + 1, e− u.R + u.U− u.L + 1, op)}
31: end if
32: end if
33: return S
34: end if
35: end while
36: return {〈u′,NULL,NULL〉}

be modified as it traverses the tree. However, since the routine that calls this sub-routine will pass
w with its range already updated, there is no need to further modify it. The time complexity of
the sub-routine is O(log n), where n is the number of nodes in the update tree.

UTFindNode(u, s, e, op) searches the tree rooted at node u for a block range [s, e] for the purposes
of executing operation op on that range. This is a recursive function that returns a set consisting
of one or more nodes. The returned set normally consists of a single node (newly created or the
first found node the range of which overlaps with [s, e]) unless a delete node partitions the range.

After the function is invoked on range [s, e] and that range does not overlap with the ranges of
any of the existing nodes, the function creates a new node and returns it. Otherwise, the function
needs to handle the case of range overlap, defined as follows: (i) op is insertion and the index s lies
within the range of a tree node or (ii) op is modification or deletion and the range [s, e] overlaps
with the range of at least one existing tree node. The details are given in Algorithm 2.

Because this function can be called for any operation, similar to UTInsertNode, we need to
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Algorithm 3 UTUpdateNode(u, s, e, op)

1: if (u.L = s and e < u.U) then
2: N′ = UTCreateNode(e + 1, u.U, u.V, ID, u.Op)
3: UTInsertNode(u.Pr,N

′, left)
4: else if (u.L < s and e = u.U) then
5: N′ = UTCreateNode(u.L, s− 1, u.V, ID, u.Op)
6: u.R = u.R + u.Op(s− u.L)
7: UTInsertNode(u.Pl,N

′, right)
8: else if (u.L < s and e < u.U) then
9: N′ = UTCreateNode(u.L, s− 1, u.V, ID, u.Op)

10: N′′ = UTCreateNode(e + 1, u.U, u.V, ID, u.Op)
11: u.R = u.R + u.Op(s− u.L)
12: UTInsertNode(u.Pl,N

′, right)
13: UTInsertNode(u.Pr,N

′′, left)
14: end if
15: if (op = 0) then
16: UTSetNode(u, s, e, u.V + 1, u.ID, u.Op)
17: else if (op = −1) then
18: UTSetNode(u, s, e, u.V, u.ID,Op)
19: end if
20: return u

update the offset R of the nodes lying on the traversal path (line 13) and additionally modify the
range of block indices [s, e] during the traversal (lines 4–5). In the algorithm, lines 9–10 and 17–18
describe the case when the range being searched does not overlap with the ranges of any existing
nodes. In this case, a new node u′ is created and returned with NULL flags (line 36). If the range
overlaps with the ranges of one or more of the existing nodes, we add the triple 〈u, s′, e′〉 to the
set returned to the calling routine, where u is the first found node the range of which overlaps
with (adjusted) [s, e] and s′ and e′ are adjusted s and e. Note that UTFindNode does not make
any changes to the tree in case of range overlap, but rather lets the calling function perform all
necessary changes. The tricky part of the algorithm is to avoid returning nodes that correspond
to deleted block ranges. If such a node is found, we should ignore it and keep searching until we
find a node that represents either an insertion or modification operation (lines 21–32). This is the
only situation when the set of size larger than 1 is returned. UTFindNode can be invoked for any
dynamic operation, and its time complexity is O(log n).

UTUpdateNode(u, s, e, op) is called by a modification or deletion routine on a sub-tree rooted at
node u when the range [s, e] of data blocks needs to be updated and falls into the range of u.
Algorithm 3 details its functionality.

The function handles four different situations based on the type of intersection of ranges [s, e]
and [u.L, u.U]. If the two ranges are identical (only lines 15–19 will be executed), several attribute
of u (i.e., V, ID and Op) u will be reset with values that depend on the operation type. If only the
lower (only the upper) bound of the two ranges coincide, we reset the range of the current root
node to [s, e] (lines 15–19), fork a new node corresponding to the remaining range, and insert it
into the right (resp., left) sub-tree of current root node (lines 1–7). If neither the lower nor the
upper bound matches with each other, we fork two child nodes corresponding to the head and
tail remaining ranges, and insert each of them into the left or right subtree of current root node
respectively. As can be expected, the node generated with the remaining range will become either
a leftmost or a rightmost node of the subtree, and we use UTInsertNode sub-routine to achieve it.
The time complexity of the sub-routine is O(log n).
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Algorithm 4 UTInsert(T, s, e)

1: GID = GID + 1
2: S = UTFindNode(T, s, e, 1)
3: (u′, s′, e′) = S[0]
4: if (s′ 6= NULL) then
5: u = UTCreateNode(u′.L, u′.U, u′.V, u′.ID, u′.Op)
6: UTSetNode(u′, s′, e′, 0,GID, 1)
7: if (u.L = s′) then
8: UTInsertNode(u′.Pr, u, left)
9: else

10: u′.R = u′.R + u.Op · (s′ − u.L)
11: w1 = UTCreateNode(u.L, s′ − 1, u.V, u.ID, u.Op)
12: w2 = UTCreateNode(s′, u.U, u.V, u.ID, u.Op)
13: UTInsertNode(u′.Pl,w1, right)
14: UTInsertNode(u′.Pr,w2, left)
15: UTFree(u)
16: end if
17: end if
18: return u′

UTCreateNode(L,U,V, ID,Op) creates a new node with attribute values specified in the parameters.

UTSetNode(u, L,U,V, ID,Op) sets the attributes of node u to the values specified in the parameters.

UTBalance(u) balances the tree rooted at node u and returns the root of a balanced structure. This
function will only be called on trees both direct child sub-trees of which are already balanced rather
than on arbitrarily unbalanced trees. The time complexity of this function is linear in the height
difference of u’s child sub-trees.

UTFree(u) frees the memory occupied by the subtree rooted at node u.

5.2 Main routines

UTInsert(T, s, e) updates the update tree T for an insert request with the block range [s, e] by
inserting a node in the tree. Its pseudo-code is given in Algorithm 4. The main functionality of the
routine is (i) to find a position for node insertion (line 2), and (ii) to insert a new node into the tree
(lines 3–18). At line 1, the global variable GID is incremented and its current value is used for the
newly created node. When the range [s, e] does not overlap with any existing nodes, UTFindNode
on line 2 inserts a new node into the tree and no other action is necessary. Otherwise, an existing
node u′ that overlaps with [s, e] is returned (s′ 6= NULL) and determines the number of nodes that
need to be created. In particular, if the (adjusted) insertion position s′ equals to the lower bound of
u′, u′ is substituted with a new node (line 6) and is inserted into the right subtree of the new node
(line 8). Otherwise, u′ is split into two nodes, which are inserted into the left and right subtrees of
u′, respectively (lines 13–14), while u′ itself is set to correspond to the insertion.

UTModify(u, s, e), when called with u = T, updates the update tree T based on a modification
request with the block range [s, e] and returns the set of nodes that correspond to the range. It
is given in Algorithm 5. The algorithm creates a node for the range if T is empty, and otherwise
it invokes UTFindNode to locate the positions of nodes that need to be modified. After finding
the nodes, the algorithm distinguishes between three cases based on how the (adjusted) range [s, e]
(i.e., [si, ei]) overlaps with the range of a found node ui:
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Algorithm 5 UTModify(u, s, e)

1: C = ∅
2: if (u = NULL) then
3: w = UTCreateNode(s, e, 1,CID, 0)
4: C = C ∪ {w}
5: else
6: S = UTFindNode(u, s, e, 0)
7: for i = 0 to |S| − 1 do
8: (ui, si, ei) = S[i]
9: if (si 6= NULL) then

10: if (ui.L ≤ si and ei ≤ ui.U) then
11: C = C ∪ {UTUpdateNode(ui, si, ei, 0)}
12: else if (si < ui.L and ei ≤ ui.U) then
13: C = C ∪ {UTUpdateNode(ui, ui.L, ei, 0)}
14: C = C ∪ {UTModify(ui, si + ui.R, ui.L− 1 + ui.R)}
15: else if (ui.L ≤ si and ui.U < ei) then
16: C = C ∪ {UTUpdateNode(ui, si, ui.U, 0)}
17: C = C ∪ {UTModify(ui, ui.U + 1 + ui.R, ei + ui.R)}
18: else if (si < ui.L and ei > ui.U) then
19: C = C ∪ {UTUpdateNode(ui, ui.L, ui.U, 0)}
20: C = C ∪ {UTModify(ui, si + ui.R, ui.L− 1 + ui.R)}
21: C = C ∪ {UTModify(ui, ui.U + 1 + ui.R, ei + ui.R)}
22: end if
23: else
24: C = C ∪ {ui}
25: end if
26: end for
27: end if
28: return C

1. If [si, ei] is contained in [ui.L, ui.U], ui is the only node to be modified, and this is handled by
UTUpdateNode (line 11).

2. If [si, ei] overlaps with the ranges of ui and either its left or right subtree, the algorithm
first updates the range of ui by calling UTUpdateNode sub-routine (line 13 or 16), and then
recursively calls another UTModify to update the remaining nodes (line 14 or 17).

3. If [si, ei] overlaps with the range of ui and both of its subtrees, the algorithm first updates ui
using UTUpdateNode (line 19), and then calls UTModify twice to handle the changes to the
left and right subtrees of ui, respectively (lines 20–21).

UTDelete(u, s, e), when called with u = T, updates the update tree T based on a deletion request
with the block range [s, e]. It does not delete any node from T, but rather finds all nodes whose
ranges fall into [s, e], sets their operation types to −1, and returns them to the caller. UTDelete is
very similar to UTModify and is given in Algorithm 6.

UTRetrieve(u, s, e), when called with u = T, returns the nodes whose ranges fall into [s, e]. Algo-
rithm 7 gives the details. Similar to UTModify, five cases can occur based on the overlap of the
range [s, e] and [u.L, u.U]. The additional two cases are when the two ranges do not overlap (lines
12–15), and the algorithm is called recursively on a subtree until a node whose range falls into
[s, e] (lines 6–26) is found, or not (lines 2–4). Care should be exercised when the returned node
represents a deletion operation (line 10). In this case, we skip the node and keep searching within
its right sub-tree until a node that represents either an insertion or modification is found.
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Algorithm 6 UTDelete(u, s, e)

1: C = ∅
2: if (u = NULL) then
3: w = UTCreateNode(s, e, 0,−1)
4: C = C ∪ {w}
5: else
6: S = UTFindNode(u, s, e,−1)
7: for i = 0 to |S| − 1 do
8: (ui, si, ei) = S[i]
9: if (si 6= NULL) then

10: if (ui.L ≤ si and ei ≤ ui.U) then
11: C = C ∪ {UTUpdateNode(ui, si, ei,−1)}
12: else if (si < ui.L and ei ≤ ui.U) then
13: C = C ∪ {UTUpdateNode(ui, ui.L, ei,−1)}
14: C = C ∪ {UTDelete(ui, si + ui.R, ui.L− 1 + ui.R)}
15: else if (ui.L ≤ si and ui.U < ei) then
16: C = C ∪ {UTUpdateNode(ui, si, ui.U,−1)}
17: C = C ∪ {UTDelete(ui, ui.U + 1 + ui.R, ei + ui.R)}
18: else if (si < ui.L and ei > ui.U) then
19: C = C ∪ {UTUpdateNode(ui, ui.L, ui.U,−1)}
20: C = C ∪ {UTDelete(ui, si + ui.R, ui.L− 1 + ui.R)}
21: C = C ∪ {UTDelete(ui, ui.U + 1 + ui.R, ei + ui.R)}
22: end if
23: else
24: C = C ∪ {ui}
25: end if
26: end for
27: end if
28: return C

UTCommit(T, s, e) replaces all nodes in tree T whose range falls into the range [s, e] with a single
node with the range [s, e]. The goal of a commit operation is to reduce the tree size, but in
the process it may become unbalanced or even disconnected. Thus, to be able to maintain the
desired performance guarantees, we must restructure and balance the remaining portions of the
tree. Algorithm 8 gives the details. In the algorithm, we first search for two nodes that contain the
lower and upper bounds s and e, respectively, and make the adjusted s and e (denoted by s′ and e′,
respectively) become the left or right bound of the nodes that contain them (lines 1–16). Second,
we traverse T from the two nodes to their least common ancestor T′, remove the nodes with ranges
falling into the range [s′, e′], and balance the tree if necessary (lines 18–41). Third, we traverse T
from T′ to the root, and balance the tree if necessary (line 42–45). Lastly, we add a node with [s, e]
and new CID (line 49). The routine returns adjusted lower bound s′ and updated CID.

To better illustrate how the algorithm works, let us consider an example in Figure 2. In the
figure, U1 and U2 correspond to the tree nodes that incorporate the smallest and largest block
indices falling in the commit range (i.e., s and e), respectively, and T′ is their lowest common
ancestor (as defined on lines 3–4 of Algorithm 8). The nodes and their subtrees shown using dotted
lines corresponds to the nodes whose entire subtrees are to be removed. To remove all nodes in
the subtree of T′ with block indices larger than adjusted s (located in the left child’s subtree), we
traverse the path from u1 to T′. Every time u1 is the left child of its parent, we remove U1’s right
sibling and its subtree, remove u1’s parent node, and make u1 take the place of its parent (lines
27–29 of the algorithm). For the example in the figure, it means that nodes v10 and v9 are removed
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Algorithm 7 UTRetrieve(u, s, e)

1: C = ∅
2: if (u = NULL) then
3: w = UTCreateNode(s, e, 0, 0, 0)
4: C = C ∪ {w}
5: else
6: if (u.L ≤ s− u.R and e− u.R ≤ u.U) then
7: if (u.Op 6= −1) then
8: C = C ∪ {u}
9: else

10: C = C ∪ {UTRetrieve(u.Pr, s + u.U− u.L + 1, e + u.U− u.L + 1)}
11: end if
12: else if (e− u.R < u.L) then
13: C = C ∪ {UTRetrieve(u.Pl, s, e)}
14: else if (s− u.R > u.U) then
15: C = C ∪ {UTRetrieve(u.Pr, s− u.R− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
16: else if (s− u.R < u.L and u.L ≤ e− u.R ≤ u.U) then
17: C = C ∪ {UTRetrieve(u.Pl, s, u.L + u.R− 1)}
18: C = C ∪ {UTRetrieve(u, u.L + u.R, e)}
19: else if (u.L ≤ s− u.R ≤ u.U and e− u.R > u.U) then
20: C = C ∪ {UTRetrieve(u.Pr, u.U + 1− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
21: C = C ∪ {UTRetrieve(u, s, u.U + u.R)}
22: else if (s− u.R < u.L and e− u.R > u.U) then
23: C = C ∪ {UTRetrieve(u.Pl, s, u.L + u.R− 1)}
24: C = C ∪ {UTRetrieve(u.Pr, u.U + 1− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
25: C = C ∪ {UTRetrieve(u, u.L + u.R, u.U + u.R)}
26: end if
27: end if
28: return C

together with their subtrees, nodes v8 and v7 are also removed, and u1 takes te place of v7. At this
point u1 becomes the right child of its parent, and we balance the subtree rooted at u1’s parent
and make u1 point to its parent node (lines 30–32 of the algorithm). This means that rebalancing
is executed (if necessary) after u1 takes place of v7, v4, and v1. In the general case, the process of
removing nodes and subtrees and rebalancing repeats until u1 becomes the direct child of T′.

The same process applies to the right child’s tree of T′ that contain u2 with the difference that
node removal is performed when u2 is the right child of its parent and rebalancing is performed
when u2 is the left child of its parent (lines 34–40 of the algorithm). For the example in Figure 2,
we obtain that node v5 is removed together with its subtree, node v2 is removed, and u2 takes the
place of v2.

The last step that remains is to rebalance the subtree rooted at T′ and the subtrees of all other
nodes on the path from T′ to the root. This is accomplished on lines 42–45 of the algorithm by
making T′ point to its parent after each rebalancing procedure. We obtain a balanced tree T with
all nodes in the range [s, e] removed and insert one single node corresponding to this range that
indicates that the commit number CID of all blocks in the range [s, e] has been increased.

6 Analysis of the Scheme

Complexity analysis. In what follows, we analyze the complexity of main update tree algorithms
and the protocols that define the scheme. Each UTInsert adds one or two nodes to the tree, and all
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Algorithm 8 UTCommit(T, s, e)

1: CID = CID + 1
2: S = UTRetrieve(T, s, e)
3: set u1 and u2 to be the nodes in S, that are part of the tree, and has the smallest and largest indices

respectively
4: set T′ to be the lowest common ancestor of u1 and u2 in S
5: set s′ to be s adjusted through traversal
6: set e′ to be e adjusted through traversal
7: if s′ 6= u1.L then
8: UTSetNode(u1, u1.L, s− 1, u1.V, u1.ID, u1.Op)
9: w1 = UTCreateNode(s, u1.U, u1.V, u1.ID, u1.Op)

10: UTInsertNode(u1.Pr,w1, left)
11: end if
12: if e′ 6= u2.U then
13: UTSetNode(u2, e

′ + 1, u2.U, u2.V, u2.ID, u2.Op)
14: w2 = UTCreateNode(u2.L, e

′, u2.V, u2.ID, u2.Op)
15: UTInsertNode(u2.Pl,w2, right)
16: end if
17: if u1 6= u2 then
18: if (u1.Pr 6= NULL) and (u1 is not u2’s ancestor) then
19: UTFree(u1.Pr)
20: u1 = UTBalance(u1)
21: end if
22: if (u2.Pl 6= NULL) and (u2 is not u1’s ancestor) then
23: UTFree(u2.Pl)
24: u2 = UTBalance(u2)
25: end if
26: while (u1.Pp 6= T′) and (u1 6= T′) do
27: if u1 = u1.Pp.Pl then
28: UTFree(u1.Pp.Pr)
29: set u1 to be a direct child of u1.Pp.Pp

30: else if u1 = u1.Pp.Pr then
31: u1 = UTBalance(u1.Pp)
32: end if
33: end while
34: while (u2.Pp 6= T′) and (u2 6= T′) do
35: if u2 = u2.Pp.Pr then
36: UTFree(u2.Pp.Pl)
37: set u2 to be a direct child of u2.Pp.Pp

38: else if u2 = u2.Pp.Pl then
39: u2 = UTBalance(u2.Pp)
40: end if
41: end while
42: while (T′ 6= NULL) do
43: T′ = UTBalance(T′)
44: T′ = T′.Pp

45: end while
46: else
47: remove u1 from the tree
48: end if
49: UTModify(T, s, e)
50: return (s′,CID)
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Figure 2: Illustration of the commit algorithm.

operations are performed during the process of traversing the tree. Therefore, its time complexity
is O(log n), where n is the current number of nodes in the tree. Both UTModify and UTDelete can
add between 0 and O(min(n, e− s)) nodes to the tree, but as our experiments suggest, a constant
number of nodes is added on average. Their time complexity is O(log n+ min(n, e− s)), and both
the size of the range e − s + 1 and the number of nodes in the tree form the upper bound on the
number of returned nodes. UTRetrieve does not add nodes to the tree and its complexity is similarly
O(log n + min(n, e − s)). Lastly, UTCommit removes between 0 and O(min(n, e − s)) nodes from
the tree and its time complexity is also O(log n+ min(n, e− s)).

Because the complexity of UTCommit is less trivial to compute, we analyze it in more detail.
Note that UTCommit calls the tree rebalancing function UTBalance, the worst case complexity of
which is O(log n), at most O(log n) number of times. However, due to the careful construction of the
tree and the commit function, the total number of operations that rearrange the tree per UTCommit
is only O(log n) (plus, node deallocation time which gives the total O(log n+ min(n, e− s)) time).

Theorem 1 The time complexity of UTCommit is O(log n+ min(n, e− s))).

Proof In what follows, we assume that a tree is balanced if for each node in the tree the heights of
subtrees rooted at the node’s children differ by at most 1. In other words, rebalancing is triggered
when the height difference is 2 or more. More generally, any constant c ≥ 2 can be used as the
criterion for rebalancing, and the claimed complexity will still hold.

It is clear that memory deallocation time associated with the nodes whose subtrees are being
removed from the tree, i.e., the aggregate complexity of all UTFree calls, is O(min(n, e − s)) and
we therefore concentrate on showing that the rebalancing itself takes O(log n) time.

Recall that the complexity of UTBalance, when executed on a tree both child subtrees of which
are balanced is linear in the height difference of the child subtrees. Also recall that during UTCommit
we first locate the nodes that contain the smallest and largest block indices falling within the commit
range (u1 and u2, respectively), and then call either UTBalance or UTFree during the process of
moving up toward their lowest common ancestor T′. As was shown earlier, when u1 is the left
child of its parent only UTFree is called and no rebalancing takes place, but this can increment the
difference in the height of u1’s subtree and that of its new sibling by 1 or 2 (the latter happens
only if u1’s original sibling had a subtree with the larger height and the new sibling has the subtree
of larger height than u1’s original parent node). After performing this step multiple times (where
each time u1 is still the left child of its parent), the difference can increase linearly in the total
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number of times u1 is moved up the tree. Referring back to the example in Figure 2, when u1 takes
the place of v7, the difference between the heights of trees rooted at sibling nodes v6 and u1 can be
larger by at most 2 · 2 than the original difference between the heights of the trees rooted at v6 and
v7.

When u1 is the right child of its parent, we call the rebalancing procedure on u1’s parent.
In this case, the maximum height difference of its two subtrees is equal to twice the number of
UTFree operations issued since the occurrence of the most recent UTBalance plus 1. Going back
to the example in Figure 2, when UTBalance is called on v4 (i.e., after replacing v7 with u1), the
maximum height difference between the subtrees rooted at v6 and u1 is 5. The height difference
then defines the runtime of the balancing procedure, which is linear in that difference. For the
consecutive operations in the figure while u1 remains the right child of it parent and moves up the
tree, the difference between the heights of children subtrees of the nodes being rebalanced can be
at most 2 and thus balancing takes constant time. The same analysis applies to node u2 with the
procedures invoked when u2 is the left or right child of its parents reversed from those for u1.

We obtain that the aggregate time for rebalancing the tree rooted at T′ is linear in the number
of calls to UTFree and UTBalance or the height of the tree T and is therefore O(log n). The commit
function also balances the overall tree T as T′ moves up the tree one node at a time. The complexity
of this process can be shown similar to the complexity of balancing the subtrees while u1 remains
to be the right child of its parents and moves up the tree (i.e., the initial rebalancing cost can be
at most linear in the distance from T′ to the leaf level of the tree, but the cost of each consecutive
rebalancing operation is constant). We obtain that the overall rebalancing cost of UTCommit is
O(log n) and its overall cost is O(log n+ min(n, e− s))) �

Next, we analyze the complexity of the protocols themselves. It is easy to see that Init has time and
communication complexity of N , i.e., the number of transmitted blocks. Update for any operation
has time complexity of O(log n + num) and communication complexity of O(num). Retrieve has
the same complexities as Update, unless it is used for integrity verification only rather than block
retrieval. In the latter case, its computation and communication complexities become O(log n +
min(num, c)) and O(min(num, c)), respectively, where constant c bounds the number of 〈mi, ti〉
pairs transmitted for the purpose of probabilistic verification. Lastly, the complexities of Commit
are O(log n+num) and O(num), because the client needs to communicate num MACs to the server.

Security analysis. Security of our scheme can be shown according to the definition of DPDP in
Section 3.

Theorem 2 The proposed update tree scheme is a secure DPDP scheme assuming the security of
MAC construction.

Proof sketch Suppose that the adversary A wins the data possession game. Then the challenger
can either extract the challenged data blocks (i.e., if A has not tampered with them) or break the
security of the MAC scheme (i.e., if A tampered with the data). In particular, in the former case,
the challenger can extract the genuine data blocks from A’s response. In the latter case, if the
adversary tampers with a data block (by possibly substituting it with a previously stored data for
the same or a different block), it will have to forge a MAC for it, which the challenger can use
to win the MAC forgery game. This is because our solution is designed to ensure that any two
MACs communicated by the client to the server are computed on unique parameters. That is, two
different versions of the same data block i will have either their version, CID, or operation type
differ, while two different blocks that at different points in time assume the same index i (e.g., a
deleted block and a block inserted in its place) can be distinguished by the value of their ID (i.e.,
at least one of them will have a GID, and two GIDs or a GID and CID are always different). �
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The probability that a cheating server is caught on a Retrieve or Challenge request of size num < c
is always 1, and the probability that a cheating server is caught on a request of size num ≥ c is
1− ((num− t)/num)c, where t is the number of tampered blocks among the challenged blocks.

7 Extending the Basic Scheme

7.1 Enabling multi-user support

In this section, we extend our scheme with support for multiple users who would like to jointly access
outsourced data. Two additional considerations now come in play and affect how a DPDP scheme
operates: access control and conflict resolution. That is, in a generic multi-user environment, access
to an object is permitted according to a predefined access control policy, and simultaneous updates
by multiple users of the same shared content require additional provisions. In what follows, we
base our description on user trust relationships and distinguish between distributed and centralized
settings.

Distributed setting. In this setting, the users trust each other; they locally maintain update trees
and notify each other about updates on the shared data. First, the users identify the set of unique
permissions that exist within the entire storage. Each unique set of access rights can be specified
as a group of users who are granted access to the data objects with the respective permissions.
In this collaborative environment, user groups can also be formed based on user preferences. The
outsourced data is then divided based on the set of permission groups, each portion is assigned a
unique key1, and each user maintains a key and separate update tree for the portion of the storage
associated with each group to which the user belongs. By maintaining trees only for the data blocks
to which the user has access, the user’s storage is reduced to the necessary minimum. Also, all
users within the same permission group will announce their updates and synchronize them with
other members of the group, which makes an exclusive tree for each group attractive, as all users
will maintain identical copies of the tree and locally balance them in exactly the same way.

Each time user U performs an update on shared objects, the user notifies the remaining mem-
bers of the group about the update, which allows them to consistently modify their copies of the
respective update tree. To enable users to maintain consistent views in presence of conflicting
updates, we propose for the users to maintain loosely synchronized clocks and in each time slot
first announce their intended requests to the group, resolve any conflicts that arise, and only then
submit the requests themselves. In detail, when U would like to submit a request to the server, it
announces its intent (the operation type, index range, and the time slot) to the members of the
permission group, and after the end of the time slot determines if any conflicts arise. We categorize
all conflicts into automatically resolvable (performed locally by each user) and manually resolvable
(require user interaction), which are detailed below. After conflict resolution, U submits her request
to the server together with the proper ordering of the request and other simultaneous requests with
which it conflicts (which, for instance, could be indexed by user id and sequence number). This
will ensure that, even if the server receives users’ requests out of order, their proper order will be
enforced when it has impact on consistency and data verifiability. In presence of many simultane-
ous requests, the users determine if they are conflicting by considering each pair of them. In what
follows, we exemplify our strategy for two conflicting requests, but it can be easily extended to
resolve conflicts between a larger number of requests:

1One key is required for scheme operation (i.e., MAC computation), but if data confidentiality is also desired, the
users can also agree on an encryption key.
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• Manually resolvable conflicts occur when the ranges of two simultaneous dynamic operations
overlap with each other (for instance, when two users attempt to update the same data block).
In general, it is not possible to resolve such conflicts without user coordination of the updates,
but for specific applications it may be feasible to resolve certain types of conflict from this
category automatically (e.g., in some cases overlapping insert and delete operations might be
automatically resolvable).
• Automatically resolvable conflicts occur when an insertion or deletion with ind1, num1 is trig-

gered simultaneously with another operation on a succeeding, but not overlapping range
ind2, num2. That is, for insertion ind1 < ind2 and for deletion ind1 + num1 < ind2. To resolve
this type of conflict, we propose to apply operational transformation (OT) [14] that allows
each owner of a conflicting request to locally resolve the conflict. Using OT, the users need
to agree on a set of rules based on which modifications to the requests will be performed.
In our setting, one possibility for such rules is to execute the conflicting requests based on
the numerical order of their owners’ ids (it is assumed that a single user will not announce
requests that already conflict with each other). This means that if the insertion or deletion
operation with the lower range is executed first, the indices of the second request will be
adjusted by num1. Note that OT can be used as a black box in our solution.

Other types of requests are considered non-conflicting, and the users merely submit them to the
server. Because all users trust each other and synchronize their requests, security of this setting
can be shown analogously to the single-user case.

Centralized setting. In this setting, the users are not trusted and should be prevented from
issuing requests that may invalidate outsourced data. To enforce proper access control, there exists
a central trusted authority (CA), which could be an organization to which the users belong or a
service provider who lets its subscribers retrieve and update data outsourced to a third party storage
server. The CA serves the role of a proxy, and users do not maintain any metadata themselves. All
user requests go through the CA, who examines them with respect to users’ privileges, detects any
conflicts, resolves any automatically resolvable and ask the senders to resolve manually resolvable
conflicts. The CA is also in a good position to perform query optimization, e.g., by merging two
read requests on overlapping or consecutive ranges. This will allow the CA to reduce the size of the
update tree that the CA and the storage server maintain as well as reduce query processing time.
Lastly, the CA submits the queries to the storage server. For retrieve requests, the CA verifies the
response and forwards the data to the appropriate users.

7.2 Enabling support for revision control

In this section, we show how our scheme can be extended to support revision control. To enable
versioning functionality, we need to specify (i) how a user can retrieve a specific version of a data
block or range and (ii) how a user can retrieve deleted data blocks (prior to a commit on them,
which permanently removes them from the server).

Specific version retrieval can be realized by modifying the Retrieve protocol to add version
number V to the set of parameters sent to the server with the request. After receiving the request,
the server executes UTRetrieve as usual, but returns to the client the data blocks and their tags
that correspond to version V. To verify the response, the client verifies the returned tags using the
intended version V and other attributes obtained from UTRetrieve. This functionality requires no
changes to UTRetrieve, but using the tree nodes that the function returns the server will retrieve
the requested the requested version of the blocks instead of their most recent versions. All steps
of the Retrieve protocol proceed unmodified with the exception that the client uses its requested
version V during MAC verification in step (c) instead of node versions u.V returned by UTRetrieve.
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Deleted data retrieval can be realized by extending the Retrieve protocol’s interface with a flag
that indicates that deleted data is to be returned and modifying UTRetrieve that currently skips all
deleted data. The difficulty in specifying what deleted data to retrieve is caused by the fact that
deleted blocks no longer have indices associated with them. To remedy the problem, we propose
to specify in the request a range [s, e] that contains the desired deleted range and includes one or
more non-deleted blocks before and after the deleted range being requested.

We denote the modified UTRetrieve that retrieves deleted data as UTRetrieveDel(u, s, e). Instead
of ignoring nodes that represent deletions, it returns them as the output, which will also allow the
server to locate the necessary blocks and their tags. UTRetrieveDel then uses the same interface as
UTRetrieve and has similar functionality to that of UTRetrieve. In particular, similar to UTRetrieve,
five cases can occur based on the overlap of the range [s, e] and [u.L, u.U], and the routine is called
recursively to deal with each of the situations. Unlike UTRetrieve, however, since all deleted ranges
can be found within the tree, the function does not create any new nodes corresponding to the
blocks that have not been updated (i.e., lines 2–4 of UTRetrieve are omitted). Furthermore, the
routine needs to collect only nodes that correspond to deleted blocks, UTRetrieve ignores such
nodes and returns all other nodes in the range. This means that we need to change the condition
(u.Op 6= −1) on line 7 of UTRetrieve to the opposite (u.Op = −1). For completeness the algorithm
for UTRetrieveDel is given in Appendix A.

8 Performance Evaluation

To evaluate the performance of our scheme and provide a comparison with performance of prior
solutions, we designed a number of experiments which measure the computation, communication,
and storage requirements of three different schemes. The schemes that we compare are: (i) our
update tree (UTree) solution, (ii) the solution based on Merkle hash tree (MHT) [17], and (iii) the
solution based on skip lists (SL) [15].

In our experiments, we evaluate the performance of the schemes in three different settings:
the first uses 1GB of outsourced storage with 4KB data blocks, the second uses 256GB of storage
with 4KB blocks, and the third uses 256GB of storage with 64KB blocks. The first 1GB+4KB
setting was chosen for consistency with experiments in prior work and the other two allow us to
examine the systems’ behavior when one parameter remains fixed while the other changes (i.e.,
4KB block size in the first two settings and 256GB overall storage in the last two settings). As
another important observation about the chosen settings, notice that the number of blocks are 218,
226, and 222, respectively, which allows us to test the performance with respect to its dependence
on the number of outsourced data blocks. Lastly, while the overall amount of outsourced storage in
our experiments is not very large (i.e., in practice clients might want to outsource TBs of data), we
believe that the experiments represent realistic scenarios. That is, in situations when the amount
of outsourced storage is significantly larger than in our experiments, we expect the data block size
to become larger as well leaving the number of blocks within the range that we evaluate.

We implement our and MHT solutions in C, while the SL scheme was implemented as in [15] in
Java. Despite the programming language difference, the time to compute a hash function is similar
in both implementations. Then because the overall computation of the SL scheme is dominated by
hash function evaluation, we consider the performance of all implementations to be comparable.
We use SHA-224 for hash function evaluation and HMAC with SHA-224 for MAC computation.
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8.1 Computation

For the purposes of computation evaluation, we measure the client’s time after executing a number
n of client’s requests for n between 104 and 105. The server’s overhead in all schemes is similar to
that of the respective client’s overhead. The initial cost of building the data structures in MHT
and SL schemes or computing MACs in our solution is not included in the measured times.

In the first experiment, we choose one of four operations (insert, delete, modify, and retrieve)
at random and execute it on a randomly selected single data block. From the schemes that we
compare, only our solution provides a natural support for querying ranges of blocks (the SL solution
in [15] can provide a limited support for block ranges as previously described). Then because in
practice accesses are often consecutive in their nature (see, e.g., [13]), the performance of our scheme
in this experiment can be viewed as the upper bound on what is expected in practice. For all of the
above operations except deletion, the client needs to compute a hash (or MAC) of the data block
used in the request. Because this computation is common to all three schemes2, we separately
measure it and also provide the times for the remaining processing that the client needs to do.

Because of drastic differences in performance of the schemes, we present many results in tables
instead of displaying them as plots. This allows us to convey information about the growth of each
function. For that reason, Figure 3(a) plots the aggregate and Figure 4 plots average performance
of all schemes for the first 1GB+4KB setting, while Table 1 provides average computation for all
three settings. Notice that in the figure the overhead of each scheme is added to the common
hash computation work, while in the table the common and additional computation are shown
separately. We were unable to complete 256GB+4KB experiments for SL due to its extensive
computation (primarily to build the data structure) and memory requirements. As can be seen
from the results, the overhead of UTree scheme is 2 to 3 orders of magnitude is lower for the
settings used in the experiment. The majority of the total work in a UTree scheme comes from
MAC computation, while in MHT and SL the proof often dominates the cost. Also note that
the overhead of SL is larger than that of MHT due to the use of longer proofs and commutative
hashing in the former, where the majority of the difference comes from the hashing. As expected,
the number of data blocks in the storage affects performance of MHT and SL schemes (the proof
sizes of which are logarithmic in the total number of blocks), while the average time per operation
remains near a constant for each setting. In our scheme, on the other hand, the time grows slowly
with the number of operations, but does not increase with the total storage size.

For the second experiment, we changed the first experiment to execute each operation on a
range of data blocks of size between 1 and 20. To be able to verify correctness of individual blocks,
we do not implement the variable-sized data block approach suggested in [15], but rather repeat
the single-block operation multiple times for each operation. However, to improve efficiency of
MHT scheme, for a range insertion operation we construct an independent tree from the blocks
specified in the request first and then insert it into the MHT in the same way as a single node. The
performance results are given in Table 1 and Figure 3(b).

Compared to the single-block operations, performance of MHT and SL schemes deteriorates by
a factor of 9–10, while for our UTree, which was designed to work on ranges, there is only a slight
(20%–70%) increase in the performance. The increase in the update tree size can be explained by
using more nodes to partition an existing node that corresponds to a range. We expect that in the
other two settings (256GB+4KB and 256GB+64KB) with a larger number of blocks, the tree will
have a smaller size as it is less dense.

2In MHT and SL schemes the client needs to compute the hash of a data block, while in our scheme the client
computes a MAC of it. Because MAC computation is slightly more expensive than the hash computation alone, we
include the additional overhead associated with the MAC into the performance of our scheme.
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(a) single-block mixed operations (b) multiple-block mixed operations

(c) same position insertions

Figure 3: Aggregate client’s computation time after n operations with 1GB outsourced storage and
4KB block.

Setting
File Block

Scheme
Total number of operations n Block

size size 20000 40000 60000 80000 100000 hash

1GB 4KB
UTree 1.34 1.51 1.62 1.70 1.77

134MHT 127 127 127 127 127
SL 481 502 473 512 462

Single-block
256GB 64KB

UTree 1.19 1.33 1.43 1.49 1.57
1972mixed random MHT 148 147 148 147 148

operations SL 619 595 633 652 703

256GB 4KB
UTree 1.20 1.32 1.43 1.50 1.56

134
MHT 180 179 179 178 183

Multi-block
1GB 4KB

UTree 1.68 2.14 2.48 2.78 2.99
1340mixed random MHT 944 978 1000 1050 1090

operations SL 4750 4460 4570 4640 4800
Single block

1GB 4KB
UTree 1.13 1.17 1.21 1.26 1.76

134same position MHT 77400 155000 232000 308000 466000
insertions SL 250 235 242 258 212

Table 1: Average client’s computation time per operation measured after n operations for various
schemes in µsec.

For the third experiment, we considered a new access pattern that inserts data blocks at the
same position in a file. The goal is to demonstrate the effect of such operation on an unbalanced
data structure. The results are shown in Table 1 and Figure 3(c). As can be seen from the table,
UTree and SL schemes exhibit stable performance due to their balanced data structures, while
performance of MHT grows significantly and linearly with the number of operations (as its height
in that case exhibits linear in the number of operations growth). There is no easy way to remedy the
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(a) MHT and SL (b) UTree

Figure 4: Average client’s computation time measured after n single-block randomly chosen oper-
ations with 1GB outsourced storage and 4KB block (without block hash computation).

Figure 5: Aggregate communication overhead with 1GB outsourced storage and 4KB block.

situation by balancing MHT in a similar way to our solution, as the client does not have complete
information about the MHT.

8.2 Communication

To evaluate communication, we measure the volume of data exchanged between the client and the
server after executing a different number of client’s single-block requests. The data transferred in
each operation consists of a data block (except for deletion) and corresponding auxiliary data. The
data block cost is common to all three schemes, while the auxiliary data varies in its format and
size. In particular, for UTree the auxiliary data consists of a single MAC, while for MHT and SL it
is the proof linear in the height of the data structure. Another difference is that UTree involves a
unidirectional communication for all except one operation (i.e., Retrieve which returns a response),
while all operations in MHT and SL require bidirectional communication. For that reason, we
measured the aggregated data exchanged for each operation, without considering the direction of
data transfer. The results are given in Table 2 and Figure 5, where data block communication is
added to the performance of each scheme in the figure, and it is listed separately in the table.

Because deletion does not involve data block transfer in all three schemes, the average size of
data block communication per operation is 3/4 of the block size. As can be observed from Table 1,
UTree scheme’s communication is independent of the data structure size or the setting and is
constant per operation. For MHT and SL scheme, on the other hand, performance depends on
the data structure size. For data blocks of small size, the proof overhead of MHT and SL schemes
constitutes a significant portion of the overall communication volume (14–30%), which could be a
fairly large burden for a user constrained by a limited network bandwidth. (The overhead of UTree
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File Block
Scheme

Total number of operations n
size size 20000 40000 60000 80000 100000

1GB 4KB

UTree 0.4 0.8 1.2 1.6 2
MHT 9.6 19.3 28.9 38.6 48.3

SL 21 39.6 62.2 77.5 98.3
Data blocks 60 120 180 240 300

256GB 64KB

UTree 0.4 0.8 1.2 1.6 2
MHT 11.7 23.5 35.3 47.0 58.8

SL 25.1 54.7 79.2 101 126
Data blocks 960 1920 2880 3840 4800

256GB 4KB
UTree 0.4 0.8 1.2 1.6 2
MHT 13.9 27.8 41.7 55.5 69.4

Data blocks 60 120 180 240 300

Table 2: Aggregate communication size after n operations for various schemes measured in MB.

scheme, on the other hand, is no more than 0.6%.) Lastly, the difference in performance of MHT
and SL schemes can be explained by the length of the proof and the size of elements within the
proof (SL scheme stores more attributes per node than MHT scheme).

8.3 Storage

To evaluate storage, we measure the size of data structures after executing a number of client’s
requests on single blocks as well as ranges. In both MHT and SL schemes, the server maintains
the entire data structure while the client keeps only a constant-sized data for integrity verification.
In our scheme, both the server and the client maintain a data structure, but should be moderate
in size for a variety of operating environments.

The data structures maintained in the schemes consists of a static portion that corresponds
to the initially uploaded data and a dynamic portion that corresponds to dynamic operations
issued afterwards. In MHT and SL schemes, the static component is linear in the number of
outsourced blocks and is expected to be fairly large. It is also the reason for outsourcing the data
structures together with the data blocks to the server. In our scheme, however, there is no static
component. As far as dynamic component goes, the size of the data structure in our solution grows
upon executing dynamic operations according to the analysis in Section 6. The growth is always
constant per single-block operation, and the use of ranges allows us to reduce the overall growth.
With MHT and SL schemes, the size of the data structure remains at the same level as long as the
number of insertions is similar to the number of deletions. Block modifications do not affect the
data structure size. Lastly, because MHT and SL scheme do not support versioning functionality,
to enable it, they can be upgraded using persistent authenticated data structure [3]. The use of
persistent data structures increase the data structure size by O(log n) per single-block update,
where n is the number of nodes within the data structure. Therefore, considering both static and
dynamic components, UTree inevitably leads to a more compact data structure, and its size is also
the reason why the client can store the data structure locally.

The results of our experiments are given in Table 3 and Figure 6. For each setting, the first row
for UTree corresponds to single-block mixed dynamic operations at random locations, while the
second row corresponds to similar range operations (1–20 blocks per operations). The performance
is estimated based on the number of nodes (measured using UTree, MHT, and SL implementations)
in the data structures and the approximate node size of 50 bytes for each scheme. It does not
correspond to the memory measurement at the run time.
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Figure 6: Server’s storage overhead with 1GB outsourced storage and 4KB block.

File size Block size
MHT SL UTree for n operations

for any n for any n 20000 40000 60000 80000 100000

1GB 4KB 25 24
0.70 1.37 2.03 2.66 3.28
0.97 2.26 3.74 5.32 6.94

256GB 64KB 400 391
0.71 1.43 2.15 2.85 3.57
0.71 1.46 2.15 2.89 3.60

256GB 4KB 6400 6206
0.71 1.43 2.15 2.86 3.57
0.72 1.44 2.16 2.88 3.61

Table 3: The size of data structures for various schemes after n single-block or range mixed opera-
tions measured in MB.

The experiments correspond to the original solutions, without the support of versioning func-
tionality. This means that a deletion operation actually deletes a node and a modification does
not contribute additional nodes to the data structure, and the size of the data structure remains
constant after executing an equal number of different types of updates. And expected, the size
of UTree grows linearly with the number of dynamic operations. Another observation that aligns
with our experiments above is that the additional UTree size of range operations compared to the
single-block case is significantly reduced with a larger number of outsourced blocks (compare, e.g.,
112%, 0.8%, and 1.1% overhead at 100000 operations). As before, it is caused by fewer range
overlaps, which results in fewer node partitioning and smaller tree size.

9 Conclusions

In this work, we propose a novel solution to provable data possession with support for dynamic
operations, access to shared data by multiple users, and revision control. Our solution utilizes a
new type of data structure that we term balanced update tree. Unique features of our scheme
include orders of magnitude faster than in other schemes data verification and removing the need
for the storage server to maintain data structures linear in the size of the outsourced data. The
advantages come at the cost of requiring the client to maintain a data structure of modest, but
non-constant size and no support for public verifiability.
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A Additional Algorithms

Here we give a complete specification of UTRetrieveDel(u, s, e), which when called on the update
tree T and block range [s, s+ e− 1] returns all previously deleted blocks that fall within the range.
The description is given in Algorithm 9.
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Algorithm 9 UTRetrieveDel(u, s, e)

1: C = ∅
2: if (u 6= NULL) then
3: if (u.L ≤ s− u.R and e− u.R ≤ u.U) then
4: if (u.Op = −1) then
5: C = C ∪ {u}
6: C = C ∪ {UTRetrieveDel(u.Pr, s + u.U− u.L + 1, e + u.U− u.L + 1)}
7: end if
8: else if (e− u.R < u.L) then
9: C = C ∪ {UTRetrieveDel(u.Pl, s, e)}

10: else if (s− u.R > u.U) then
11: C = C ∪ {UTRetrieveDel(u.Pr, s− u.R− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
12: else if (s− u.R < u.L and u.L ≤ e− u.R ≤ u.U) then
13: C = C ∪ {UTRetrieveDel(u.Pl, s, u.L + u.R− 1)}
14: C = C ∪ {UTRetrieveDel(u, u.L + u.R, e)}
15: else if (u.L ≤ s− u.R ≤ u.U and e− u.R > u.U) then
16: C = C ∪ {UTRetrieveDel(u.Pr, u.U + 1− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
17: C = C ∪ {UTRetrieveDel(u, s, u.U + u.R)}
18: else if (s− u.R < u.L and e− u.R > u.U) then
19: C = C ∪ {UTRetrieveDel(u.Pl, s, u.L + u.R− 1)}
20: C = C ∪ {UTRetrieveDel(u.Pr, u.U + 1− u.Op(u.U− u.L + 1), e− u.R− u.Op(u.U− u.L + 1))}
21: C = C ∪ {UTRetrieveDel(u, u.L + u.R, u.U + u.R)}
22: end if
23: end if
24: return C
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