
 1

On instance separation in the UC-framework

István Vajda

May 30, 2012

Abstract
The UC approach of Canetti offers the advantage of stand-alone analysis while
keeping security guaranties for arbitrary complex environment. When we implement
by this approach first we have to ensure secure instance separation and based on this
condition, we are allowed to carry out a stand-alone analysis. In this report we
propose three issues related to instance separation in UC-context:
 We consider the problem of universal composability in cases, when we cannot
assume independence of instances. Next we formalize the interleaving attack and a
related security notion. In time-aware protocols time-based separation of instances is
one of the standard implementation techniques. We propose an event-driven clock
model towards purely symbolic analysis of time-aware protocols.

1. Introduction

The instance based approach of Canetti [5] emphasizes the importance of instance
“independence”. The security analysis of a protocol is simplified considerably, if we
are allowed to carry out the analysis on a stand-alone model, where we analyze under
the assumption that there are no other concurrently running instances from the same
or other protocols. One of the main advantages of the UC approach is that it keeps the
simplicity of the stand-alone analysis even in complex protocol environment.

In the alternative approach of Pfitzmann et al. [2] (BPW-approach) the requirement of
instance separation is present in an implicit way. All instances of a protocol “live
together” within the trusted host (TH) machine: the trusted host is a reactive ideal
functionality storing all actions during the lifetime of the protocol. The essence of
their approach is a reactive, composable Dolev-Yao type cryptolibrary, using which
the protocol is abstracted into a completely symbolic version. Different invocations of
ideal cryptographic primitives are separated by ideal access guarantees to the
corresponding non-public stuff by so called handles. That is this separation approach
works with finer granularity (at the level of crypto building blocks instead of
complete protocol instances) and at the same time it provides inter- and inner-instance
separation. For application examples of the BPW-approach see [9-13]. In this report
we refer to the approach of Canetti [5] in Section 3, and to the BPW-approach in
Section 4.

An ideal functionality F at Canetti is defined such a way that it excludes the
possibility of interactions between different instances for honest or adversarial actions
alike. It follows that a (UC-)secure implementation ρ of ideal functionality F must

Technical University of Budapest E-mail: vajda@hit.bme.hu

 2

ensure similar protection. UC theorem [5] guarantees that, if an F- hybrid protocol π
invokes (fresh) instances 1,..., mF F , then the composed protocol πρ, where each F –
instance is substituted by a (fresh) instance of ρ, securely implements protocol π (m is
an arbitrary integer). Recall, universal composability means that UC-security is kept
under composition with any protocol.

From the viewpoint of instance separation, the main part of the analysis is to show for
an implementation ρ that an adversary is not able to carry out harmful interactions
between concurrent instances.

There can also be the case that some kind of interactions are tolerated by the
ideal functionality from cost or efficiency reasons, like the cases of “allowed leakage”
or “allowed delay” in favor of the adversary. One expects that in this case the stand-
alone approach of analysis will not work in general. In Section 3.1 we will examine
the composition theorem for such tolerated dependences between instances.

Interleaving attacks are the usual attack types against those protocols, which
cannot provide secure instance separation. We introduce the chosen instance attack
(CIA) and a notion of security under CIA. This notion formalizes and generalizes
interleaving attacks.

A standard technique for instance separation relies on time information. We
will examine the related problem of time modeling and propose an abstract time
model.

Matsuo [7] proposes a UC model for timestamps based on TTP real time clock
both in the real and the ideal model, where in fact, UC approach refers to the security
of request/reply communication with TTP clock. Buldas et. al. [4] proposes a UC-
secure time-stamping scheme. Their time model is a quantized real time source: their
Stamper works in rounds with time unit (hour, day, week, etc.). Backes [3] analyzes
the Kerberos protocol in the BPW’s UC model. Here the ideal model is purely
symbolic and the analysis is carried out on a purely symbolic version of the protocol
into which the Kerberos protocol is abstracted. They replaced the timestamps by
nonces assumed known to the participants generating the timestamps, because
timestamps are not modeled in the BPW’s model. Note, this way they could model
one characteristic property of time: it is changing. However, the time has a very
important characteristic lost here: it is increasing continuously and as a consequence,
the time order of any two events can be obtained. The proved (authentication)
properties in [3] became weaker than the authentication Kerberos really offers,
because by this simplification they could not grasp the purpose of timestamps in
Kerberos.

In Section 4 we make an attempt to propose a way towards a purely symbolic
time model by substituting the real-time clock with an event-driven clock.

2. Contributions

In this report we propose three issues related to instance separation in UC-context.

Section 3.1: We consider the task of composability in case of dependent instances,
first of all to emphasize that UC and independence of instances are not “synonyms” of
each other. We show that universal composability is possible also for dependent

 3

instances, where realization ρ of ideal functionality F is provably secure for all
tolerable interactions (dependences) between instances defined by the ideal
functionality. However, the advantage of stand-alone analysis is lost, in general.
(Proposition 1)

Section 3.2: We generalize and formalize the interleaving attack by introducing the
definition of chosen instance attack (CIA) and a relation-based security notion under
CIA. We examine its relationship to standard indistinguishability. (Proposition 2,
Lemma 1, Lemma 2)

Section 4: We propose a step towards purely symbolic timing approach for the
analysis of time-aware protocols. In particular, we propose an event-driven clock (e-
time) and discuss a few properties of e-time relevant to an analysis in this model.
(Property 1, Property 2)

3. Dependence of instances

First we show a simple example for the task of instance separation and the
interleaving attack. (It is for illustration, can be skipped at first reading.)

Example 1: Consider the following two-party key exchange protocol:

1. A B : {K}Kb
2. B A : {N}K
3. A B : {sigA(N)}K

Party A generates a fresh key K and encrypts it with the public key of party B. Party B
chooses a fresh value (nonce) N and encrypts it with the new secret key K. Party A
signs the nonce and encrypts the signature with secret key K. The wished goal of the
protocol is that after the instance finishes the two parties and only those will be aware
of the new secret key K. At first glance the protocol seems secure but it is not.
Adversary X is able to implement an interleaving attack:

A X : {K}Kx
 X B : {K}Kb
 B X : {N}K
X A : {N}K
A X : {sigA(N)}K
 X B : {sigA(N)}K

The adversary takes part in two concurrent instances (for instance, by corrupting a
party in both) and channels messages between them. At the end of the runs three
parties A, B and X become aware of the same key K. The instances are not separated
in this protocol. A security patch is the following:
1. A B : {K}Kb
2. B A : {N}K
3. A B : {sigA(B, K, N)}K
□

 4

3.1. UC for dependent instances

Instance separation is a technique of modular design and analysis of protocols.
Indeed, if we can separate the instances in a secure way, then in the next step of the
security assessment of the implementation, we can carry out a stand-alone analysis.

Fj

Adversary

Fi

Environment

(1)

(2)

(3)

TTP

Fig.1.: Sources of potential interactions between instances

The ITI-model (Interactive Turing machine Instance [5]) of protocol instances has
three communication ports (in Fig.1. instances iF and jF of an ideal functionality F):

• input/output ports to the environment ((1)),
• communication ports between instances via the adversary ((2)),
• input/output ports to subroutines ((3)).

Any interaction between different instances can be realized only via these ports. The
UC-theorem of Canetti [5] is valid only if parties of subroutines (sub-parties) do not
accept/send input/output from parties/sub-parties of any other instance:

Recall, the UC theorem [5] ensures that, if an F- hybrid protocol π invokes
(fresh) instances F1,…,Fm , then the composed protocol πρ , where each F –instance is
substituted by a (fresh) instance of ρ, securely implements protocol π (m is an
arbitrary integer). “Freshness” means not only that all random elements of an instance
are chosen independently and uniformly but also that the instances must have disjoint
local states.
 A typical case of such kind of dependence between instances is, when
instances rely on a single common instance corresponding to a TTP service (Fig.1).
The JUC (Joint-state Universal Composition) theorem [6] provides a technique for
getting rid of such dependence. Essentially: we produce virtual sub-instances of the
single common instance by introducing sub-SIDs.

The adversary may be active in several different instances and may try to
channel information (whole messages or parts of them) between different instances
(via communication port (2) in Fig.1). Recall, a corresponding type of attack is the
interleaving attack (Example 1, above).

 5

This is the standard type of attempted dependence, which is to be foiled by
techniques of instance separation: the definition of ideal functionality F forbids such
an interaction and in case of a secure realization any such attack attempt leads to the
abortion of the target instance. Essentially: in the ideal functionality, protocol
messages carry a unique instance identifier (SID), which cannot be tampered with by
the adversary and any attempts to channel message from any other instance is
detected by at least one of honest parties based on the instance SID.

Note, these scenarios do not cover all sources of potential dependence between

instances. It may be the case that we allow “legal” interactions between instances via
communication port (2). Tolerable interaction is similar to “allowed leakage” or
“allowed delay” in favor of the adversary and it is defined also by the ideal
functionality. Below, we consider universal composability in case of such interactions
between instances.

 We mention that dependence between instances may happen also from further
reasons: for example, via dependence between inputs of different instances. For
instance, a corresponding scenario is the following: there exists a statistical
dependence between the time samples of a process, where the samples correspond to
the input values of instances (port (1) in Fig.1). The adversary as an a priori
knowledge may be aware of this dependence. Leakage of input information in one
instance can be a useful predicate for a corresponding quantity in a concurrent
instance.

Here we would like to emphasize that universal composability, in principle, need not
assume independence of instances, informally, universal composability and secure
separation of instances are not “synonyms” of each other. However, in general, we
loose the simplicity of stand-alone analysis of an implementation ρ of ideal
functionality F:

Proposition 1: Universal composability is possible also for dependent instances,
where realization ρ of ideal functionality F is provably secure for all tolerable
interactions between instances defined by the ideal functionality. However, the
advantage of stand-alone analysis is lost, in general.

Proof: (sketch)
We can apply the technique of Canetti [5]. Below we emphasize only those issues,
which are particular to the statement.

Assume that protocol ρ UC-realizes ideal functionality F, where no
distinguishing environment with dummy adversary and black box simulation can
distinguish a single instance of ρ from a single instance F. Recall, this type of
distinguishing environment is very powerful: it incorporates the usual adversary, it
has access not only to the standard input/output interfaces of the parties but it has full
access also to the communication between parties of instances.

Recall, the environment models arbitrary protocol environment under
computational constraint. In particular, it models also an environment of an arbitrary
set of concurrent instances of ρ, where the environment is able to carry out
interactions between those instances and the instance target of the distinguishing
effort.

 6

This way, when assessing whether a realization ρ of an ideal functionality F
with tolerable interaction is UC-secure or not, the distinguishing environment checks
all security consequences of tolerable interactions.

In the hybrids argument (within an indirect proof, like in [5]), distinguishability of
hybrid protocol π running with t-tuple of instances of ideal functionality F from
composed protocol πρ with t-tuple of instances of protocol ρ is reduced to the
distinguishability of single instances of ρ and F. The distinguishing “ l -th hybrid –
environment” for the single instance is just one possible inter-instance constellation,
under which protocol ρ is UC-secure by the above argument and as such, the ρ-
instance is indistinguishable from an instance of ideal functionality F.
□

A related research is to explore those security tasks where potential interactions
between concurrent instances appear as tolerable imperfections, and as such, are part
of the definition of corresponding ideal functionalities.

3.2. A standard definition for interaction-proof property of protocols

Informally, secure separation of instances means that different instances cannot have
“observable” impact on each other’s “performance”. Here we give a definition for
instance separation by defining the “observable impact on performance”. This way
we give a definition also for protocols secure against interleaving attacks. Referring to
the previous section, here we assume that ideally we do not allow interaction between
instances, i.e. our aim here is to propose a standard definition for interaction-proof
implementation.

We introduce the notion of chosen instance attack (CIA) and the definition of

security under CIA. A few notations follow:
A target instance is attacked by the adversary. The target instance is chosen

with input according to a distribution D over the input space. Let M denote the set of
protocol messages of an instance with output ()O M . Let S denote the output space of
a non-attacked instance. Consider an attack against the target instance, which is done
by modifying message set M. If the modification is detected by the (honest) parties of
the target instance, we say it is aborted. The probability of an event E under non-abort
condition will be denoted by () (|)P E P E non abort= − .

Let S’ ('S S⊃) denote the output after running the target instance under
attack in non-abort cases, i.e. when there is no attack or the attack remains undetected
by the honest parties of the instance. Here we do not describe the representation of the
output explicitly; we assume that it can be done by some appropriate way: e.g. by
giving what the participants (the adversary is included) of all involved instances know
relative to their a priori knowledge after the run of the instance. For an example see
Example 1.

Let : ' {0,1}R SxS → denote an efficiently computable relation, where
(,) 1R a b = means, that a S∈ and 'b S∈ are in relation R. For brevity, below we use

notation (,)R a b for equality (,) 1R a b = .

 7

Definition 1. (chosen instance attack, CIA)
The goal of adversary CIAX is the modification of the protocol messages of the

target instance, such a way, that the resulted output is in relation R with the output of
the non-attacked target instance. Adversary CIAX has access to a CIA-oracle, where
the CIA-oracle is the following:

The adversary is allowed to request the invocation of at most r instances, where
the set of parties and their inputs are given in the request. □

Example 2: Consider Example 1:

{ } { } { }{ }, , ()X AM K K N K sig N K= ,
()O M ={after the run the two parties A and X of the instance and no one else are

aware of key K} S∈ ,
(())CIAO X M ={the two parties A and X of the target instance and party B from a

concurrent instance are aware of the same key K } ' \S S∈ .
□

The strength of an adversary rapidly grows with the number of corrupted parties. This
is especially true for interleaving attacks, where the adversary builds bridges between
two or more instances via corrupted parties. For simplicity of parametrization, let

0c ≥ denote the level of corruption in an instance of the protocol, i.e. in each
interacting instance during the attack.

Here we consider an arbitrary efficiently computable protocol. It may happen that
some input information is carried to the output by the protocol as publicly accessible
plaintext, where, in addition, the integrity of this information is not protected. Such
protocol could be attacked easily by an CIAX adversary by manipulating the plaintext
characters. Excluding such protocols does not seem to weaken our definitional
approach.

Now we define the security under chosen instance attack, which is the advantage of
an adversary carrying out modification attack against the target instance with the help
of the CIA-oracle relative to the success of a simulator having access only to public a
priori information:

Definition 2. (security under CIA)
A protocol is (, , ,)t r cε -secure under chosen instance attack, if for arbitrary
probability distribution D over the input space, for arbitrary efficiently computable
relation R and for any adversarial algorithm CIAX with complexity limit t, request
limit r and corruption level c, there exists a simulator X’ with complexity limit t such
that

()(){ } ()(){ }(), () (), '()CIAP R O M O X M P R O M O X pub ε− ≤ (1)

where pub denotes all publicly available a priori information and where the
probability is calculated over all random variables (randomness used to set up the
instances in (1) and the internal random elements of algorithms X and X’). □

 8

One might expect that probability ()()()(), '()P R O M O X pub is negligibly small.

However, this probability depends on the considered protocol: assume a two-party
protocol which is only a public key encryption of the input message sent by one of the
parties and decoded by the other party. Now, if the set of input messages contains
only two elements, then the considered probability is exactly ½, for the only
meaningful relation, the dissimilarity.

Definition 2 formally resembles the notion of non-malleability (NM) for public key
encryption, therefore, for brevity, we refer to it as (, , ,)t r cε NM-security of a protocol
against adversary CIAX .

Corollary of Definition 2: (, , ,)t r cε NM-security of a protocol implies its (, ,)t cε
“stand alone” security.

Proof:
When an CIAX adversary does not send requests to the CIA oracle, it simplifies to a
“stand-alone” adversary.
□

Definition 2 is illustrated in Fig. 2: if we choose an instance M according to input
distribution D and choose an CIAX adversary with complexity parameters (, ,)t r c ,
then instance ()CIAX M may fall into set abort or into set non-abort. In case of non-
abort, M and ()CIAX M can be distinguishable or non-distinguishable by a standard
distinguisher (see Definition 3 below).

Note, abort/non-abort decision is carried out by the set of honest participants
by running the rules of the protocol. A standard distinguisher is much more powerful:
it is allowed to run arbitrary distinguishing algorithm under complexity limit t.

Recall, for public key encryption the implication NM-CPA → IND-CPA
stands: if the encryption leaks, the obtained information on the plaintext can be used
to generate a ciphertext with a relation based on this information. Here we guess –
formally - similar implication for “typical” protocols.

abort

non-abort

NM-sec IND-insec.

Fig.2. Guessed relationship of standard indistinguishability and relation-based
security notions for “typical” protocols

 9

Definition 3. (IND-insecure)
We call a protocol (, , ,)t r cε IND-insecure, if there exists a probability distribution D
over the input space and an adversarial algorithm CIAX with complexity parameters
(, ,)t r c , such that for all distinguishing algorithms Y with complexity limit t:

(){ } 1
2{0,1}

/ 2
r

bb
P Y M b ε

←
= ≤ + , (2)

for instance pair ()0 1 0, ()CIAM M X M= , 0 1M M≠ , where the input of 0M is

according to distribution D.
□

For emphasizing the decision aspect, in formula (2) only the random selection of b is
designated; the probability is calculated over the following random variables: coin
flipping variable b, randomness used to set up instance 0M , internal random elements

of algorithms CIAX and Y.

Now, we state a partial result under the following assumptions:
A1.) Consider protocols such that ()()()(), '()P R O M O X pub is negligible for

arbitrary efficiently computable relation R and arbitrary simulator X’ with complexity
limit t.
A2.) Adversary CIAX fabricates instances with output in set '\S S if not aborted.

Both assumptions seem plausible for “typical” protocols and adversarial goal

Proposition 2: Under assumptions A1 and A2, if a protocol is (, , ,)t r cε IND-secure,
then it is (~ , , ,)t r cε NM-insecure. (Here ~ μ means a value within a negligible
distance toμ .)

Proof: A protocol is IND-secure if for any probability distribution D over the input
space, for any adversarial algorithm CIAX with complexity parameters (, ,)t r c , there
exists a distinguishing algorithm Y with complexity limit t , such that

(){ } 1
2{0,1}

/ 2
r

bb
P Y M b ε

←
= > + . (3)

We show that there exists an efficiently computable relation R such that adversary

CIAX (~ , , ,)t r cε -breaks NM-security.
Relation R is the following: : ('\) 1R Sx S S → , : ('\) 0R Sx S S → . Relation R is

efficiently computable: by assumption A2 algorithm Y is able to decide if its input
instance bM produces an output in set '\S S or in set S with success probability (3).

Here follows 1(() '\)P O M S S ε∈ > and ()0 1((), ()) 1P R O M O M ε= > . Taking into
account assumption A1 and Definition 2, we arrive to the claim.
□

 10

The following technical lemma gives hint on our expectation that set IND is strictly
larger than set NM.

Lemma 1: Two random variables ξ and η over space U may be perfectly
indistinguishable while perfectly related by an efficiently computable relation R.

Proof: Let U={00,01,10,11} and random variables ξ and η have uniform distribution
over U. If

((01) | (00)) ((10) | (00)) 1/ 2P Pξ η ξ η= = = = = = ,
((00) | (01)) ((11) | (01)) 1/ 2P Pξ η ξ η= = = = = = ,
((00) | (10)) ((11) | (10)) 1/ 2P Pξ η ξ η= = = = = = ,
((01) | (11)) ((10) | (11)) 1/ 2P Pξ η ξ η= = = = = = ,

then random variables ξ and η are perfectly indistinguishable and at the same time
perfectly related by opposite parities.
□

Note, if we consider arbitrary efficient protocol, then we can get any output random
variable produced by an efficient algorithm. Note, furthermore, relations are able to
explore dependencies given in two-dimensional distributions, which standard
distinguishers cannot on marginal distributions.

Our intuitive feeling is that non-negligible standard distinguishability implies a non-
negligible and efficiently computable relation between the considered pair of random
variables. The next technical lemma shows a corresponding result for the case of
independent variables.

Lemma 2: Assume two random variables ξ and η over the space U are
computationally (,)tε -distinguishable. If these variables are independent, then there
exists an efficiently computable relation R, such that () 2(,) 1P R ξ η ε= > .

Proof: Let Z denote an algorithm, which (,)tε -distinguishes variables ξ and η , i.e.

() ()() 0 () 0P Z P Zξ η ε= − = >

The statistical distance between probability distributions ()D yξ and ()D yξ , y U∈ of
random variables ξ and η is also at least ε . Let decompose space U to 0 1U U U= ∪ ,

0 { : () ()}U y D y D yξ η= ≥ , 1 0\U U U= . It follows, that () ()0 0P U P Uξ η ε∈ − ∈ >

and () ()1 1P U P Uη ξ ε∈ − ∈ > . Hence ()0P Uξ ε∈ > and ()1P Uη ε∈ > . Let R be
defined the following way: (,) 1R a b = , if 0 1{ } { }a U b U∈ ∩ ∈ and zero otherwise.

Applying the assumed independence, we arrive at () 2(,) 1P R ξ η ε= > . Relation R is
efficiently computable: let (,) 1R a b = , if { () 0} { () 1}Z a Z b= ∩ = and zero otherwise.
□

 11

A standard definition of security, in general, is a notion of breaking under different
attack classes. Definition 2 of NM-CIA is also of this sort. In simulation-based
approach (like in UC analysis) the essential point is what we consider the ideal notion
of breaking. It is an important problem, in general, to find the relationship between
these two definitional approaches of secure implementation. It is a research problem
also for NM-CIA.

Instead of formula (1) we could define the interaction-proof property also by the
following way:

Definition 2’:
The protocol is (, , ,)t r cε -secure under chosen instance attack, if for arbitrary
distribution D over the input space, for arbitrary pair of efficiently computable
relation R and for any adversarial algorithm CIAX with complexity limit t, request
limit r and corruption level c, there exists an adversary Y with complexity parameters
(,)t c such that

 ()(){ } ()(){ }(), () (), ()CIAP R O M O X M P R O M O Y M ε− ≤ . (1’)

□

Note, adversary Y is an adversary against the stand-alone instance, therefore, by this
definition we can focus better on the gain provided by the CIA-oracle.

4. An abstract time model: event-driven Clock

The goal of this section is to propose an abstract time model an event-driven Clock.
Time is an abstraction. Heuristically, it is nothing else than a continuously growing
index of irreversible changes which happen in the environment surrounding us.
Indeed, if suddenly all these changes would be reversed we might feel it as a journey
through the time into the past. The experience about the irreversibility of changes
leads to the main property of time: it steps only forward. This means that the time is a
handle for our thinking to arrange the events in order.

The following plausible hypothesis is a justification of our approach:
If we are not allowed to use a real time clock, then the only possible substitute is
counting the number of appropriately chosen events within the instances of the
protocol under examination.

Related theoretical questions are the following: How can a time-aware protocol be
analyzed in a purely symbolic system? How the answer depends on the adversarial
model?
Here we attempt to make a step towards the abstraction of the time source (the event-
driven Clock).

We assume the standard asynchronous communication model ([5]), which is
characterized by the following properties: within an instance only one party is
communicating at any given time; reception of a message activates the sending of the

 12

next message; messages are transmitted with the mediation of the adversary. This is a
natural communication model for many cryptographic protocols as well as it models
strong capabilities of the adversary in controlling communication between honest
users. In such model the time of sending and receiving messages by honest users are
the only relevant time-related events.

Note, the Clock model is a tool used only in the analysis. The output of such an
analysis could be considered as a “proof in event-driven Clock model” (coined after
“proof in random oracle model”).

4.1. The Clock

First, we have to define the underlying set of events. The most natural selection for
events, are the actions of communication between parties, i.e. the sending and the
reception of protocol messages. These are those time moments to which timing
actions are usually set in time-aware protocols. At each occurrence of such an event,
the Clock makes one step forward. The Clock has two input ports (Step, Time request)
and one output port (Time reply) (Fig.3.)

Clock

Step

 Time request

 Time reply

Fig.3. I/O ports of the Clock

The Clock is a common resource for the instances of the protocol. The Clock starts
running with the first message sending in the first instance. Within an instance, the
ideal functionality controls the Clock by having exclusive access to Step, Time
request and Time reply ports of the Clock.

ER outu1! ER inu1? H

…

TH

M1 … AMi Mj Mn

Clock

Fig.4. Clock is a part of the trusted host (ideal system)

 13

The work, which provided samples for symbolic analysis of cryptographic primitives
in UC-framework is the BPW-approach detailed in [1]. Below we refer to a few
notations and technical elements from this approach.

In Fig.4 we see that parties have access to the Clock via the Trusted Host
(TH). Machine TH models the protocol environment. In particular, it schedules the
invocation of concurrent instances. In Fig.4 one instance is illustrated, where protocol
machines 1,..., nM M are the parties of the instance and where parties ,...,j nM M are
compromised.
In database D of the trusted host, TH an entry has the following attributes (see [1]):

1(, , arg, ,...., , ,)n Aind type hnd hnd hnd len

which are the following: the index of the entry, the data type (data, list, nonce, enc,…
etc.), arguments (e.g. a pair of “lists” representing indexes pointing to the plaintext
and public key behind an encryption (type enc)), the handlers identifying who knows
this entry and the length of the entry.

This database stores the history corresponding to the run of the protocol, i.e.
all past and concurrently running instances of the protocol. Note, the index here is
“correlated” with the time by the event driven Clock: it increases by one with each
new entry. What is the point here: we can naturally include the event-driven Clock
into this TH model. It is an index-like value as it is also an incrementally growing
natural number. It could be a time data type, which is set by TH at corresponding
requests of parties.

When machine TH receives an input from a party as well as when TH sends an output
to a party the Clock makes one step forward. The order of processing a protocol
message sent from Party A to Party B is shown in Fig.5.

Party A Party B

TH
(3)

(4) (2,5)

(6)

Adversary

(1)

Clock

Fig.5. The order of processing a message and stepping the Clock

(A → TH→ Clock → Adversary → TH → Clock → B)

We add a publicly available event-driven Clock also to the real system (Fig.6.).

 14

… Parties of
instance 1

Clock

Parties of
instance m

Fig.6. Clock functionality as a common resource in the real system

The order of processing a message during message transmission between party A and
B is the following:

A → Clock → Adversary → Clock → B

We assume the synchronism of Clocks can be kept in a natural way between the
event-driven Clock in the real and the ideal system.

4.1. Properties of the event driven Clock

Recall, an event-driven Clock model is thought to be used only in the analysis. The
output of such an analysis could be considered as a “proof in event-driven Clock
model”. What we can say about the reliability of an analysis carried out in the Clock
model? In particular: What we can say about the set of potential attacks against the
real protocol which are not captured in the Clock model?
A thorough answer needs further research. Here we summarize a few preliminary
thoughts and straightforward properties.

When, in general, we speak about a secure emulation of a specification, we
consider all the possible adversarial algorithms under complexity limitations. Among
all algorithms we may find also algorithms which manipulate the speed of Clock.
Note, it is done unintentionally, because the Clock model is used only for the purpose
of analysis.

For brevity, we use notation e-time for event-driven time and r-time for real-time.

The natural properties of r-time are the following:

• it steps only forward (it is mapped to an increasing integer number);
• r-time is consistent with the “earlier/later” property: a larger r-time value

corresponds to “later”;
• the difference between two r-time values correspond to their time distance

A usual assumption that the source of r-time cannot be manipulated, which means,
that we do not consider physical attacks against the real-time clock. Note, here we are
talking about the time source and not about the communication with it.

The manipulations by which an adversary could have effect on the e-time are the
following: deletion, insertion, delaying of protocol messages. We do not assume a
DoS attacker, therefore we exclude deletion attack. By insertion we mean generation
of extra “traffic”, e.g. by invoking extra instances of the protocol.

 15

Now we consider which r-time properties are retained by e-time. The answer will
depend on the assumed model of the adversary, i.e. in contrary to real-time source it is
sensitive to certain adversarial behavior.

In particular: How e-time retains the (r-)time order and the relative (r-)time
duration under attacks?

First we consider the strongest adversary with respect to time manipulation, which is
the standard assumption in the standard asynchronous communication model ([5]): the
adversary sees all communication between the parties of the protocol and she is
allowed to delay the protocol messages by her wish. The other e-time sensitive attack
is when the adversary generates extra communication, i.e. by invoking concurrent
instances. For reference, we call such an adversary, the strongest adversary.

Property 1: E-time retains the r-time order under the attack of the strongest
adversary. (earlier/later consistency)
Proof:
Assume messages B and C arrive to TH by r–time t1 and t2, respectively, where t1< t2.
By delaying message B, the adversary is able to exchange the r-time order of delivery
of messages B and C. Note, the e-time order of delivery is changing, accordingly.
When the adversary generates extra message traffic, she is able to “accelerate” e-time.
Assume the adversary generates extra traffic between messages B and C. Note, such a
manipulation neither affect the r-time or e-time order of the messages B and C.
□

E-time distance between consecutive events is fixed to 1, therefore it cannot reflect
the magnitude of r-time distance between them:

Property 2: E-time is not consistent with r-time with respect to time durations under
the attack of the strongest adversary: to different r-time intervals with the same length,
e-time intervals with different length may correspond.
Proof:
Consider messages B and C from the previous proof.
By delaying messages beyond r–time t2, the adversary can shrink the e-time distance
between messages B and C (at delivery).
If the adversary generates extra message traffic between r–time t1 and t2, she can
widen the e-time distance between message B and C, while their r-time distance
remains t2-t1.
□

In sum, in case of the strongest adversary our best hope from e–time is to retain
earlier/later consistency, however we cannot attain consistency with respect to
(r-)time duration.

Recall, when we talk about adversarial attack against e-time, it means that we
imagine an analysis in the event-driven Clock model and we consider all possible
adversarial algorithms (under complexity constraint), among them also those which
are attacks against e-time. A more fair approach to e-time is when we restrict the
adversary to a smaller set of attacks which are not directed against e-time.

For example, if we do not allow the adversary to generate extra traffic in order
to distort e-time, the adversary is able only to shrink e-time intervals by her delaying
capabilities (cf. the proof of Property 2). If such time interval corresponds to a

 16

message-acceptance time-window by an honest party, then the expected goal of an
adversary is to widen and not to shrink time gates between interacting instances.

Note, furthermore, if an attack exists only in the Clock model, then a security
claim in this model is a conservative statement.

With Section 4 our intention was to propose a potential direction towards a

completely symbolic analysis of time-aware protocols, and consider (straightforward)
limitations. Further research is needed to provide a thorough insight to how reliable an
analysis can be carried out in the Clock model. Adversarial manipulations of e-time
which open a gate to “artificial” attacks against the protocol amplify the power of the
adversary and may lead to needlessly strong security requirements against a protocol
or in other words to a security claim, which is a conservative statement. On the other
side, we do not expect relevant attacks efficient against r-time model and inefficient
(negligible) against e-time model.

References

[1] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable
cryptographic library. IACR Cryptology ePrint Archive, Report 2003/015,
http://eprint.iacr.org/, January 2003.

[2] M. Backes and B. Pfitzmann. A General Composition Theorem for Secure
Reactive Systems. Theory of Cryptograpy Conference (TCC 2004), LNCS 2951, pp.
336-354, 2004.

[3] M. Backes , I. Cervesato , A. D. Jaggard , A. Scedrov and J. K. Tsay.
Cryptographically Sound Security Proofs for Basic And Public-Key Kerberos. Proc.
11th European Symp. on Research. in Comp. Sec, 2006.

[4] A. Buldas , P. Laud , M. Saarepera and J. Willemson. Universally Composable
Time-Stamping Schemes with Audit. In ISC05, LNCS 3650. Cryptology ePrint
Archive: Report 2005/198

[5] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. Cryptology ePrint Archive: Report 2000/067. (received 22 Dec 2000,
revised 13 Dec 2005)

[6] R.Canetti and T.Rabin. Universal Composition with Joint State. Crypto’03, 2003.

[7] T.Matsuo and S.Matsuo. On Universal Composable Security of Time-Stamping
Protocols. Cryptology ePrint Archive: Report 2005/148

[8] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. 7th ACM CCS, pages 245–254, 2000

[9] I.Vajda. Cryptographically Sound Security Proof for On-Demand Source Routing
Protocol EndairA. Cryptology ePrint Archive Report 2011/103.
http://eprint.iacr.org/2011/103.pdf

 17

[10] I.Vajda. Framework for Security Proofs for Reactive Routing Protocols in Multi-
Hop Wireless Networks. Cryptology ePrint Archive Report 2011/237.
http://eprint.iacr.org/2011/237.pdf

[11] I.Vajda. New look at impossibility result on Dolev-Yao models with hashes.
Cryptology ePrint Archive Report 2011/335. http://eprint.iacr.org/2011/335.pdf

[12] I.Vajda. Non-malleable public key encryption in BRSIM/UC.
Cryptology ePrint Archive Report 2011/470. http://eprint.iacr.org/2011/470.pdf

[13] I.Vajda. UC framework for anonymous communication.
Cryptology ePrint Archive Report 2011/682. http://eprint.iacr.org/2011/682.pdf

