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Abstract: A hash function maps a variable length input into a 

fixed length output. The hash functions that are used in the 

information security related applications are referred as 

cryptographic hash functions. Hash functions are being used as 

building blocks of many complex cryptographic mechanisms and 

protocols. Construction of a hash function consists of two 

components. First component is a compression function and the 

second component is a domain extender. The various hash function 

design philosophies try to design the compression function from 

different angles. Two major categories of hash functions are: 

dedicated hash functions, and block cipher-based hash functions. 

These two kinds of design philosophies have been revisited in this 

paper. Two dedicated has functions from MD4 family - MD4, and 

SHA-256 constructions have been detailed in this paper. To limit 

the scope of this paper in this framework, discussions on attacks on 

hash functions, and SHA-3 finalists have been excluded here.  
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1. Introduction  

 We know that an ancient approach for identifying a person uniquely is to take the left thumb 

impression of that person. Similarly it would be of great help if we can work with a small 

message which represents a much longer message uniquely. Hash function provides us this 

facility. A hash function maps a variable-length input into a fixed-length output. This hash 

function output can be treated as a fingerprint of the input data [20]. A very simple example of 

hash function is modulo operation. Hash functions have been used in many fields of computer 

science such as hash table in data structure, checksum algorithms for error detection, digital 

signature in information security etc. They all depend on the fundamental property that different 

input values would produce different fingerprints in most of the cases. The hash functions that 

are used in the information security related applications are referred as cryptographic hash 

functions. A cryptographic hash function h takes a message with arbitrary length as input, and 

deterministically maps it to a bit-string with fixed length as output. That is 

h: {0,1}
*
  {0,1}

n
                                                         1.1 

This output bit-string of the hash function is commonly referred as “message digest” or simply 

“digest”, or just “hash”. 
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Hash functions are being used as building blocks of many complex cryptographic mechanisms 

and protocols. One such usage is in digital signature. Digital signature scheme (DSS) is used for 

authentication of data. In general, a digital signature scheme consists of three components; key 

generation, signature generation, and signature verification. Secure hashes are used by all of 

these components in DSS. Hash function is also used in authentication protocols such as 

Kerberos. Kerberos offers authentication, eavesdropping prevention, and integrity of data in 

client-server architecture. Kerberos uses hash function to calculate the hash value of the given 

client password and this hash value becomes the secret key of the client. Secure communication 

protocols such as IPSec, SSL, or SSH also use hash functions. Internet Key Exchange (IKE) 

protocols in IPSec use hash functions as pseudo-random functions. The handshaking protocol in 

SSL uses a hash function to create a message authentication code. PGP and S/MIME also use 

hash function to ensure the integrity of e-mail messages. 

 

The organization of this paper is as follows. The basic properties of a cryptographic hash 

functions have been introduced in section 2. Next section briefly introduces various components 

or building blocks of hash function design. Section 4 discusses dedicated hash functions. This 

includes Markle-Damgård construction, Markle-Damgård alternatives, concept of domain 

extenders, and detail descriptions of two hash functions in the MD4 family: MD4, and SHA-256. 

The block cipher based hash function designs have been discussed in section 5. 

 

2. Properties of Cryptographic Hash Functions 

 

The algorithmic properties of hash functions differ depending upon the usage of hash functions. 

To introduce the three properties a cryptographic hash function (or simply, hash function) should 

possess, we recollect the terms image, and preimage. Consider a function f(x) = y that maps x to 

the image y. The x is said to be preimage of y. Now the three properties of hash functions are as 

in the following [21]. 

 

1. Preimage Resistance: Given a digest y, it is computationally infeasible to find a message x 

that hashes to y. That is, computational cost of finding the input x must be ≥ 2
n
, where h(x) = y 

and |y| = n.  

 

2. Second Preimage Resistance: Given a message x, it is computationally infeasible to find a 

different message x', such that both messages hash to a same digest. That is, computational cost 

of finding the input x' (≠ x) must be ≥ 2
n
, where h(x') = y, h(x) = y, and |y|=n. 

 

3. Collision Resistance: It is computationally infeasible to find two different messages, which 

hash to the same digest. That is, computational cost of finding an input pair x and x' such that 

h(x) = h(x') must be ≥ 2
n/2

. Here n is the length of message digest.  
 

The preimage resistance property can be expressed as the inability to learn about the contents of 

the input data from its digest. The second preimage resistance property can be interpreted as the 

inability to learn about the second preimage from the given first preimage such that both of these 

preimages have same digest. The collision resistance property signifies that the digests are 

almost unique for each given message. If the input message is altered, almost always the hash 

changes as well. The word almost is to be noted. Because when a function maps from a larger 

domain to a smaller range, collisions necessarily exist. If we properly design cryptographic hash 



functions with digests of sufficient length then the probability that one can obtain two different 

messages with identical hashes is too small to be bothered in all practical applications. These 

three properties - preimage resistance, second preimage resistance, and collision resistance are 

also known as one-way, weak collision resistance, and strong collision resistance properties 

respectively. If a hash function satisfies the first two properties then it is referred as one-way 

hash function (OWHF). Whereas the hash function that satisfies all the three properties referred 

as collision resistant hash function (CRHF) [12]. A hash function with an output of n bits can 

only offer a security level of 2
n
 operations for pre-image and second pre-image attacks and 2

n/2
 

operations against finding collisions. While a security level of 128-bits is typical for main stream 

applications, 80-bit security is often a reasonable target for RFID tag-based applications [6]. 

 

 
3. Components of Hash Function 

 

To process arbitrary long input data, hash functions are generally designed by reusing small and 

fixed-length input functions under some composition method. The composition method a hash 

functions goes through is arbitrary-length domain extender of underlying building blocks with a 

fixed domain size. Such building blocks are known as compression functions. Compression 

function can be either keyed or keyless. So construction of a hash function consists of two 

components. First component is a compression function that maps a fixed-length input to a fixed-

length output. Second component is a domain extender that uses a compression function and 

produces a function with arbitrary-length input and fixed-length output. The design of a 

compression function is the key design component of hash function. The various hash function 

design philosophies try to build the compression functions from different angles. Although most 

of the existing hash functions can be described as being based on a block cipher, these block 

cipher based hash functions can be further classified into two categories. The first category is the 

block cipher-based hash functions that use hash functions based on an existing block cipher, 

particularly designed for encryption/decryption purpose such as DES, AES etc. The second 

category is the hash functions that use block ciphers that have been designed particularly for use 

in hash functions. Such hash functions are referred as dedicated hash functions. A point about 

these block ciphers, which have been designed exclusively for use in hash functions, is that they 

are not necessarily secure and hence may be unsuitable for exclusive encryption/decryption 

purposes.  Another approach of constructing hash functions rely on difficulty of solving some 

well known computational problems. It may be pointed out here that people have used stream 

cipher like RC4 instead of traditional approach of using block cipher in designing a hash 

function instead of block ciphers [7]. Compare to block-cipher-based hashes, the stream-cipher-

based hashes have smaller block size and more number of rounds. 

 

In brief, the general framework for iterated hash function to process the padded input message 

M=m1m2…mn can be described as follows: 

H0 = IV 

Hi = f(mi,Hi-1) for i = 1,2,…,n 

h(x) = g(Hn) 

 

IV is the initial vector or initial value. The function f is called the round function or compression 

function.  Hi is called chaining variable. And the result of the hash function is denoted with h(x). 



The function g is called the output transformation. In many cases, the use of output 

transformation is not mentioned explicitly. In that case, g is simply the identity function. That is, 

g(Hn) = Hn. In this case the output length is equal to the length of the chaining variable. Role of 

an output transformation is to further reduce the length of the hash result. 

 

 
4. Dedicated Hash Functions  

 

The most adopted approach by the designers to design hash functions is to use a domain extender 

on top of a compression function in an iterative manner. Iterative structures allow for a 

sequential message processing. One of the first examples of an iterative hash function is the 

Rabin hash [28]. In 1989, Merkle [22] and Damgård [9] independently introduced the concept of 

systematic iterative hash construction known as the Merkle-Damgård construction. 

 
 4.1 Merkle-Damgård construction 

 

The building block of the Merkle-Damgård construction is the compression function                    

f : {0, 1}
n
 × {0, 1}

b
 → {0, 1}

n
 that accepts input - a chaining or state variable h of n-bits 

size and a message block m of b-bits size, and produces n-bits updated chaining variable as 

output. 

 

Padding Rules: The message padding mechanism appends sufficient bits to the original message 

to make its length a multiple of the input size of the compression function f. This padding 

function for the Merkle-Damgård construction is suffix-free. The suggested suffix-free padding 

functions proposed by Markle, and the one proposed independently by Damgård differ. Merkle’s 

padding rule restricts the size of the processed message to maximum 264-bits, but this is not a 

problem for practical message sizes. On the other hand, adding a single bit per message block as 

per the padding of Damgård makes it less efficient due to the overhead of bit manipulations. This 

disadvantage of Damgård’s padding has paved the way for Merkle’s mechanism to be 

established as the standard padding rule for the Merkle-Damgård construction. 

 

The Merkle-Damgård design accepts an additional input parameter, initial value IV. The IV is a 

fixed constant. This inclusion of the initialization vector and the Merkle suffix-free padding to 

the Merkle-Damgård iterative domain extender has been referred as the Merkle-Damgård 

strengthening by Lai and Massey [16].  

 

Now Merkle-Damgård construction is stated as follows: 

 

Given: (i) Compression function f: {0, 1}
n
 × {0, 1}

m
 →{0, 1}

n
 and 

           (ii) n-bit constant (Initialization Vector) IV.  

 

Input: Message M 

1. Divide M into m1, m2, m3,. . . , mk, each of m-bit blocks such that the last block mk is padded 

with the encoding of |M|.  

2. Initialize h0 = IV; 

3. For i = 1 to k  

 Compute hi = f(hi−1,mi); 



Output: Message digest of M is hk+1. 

So, the Markle-Damgård construction iterates the compression function f. The output of f at i
th

 

round is hi. This hi and the next message block mi+1 are the input to the next i+1
st
 round of f. The 

hash of the last block, which contains the encoding of message length, is the hash of complete 

message. The temporary storage of the compression function’s output, hi, is referred as chaining 

variable or internal state. So to design a hash function we have to: 

1. choose a collision-resistant compression function 

2. use a padding procedure 

3. choose a good initial vector 

The main advantage of dedicated has function constructions is their high speed and low resource 

consumption in the software as well as hardware implementations. This is the reason behind the 

popularity of this class of cryptographic hash functions. Examples include such famous functions 

as MD5 as well as NIST standards SHA-1 and SHA-2. 
 

 4.2 Domain Extenders 

 

The domain extenders can be classified as either Merkle-Damgård-based domain extenders or 

non-Merkle-Damgård-based domain extenders. In each category there are several domain 

extenders. A superb discussion on domain extenders can be found in the thesis by Andreeva [1]. 

Two major design choices for Merkle-Damgård-based domain extenders are:  

(i) Wide-Pipe or Narrow-Pipe design, 

(ii) Keyed or Keyless design.  

  

Wide-Pipe Versus Narrow-Pipe Domain Extenders: The original wide pipe construction was 

introduced by Lucks et al [18]. It is characterized by keeping a full large (>> n) internal state in 

the iterative Merkle-Damgård portion. As final step, a distinct output transformation is employed 

on this “wide” state to compress it to the desired output hash length, which is shorter than the 

internal state size. JH and Keccak are examples in third round SHA-3 candidates that have 

adopted the wide-pipe strategy. 

 

Narrow-pipe constructions, in contrast, are designed by iterating a state as large as the output 

hash value. BLAKE is the example in third round SHA-3 candidates that has adopted the 

narrow-pipe design. 

  

Keyed Versus Keyless Domain Extenders: Another separation of domain extenders is based on 

the presence or lack of an explicit key input. When the key is unique for every message, it is 

referred as salt. Keyed designs are often less efficient than keyless ones but come with more 

security guarantees. Many designs that have advanced in the NIST competition include them as 

an optional input. 

 

 

 

 

 



 4.3 A Summary of Merkle-Damgård Alternatives 

 

Prefix-free Merkle-Damgård: The basic prefix-free Merkle-Damgård designs are narrow-pipe, 

keyless iterative domain extenders that apply a prefix-free padding function [8]. A padding rule 

is called prefix-free, if for any distinct M,M0, there exists no bit string X such that pad(M0) = 

pad(M)||X. If the prefix-free designs are not additionally suffix-free, they do not preserve the 

main collision security property. 

 

Enveloped Merkle-Damgård: The enveloped Merkle-Damgård design was proposed by Bellare 

and Ristenpart [3]. It is a narrow-pipe, keyless domain extender. It uses two fixed initialization 

vectors IV and IV0. The first vector, IV is applied in a Merkle-Damgård style as input to the first 

compression function. The second vector, IV0 is provided as input to the final compression 

function together with the chaining variable and the final input message bits and this step is 

known as the enveloping step of the construction. 

 

Merkle-Damgård with permutation:.The Merkle-Damgård with permutation construction is a 

narrow-pipe, keyless variant of the original Merkle-Damgård design [15]. The difference with 

the Merkle-Damgård construction is that a permutation is applied before the processing of the 

last message block. 

 

Linear hash: The linear hash function is a narrow-pipe, keyed Merkle-Damgård iteration [4]. 

The only difference with the Merkle-Damgård design is that it accepts an additional key input in 

every call of the iteration. Moreover, each key is distinct. Notice that this approach ensures a 

domain separation of the underlying compression function. 

 

Linear XOR: The linear XOR is a narrow-pipe, keyed Merkle-Damgård iteration [4]. It adds a 

linear number of keys by XOR-ing these with the chaining values in a Merkle-Damgård style 

iterative hash function. The first key is XOR-ed with the initialization vector IV and the final key 

is XOR-ed with the final intermediate chaining value, while the final hash result is left 

unmodified. 

 

Shoup’s hash: The Shoup’s hash function [33] derives from the linear XOR hash function and 

optimizes it in terms of the number of keys. It uses logarithmic rather than linear number of keys, 

following a specific sequence. 

 

HAIFA: The HAsh Iterative FrAmework (HAIFA), designed by Biham and Dunkelman, is a 

narrow-pipe hash function [10]. HAIFA modifies Merkle-Damgård by introducing extra input 

parameters to the compression function: a bit counter, and an optional salt value. The bit counter 

keeps track of the number of bits hashed so far.  And the salt value is used as a key to create 

families of hash functions. Salt is set to 0 if only one hash function is required.  

 

Sponge: The Sponge design supports variable length outputs. If the output length is fixed, the 

Sponge construction is roughly classified as a keyless, wide-pipe, non-strengthened Merkle-

Damgård construction [11]. Sponge operates on a fixed-length state b = {0, 1}
r+c

 through 

transformation or permutation function p: {0, 1}
r+c

 → {0, 1}
r+c

. Here r is the bit rate and c is the 

capacity of the sponge. It consists of an absorbing phase and a squeezing phase. In the absorbing 

phase, the (padded) message is divided into r-bit blocks and each block is XOR-ed with the r part 



of b (initially, b = 0
r+c

), p then iteratively processes b until all blocks are finished. In the 

squeezing phase, the state continues to be transformed / permuted by p but this time the r parts of 

the states are returned at each iteration as output blocks. A well-known sponge construction is 

Keccak. 

 
 4.4 Other Domain Extenders 

 

Several non-Merkle-Damgård alternative designs are known in the literature. Often the 

incentives are twofold: increasing the efficiency and/or the security guarantees. 

 

Tree-Based Hash Functions: The tree-based constructions, in contrast to the Merkle-Damgård 

based designs, allow for parallelism. An early tree-based mode of operation was proposed by 

Damgård [9]. Tree constructions split the message into blocks which could be processed by 

independent processors or machines and the final result is combined to produce the hash value.  

 

Few other non-Merkle-Damgård alternative designs are multi-pass domain extender and multi-

pipe domain extender. A multi-pass domain extender processes the data in more than one pass. A 

multi-pipe domain extender allows for processing the message in multiple pipes without the need 

to store the message. 

 
4.5 Examples and Description of Dedicated Hash Functions 
 

MD4, MD5, SHA are some examples of dedicated hash function. The term “MD4 family” is 

used for hash functions whose design principles are influenced by MD4 up to much extent. Apart 

from MD4, the other members of the family are hash functions such as MD5, SHA-0, SHA-1, 

SHA-2 etc. 

 
4.5.1 MD4 

  

The famous cryptographer Rivest was motivated by the works of Merkle's and Damgård's at 

Crypto 1989 and proposed MD4 in next year 1990 [29]. MD4 is a very efficient hash function 

based on the principles by Merkle and Damgård. Cryptanalysis of MD4 revealed certain 

unexpected properties raising concerns about its security. Rivest then proposed the successor 

MD5 in 1992 [30]. MD5 is based on MD4 and shares many design ideas of MD4. Focus of MD5 

is much more on security than on efficiency. In the following the MD4 has been explained in 

moderate detail. MD4 compresses any arbitrary bit-length message into a 128-bit hash value. 

MD4 consists of the following five steps. 
 

Step 1.  Append Padding Bits 

The input message is padded so that its bit-length is congruent to 448, modulo 512. That is, the 

message is extended so that it is exactly 64 bits short of being a multiple of 512 bits long. A bit 

"1" is appended to the message, and then "0" bits are appended so that the length in bits of the 

padded message becomes congruent to 448, modulo 512. At least one bit and at most 512 bits are 

appended. Padding operation is to be done always, even if the length of the message is already 

congruent to 448, modulo 512. 

 
 



 
 
 
Step 2.  Append Length 

A 64-bit representation of input message is appended next to make the resultant message exactly 

multiple of 512-bits. If the length of message is greater than 64-bits then only the low-order 64 

bits of input message length are used.  
 

 

Step 3.  Initialize MD Buffer 

The initial value is IV = 67452301 EFCDAB89 98BADCFE 10325476 in hexadecimal. The four 

32-bit state registers, A, B, C, and D are initialized from the IV as follows:  

A = 67452301H, B = EFCDAB89H, C = 0x98BADCFEH, and D = 10325476H.  

Step 4. Process Message in 16-word Blocks 

Each message block of 512-bits is processed by a compression function. The compression 

function consists of three rounds, each of which has sixteen steps. The 512-bit message block is 

broken up in sixteen words of 32-bits and exactly one of these words is used in every step. In 

each round, a separate ordering of message words is used. Each of i
th

 round uses different 

nonlinear Boolean function Fi defined as follows: 

 

F0(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) 

F1(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z) 

F2(X, Y, Z) = X ⊕ Y ⊕ Z 
Here X, Y, Z are 32-bit words.  

 

Let mi be the i
th

 message word, 0 ≤· i ≤ 15. Then, in round 0, the message words appear in the 

order m0, m1, . . . , m15. In round 1, the message words appear in the order m0, m4, m8, m12, m1, 

m5, m9, m13, m2, m6, m10, m14, m3, m7, m11, m15. In round 2, the message words appear in the 

order m0, m8, m4, m12, m2, m10, m6, m14, m1, m9, m5, m13, m3, m11, m7, m15. The expanded 

message word Wi serves as input for the i
th

 step in the step operation part. 

 

A rotation operation is the circular shift of the bits in a word. The notation is used to 

represent the operation left-rotation of x by n bit positions. The value n varies depending on the 

step number and round number. The value of n is 3, 7, 11, 19, … (recurring four times) in round-

0, and  0, 3, 5, 9, 13, … (recurring four times) in round-1, and 3, 9, 11, 15, … (recurring four 

times) in round-2. 

 

The step update function modifies the four registers A, B, C, and D into A
′
, B

′
, C

′
, and D

′
 as 

follows: 

B
′
 ← (A + Fi(B, C, D) + W + ki)

<<<n
 ≡ 2

32
 

C
′
 ← B,  

D
′
 ← C, and 

A
′
 ← D.  



After a 512-bit message block is compressed, the variables A, B, C, and D are updated as 

follows:  

A ← A+ A
′
,  

B ← B+B
′
,  

C ← C+C
′
, and  

D ← D+D
′
.  

And then remaining 512-bits message blocks are processed similarly. 

 

Step 5. Output  

The message digest of the input message is generated by concatenating all the 32-bit register 

values of A, B, C, and D after we process all the input message blocks. The concatenation is to 

be done from low-order byte of A, followed by B, C, and D in the same manner. 

 
4.5.2  Diving deep into the MD4 

 

The four 32-bit state registers, A, B, C, and D were initialized from the IV as specified earlier. 

These registers are updated through 48 steps (separated into three rounds, each of 16 steps). The 

512-bit message is expanded into 48 words, each of 32 bits length. Each word is updated by one 

of the 48 steps. After these 48 steps, the registers are added (modulo 232) to the four words of the 

chaining input, and the sum is returned as the output of the compression function. Each step 

updates only one of the registers via a step update function.  

 

The step update function accepts the four registers (A, B, C, and D), a message word W, and a 

32-bit constant k (which changes in every round) as input, and produces a single 32-bit word as 

output.  

B
′
 ← (A + Fi(B, C, D) + W + ki)

<<<n
 ≡ 2

32
 

C
′
 ← B,  

D
′
 ← C, and 

A
′
 ← D.  

 
The step update function changes little-bit for each step. It consists of additions modulo 232, a 

rotation, and a Boolean function which changes in each round:  

F0(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) 

F1(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z) 

F2(X, Y, Z) = X ⊕ Y ⊕ Z 

 
In each bit position F0 acts as a conditional: if X then Y else Z. That is why F0 is also written as 

IF() function sometimes.  In    each bit position F1 acts as a majority function: if at least two of 

X, Y, Z are on, then F1 has a "1" bit in that bit position, else F1 has a "0" bit. This the reason why 

F1 is also mentioned as MAJ() function sometimes. It is interesting to note that if the bits of X, Y, 

and Z are independent and unbiased, the each bit of F0 (X, Y, Z) will be independent and 

unbiased, and similarly each bit of F1 (X, Y, Z) will be independent and unbiased. The function 

F2 is the bit-wise XOR or parity function.  

 
The message expansion actually describes how the values Wi which serve as inputs for the step 

operations are computed from the current input message block Xj. In MD4, the message 



expansion is done by some round-wise permutations. It is simply a permutation of the 16 

message words of 32 bits each. The expanded message word Wi serves as input for the i
th
 step in 

the step operation part. The permutations are chosen in such a way that there are as few patterns 

as possible, e.g. there are no two words Xi, Xj which are applied in two consecutive steps more 

than once. This is done to provide a good diffusion. 

The 32-bit constants ki used are distinct for each round i. They are defined as follows:  

k0 = 0,  

k1 = 5A827999H, and  

k2 = 6ED9EBA1H.  

The constant k1 and k2 represent the square roots of 2 and 3 respectively.  

 
This step operation represents the core component of every compression function. It should be 

quite easy to implement and very efficient, but at the same time they must provide good 

diffusion and be difficult to analyze. To be efficient there are two main aspects in the step 

operations of the MD4: Only one of the registers changed in each step, and the step operations 

are built of very and simple basic operations (bitwise Boolean operations, modular additions, bit 

shifts, and rotations). These operations have been chosen, because on the one hand they can be 

computed very efficiently on modern computer architectures, and on the other hand the mixing 

of Boolean functions and addition is believed to be cryptographically strong. 

 
4.5.3  SHA 

 

NIST published the Secure Hash Standard in 1993. The hash function underlying the standard 

was named the Secure Hash Algorithm (SHA). At present, it is commonly referred to as SHA-0 

[24]. SHA-0 has been developed following the same principles as MD4. SHA-0 is a 160-bit hash 

function, with five registers in the state: A, B, C, D, and E. The initial value is chosen as follows: 

IV = 67452301 EFCDAB89 98BADCFE 10325476 C3D2E1F0. 

 

Padding is the same as in MD4, and the chaining input is fed forward in the same way, but all 

SHA functions assume a big-endian byte ordering (i.e., the sequence 00 01 02 03 of bytes will be 

read as a single 32-bit word 00010203). 

The message expansion is more complex than in MD4, and there are four rounds of 20 steps 

each. The four Boolean functions are defined as follows. 

 

F0(X, Y, Z) = (X ∧ Y ) ∨ (¬X ∧ Z) 

F1(X, Y, Z) = X ⊕ Y ⊕ Z 

F2(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z) 

F3(X, Y, Z) = X ⊕ Y ⊕ Z 
 

Note that the functions F1 and F3 are same. There are four constants, one for each round. These 

are: 

k0 = 5A827999H 

k1 = 6ED9EBA1H 

k2 = 8F1BBCDCH 

k3 = CA62C1D6H 



 
The message expansion works as follows. Let m0, m1, . . . , m15 be the sixteen input words of 32-

bits. The 80 words wi, 0 ≤· i ≤ 79, in the expanded message are defined as follows. 

wi = mi for  0 ≤ i ≤15 

wi = (mi-3 ⊕ mi-8 ⊕ mi-14 ⊕ mi-16) for 16 ≤ i ≤79 
 
A SHA-0 step consists of the following operations: 

A' ← A
<<<5

 + Fi(B, C, D) + E + wi + ki 

B' ← A 

C' ← B 
<<<30

 

D' ← C, and  

E' ← D. 

 
4.5.4 SHA-1 

 

SHA-0 was replaced by SHA-1 in 1995 [25]. SHA-1 is an widely used cryptographic hash 

function. It has been used in many cryptographic standards, protocols, schemes etc. SHA-1 is a 

minor modification of SHA-0. The only difference between the two hash functions is the 

additional rotation operation in the message expansion of SHA-1, which is supposed to provide 

more security. This is described as 

wi = mi     for  0 ≤ i ≤15 

wi = (mi-3+ mi-8+ mi-14+ mi-16)
<<<1

    for 16 ≤ i ≤79 
 

 

 

The four round constants ki are first 32 bits of the decimal places of the square root of 2, 3, 5 and 

10. 

 
4.5.5 SHA-2 

 

When the Advanced Encryption Standard (AES) was introduced in 2001, the need of new hash 

functions with larger output sizes were felt to match the key sizes in the AES. This led to the 

development of three new hash functions, SHA-256, SHA-384, and SHA-512, collectively 

termed SHA-2, published in 2002 [26]. In 2004, another hash function, SHA-224, was included 

to the list of SHA-2 family. 

 

The message expansion is much more complicated than earlier versions of SHA, and two 

registers are updated in each step. SHA-224 and SHA-256 are constructed in the same way, but 

they use different IVs, and in SHA-224, a 256-bit state is truncated to 224 bits in the end. Similar 

differences exist between SHA-384 and SHA-512. SHA-256 and SHA-512 differ in word size; 

SHA-256 uses 32-bit words, whereas it is 64-bits word in SHA-512. The number of steps in 

SHA-256 and SHA-512 are 64 and 80 respectively. Also, there are few more minor differences.  

 



Here, we shall only describe SHA-256 in detail. SHA-256 uses the same padding technique as 

MD4, and the compression function is also a block cipher in Davies-Meyer mode. The initial 

value of SHA-256 is  

IV = 6A09E667 BB67AE85 3C6EF372 A54FF53A 510E527F 9B05688C 1F83D9AB 5BE0CD19H. 

These values are the first 32-bits of fractional parts of square roots of first eight prime numbers. 

SHA-256 uses a number of Boolean functions. First, the following two functions applied on a 

single 32-bit word are used in the message expansion. 

 

σ0(x) = x
>>>2 ⊕ x

>>>13 ⊕ x
>>22  

σ1(x) = x
>>>6 ⊕ x

>>>11 ⊕ x
>>25  

Here, x
>>n

 means shift right by n bits (not circular shift). The n most significant bits are filled 

with zero bits. 

Two other functions operating on a single 32-bit word are the following: 

Ʃ0(x) = x
>>>2

 ⊕x
>>>13

 ⊕x
>>>22

  

Ʃ1(x) = x
>>>6

 ⊕x
>>>11

 ⊕x
>>>25

  

 

The Boolean functions F0 and F2 are the same as defined in SHA-0 and SHA-1. The SHA-256 

compression function takes a 512-bit message (sixteen words m0, m1, . . . , m15 of 32-bits each) 

and expands it into a 2048-bit message (sixty four words w0,w1, . . . ,w63 of 32-bits each) as 

follows: 

wi = mi    for  0 ≤ i ≤15 

wi = σ1(mi-2)+ mi-7+ σ1(mi-15)+ mi-16    for 16 ≤ i ≤63 
 

This message expansion introduces more diffusion than the SHA-0 and SHA-1. SHA-256 

maintains a state of eight registers of 32-bits length. The state is updated through sixty four steps. 

Two registers are updated via a function of a number of other registers. Each step involves a 

distinct constant kj, 0≤i≤63. These constants are the first 32-bits of the fractional parts of the 

cube roots of the first sixty four prime numbers. 

 

In each of sixty four steps, the following operations are performed (t1 and t2 are temporary 

variables, and A, B, . . ., H are the eight registers of the state). 

 

t1 ← ∑0(A) + F2(A,B,C) 

t2 ← ∑1(E) + F0(E,F,G) + H + wi + ki 

H ← G 

G ← F 

F ← E 

E ← D + t2 

D ← C 

C ← B 

B ← A 

A ← t1 + t2 

 



After a message block is compressed, the variables A, B, …, H are updated similar to the update 

of chaining variables in MD4.  After all the message blocks are compressed in this fashion, the 

message digest input message in SHA-256 is concatenation of final values of chaining variables 

i.e., A||B||C||D||E||F||G||H. 

 

 

 
5. Block Cipher based Hash Functions 
 

Simon, in his seminal work, [34] suggested that collision-resistant hash functions cannot be 

constructed based on one-way functions. Instead collision-resistant hash functions can be 

designed based on another very well known cryptographic primitive – Block Cipher.  This idea 

of reducing the security of the hash to the security of a block cipher has its own advantages and 

disadvantages. The main advantage is that using a block cipher as a primitive of hash function 

gives us the security based on the proven security of block ciphers. Another advantage is that 

existing implementations can be reused. On the other hand, relying on just one primitive may be 

counter productive. A disadvantage is that hash functions based on a block cipher are less 

efficient than the dedicated proposals. 

 

Block cipher is a popular encryption-decryption primitive. To encrypt, the block cipher accepts a 

key K and a plaintext block x as input, and produces a cipher text block c = E(K, x), also written 

as c = EK(x). The function E is invertible when K is known. The cipher text can be decrypted to 

obtain plain text x = Ek
-1

(c). It is to be noted that |m| = |c|, e.g., |m| = n. If we assume that |K| = n 

or |K| = m then a block cipher, in encryption mode, can be seen as compressing the 2n (or n+m) 

bits constituting the key and the plaintext block to n bits of cipher text. 

 

                           K         T 

 

 

 
            hi                                     P                                                                                         
 

 

 
           Figure 1:  Round function of hash function based on block cipher 

 
The above figure shows a round function that is used in block-cipher based hash functions. E is 

the block cipher primitive. P is plaintext, and K is key. The output of the round function after i
th

 

round is hi. 

 

Essentially all modern hash functions are built by iterating a compression function following 

Merkle-Damgård paradigm or its variation. Again, these compression functions are almost 

always built from a block cipher. Even so-called “dedicated” hashing primitives like MD5 and 

SHA-1 are in fact based on block cipher. The SHA-1 compression function can be used as a 

block cipher [13]. Later on this suggestion was termed as SHACAL-1. SHACAL-1 is a 160-bit 

block cipher that takes variable length (0-512 bits key) and 80 rounds [14]. 

 

   

               f( ) 

E ( )           



 

The earliest hash function from block ciphers was constructed by Rabin and DES block cipher 

was used [28]. He proposed to hash a message X = x1x2 ・ ・ ・xn by fixing an initial value h0 

and computing H(M) = DESxn(DESxn−1(… (DESx1(h0)))). Here the input message X is divided 

into message blocks x1, x2, x3, … , xn. This is in effect a Merkle-Damgård construction with 

block cipher based compression function f(hi−1,xi) = Exi(hi-1). 
 

The general framework of iterated constructions with compression functions is of the form 

f(hi−1,xi) = Ea(b)⊕c where a,b,c є {hi-1, xi, hi-1⊕xi,V}for some fixed constant vector V. Generally, 

the value of V is considered to be zero. H0 is equal to the initial value, IV. So, by choosing 

different possibilities of a, b, and c, we can have total 4
3
 number of possibilities for round 

function f( ) to choose a particular block-cipher to be used in hash function. That is, there are 4
3
 

= 64 different ways a block cipher can be used in compression function. 

 

Preneel et al investigated in detail about different ways a block cipher can be used as a primitive 

for constructing compression function [27]. They have shown that only twelve simple 

constructions based on a block cipher result in collision-resistant compression functions. The 

following lists these compression functions. The notations used in this list are: xi is the i
th

 

message-block, hi is the compression function used at i
th

 iteration, and Ek is the block cipher with 

key k.  
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We write wi to mean mi⊕hi−1.  Black, Rogaway, and Srimpton showed that an additional eight of 

the sixty four schemes are just as collision resistant (up to a small constant) as the first group of 

schemes [5].  
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Here v denotes constant vector. From the perspective of collision resistance, one can choose any 

particular scheme from f1, f2, … , f20. Among these collision-resistant compression functions the 

well known functions are Matyas-Meyer-Oseas (f1), Miyaguchi-Preneel (f3), and Davies-Meyer 

(f5) [12].  Among these constructions Matyas-Meyer-Oseas and Davies-Meyer are dual 

constructions. In each iteration step of the hash computation, the present value of the chaining 

variable (hi) and the input block to be processed (xi) serve as key and plaintext of the encryption 

function (or vice versa for its dual). The plaintext input is then added with the output of 

encryption function, which constitutes a feed-forward operation. The result of the feed-forward 

serves as the new chaining value for the next iteration. They do not use an output transformation. 

Therefore the length of the chaining variable is equal to the output length. The feed-forward 

operation is based on modulo 2 addition (i.e., exclusive-OR), and its purpose is to make the 

compression function un-invertible. 

 
Although these twenty schemes are provably secure, they could be viewed as inefficient from 

practical usability point of view. In each of these schemes, the block cipher key is changed every 

round. For all conventional block ciphers, changing the key in each round is not desirable. 

Because scheduling a new key causes a significant computational cost. Fix a small, non-empty 

set of block cipher keys K. A block cipher-based hash function is said to be highly-efficient if its 

compression function uses exactly one call to a block cipher (i.e., it is of rate 1), and if the block 

cipher uses only keys from K. Since we can preschedule each key in K, we enjoy a significant 

performance gain: key scheduling reduces to looking up a precomputed permutation.  

 
Double block length constructions: Most of the block cipher based schemes result in hash 

functions with an output length that is too short from collision-resistance point of view. An 

alternative is the use of double block length hash functions, which produce a hash result with 

length equal to twice the block length of the cipher [32]. This means that DES will yield a 128-

bit hash function, and AES to have a 256-bit hash function. Currently block cipher based hash 

functions are classified into single block length (SBL) hash functions and double block length 

(DBL) hash functions. For SBL hash functions, the length of output is equal to that of the block 

cipher, while for DBL hash functions, the length of the output is twice larger than that of the 

underlined block cipher. 



An important parameter describing the efficiency of these constructions is the rate of the block 

cipher based hash function. The rate is defined as the number of b-bit input blocks that can be 

processed with a single encryption. 

 

One extension of basic MD construction is “dithering”. It is the technique of adding an iteration-

dependent input (the dither) to the compression function to defeat certain generic attacks [31]. 

Aumasson et al identified methods for dithering block cipher based hash functions [2]. 

 

Permutation based design: Of late, researchers have started to explore to build compression 

functions from fixed key block ciphers, where only a small number of constants are used as keys. 

As each key of a block cipher defines an independent random permutation in the ideal cipher 

model, such compression functions are often called permutation-based [17, 19, and 23]. 

Permutation-based compression functions have an advantage over conventional block cipher 

based ones, since fixing the keys allows to save computational overload for key scheduling. 

These designs are characterized by the fact that the key input to the cipher depends on the input 

values. This implies that the key schedule has to be strong and that it needs to be executed for 

every encryption (or for every second encryption), which needs a substantial computational cost. 

An alternative approach is to fix one or more keys, and restrict the hash function to use the block 

cipher for these keys only. The usage of fixed-key block ciphers, or alternatively permutations, 

causes benefit that one does not need to implement an entire block cipher but only a limited 

number of instantiations of it. In the five finalists of the SHA-3 competition, two of them 

(BLAKE, and Skein) are block cipher-based design, the other three (Grøstl, JH, and Keccak) are 

permutation-based design. 

 

 

6. Conclusion 
 

An effort has been made to understand the prominent design rationale behind various 

cryptographic hash functions. The focus of discussion was on dedicated hash functions and block 

cipher based hash functions. Nonetheless there are other design philosophies to construct hash 

functions. One such approach is to construct hash functions that are provably secure in a sense 

that the problem of breaking it is related to some known computational problem considered very 

difficult. Classical examples include functions that rely on the hardness of factoring a large 

composite number proposed by Damg°ard [44] and Gibson [70] or on difficulty of solving 

discrete logarithm problem [8]. More recent constructions feature collision-resistant VSH [36] 

(very smooth hash) based on a number-theoretic problem related to factoring, one way and 

collision resistant FSB [4] related to hard problems in coding theory as well as provably one-way 

MQ-HASH [20] that depends on the difficulty of solving systems of multivariate quadratic 

equations. Unfortunately, there is also a price to pay for provable security. Most of functions 

designed that way need longer digests to achieve the desired level of security. They are also 

relatively less efficient as they usually require complex mathematical operations. NIST 

announced a public competition in 2007 to develop a new cryptographic hash algorithm, to 

choose "SHA-3". Five finalists of this SHA-3 competition are BLAKE, Grøstl, JH, Keccak, and 

Skein.  NIST has set the schedule to publish the winner of this competition in the last quarter of 

2012. Each of these functions have received considerable amount of focus by the crypto 

community. With the rising use of sensor devices in many security sensitive applications, few 

lightweight hash functions have been proposed and many more to come in near future. This 



paper can serve newcomers, in its small effort, to understand the some prominent design 

philosophies of hash functions up to SHA-2 and then to move towards understanding SHA-3 to 

be announced and the lightweight hash functions. 
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