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Abstract

We develop a new methodology for utilizing the prior techniques to prove selective secu-
rity for functional encryption systems as a direct ingredient in devising proofs of full security.
This deepens the relationship between the selective and full security models and provides a
path for transferring the best qualities of selectively secure systems to fully secure systems.
In particular, we present a Ciphertext-Policy Attribute-Based Encryption scheme that is
proven fully secure while matching the efficiency of the state of the art selectively secure
systems.

1 Introduction

Functional encryption presents a vision for public key cryptosystems that provide a strong
combination of flexibility, efficiency, and security. In a functional encryption scheme, ciphertexts
are associated with descriptive values x, secret keys are associated with descriptive values y,
and a function f(x, y) determines what a user with a key for value y should learn from a
ciphertext with value x. One well-studied example of functional encryption is attribute-based
encryption (ABE), first introduced in [31], in which ciphertexts and keys are associated with
access policies over attributes and subsets of attributes. A key will decrypt a ciphertext if and
only if the associated set of attributes satisfies the associated access policy. There are two
types of ABE systems: Ciphertext-Policy ABE (CP-ABE), where ciphertexts are associated
with access policies and keys are associated with sets of attributes, and Key-Policy ABE (KP-
ABE), where keys are associated with access policies and ciphertexts are associated with sets
of attributes.

To achieve desired flexibility, one strives to construct ABE systems for suitably expressive
types of access policies over many attributes. Current constructions allow boolean formulas or
linear secret sharing schemes as access policies. This high level of flexibility means that keys and
ciphertexts have rich structure, and there is a very large space of possible access policies and
attribute sets. This presents a challenge to proving security, since a suitable notion of security
in this setting must enforce collusion resistance, meaning that several users should not be able
to decrypt a message that none of them are individually authorized to read. Hence a security
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proof must consider an attacker who can collect many different keys, just not a single one that
is authorized to decrypt the ciphertext.

This requires security reductions to balance two competing goals: the simulator must be
powerful enough to provide the attacker with the many keys that it adaptively requests, but
it must also lack some critical knowledge that it can gain from the attacker’s success. The
first security proofs in the standard model for ABE systems (e.g. [31, 19, 36]) followed a very
natural paradigm for balancing these two goals known as partitioning. This proof technique was
previously used in the context of identity-based encryption [9, 11, 6, 7, 34]. In a partitioning
proof, the simulator sets up the system so that the space of all possible secret keys is partitioned
into two pieces: keys that the simulator can make and those that it cannot. To ensure that
the keys the attacker requests all fall in the set of keys the simulator can produce and that
any key capable of decrypting the challenge ciphertext falls in the opposite set, the prior works
[31, 19, 36] had to rely on a weaker security model known as selective security. In the selective
security model, the attacker must declare up front what the challenge ciphertext will be, before
seeing the public parameters.

This notion of selective security is quite useful as an intermediary step, but is rather unsat-
isfying as an end goal. In the setting of identity-based encryption, the need for selectivity was
overcome by arranging for the simulator to “guess” a partition and abort when the attacker
violated its constraints [34]. However, the richer structure of attribute-based systems appears
to doom this approach to incur exponential loss, since one must guess a partition that respects
the partial ordering induced by the powers allocated to the individual keys.

Dual System Encryption With the goal of moving beyond the constraints of the parti-
tioning paradigm, Waters introduced the dual system encryption methodology [35]. In a dual
system security proof, the simulator is always prepared to make any key and any challenge
ciphertext. The high level idea of the methodology is as follows. There are two types of keys
and ciphertexts: normal and semi-functional. A key will decrypt a ciphertext properly unless
both the key and the ciphertext are semi-functional, in which case decryption will fail with
all but negligible probability. The normal keys and ciphertexts are used in the real system,
while the semi-functional objects are gradually introduced in the hybrid security proof - first
the ciphertext is changed from normal to semi-functional, and then the secret keys given to the
attacker are changed from normal to semi-functional one by one. Ultimately, we arrive at a
security game in which the simulator only has to produce semi-functional objects and security
can be proved directly.

The most critical step of the hybrid proof is when a key turns semi-functional: at this
point, we must leverage the fact that the key is not authorized to decrypt the (now semi-
functional) challenge ciphertext in order to argue that the attacker cannot detect the change in
the key. However, since we are not imposing a partition on the simulator, there is no constraint
preventing the simulator itself from creating a key that is authorized to decrypt and testing
the nature of the key for itself by attempting to decrypt the semi-functional ciphertext. In the
first application of dual system encryption to ABE [23], this paradox was averted by ensuring
that the simulator could only produce a key that would be correlated with the semi-functional
ciphertext so that decryption would succeed in the simulator’s view, regardless of the presence
or absence of semi-functionality. This correlation between a semi-functional key and semi-
functional ciphertext was called nominal semi-functionality. It was argued that this correlation
was hidden information-theoretically from the attacker, who cannot request keys authorized
to decrypt the challenge ciphertext. This provided the first proof of full security for an ABE
scheme in the standard model.
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The One-Use Restriction The information-theoretic argument in [23] required a one-use
restriction on attributes in access formulas/LSSS matrices, meaning that a single attribute
could only be used once in a policy. This can be extended to a system which allows reuse of
attributes by setting a fixed bound M on the maximum number of times an attribute may be
used and having separate parameters for each use. This scales the size of the public parameters
by M , as well as the size of secret keys for CP-ABE systems1. This approach incurs a very
significant loss in efficiency, and has been inherited by all fully secure schemes to date ([25, 29]
employ the same technique). This loss in efficiency is costly enough to limit the potential
applications of fully secure schemes. As an example, the recent work of [2] building verifiable
computation schemes from KP-ABE systems only produces meaningful results when one starts
with a KP-ABE scheme that can be proven secure without incurring the blowup of this encoding
technique.

Our work eliminates this efficiency loss and allows unrestricted use of attributes while still
proving full security in the standard model. Our main observation is motivated by the intuition
that the information-theoretic step of the prior dual system proof is ceding too much ground
to the attacker, since a computational argument would suffice. In fact, we are able to resurrect
the earlier selective proof techniques inside the framework of dual system encryption in order
to retake ground and obtain a wholly computational proof of full security.

Our Techniques Dual system encryption is typically implemented by designing a “semi-
functional space” where semi-functional components of keys and ciphertexts will behave like a
parallel copy of the normal components of the system, except divorced from the public param-
eters. This provides a mechanism allowing for delayed parameters in the semi-functional space,
meaning that relevant variables can be defined later in the simulation instead of needing to be
fixed in the setup phase. The hybrid structure of a dual system encryption argument is imple-
mented by additionally providing a mechanism for key isolation, meaning that some or all of the
semi-functional parameters will only be relevant to the distribution of a single semi-functional
key at a time.

In combination, these two mechanisms mean that the semi-functional space has its own fresh
parameters that can be decided on the fly by the simulator when they become relevant, and they
are only relevant for the semi-functional ciphertext and a single semi-functional key. Previous
dual system encryption arguments have used the isolated use of these delayed semi-functional
parameters as a source of entropy in the attacker’s view to make an information-theoretic
argument. We observe that these mechanisms can also be used to implement prior techniques
for selective security proofs, without needing to impose the selective restriction on the attacker.

To explain this more precisely, we consider the critical step in the hybrid security proof when
a particular key becomes semi-functional. We conceptualize the unpublished semi-functional
parameters as being defined belatedly when the simulator first issues either the key in question
or the semi-functional ciphertext. For concreteness, we consider a CP-ABE system. If the
ciphertext is issued first, then the simulator learns the challenge policy before defining the
delayed semi-functional parameters - this is closely analogous to the setting of selective security
for a CP-ABE system. If the key is issued first, then the simulator learns the relevant set of
attributes before defining the delayed semi-functional parameters, and this is closely analogous
to the setting of selective security for a KP-ABE system. This provides us an opportunity to
combine the techniques used to prove selective security for both CP-ABE and KP-ABE systems
with the dual system encryption methodology in order to obtain a new proof of full security
that maintains the efficiency of selectively secure systems.

1For KP-ABE systems, it is the ciphertext size that will grow multiplicatively with M .
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Our Results Since our approach utilizes selective techniques for both CP-ABE and KP-ABE
in order to prove full security for either kind of system, we inherit the kinds of complexity
assumptions needed to prove selective security in both settings. The KP-ABE scheme of [19]
is proven selectively secure under the decisional bilinear Diffie-Hellman assumption, and so we
are able to rely on the relatively simple 3-party Diffie-Hellman assumption for this part of our
proof. The most efficient selectively secure CP-ABE scheme that is known is provided in [36],
and it is proven secure under a q-based assumption (meaning that the number of terms in the
assumption is parameterized by a value q that depends on the behavior of the attacker). Hence
we inherit the need to rely on a q-based assumption in our security proof as well.

The dual system encryption methodology has previously been implemented both in prime
order bilinear groups (e.g. in [35, 29]) and in composite order bilinear groups (e.g. in [24, 23]).
The two settings provide different but roughly interchangeable mechanisms for executing delayed
parameters and key isolation, and our techniques are compatible with either setting. We first
present a CP-ABE construction and security proof in composite order groups, relying on a few
instances of the general subgroup decision assumption to execute the delayed parameters and
key isolation mechanisms. We then present an analogous CP-ABE construction and security
proof in prime order groups, relying on the decisional linear assumption for these functions.
To translate our construction from the composite order setting to the prime order setting, we
employ the dual pairing vector space framework developed in [27, 28, 29], along with the relevant
observations in [22]. The formal statements of our complexity assumptions for each setting can
be found in Sections 2.2 and 5.1. Though we present only CP-ABE schemes in this work, we
expect that our techniques are equally applicable to the KP-ABE setting.

We view our work as providing a new view of the relationship between the selective and
full security models, as we illustrate a methodology for using techniques in the selective context
as direct building blocks for a full security proof. We suspect that any new improvements in
selectively secure systems may now translate to improvements in the full security setting. In
particular, a new proof of selective security for an efficient CP-ABE system relying on a static
(non q-based) assumption could likely be combined with our techniques to yield a fully secure
scheme of comparable efficiency under similar assumptions. This remains an important open
problem.

1.1 Other Related Work

The roots of attribute-based encryption trace back to identity-based encryption (IBE), which
was first conceived by Shamir [32] and then constructed by Boneh and Franklin [9] and Cocks
[14]. This concept was extended to the notion of hierarchical identity-based encryption (HIBE)
by Horwitz and Lynn [20], and this was first constructed by Gentry and Silverberg [17]. Sub-
sequent constructions of IBE and HIBE can be found in [11, 6, 7, 8, 15, 16, 24, 1, 12, 26].

There have been several prior constructions of attribute-based encryption which have been
shown to be selectively secure in the standard model [31, 19, 13, 30, 18, 36] or proven secure in
the generic group model [5] (this is a heuristic model intended to capture an attacker who can
only access group operations in a black-box fashion).

1.2 Organization

In Section 2, we give the relevant background on CP-ABE systems and composite order bilinear
groups, as well as formal statements of the complexity assumptions we rely on in the composite
order setting. In Section 3, we present our CP-ABE system in composite order bilinear groups.
In Section 4, we prove its full security. In Section 5, we give the relevant background for prime
order bilinear groups, state our complexity assumptions in this context, present the prime order
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variant of our CP-ABE construction, and prove its full security. In Appendix A, we provide a
reduction between assumptions that we use in in the prime order setting. In Appendix B, we
justify our q-based assumption in the generic group model.

2 Preliminaries

2.1 Composite Order Bilinear Groups

We will first construct our system in composite order bilinear groups, which were introduced in
[10]. We let G denote a group generator - an algorithm which takes a security parameter λ as
input and outputs a description of a bilinear group G. We define G’s output as (N,G,GT , e),
where N = p1p2p3 is a product of three distinct primes, G and GT are cyclic groups of order
N , and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, f ∈ G, a, b ∈ ZN , e(ga, f b) = e(g, f)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

We refer to G as the source group and GT as the target group. We assume that the group
operations in G and GT and the map e are computable in polynomial time with respect to λ,
and the group descriptions of G and GT include a generator of each group. We let Gp1 , Gp2 ,
and Gp3 denote the subgroups of order p1, p2, and p3 in G respectively. We note that these
subgroups are “orthogonal” to each other under the bilinear map e: if fi ∈ Gpi and fj ∈ Gpj
for i ̸= j, then e(fi, fj) is the identity element in GT . If g1 generates Gp1 , g2 generates Gp2 ,
and g3 generates Gp3 , then every element f of G can be expressed as gc11 g

c2
2 g

c3
3 for some values

c1, c2, c3 ∈ ZN . We will refer to gc11 as the “Gp1 part of f”, for example.

2.2 Complexity Assumptions

We now present the complexity assumptions we will use in composite order bilinear groups. We

use the notation X
R←− S to express that X is chosen uniformly randomly from the finite set

S. We will consider groups G whose orders are products of three distinct primes. For any non-
empty set Z ⊆ {1, 2, 3}, there is a corresponding subgroup of G of order

∏
i∈Z pi. We denote

this subgroup by GZ . Our first assumption has been previously used in [24, 23], for example,
and holds in the generic group model:

Assumption 1 Given a group generator G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2, X2, Y2

R←− Gp2 , g3
R←− Gp3

α, s
R←− ZN ,

D = (G, g1, g2, g3, gα1X2, g
s
1Y2),

T0 = e(g1, g1)
αs, T1

R←− GT .

We define the advantage of an algorithm A in breaking this assumption to be:

Adv1G,A(λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
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We say that G satisfies Assumption 1 if Adv1G,A(λ) is a negligible function of λ for any PPT
algorithm A.

We next define the General Subgroup Decision Assumption for composite order bilinear
groups with three prime subgroups. This was first defined in [4] more generally for groups with
an arbitrary number of prime order subgroups, but three will be sufficient for our purposes. We
will only use a few specific instances of this assumption, but we prefer to state its full generality
here for conciseness. We note that for our prime order construction, Assumption 1 and all
instances of the General Subgroup Decision Assumption will be replaced by the Decisional
Linear Assumption.

The General Subgroup Decision Assumption We let G denote a group generator and
Z0, Z1, Z2, . . . , Zk denote a collection of non-empty subsets of {1, 2, 3} where each Zi for i ≥ 2
satisfies either Z0 ∩ Zi ̸= ∅ ̸= Z1 ∩ Zi or Z0 ∩ Zi = ∅ = Z1 ∩ Zi. We define the following
distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

gZ2

R←− GZ2 , . . . , gZk

R←− GZk

D = (G, gZ2 , . . . , gZk
),

T0
R←− GZ0 , T1

R←− GZ1 .

Fixing the collection of sets Z0, . . . , Zk, we define the advantage of an algorithmA in breaking
this assumption to be:

AdvSDG,A(λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies the General Subgroup Decision Assumption if AdvSDG,A(λ) is a negli-

gible function of λ for any PPT algorithm A and any suitable collection of subsets Z0, . . . , Zk.
This can be thought of as a family of assumptions, parameterized by the choice of the sets
Z0, . . . , Zk. All of these individual assumptions hold in the generic group model, assuming it
is hard to find a non-trivial factor of N . We will assume that 1

pi
is negligible in the security

parameter for each prime factor pi of N . In particular, this means we may assume (ignoring
only negligible probability events) that when an element is randomly chosen from a subgroup
of G, it is in fact a generator of that subgroup.

We next introduce an assumption that we call The Three Party Diffie-Hellman Assumption
in a Subgroup. This is a close relative of the standard Decisional Bilinear Diffie-Hellman As-
sumption, but it has a challenge term remaining in the source group and takes place in a prime
order subgroup of a composite order bilinear group. These adjustments from the usual DBDH
assumption allow us to use our assumption in the semi-functional space for a particular key -
without affecting the normal space or the other keys.

The Three Party Diffie-Hellman Assumption in a Subgroup Given a group generator
G, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3

x, y, z
R←− ZN ,

D = (G, g1, g2, g3, gx2 , g
y
2 , g

z
2),
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T0 = gxyz2 , T1
R←− Gp2 .

We define the advantage of an algorithm A in breaking this assumption to be:

Adv3DHG,A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies The Three Party Diffie-Hellman Assumption if Adv3DHG,A (λ) is a

negligible function of λ for any PPT algorithm A.
We next introduce a q-based assumption that we call The Source Group q-Parallel BDHE

Assumption in a Subgroup. This is a close relative of The Decisional q-parallel Bilinear Diffie-
Hellman Exponent Assumption introduced in [36], except that its challenge term remains in the
source group and it takes place in a prime order subgroup of a composite order bilinear group.
In Appendix B, we prove that the prime order variant of this assumption holds in the generic
group model (the proof for this version follows analogously). Below, we use the notation [q], for
example, to denote the set {1, 2, . . . , q}.

The Source Group q-Parallel BDHE Assumption in a Subgroup Given a group gen-
erator G and a positive integer q, we define the following distribution:

G = (N = p1p2p3, G,GT , e)
R←− G,

g1
R←− Gp1 , g2

R←− Gp2 , g3
R←− Gp3

c, d, f, b1, . . . , bq
R←− ZN ,

The adversary will be given:

D = (G, g1, g3, g2, gf2 , g
df
2 , g

c
2, g

c2

2 , . . . , g
cq

2 , g
cq+2

2 , . . . , gc
2q

2 ,

g
ci/bj
2 ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

g
dfbj
2 ∀j ∈ [q], g

dfcibj′/bj
2 ∀i ∈ [q], j, j′ ∈ [q] s.t. j ̸= j′).

We additionally define

T0 = gdc
q+1

2 , T1
R←− Gp2 .

We define the advantage of an algorithm A in breaking this assumption to be:

AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that G satisfies The Source Group q-Parallel BDHE Assumption in a Subgroup if AdvqG,A
is a negligible function of λ for any PPT algorithm A.

2.3 Background for ABE

We now give required background material on access structures, the formal definition of a
CP-ABE scheme, and the security definition we will use.
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2.3.1 Access Structures

Definition 1. (Access Structure [3]) Let {P1, . . . , Pn} be a set of parties. A collection A ⊆
2{P1,...,Pn} is monotone if ∀B,C: if B ∈ A and B ⊆ C, then C ∈ A. An access structure
(respectively, monotone access structure) is a collection (respectively, monotone collection) A
of non-empty subsets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{}. The sets in A are called the
authorized sets, and the sets not in A are called the unauthorized sets.

In our setting, attributes will play the role of parties and we will consider only monotone
access structures. One can (inefficiently) realize general access structures with our techniques
by having the negation of an attribute be a separate attribute (so the total number of attributes
doubles).

Linear Secret-Sharing Schemes Our construction will employ linear secret-sharing schemes
(LSSS). We use the following definition adapted from [3].

Definition 2. (Linear Secret-Sharing Schemes (LSSS)) A secret sharing scheme Π over a set
of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.

2. There exists a matrix A called the share-generating matrix for Π. The matrix A has ℓ
rows and n columns. For all j = 1, . . . , ℓ, the jth row of A is labeled by a party ρ(j) (ρ is
a function from {1, . . . , ℓ} to P). When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av
is the vector of ℓ shares of the secret s according to Π. The share (Av)j belongs to party
ρ(j).

We note the linear reconstruction property: we suppose that Π is an LSSS for access struc-
ture A. We let S denote an authorized set, and define I ⊆ {1, . . . , ℓ} as I = {j|ρ(j) ∈ S}.
Then the vector (1, 0, . . . , 0) is in the span of rows of A indexed by I, and there exist con-
stants {ωj ∈ Zp}j∈I such that, for any valid shares {λj} of a secret s according to Π, we
have:

∑
j∈I ωjλj = s. These constants {ωj} can be found in time polynomial in the size of the

share-generating matrix A [3]. For unauthorized sets, no such constants {ωj} exist.
For our composite order group construction, we will employ LSSS matrices over ZN , where

N is a product of three distinct primes. As in the definition above over Zp, we say a set of
attributes S is authorized if the rows of the access matrix A labeled by elements of S have the
vector (1, 0, . . . , 0) in their span modulo N . However, in our security proof for our composite
order system, we will further assume that for an unauthorized set, the corresponding rows of A
do not include the vector (1, 0, . . . , 0) in their span modulo p2. We may assume this because if
an adversary can produce an access matrix A over ZN and an unauthorized set over ZN that
is authorized over Zp2 , then this can be used to produce a non-trivial factor of the group order
N , which would violate our general subgroup decision assumption.

2.3.2 CP-ABE Definition

A ciphertext-policy attribute-based encryption system consists of four algorithms: Setup, En-
crypt, KeyGen, and Decrypt.

Setup(λ,U) → (PP,MSK) The setup algorithm takes in the security parameter λ and the
attribute universe description U . It outputs the public parameters PP and a master secret key
MSK.
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Encrypt(PP,M,A)→ CT The encryption algorithm takes in the public parameters PP, the
messageM , and an access structure A over the universe of attributes. It will output a ciphertext
CT such that only users whose private keys satisfy the access structure A should be able to
extract M . We assume that A is implicitly included in CT.

KeyGen(MSK,PP, S) → SK The key generation algorithm takes in the master secret key
MSK, the public parameters PP, and a set of attributes S. It outputs a private key SK. We
assume that S is implicitly included in SK.

Decrypt(PP,CT, SK)→ M The decryption algorithm takes in the public parameters PP, a
ciphertext CT, and a private key SK. If the set of attributes of the private key satisfies the
access structure of the ciphertext, it outputs the message M .

2.3.3 Security Model for CP-ABE

We now give the full security definition for CP-ABE systems. This is described by a security
game between a challenger and an attacker. The game proceeds as follows:

Setup The challenger runs the Setup algorithm and sends the public parameters PP to the
attacker.

Phase 1 The attacker adaptively queries the challenger for private keys corresponding to sets
of attributes S1, . . . , SQ1 . Each time, the challenger responds with a secret key obtained by
running KeyGen(MSK,PP, Sk).

Challenge The attacker declares two equal length messages M0 and M1 and an access struc-
ture A. This access structure cannot be satisfied by any of the queried attribute sets S1, . . . , SQ1 .
The challenger flips a random coin b ∈ {0, 1}, and encryptsMb under A, producing CT. It sends
CT to the attacker.

Phase 2 The attacker adaptively queries the challenger for private keys corresponding to sets
of attributes SQ1+1, . . . , SQ, with the added restriction that none of these satisfy A∗. Each time,
the challenger responds with a secret key obtained by running KeyGen(MSK,PP, Sk).

Guess The attacker outputs a guess b′ for b.
The advantage of an attacker is this game is defined to be Pr[b = b′]− 1

2 .

Definition 3. A ciphertext-policy attribute-based encryption system is fully secure if all poly-
nomial time attackers have at most a negligible advantage in this security game.

Selective security is defined by adding an initialization phase where the attacker must declare
A before seeing PP.

3 CP-ABE Construction

We now present our CP-ABE scheme in composite order groups. This closely resembles the
selectively secure CP-ABE scheme in [36], but with a one extra group element for each key and
ciphertext. This extra group element is helpful in performing a cancelation during our security
proof (when we are dealing with Phase II queries). We note that the freshly random exponent t
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for each key serves to prevent collusion, since it “ties” together the user’s attributes. Our main
system resides in the Gp1 subgroup, while the Gp2 subgroup is reserved as the semi-functional
space, and the Gp3 subgroup provides additional randomness on keys that helps to isolate keys
in the hybrid argument. We assume that messages to be encrypted as elements of the target
group GT .

Setup(λ,U)→ PP,MSK The setup algorithm chooses a bilinear group G of order N = p1p2p3
(3 distinct primes). We let Gpi denote the subgroup of order pi in G. It then chooses random
exponents α, a, κ ∈ ZN , and a random group element g ∈ Gp1 . For each attribute i ∈ U , it
chooses a random value hi ∈ ZN . The public parameters PP areN, g, ga, gκ, e(g, g)α,Hi = ghi∀i.
The master secret key MSK additionally contains gα and a generator g3 of Gp3 .

KeyGen(MSK, S,PP)→ SK The key generation algorithm chooses random exponents t, u ∈
ZN , and random elements R,R′, R′′, {Ri}i∈S ∈ Gp3 (this can be done by raising a generator of
Gp3 to random exponents modulo N). The secret key is:

S, K = gαgatgκuR, K ′ = guR′, K ′′ = gtR′′, Ki = Ht
iRi ∀i ∈ S.

Encrypt((A, ρ),PP,M) → CT For A an ℓ × n matrix and ρ a map from each row Aj of
A to an attribute ρ(j), the encryption algorithm chooses a random vector v ∈ ZnN , denoted
v = (s, v2, . . . , vn). For each row Aj of A, it chooses a random rj ∈ ZN . The ciphertext is (we
also include (A, ρ) in the ciphertext, though we do not write it below):

C0 =Me(g, g)αs, C = gs, C ′ = (gκ)s,

Cj = (ga)Aj ·vH
−rj
ρ(j), Dj = grj ∀j ∈ [ℓ].

(The notation [ℓ] denotes the set {1, . . . , ℓ}.)

Decrypt(CT,PP,SK) → M For a secret key corresponding to an authorized set S, the de-
cryption algorithm computes constants ωj ∈ ZN such that

∑
ρ(j)∈S ωjAj = (1, 0, . . . , 0). It then

computes:

e(C,K)e(C ′,K ′)−1/
∏

ρ(j)∈S

(
e(Cj ,K

′′)e(Dj ,Kρ(j))
)ωj = e(g, g)αs.

Then M can be recovered as C0/e(g, g)
αs.

Correctness We observe that

e(C,K)e(C ′,K ′)−1 = e(g, g)αse(g, g)sat.

For each j,
e(Cj ,K

′′)e(Dj ,Kρ(j)) = e(g, g)atAj ·v,

so we have: ∏
ρ(j)∈S

(
e(Cj ,K

′′)e(Dj ,Kρ(j))
)ωj = e(g, g)at

∑
ρ(j)∈S ωjAj ·v = e(g, g)sat.
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4 Security Proof

We now prove the following theorem:

Theorem 4. Under Assumption 1, the general subgroup decision assumption, the three party
Diffie-Hellman assumption in a subgroup, and the source group q-parallel BDHE assumption in
a subgroup defined in Section 2.2, our CP-ABE scheme defined in Section 3 is fully secure (in
the sense of Definition 3).

Our security proof is obtained via a hybrid argument over a sequence of games. We let
Gamereal denote the real security game as defined in Section 2.3.3. To describe the rest of
the games, we must first define semi-functional keys and ciphertexts. We let g2 denote a fixed
generator of the subgroup Gp2 .

Semi-functional Keys To produce a semi-functional key for an attribute set S, one first calls
the normal key generation algorithm to produce a normal key consisting of K,K ′,K ′′, {Ki}i∈S .
One then chooses a random element W ∈ Gp2 and forms the semi-functional key as:

KW,K ′,K ′′, {Ki}i∈S .

In other words, all of the elements remain unchanged except for K, which is multiplied by a
random element of Gp2 .

Semi-functional Ciphertexts To produce a semi-functional ciphertext for an LSSS matrix
(A, ρ), one first calls the normal encryption algorithm to produce a normal ciphertext consisting
of C0, C, C

′, {Cj , Dj}. One then chooses random exponents a′, κ′, s′ ∈ ZN , a random vector
w ∈ ZnN with s′ as its first entry, a random exponent ηi ∈ ZN for each attribute i, and a random
exponent γj ∈ ZN for each j ∈ [ℓ]. The semi-functional ciphertext is formed as:

C0, Cg
s′
2 , C

′gs
′κ′

2 , {Cjg
a′Aj ·w
2 g

−ηρ(j)γj
2 , Djg

γj
2 }.

We observe that the structure of the elements in Gp2 here is similar to the structure in Gp1 ,
but is unrelated to the public parameters. More specifically, s′ plays the role of s, w plays
the role of v, a′ plays the role of a, κ′ plays the role of κ, ηρ(j) plays the role of hρ(j), and γj
plays the role of rj . While the values of a, κ, and the values hρ(j) are determined modulo p1
by the public parameters, the values of a′, κ′, ηρ(j) are freshly random modulo p2. These values
a′, κ′, {ηi} are chosen randomly once and then fixed - these same values will also be involved in
additional types of semi-functional keys which we will define below.

We let Q denote the total number of key queries that the attacker makes. For each k from
0 to Q, we define Gamek as follows.

Gamek In this game, the ciphertext given to the attacker is semi-functional, as are the first
k keys. The remaining keys are normal.

The outer structure of our hybrid argument will progress as follows. First, we transition
from Gamereal to Game0, then to Game1, next to Game2, and so on. We ultimately arrive at
GameQ, where the ciphertext and all of the keys given to the attacker are semi-functional. We
then transition to Gamefinal, which is defined to be like GameQ, except that the ciphertext
given to the attacker is a semi-functional encryption of a random message. This will complete
our security proof, since any attacker has a zero advantage in this final game.
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The transitions from Gamereal to Game0 and from GameQ to Gamefinal are relatively
easy, and can be accomplished directly via computational assumptions. The transitions from
Gamek−1 to Gamek require more intricate arguments. For these steps, we will need to treat
Phase I key requests (before the challenge ciphertext) and Phase II key requests (after the
challenge ciphertext) differently. We will also need to define two additional types of semi-
functional keys:

Nominal Semi-functional Keys These keys will share the values a′, κ′, ηi modulo p2 with
the semi-functional ciphertext. To produce a nominal semi-functional key for an attribute set
S, one first calls the normal key generation algorithm to produce a normal key consisting of
K,K ′,K ′′, {Ki}i∈S . One then chooses random exponents t′, u′ ∈ ZN and forms the nominal
semi-functional key as:

Kga
′t′+κ′u′

2 , K ′gu
′

2 , K
′′gt

′
2 , Kig

t′ηi
2 ∀i ∈ S.

We note that a nominal semi-functional key still correctly decrypts a semi-functional ciphertext,
since the terms in the Gp2 will cancel out upon completion of the decryption algorithm.

Temporary Semi-functional Keys These keys will still share the values ηi modulo p2 with
the semi-functional ciphertext, but the Gp2 component attached to K will now be randomized.
More formally, to produce a temporary semi-functional key for an attribute set S, one first calls
the normal key generation algorithm to produce a normal key consisting of K,K ′,K ′′, {Ki}i∈S .
One then chooses a random W ∈ Gp2 and random exponents t′, u′ ∈ ZN . The temporary
semi-functional key is formed as:

KW, K ′gu
′

2 , K
′′gt

′
2 , Kig

t′ηi
2 ∀i ∈ S.

For each k from 1 to Q, we define the following additional games:

GameNk This is like Gamek, except that the k
th key given to the attacker is a nominal semi-

functional key. The first k − 1 keys are still semi-functional in the original sense, while the
remaining keys are normal.

GameTk This is like Gamek, except that the kth key given to the attacker is a temporary
semi-functional key. The first k− 1 keys are still semi-functional in the original sense, while the
remaining keys are normal.

The fact that the values a′, κ′, ηi are shared among semi-functional ciphertexts, nominal
semi-functional keys, and temporary semi-functional keys means that these values are fixed
whenever they first appear in a security game. This could be when the semi-functional ciphertext
is generated, when a nominal semi-functional key is generated, or in the case of the ηi values,
when a temporary semi-functional key is generated. The structure of temporary semi-functional
keys is designed to fit the outcome of applying selective proof techniques to a single key and
ciphertext pair within our hybrid game sequence.

In order to get from Gamek−1 to Gamek in our hybrid argument, we will transition first from
Gamek−1 to GameNk , then to GameTk , and finally to Gamek. The transition from GameNk to
GameTk will require different computational assumptions for Phase I and Phase II key queries.
We let Q1 denote the number of Phase I queries, and we will address this transition separately
for k ≤ Q1 and k > Q1. Our handling of Phase I queries will closely resemble the selective
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security proof strategy for KP-ABE in [19], while our handling of Phase II queries will closely
resemble the selective security proof strategy for CP-ABE in [36].

The original versions of these arguments in [19, 36] relied on assumptions very close to ours,
with the main difference being that the assumptions in [19, 36] had challenge terms in the target
group GT instead of G. This is because the selective security arguments could afford to deal
with all keys at once, and hence could use an assumption with a challenge in the target group to
change the ciphertext to an encryption of a random message. This kind of change simultaneously
affects the interaction of the ciphertext with all keys. In our hybrid framework, we need to
handle keys individually, and hence we use an assumption with a challenge in the source group
to change the nature of individual keys one at a time, saving our progress incrementally until
we arrive at the final step and can afford to change to an encryption of a random message.

Our hybrid argument is accomplished in the following lemmas.

Lemma 5. Under the general subgroup decision assumption, no polynomial time attacker can
achieve a non-negligible difference in advantage between Gamereal and Game0.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
Gamereal and Game0, we will create a PPT algorithm B to break the general subgroup decision
assumption with sets Z0 := {1}, Z1 := {1, 2}, Z2 := {1}, Z3 := {3}. Our B is given g1, g3, T ,
where g1 is a generator of Gp1 , g3 is a generator of Gp3 , and T is either a random element of Gp1
or a random element of Gp1p2 . B will simulate either Gamereal or Game0 with A, depending on
the nature of T .
B chooses random exponents α, a, κ, {hi} ∈ ZN and sets the public parameters as:

PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g, g)
α = e(g1, g1)

α, Hi = ghi1 ∀i}.

It gives these to A. We note that B knows the MSK. When A requests a secret key, B can call
the normal key generation algorithm to create one.

At some point, A requests a challenge ciphertext for an access matrix (A, ρ) and messages
M0,M1. We let ℓ× n denote the dimensions of A. B chooses a random bit b and encrypts Mb

as follows. It implicitly sets gs equal to the Gp1 part of T . It chooses a random vector ṽ ∈ ZnN
with first entry equal to 1. It implicitly sets v = sṽ. It also chooses random exponents r̃j ∈ ZN
for each j from 1 to ℓ. It implicitly sets rj = sr̃j . We note that the values of s, v, rj ∀j are
properly distributed modulo p1. The ciphertext is formed as:

C0 =Mbe(g1, T )
α, C = T, C ′ = T κ,

Cj = T aAj ·ṽT−r̃jhρ(j) , Dj = T r̃j ∀j.

If T ∈ Gp1 , this is a properly distributed normal ciphertext, and B has properly simulated
Gamereal with A. If T ∈ Gp1p2 , then this is a semi-functional ciphertext, with components in
Gp2 set as: gs

′
2 is the Gp2 part of T , κ′ is equal to the value of κ modulo p2, a

′ is equal to the
value of a modulo p2, w is equal to s′ṽ modulo p2, and for each j, ηρ(j) is equal to the value
of hρ(j) modulo p2 and γj is equal to the value of s′r̃j modulo p2. We note that these values
are properly distributed, since the modulo p1 and p2 values of an element chosen uniformly
at random modulo N are distributed as independent uniform random values by the Chinese
Remainder Theorem. We also note that the public parameters only information-theoretically
reveal the values of a, κ, hi modulo p1. Hence when T ∈ Gp1p2 , B has properly simulated Game0
withA. Thus, B can leverage the non-negligible difference inA’s advantage between these games
to achieve a non-negligible advantage against the general subgroup decision assumption.

13



Lemma 6. Under the general subgroup decision assumption, no polynomial time attacker can
achieve a non-negligible difference in advantage between Gamek−1 and GameNk for any k from
1 to Q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
Gamek−1 and Gamek for some k between 1 and Q, we will create a PPT algorithm B to
break the general subgroup decision assumption with sets Z0 := {1, 3}, Z1 := {1, 2, 3}, Z2 :=
{1}, Z3 := {3}, Z4 := {1, 2}, Z5 := {2, 3}. Our B is given g1, g3, X1X2, Y2Y3, T , where g1, X1

are generators of Gp1 , g3, Y3 are generators of Gp3 , X2 is a generator of Gp2 , and T is either a
random element of Gp1p3 or a random element of Gp1p2p3 . B will simulate either Gamek−1 or
GameNk with A, depending on the nature of T .
B chooses random exponents α, a, κ, {hi} ∈ ZN , and sets the public parameters as

PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g1, g1)
α, Hi = ghi1 ∀i}.

It gives these to A. We note that B knows the MSK, and so can use the regular key generation
algorithm to produce normal keys in response to A’s later key queries.

To respond to A’s first k − 1 key queries, B produces semi-functional keys as follows. First
it uses the regular key generation algorithm to produce a normal key K,K ′,K ′′, {Ki}i∈S . Then
it chooses a random exponent τ ∈ ZN and forms the semi-functional key as:

K(Y2Y3)
τ , K ′, K ′′, {Ki}i∈S .

We note that these semi-functional keys are properly distributed, as Y τ
2 is distributed as a

uniformly random element of Gp2 .
To form the semi-functional challenge ciphertext for an ℓ×n access matrix (A, ρ) and message

Mb, B chooses random exponents r̃j ∈ ZN for all j from 1 to ℓ. It also chooses a random vector

ṽ ∈ ZN with first entry equal to 1. It will implicitly set gs = X1, v = sṽ, and grj = X
r̃j
1 . It

computes the ciphertext as:

C0 =Mb(g1, X1X2)
α, C = X1X2, C

′ = (X1X2)
κ,

Cj = (X1X2)
aAj ·ṽ(X1X2)

−hρ(j)r̃j , Dj = (X1X2)
r̃j ∀j.

We note that this implicitly sets gs
′

2 = X2, κ
′ = κ modulo p2, a

′ = a modulo p2, ηρ(j) = hρ(j)

modulo p2 for all j, and g
γj
2 = X

r̃j
2 . To see that this is a properly distributed semi-functional

ciphertext, note that the values of a, κ, and {hi} modulo p2 are not revealed by the public
parameters.

To create the kth requested key for an attribute set S, B chooses a random exponent ũ ∈ ZN
and random elements R,R′, R′′, {Ri} ∈ Gp3 . It sets:

K = gα1 T
aT ũκR, K ′ = T ũR′, K ′′ = TR′′, Ki = T hiRi ∀i ∈ S.

This implicitly sets gt to be the Gp1 part of T , and gu to be the Gp1 part of T ũ. We note that
these are properly distributed as (independently) random elements of Gp1 . Now, if T ∈ Gp1p3 ,
this is a properly distributed normal key. If T ∈ Gp1p2p3 , this is a properly distributed nominal
semi-functional key, with the values a′ = a modulo p2, κ

′ = κ modulo p2, and each ηi equal to
the value of hi modulo p2 as in the semi-functional ciphertext.

Thus, when T ∈ Gp1p3 , B has properly simulated Gamek−1, and when T ∈ Gp1p2p3 , B has
properly simulated GameNk . Hence B can leverage A’s non-negligible difference in advantage to
achieve a non-negligible advantage against the general subgroup decision assumption.
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Lemma 7. Under the three party Diffie-Hellman assumption in a subgroup (and assuming it is
hard to find a non-trivial factor of N), no polynomial time attacker can achieve a non-negligible
difference in advantage between GameNk and GameTk for an k from 1 to Q1 (recall these are all
the Phase I queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameNk and GameTk for some k between 1 and Q1, we will create a PPT algorithm B to break
the three party Diffie-Hellman assumption in a subgroup. B is given g1, g2, g3, g

x
2 , g

y
2 , g

z
2 , T ,

where T is either gxyz2 or a random element of Gp2 . B will simulate either GameNk or GameTk
with A depending on the nature of T .
B first chooses random exponents α, a, κ, {hi} ∈ ZN and sets the public parameters as:

PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g1, g1)
α, Hi = ghi1 ∀i}.

It gives these to A. We note that B knows the MSK, and hence can use the normal key
generation algorithm to make normal keys in response to A’s key requests from the k + 1
request and onward. To respond to A’s first k − 1 key requests, B creates semi-functional keys
by first creating a normal key and then multiplying K by a random element of Gp2 (this can
be obtained by raising the generator g2 to a random exponent modulo N).

We let S denote the attribute set requested in the kth key query by A. Since we are
assuming the kth key query occurs in Phase I, S is declared before B must produce the challenge
ciphertext. This allows B to define the values ηi modulo p2 to be shared by the kth key and
the semi-functional ciphertext after learning the set S. To set these values, B chooses random
exponents ηi ∈ ZN for each i ∈ S. For i /∈ S, it implicitly sets ηi modulo p2 to be equal to xη̃i
modulo p2, where random exponents η̃i ∈ ZN are chosen for each i /∈ S. It also implicitly sets
a′ equal to xy modulo p2.

To form the kth key, B first calls the normal key generation algorithm to produce a normal
key, K,K ′,K ′′, {Ki}i∈S . It then chooses random exponents κ′, u′ ∈ ZN and implicitly sets t′

modulo p2 equal to z modulo p2. It sets the key as:

Kgκ
′u′

2 T, K ′gu
′

2 , K
′′gz2 , Ki = (gz2)

ηi ∀i ∈ S.

We observe that if T = gxyz2 , this will be a properly distributed nominal semi-functional key,
and when T is random in Gp2 , this will be a properly distributed temporary semi-functional
key.

To create the semi-functional challenge ciphertext for an ℓ × n access matrix (A, ρ) and
message Mb, B first runs the normal encryption algorithm to produce a normal ciphertext,
C0, C, C

′, {Cj , Dj}j∈[ℓ]. We note the attribute set S cannot satisfy the access policy of (A, ρ).
As a result, B can efficiently find a vector w̃ ∈ ZnN such that w̃ ·Aj = 0 modulo N for all j such
that ρ(j) ∈ S and the first entry of w̃ is nonzero modulo each prime dividing N . Such a vector
will exist as long as (1, 0, . . . , 0) is not in the span of {Aj}ρ(j)∈S modulo each of p1, p2, p3. We
may assume this holds with all but negligible probability, since we are assuming it is hard to find
a non-trivial factor of N . This vector w̃ can be efficiently found by performing row reduction
modulo N (we note that if one encounters a nonzero, non-invertible element of N during this
process, then one has found a nontrivial factor of N). Once w̃ is found, its first entry can be
randomized by multiplying the vector by a random value modulo N . Thus, we may assume the
first entry of w̃ is random modulo p2. We call this first entry s′.
B also chooses a random vector w′ ∈ ZnN with first entry equal to 0. It will implicitly set

the sharing vector w modulo p2 so that a′w = xyw̃+w′ (i.e. w = w̃+ (xy)−1w′). We note that
w is randomly distributed since the first entry of w̃ is random and the remaining entries of w′

are random. B also chooses random values γj ∈ ZN for each j such that ρ(j) ∈ S, and random
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values γ̃j ∈ ZN for each j such that ρ(j) /∈ S. For these j’s such that ρ(j) /∈ S, it will implicitly
set γj = yη̃−1

ρ(j)Aj · w̃ + γ̃j . We note that all of these values are properly distributed modulo p2.
It forms the semi-functional ciphertext as:

C0, Cg
s′
2 , C

′gs
′κ′

2 ,

Cjg
Aj ·w′

2 g
−ηρ(j)γj
2 , Djg

γj
2 ∀j s.t. ρ(j) ∈ S,

Cjg
Aj ·w′

2 (gx2 )
−η̃ρ(j)γ̃j , Dj(g

y
2)
η̃−1
ρ(j)

Aj ·w̃g
γ̃j
2 ∀j s.t. ρ(j) /∈ S.

To see that this is a properly formed semi-functional ciphertext, note that for j such that
ρ(j) /∈ S:

a′Aj · w − ηρ(j)γj = Aj · (xyw̃ + w′)− xη̃ρ(j)(yη̃−1
ρ(j)Aj · w̃ + γ̃j) = Aj · w′ − xη̃ρ(j)γ̃j .

Here, B has embedded a y into the γj term and used the x embedded in the ηρ(j) term to cancel
out the xy term in a′Aj · w that it cannot produce.

When T = gxyz2 , B has properly simulated GameNk , and when T is random in Gp2 , B has
properly simulated GameTk . Hence B can leverage A’s non-negligible difference in advantage be-
tween these games to achieve a non-negligible advantage against the three party Diffie-Hellman
assumption in a subgroup.

Lemma 8. Under the source group q-parallel BDHE assumption in a subgroup (and assuming
it is hard to find a non-trivial factor of N), no polynomial time attacker can achieve a non-
negligible difference in advantage between GameNk and GameTk for a k > Q1 using an access
matrix (A, ρ) of size ℓ× n where ℓ, n ≤ q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameNk and GameTk for some k such that Q1 < k ≤ Q using an access matrix with dimensions
≤ q, we will create a PPT algorithm B to break the source group q-parallel BDHE assumption in

a subgroup. Our B is given: g1, g3, g2, g
f
2 , g

df
2 , g

ci
2 ∀i ∈ [2q]\{q+1}, gc

i/bj
2 ∀i ∈ [2q]\{q+1}, j ∈ [q],

g
dfbj
2 ∀j ∈ [q], g

dfcibj′/bj
2 ∀i ∈ [q], j, j′ ∈ [q] such that j ̸= j′, and T , where T is either equal

to gdc
q+1

2 or is a random element of Gp2 . B will simulate either GameNk or GameTk with A,
depending on T .
B chooses random exponents α, a, κ, {hi} ∈ ZN , and sets the public parameters as

PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g1, g1)
α, Hi = ghi1 ∀i}.

It gives these to A. We note that B knows the MSK, and hence can use the normal key
generation algorithm to make normal keys in response to A’s key requests from the k + 1
request and onward. To make the first k − 1 semi-functional keys, B can first make a normal
key and then multiply the K by a random element of Gp2 (this can be obtained by raising g2
to a random exponent modulo N).

Since we are assuming the kth key query is a Phase II key query, A will request the challenge
ciphertext for some ℓ × n access matrix (A, ρ) before requesting the kth key. This allows B to
define the exponents a′, κ′, {ηi} after seeing (A, ρ). B chooses random values κ̃, {η̃i} ∈ ZN . It
will implicitly set a′ = cd modulo p2 and κ′ = d+ κ̃ modulo p2. For each attribute i, we let Ji
denote the set of indices j such that ρ(j) = i. B define gηi2 as:

gηi2 = gη̃i2
∏
j∈Ji

(
g
c/bj
2

)Aj,1

·
(
g
c2/bj
2

)Aj,2

· · ·
(
g
cn/bj
2

)Aj,n

.
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We note that all of these terms g
c/bj
2 , . . . , g

cn/bj
2 are available to B, since we are assuming n, ℓ ≤ q.

We note that a′ is uniformly random because d is random, κ′ is randomized by κ̃, and each ηi
is randomized by η̃i.

To form the challenge ciphertext, B chooses random exponents {γ̃j} ∈ ZN . It creates
the normal components of the ciphertext as in the encryption algorithm. To create the semi-
functional components (the parts in Gp2), it implicitly sets s′ = f modulo p2 and γj = dfbj+ γ̃j
for each j from 1 to ℓ. We note that these values are properly distributed because f, γ̃j are
random. It also chooses random values y2, . . . , yn ∈ ZN and implicitly sets the sharing vector
w as:

w := (f, fc+ y2(a
′)−1, . . . , fcn−1 + yn(a

′)−1).

This is properly distributed as a random vector up to the constraint that the first entry is s′ = f
(note that a′ is nonzero with all but negligible probability).

For each j from 1 to ℓ, we observe that

a′Aj · w − ηρ(j)γj = df(cAj,1 + . . .+ cnAj,n) + y2Aj,2 + . . .+ ynAj,n (1)

−dfbj

 ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

 (2)

−dfbj η̃ρ(j) − γ̃j η̃ρ(j) − γ̃j

 ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

 (3)

Since j ∈ Jρ(j), the first quantity in (1) will be canceled by (2). What is left of (2) will be
terms of the form dfcibj/bj′ , where i ≤ n ≤ q and j ̸= j′. We note that B is given all of these

in the exponent of g2 in the assumption. B also has g
dfbj
2 for all j from 1 to q ≥ ℓ and g

ci/bj′
2

for all j′ ∈ Jρ(j), i ≤ n ≤ q. Thus, B can form g
a′Aj ·w−ηρ(j)γj
2 for each j. It can also compute

gs
′

2 = gf2 , g
s′κ′
2 = gdf2

(
gf2

)κ̃
, and g

γj
2 = g

dfbj
2 g

γ̃j
2 . B multiplies these Gp2 components by the

normal ciphertext to produce the semi-functional ciphertext, which it gives to A.
Now, when A later requests the kth key for some attribute set S not satisfying (A, ρ), B

responds as follows. It first creates a normal key by calling the usual key generation algorithm.
To create the semi-functional components, it first chooses a vector θ = (θ1, . . . , θn) ∈ ZnN such
that θ ·Aj = 0 modulo N for all j such that ρ(j) ∈ S and the first entry of θ is nonzero modulo
each prime dividing N . Such a vector will exist as long as (1, 0, . . . , 0) is not in the span of
{Aj}ρ(j)∈S modulo each of p1, p2, p3. As in the proof of the previous lemma, we may assume this
holds with all but negligible probability and we note that such a θ can be efficiently computed.
B chooses a random value ũ ∈ ZN and implicitly sets

u′ = −θ2cq − θ3cq−1 − . . .− θncq−n+2 + fũ,

t′ = θ1c
q + θ2c

q−1 + . . .+ θnc
q−n+1.

We note that these are random modulo p2 because ũ and θ1 are random (and c, f are nonzero
with all but negligible probability). We observe that B can now form gu

′
2 and gt

′
2 as follows:

gu
′

2 =
(
gc

q

2

)−θ2 (
gc

q−1

2

)−θ3
. . .

(
gc

q−n+2

2

)−θn (
gf2

)ũ
,

gt
′
2 =

(
gc

q

2

)θ1 (
gc

q−1

2

)θ2
. . .

(
gc

q−n+1

2

)θn
.
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For each attribute i ∈ S, we recall that the vector θ is orthogonal to Aj for all rows j such
that ρ(j) = i (i.e. all j ∈ Ji). Thus, we observe:

t′ηi = t′η̃i +
∑
j∈Ji

n∑
m1,m2=1
m1 ̸=m2

θm1Aj,m2b
−1
j cq+1+m2−m1 .

Since q + 1+m2 −m1 is always in the set [2q] \ {q + 1}, B can compute gt
′ηi
2 from the terms it

is given in the assumption. We also have that

a′t′ + k′u′ = θ1dc
q+1 − κ̃

(
θ2c

q + . . .+ θnc
q−n+2

)
+ dfũ+ fκ̃ũ.

Therefore, B creates the semi-functional term for key component K as:

T θ1
(
gc

q

2

)−κ̃θ2
. . .

(
gc

q−n+2

2

)−κ̃θn (
gdf2

)ũ (
gf2

)κ̃ũ
.

If T = gdc
q+1

2 , then this is a properly distributed nominal semi-functional key. If T is a random
element of Gp2 , this is a properly distributed temporary semi-functional key. Hence, B has
properly simulated either GameNk or GameTk , depending on T , and can therefore leverage A’s
non-negligible difference in advantage to break the source group q-parallel BDHE assumption
in a subgroup.

Lemma 9. Under the general subgroup decision assumption, no polynomial time attacker can
achieve a non-negligible difference in advantage between GameTk and Gamek for any k from 1
to Q.

Proof. This is nearly identical to the proof of Lemma 6, except that B uses Y2Y3 to place a
random Gp2 component on the K part of the kth key to make it a semi-functional key in the
case that T has no Gp2 component.

Lemma 10. Under Assumption 1, no polynomial attacker can achieve a non-negligible differ-
ence in advantage between GameQ and Gamefinal.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameQ and Gamefinal, we will create a PPT algorithm B to break Assumption 1. B is given
g1, g2, g3, g

α
1X2, g

s
1Y2, T , where T is either e(g1, g1)

αs or a random element of GT . B will simulate
either GameQ or Gamefinal with A depending on the nature of T .
B chooses random exponents a, κ, {hi} ∈ ZN and sets the public parameters as:

PP = {N, g = g1, g
a = ga1 , g

κ = gκ1 , e(g, g)
α = e(gα1X2, g1), Hi = ghi1 ∀i}.

It gives these to A.
When A requests a key for an attribute set S, B creates a semi-functional key as follows.

It chooses random exponents t, u, γ ∈ ZN and samples random elements R,R′, R′′, {Ri} ∈ Gp3
(this can be done by raising g3 to random exponents modulo N). The key is formed as:

K = (gα1X2)g
at
1 g

κu
1 Rgγ2 , K

′ = gu1R
′, K ′′ = gt1R

′′, Ki = ghit1 ∀i ∈ S.

We note that this is a properly distributed semi-functional key.
To produce the semi-functional ciphertext for some ℓ × n access matrix (A, ρ), B chooses

random exponents r̃j ∈ ZN for each j from 1 to ℓ and a random vector ṽ with first entry equal
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to 1. It implicitly sets v = sṽ and rj = sr̃j . We note that these values are properly distributed.
It forms the ciphertext as:

C0 =MbT, C = gs1Y2, C
′ = (gs1Y2)

κ,

Cj = (gs1Y2)
aAj ·ṽ−hρ(j)r̃j , Dj = (gs1Y2)

r̃j .

We note that this is a semi-functional ciphertext with gs
′

2 equal to Y2, κ
′ equal to the value of

κ modulo p2, w equal to s′ṽ modulo p2, g
γj
2 = Y

r̃j
2 , and ηρ(j) equal to the value of hρ(j) modulo

p2 for each j. We note that these values are all properly distributed because Y2 is a random
element of Gp2 , and the values of κ, hi, r̃j , ṽ modulo p2 are distributed independently of their
values modulo p1. Therefore, if T = e(g1, g1)

αs, this is a properly distributed semi-functional
encryption of Mb, and B has properly simulated Gameq. If T is a random element of GT ,
then this is a properly distributed semi-functional encryption of a random message, and B has
properly simulated Gamefinal. Hence B can leverage A’s non-negligible difference in advantage
to achieve a non-negligible advantage against Assumption 1.

This completes our proof of Theorem 4. We note that it is not necessary to include explicitly
in the statement of the theorem that we are assuming it is hard to find a non-trivial factor of
N , since this is implied by the general subgroup decision assumption.

5 Our System in Prime Order Groups

In this section, we will present a prime order analog of our composite order result. This is
obtained by combining our composite order construction and proof with the translation tech-
niques developed in [22]. We first present the necessary background and state our complexity
assumptions in the prime order setting.

5.1 Background and Complexity Assumptions

We let G denote a group generator - an algorithm which takes a security parameter λ as input
and outputs a description of a bilinear group G. We define G’s output as (p,G,GT , e), where p
is a prime, G and GT are cyclic groups of order p, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, f ∈ G, a, b ∈ Zp, e(ga, f b) = e(g, f)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order p in GT .

We will refer to G as the source group and GT as the target group. We assume that the
group operations in G and GT and the map e are computable in polynomial time with respect
to λ, and the group descriptions of G and GT include a generator of each group.

Our complexity assumptions in the prime order setting will be nearly identical to our as-
sumptions in the composite order setting, except that the general subgroup decision assumption
and the assumption used for the final game will be replaced by the decisional linear assumption.

The Decisional Linear Assumption Given a group generator G, we define the following
distribution:

G := (p,G,GT , e)
R←− G,

g, f, v
R←− G, c1, c2

R←− Zp,

D := (G, g, f, v, f c1 , vc2),
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T0 = gc1+c2 , T1
R←− G.

We define the advantage of an algorithm A in breaking this assumption to be:

AdvdLG,A(λ) := |P [A(D,T0) = 1]− P [A(D,T1) = 1]| .

We say that G satisfies the Decisional Linear Assumption if AdvdLG,A(λ) is a negligible function
of the security parameter λ for any PPT algorithm A.

The Three Party Diffie-Hellman Assumption Given a group generator G, we define the
following distribution:

G = (p,G,GT , e)
R←− G,

g
R←− G, x, y, z R←− Zp,

D = (G, g, gx, gy, gz),

T0 = gxyz, T1
R←− G.

We define the advantage of an algorithm A in breaking this assumption to be:

Adv3DHG,A (λ) :=
∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]

∣∣.
We say that G satisfies The Three Party Diffie-Hellman Assumption if Adv3DHG,A (λ) is a

negligible function of λ for any PPT algorithm A.

The Source Group q-Parallel BDHE Assumption Given a group generator G and a
positive integer q, we define the following distribution:

G = (p,G,GT , e)
R←− G,

g
R←− G, c, d, f, b1, . . . , bq

R←− Zp,

The adversary will be given:

D = (G, g, gf , gdf , gc, gc
2
, . . . , gc

q
, gc

q+2
, . . . , gc

2q
,

gc
i/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

gdfbj ∀j ∈ [q], gdfc
ibj′/bj ∀i ∈ [q], j, j′ ∈ [q] s.t. j ̸= j′).

We additionally define

T0 = gdc
q+1
, T1

R←− G.

We define the advantage of an algorithm A in breaking this assumption to be:

AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]| .

We say that G satisfies The Source Group q-Parallel BDHE Assumption in a Subgroup if AdvqG,A
is a negligible function of λ for any PPT algorithm A.
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Dual Pairing Vector Spaces In order to simulate an analog of the orthogonal subgroups
present in composite order groups, our construction will use dual pairing vector spaces, a tool
introduced by Okamoto and Takashima [27, 28, 29]. We will replace single group elements
with tuples of group elements, denoted by gv⃗, where v⃗ = (v1, . . . , vn) is a vector over Zp. This
notation should be interpreted as:

gv⃗ := (gv1 , . . . , gvn).

When we write something like “raise gv⃗ to the power c” for a scalar c ∈ Zp, we mean raising
each component to the power c, i.e.:(

gv⃗
)c

:= gcv⃗ = (gcv1 , . . . , gcvn).

We define a bilinear map en on n-tuples of G by pairing componentwise and multiplying the
results in GT :

en(g
v⃗, gw⃗) :=

n∏
i=1

e(gvi , gwi) = e(g, g)v⃗·w⃗,

where the dot product is computed modulo p.
For a fixed (constant) dimension n, we say two bases B := (⃗b1, . . . , b⃗n) and B∗ := (⃗b∗1, . . . , b⃗

∗
n)

of Znp are “dual orthonormal” when:

b⃗i · b⃗∗j = 0 (mod p),

whenever i ̸= j, and
b⃗i · b⃗∗i = ψ

for all i, where ψ is a nonzero element of Zp. (This is a slight abuse of the terminology
“orthonormal”, since ψ is not constrained to be 1.) For a generator g ∈ G, we note that

en(g
b⃗i , gb⃗

∗
j ) = 1

whenever i ̸= j, where 1 here denotes the identity element in GT .
We let Dual(Znp , ψ) denote the set of pairs of dual orthonormal bases of dimension n with

dot products b⃗i · b⃗∗i = ψ. We let (B,B∗)
R←− Dual(Znp , ψ) denote choosing a random pair of

bases from this set.
Dual pairing vector spaces provide a workable analog to the prime order subgroups present in

composite order groups, since they come equipped with orthogonal subspaces under the pairing
en. The notion of a subgroup can now be replaced by a subspace in the exponent, particularly
a span of a subset of the basis vectors in a pair of dual orthonormal bases.

We will use a lemma noted in [22] which roughly states that if one starts by sampling a
random pair of dual orthonormal bases and then applies a linear change of basis to a subset of the
basis vectors (maintaining the orthonormal properties), the resulting bases are also distributed
as a random pair, independent of the change of basis that was applied. More formally, we let
(B,B∗) denote a pair of dual orthonormal bases over Znp , and we let A ∈ Zm×m

p be an invertible
matrix for some m ≤ n. We let Sm ⊆ [n] be a subset of size m. We then define new dual
orthonormal bases BA,B∗

A as follows. We let Bm denote the n × m matrix over Zp whose

columns are the vectors b⃗i ∈ B such that i ∈ Sm. Then BmA is also an n×m matrix. We form
BA by retaining all of the vectors b⃗i ∈ B for i /∈ Sm and exchanging the b⃗i for i ∈ Sm with the
columns of BmA. To define B∗

A, we similarly let B∗
m denote the n ×m matrix over Zp whose

columns are the vectors b⃗∗i ∈ B∗ such that i ∈ Sm. Then B∗
m(A

−1)t is also an n ×m matrix,

where (A−1)t denotes the transpose of A−1. We form B∗
A by retaining all of the vectors b⃗∗i ∈ B∗

for i /∈ Sm and exchanging the b⃗i for i ∈ Sm with the columns of B∗
m(A

−1)t. We have:
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Lemma 11. For any fixed positive integers m ≤ n, any fixed invertible A ∈ Zm×m
p and set

Sm ⊆ [n] of size m, if (B,B∗)
R←− Dual(Znp , ψ), then (BA,B∗

A) is also distributed as a random
sample from Dual(Znp , ψ). In particular, the distribution of (BA,B∗

A) is independent of A.

This follows simply from noting that one can recover B,B∗ uniquely from BA,B∗
A (with A

fixed).
In [22], the “Subspace Assumption” is introduced as a prime order substitute of the general

subgroup decision assumption in composite order groups. It is based on the observation that
if one a given gv⃗ say, then one cannot tell if v⃗ is in the span of b⃗∗1, b⃗

∗
2 or the larger span of

b⃗∗1, b⃗
∗
2, b⃗

∗
3 when one is not given gb⃗3 (though one can be given gw⃗ for w⃗ in the span of b⃗1, b⃗2, b⃗3, for

example). The subspace assumption is implied by the decisional linear assumption and helps
clarify how DLIN allows one to expand/contract spaces in the exponent in the dual pairing
vector space framework, similar to the effect of the general subgroup decision assumption in the
composite order setting.

The statement of the subspace assumption in [22] involves one dual orthonormal basis pair
of dimension n, and is also parameterized by a positive integer k ≤ n

3 which controls how
many 2-dimensional subspaces of the total n-dimensional space are expanding to 3-dimensional
subspaces. It is remarked that one could additionally generalize the assumption to involve
multiple bases - we will use such a generalization here, and we let the parameter m denote
the number of bases. Each basis pair has its own dimension ni and its own parameter ki. For
completeness, we include a proof that our statement of the subspace assumption here is implied
by DLIN in Appendix A, though the proof is essentially the same as given in [22]. We note that
this reduction holds for any valid choices of the parameters m,ni, ki. For the simpler statement
of the subspace assumption without the clutter of multiple bases pairs, see [22].

Our m dual orthonormal bases pairs will be denoted by (B1,B∗
1), . . . , (Bm,B∗

m). For each

i from 1 to m, the basis vectors comprising (Bi,B∗
i ) will be denoted by b⃗1,i, . . . , b⃗ni,i and

b⃗∗1,i, . . . , b⃗
∗
ni,i

respectively.

Definition 12. (The Subspace Assumption) Given a group generator G, we define the following
distribution:

G := (p,G,GT , e)
R←− G, g R←− G, ψ, η, β, τ1, τ2, τ3, µ1, µ2, µ3

R←− Zp,

(B1,B∗
1)

R←− Dual(Zn1
p , ψ), . . . , (Bm,B∗

m)
R←− Dual(Znm

p , ψ),

U1,i := gµ1b⃗1,i+µ2b⃗ki+1,i+µ3b⃗2ki+1,i , U2,i := gµ1b⃗2,i+µ2b⃗ki+2,i+µ3b⃗2ki+2,i ,

. . . , Uki,i := gµ1b⃗ki,i+µ2b⃗2ki,i+µ3b⃗3ki,i ∀i ∈ [m],

V1,i := g
τ1ηb⃗∗1,i+τ2βb⃗

∗
ki+1,i , V2,i := g

τ1ηb⃗∗2,i+τ2βb⃗
∗
ki+2,i , . . . , Vki,i := g

τ1η⃗b∗ki,i
+τ2βb⃗∗2ki,i ∀i ∈ [m],

W1,i := g
τ1ηb⃗∗1,i+τ2βb⃗

∗
ki+1,i+τ3b⃗

∗
2ki+1,i , W2,i := g

τ1ηb⃗∗2,i+τ2βb⃗
∗
ki+2,i+τ3b⃗

∗
2ki+2,i ,

. . . , Wki,i := g
τ1ηb⃗∗ki,i

+τ2βb⃗∗2ki,i
+τ3b⃗∗3ki,i ∀i ∈ [m],

D :=
(
G, g, {gb⃗1,i , gb⃗2,i , . . . , gb⃗2ki,i , gb⃗3ki+1,i , . . . , gb⃗ni,i , gηb⃗

∗
1,i , . . . , g

η⃗b∗ki,i , g
βb⃗∗ki+1,i ,

. . . , g
βb⃗∗2ki,i , g

b⃗∗2ki+1,i , . . . , g
b⃗∗ni,i , U1,i, U2,i, . . . , Uki,i}

m
i=1, µ3

)
.

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvG,A := |P [A (D, {V1,i, . . . , Vki,i}
m
i=1) = 1]− P [A (D, {W1,i, . . . ,Wki,i}

m
i=1) = 1]|

is negligible in the security parameter λ.
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To help the reader identity the important features of this assumption, we include heuristic
illustrations of the m = 1, n = 3, k = 1 and m = 1, n = 6, k = 2 cases below, reproduced from
[22] (with permission).

BB

BB*
?

U1{
Figure 1: Subspace Assumption with m = 1, n = 3, k = 1

BB

BB*
? ?

{ {U1 U2

Figure 2: Subspace Assumption with m = 1, n = 6, k = 2

In these diagrams, the top rows illustrate the U terms, while the bottom rows illustrate
the V,W terms. The solid ovals and rectangles indicate the presence of basis vectors. The
crossed rectangles indicate basis elements of B that are present in U1, U2 but are not given out
in isolation. The dotted ovals with question marks indicate the basis vectors whose presence
depends on whether we consider the V ’s or the W ’s.

5.2 Construction

Our prime order construction very closely resembles our composite order construction, replacing
the subgroups in the composite order setting with dual pairing vector spaces. The basis vectors
which do not appear in the exponents of the construction are reserved as the semi-functional
space. We note that there is no need to simulate the additional randomness provided by the
Gp3 subgroup in the composite order setting. This is due to the asymmetry of the dual pairing
vector spaces, since there are different bases for the ciphertexts and keys. In our security proof,
knowledge of the full basis on the key side will allow the simulator to create other properly semi-
functional keys while a single key is being isolated to change from normal to semi-functional.
In most other respects, our security proof will be very closely analogous to the proof for our
composite order system, with the subspace assumption playing the role of the general subgroup
decision assumption.

Since the subspace assumption allows us to expand 2-dimensional spaces to 3-dimensional,
we duplicate random exponents in our composite order construction in order to start with
2-dimensional random objects in the normal space. Our construction is influenced by taste
and convenience - there are alternate choices one could make in translating our composite
order scheme into the dual pairing vector space setting, but we have chosen to work with a 1-
dimensional semi-functional space on some terms and a 2-dimensional semi-functional space on
others. For the terms with a 2-dimensional semi-functional space, we have expanded the normal
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space to be 4-dimensional. This allows us to expand simultaneously into both dimensions of
the semi-functional space by a single application of the subspace assumption (with ni’s equal
to 6 and ki’s equal to 2).

We assume that messages to be encrypted are elements of the target group GT . We also
conflate notation and consider the attribute universe to be [U ] = {1, 2, . . . ,U}, so U serves both
as a description of the attribute universe and as a count of the total number of attributes.

Setup(λ,U) → PP,MSK The setup algorithm chooses a bilinear group G of prime order p
and a generator g. It randomly chooses two pairs of dual orthonormal bases (B,B∗), (B0,B∗

0)
of dimension 3 and U pairs of dual orthonormal bases (B1,B∗

1), . . . , (BU ,B∗
U ) of dimension 6,

subject to the constraint that all of these share the same value of ψ. We let b⃗i, b⃗
∗
i denote the

basis vectors belonging to (B,B∗), and b⃗i,j , b⃗
∗
i,j denote the basis vectors belong to (Bj ,B∗

j ) for
each j from 0 to U . The setup algorithm also chooses two random exponents α1, α2 ∈ Zp. The
public parameters consist of:

PP := {G, p, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , gb⃗1,i , . . . , gb⃗4,i ∀i ∈ [U ], e(g, g)α1ψ, e(g, g)α2ψ}.

The master secret key additionally contains:

MSK := {gα1b⃗∗1 , gα2b⃗∗2 , gb⃗
∗
1 , gb⃗

∗
2 , gb⃗

∗
1,0 , gb⃗

∗
2,0 , gb⃗

∗
1,i , . . . , gb⃗

∗
4,i ∀i ∈ [U ] }.

KeyGen(MSK, S,PP)→ SK The key generation algorithm chooses random exponents t1, t2,
u1, u2 ∈ Zp and computes:

K := g(α1+t1+u1 )⃗b∗1+(α2+t2+u2 )⃗b∗2 ,

K0 := gu1b⃗
∗
1,0+u2b⃗

∗
2,0 ,

Ki := gt1b⃗
∗
1,i+t1b⃗

∗
2,i+t2b⃗

∗
3,i+t2b⃗

∗
4,i ∀i ∈ S.

The secret key is
SK := {S,K, K0, {Ki}i∈S}.

Encrypt((A, ρ),PP,M) → CT We assume M ∈ GT . For an ℓ × n access matrix A, the
encryption algorithm chooses random exponents s1, s2, {r1j , r2j}ℓj=1 ∈ Zp. It also chooses random
vectors v1, v2 ∈ Znp with first entries equal to s1 and s2 respectively. The ciphertext is formed
as (it additionally includes (A, ρ)):

M ′ :=Me(g, g)α1s1ψe(g, g)α2s2ψ, C := gs1b⃗1+s2b⃗2 ,

C0 := gs1b⃗1,0+s2b⃗2,0 ,

Cj := g(Aj ·v1+r1j )⃗b1,ρ(j)−r1j b⃗2,ρ(j)+(Aj ·v2+r2j )⃗b3,ρ(j)−r2j b⃗4,ρ(j) ∀j = 1, . . . , ℓ.

Decrypt(CT,PP,SK)→M For a secret key corresponding to a satisfying set S, the decryp-
tion algorithm computes constants ωj ∈ Zp such that

∑
ρ(j)∈S ωjAj = (1, 0, . . . , 0). It then

computes:

X :=
∏

ρ(j)∈S

e6(Cj ,Kρ(j))
ωj

It then computes:
Y := e3(K,C)/e6(K0, C0).

The message is recovered as:
M =M ′X/Y.
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Correctness We observe that for each j,

e6(Cj ,Kρ(j)) = e(g, g)(t1Aj ·v1+t2Aj ·v2)ψ.

Thus,

X :=
∏

ρ(j)∈S

e6(Cj ,Kρ(j))
ωj = e(g, g)ψ(t1

∑
ρ(j)∈S ωjAj ·v1+t2

∑
ρ(j)∈S ωjAj ·v2) = e(g, g)ψ(t1s1+t2s2).

We note that

Y = e(g, g)ψ(s1(α1+t1+u1)+s2(α2+t2+u2))/e(g, g)ψ(s1u1+s2u2) = e(g, g)ψ(s1(α1+t1)+s2(α2+t2)),

and therefore:

M ′X/Y =Me(g, g)ψ(s1α1+s2α2)e(g, g)ψ(t1s1+t2s2)/e(g, g)ψ(s1(α1+t1)+s2(α2+t2)) =M.

5.3 Security Proof

We now prove:

Theorem 13. Under the decisional linear assumption, the three party Diffie-Hellman assump-
tion, and the source group q-parallel BDHE assumption defined in Section 5.1, our CP-ABE
scheme defined in Section 5.2 is fully secure (in the sense of Definition 3).

Our security proof here is quite similar to the proof for our composite order scheme. We
begin by defining our various types of semi-functional keys and ciphertexts. The semi-functional
space in the exponent will correspond to the span of b⃗3, b⃗

∗
3, the span of b⃗3,0, b⃗

∗
3,0, and the span

of each b⃗5,j , b⃗6,j , b⃗
∗
5,j , b⃗

∗
6,j .

Semi-functional Keys To produce a semi-functional key for an attribute set S, one first calls
the normal key generation algorithm to produce a normal key consisting of K,K0, {Ki}i∈S . One

then chooses a random value γ ∈ Zp and multiplies K by gγb⃗
∗
3 . The other components of the

key remain unchanged.

Semi-functional Ciphertexts To produce a semi-functional ciphertext for an LSSS matrix
(A, ρ), one first calls the normal encryption algorithm to produce a normal ciphertext consisting
of M ′, C, C0, {Cj}. One then chooses random values s3, {r3j} ∈ Zp and a random vector v3 ∈ Znp
with first entry equal to s3. The semi-functional ciphertext is:

M ′, Cgs3b⃗3 , C0g
s3b⃗3,0 , Cjg

(Aj ·v3+r3j )⃗b5,ρ(j)−r3j b⃗6,ρ(j) ∀j = 1, . . . , ℓ.

Nominal Semi-functional Keys To produce a nominal semi-functional key for an attribute
set S, one first calls the normal key generation algorithm to produce a normal key consisting of
K,K0, {Ki}i∈S . One then chooses random values t3, u3 ∈ Zp. The nominal semi-functional key
is:

Kg(t3+u3 )⃗b
∗
3 , K0g

u3b⃗∗3,0 , Kig
t3b⃗∗5,i+t3b⃗

∗
6,i ∀i ∈ S.

We note that a nominal semi-functional key still correctly decrypts a semi-functional ciphertext.
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Temporary Semi-functional Keys A temporary semi-functional key is similar to a nominal
key, except that the semi-functional component attached to K will now be randomized (this
will prevent correct decryption of a semi-functional ciphertext). More formally, to produce a
temporary semi-functional key for an attribute set S, one first calls the normal key generation
algorithm to produce a normal key consisting of K,K0, {Ki}i∈S . One then chooses random
values t3, u3, γ ∈ Zp. The temporary semi-functional key is formed as:

Kgγb⃗
∗
3 , K0g

u3b⃗∗3,0 , Kig
t3b⃗∗5,i+t3b⃗

∗
6,i ∀i ∈ S.

We define Gamereal, Gamek, GameNk , GameTk , and Gamefinal as before. The hybrid security
proof is accomplished in the following lemmas.

Lemma 14. Under the subspace assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Gamereal and Game0.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
Gamereal and Game0, we will create a PPT algorithm B to break the subspace assumption.
We will employ the subspace assumption with parameters m = U + 2, ni = 3, ki = 1 for
two values of i, and ni = 6, ki = 2 for the rest of the values of i. In order to reconcile the
notation of the assumption with the notation of our construction as conveniently as possible,
we will denote the bases involved in the assumption by (D,D∗), (D0,D∗

0) ∈ Dual(Z3
p, ψ) and

(D1,D∗
1), . . . , (DU ,D∗

U ) ∈ Dual(Z6
p, ψ). B is given (we will ignore the U terms and µ3 because

they will not be needed):

G, p, g, gd⃗1 , gd⃗2 , gd⃗1,0 , gd⃗2,0 , {gd⃗1,i , . . . , gd⃗4,i}i∈[U ],

gηd⃗
∗
1 , gβd⃗

∗
2 , gd⃗

∗
3 , gηd⃗

∗
1,0 , gβd⃗

∗
2,0 , gd⃗

∗
3,0 , {gηd⃗

∗
1,i , gηd⃗

∗
2,i , gβd⃗

∗
3,i , gβd⃗

∗
4,i , gd⃗

∗
5,i , gd⃗

∗
6,i}i∈[U ],

T1, T1,0, {T1,i, T2,i}i∈[U ].

The exponents of the unknown terms T1, T1,0 are distributed either as τ1ηd⃗
∗
1+τ2βd⃗

∗
2 and τ1ηd⃗

∗
1,0+

τ2βd⃗
∗
2,0 respectively, or as τ1ηd⃗

∗
1 + τ2βd⃗

∗
2 + τ3d⃗

∗
3 and τ1ηd⃗

∗
1,0 + τ2βd⃗

∗
2,0 + τ3d⃗

∗
3,0 respectively.

Similarly, the exponents of the unknown terms T1,i, T2,i are distributed either as τ1ηd⃗
∗
1,i+τ2βd⃗

∗
3,i

and τ1ηd⃗
∗
2,i + τ2βd⃗

∗
4,i respectively, or as τ1ηd⃗

∗
1,i + τ2βd⃗

∗
3,i + τ3d⃗

∗
5,i and τ1ηd⃗

∗
2,i + τ2βd⃗

∗
4,i + τ3d⃗

∗
6,i

respectively. It is B’s task to determine if these τ3 contributions are present or not.
B implicitly sets the bases for the construction as:

b⃗1 = ηd⃗∗1, b⃗2 = βd⃗∗2, b⃗3 = d⃗∗3, b⃗
∗
1 = η−1d⃗1, b⃗

∗
2 = β−1d⃗2, b⃗

∗
3 = d⃗3,

b⃗1,0 = ηd⃗∗1,0, b⃗2,0 = βd⃗∗2,0, b⃗3,0 = d⃗∗3,0, b⃗
∗
1,0 = η−1d⃗1,0, b⃗

∗
2,0 = β−1d⃗2,0, b⃗

∗
3,0 = d⃗3,0,

b⃗1,i = ηd⃗∗1,i, b⃗2,i = ηd⃗∗2,i, b⃗3,i = βd⃗∗3,i, b⃗4,i = βd⃗∗4,i, b⃗5,i = d⃗∗5,i, b⃗6,i = d⃗∗6,i ∀i,

b⃗∗1,i = η−1d⃗1,i, b⃗
∗
2,i = η−1d⃗2,i, b⃗

∗
3,i = β−1d⃗3,i, b⃗

∗
4,i = β−1d⃗4,i, b⃗

∗
5,i = d⃗5,i, b⃗

∗
6,i = d⃗6,i ∀i.

We note that these are properly distributed because (D,D∗), (D0,D∗
0), etc. are randomly chosen

(up to sharing the same ψ value).

B can use the terms given in the assumption to produce gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i}
for the public parameters. B chooses random values α̃1, α̃2 ∈ Zp. It implicitly sets α1 = ηα̃1

and α2 = βα̃2. This allows it to produce

e(g, g)α1ψ =
(
en(g

d⃗1 , gηd⃗
∗
1)
)α̃1

, e(g, g)α2ψ =
(
en(g

d⃗2 , gβd⃗
∗
2)
)α̃2

.
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B gives the public parameters to A.
To produce a normal key for an attribute set S, B proceeds as follows. It chooses random

values t̃1, t̃2, ũ1, ũ2 ∈ Zp. It implicitly sets t1 = ηt̃1, t2 = βt̃2, u1 = ηũ1, u2 = βũ2. It forms the
key as:

K = g(α1+t1+u1 )⃗b∗1+(α2+t2+u2 )⃗b∗2 =
(
gd⃗1

)α̃1+t̃1+ũ1 (
gd⃗2

)α̃2+t̃2+ũ2
,

K0 = gu1b⃗
∗
1,0+u2b⃗

∗
2,0 =

(
gd⃗1,0

)ũ1 (
gd⃗2,0

)ũ2
,

Ki = gt1b⃗
∗
1,i+t1b⃗

∗
2,i+t2b⃗

∗
3,i+t2b⃗

∗
4,i =

(
gd⃗1,i

)t̃1 (
gd⃗2,i

)t̃1 (
gd⃗3,i

)t̃2 (
gd⃗4,i

)t̃2
∀i ∈ S.

To produce the challenge ciphertext for an access matrix (A, ρ) of size ℓ × n, B implicitly
sets s1 = τ1 and s2 = τ2. It chooses a random vector v ∈ Znp with first entry equal to 1.
It also chooses random vectors ṽ1, ṽ2 ∈ Znp with first entries equal to 0. It will implicitly set
v1 = s1v + ṽ1 and v2 = s2v + ṽ2. We note that these are properly distributed as independent,
random vectors with first entries equal to s1 and s2 respectively. For each j from 1 to ℓ, B also
chooses random values r̃1j , r̃

2
j , r̃

3
j ∈ Zp. It implicitly sets r1j = r̃3j τ1 + r̃1j , r

2
j = r̃3j τ2 + r̃2j . We note

that these values are properly distributed because r̃1j , r̃
2
j are random. The ciphertext is formed

as:

M ′ =Mb

(
e3(g

d⃗1 , T1)
)α̃1

(
e3(g

d⃗2 , T1)
)α̃2

, C = T1, C0 = T1,0,

Cj =
(
T1,ρ(j)

)Aj ·v+r̃3j (T2,ρ(j))−r̃3j (gηd⃗∗1,ρ(j))Aj ·ṽ1+r̃1j (
g
ηd⃗∗

2,ρ(j)

)−r̃1j (
g
βd⃗∗

3,ρ(j)

)Aj ·ṽ2+r̃2j (
g
βd⃗∗

4,ρ(j)

)−r̃2j

for all j from 1 to ℓ.
If the exponents of the T terms do not include the τ3 terms, then the exponent vector of C

is s1⃗b1 + s2⃗b2, the exponent vector of C0 is s1⃗b1,0 + s2⃗b2,0, and the exponent vector of Cj is:

= (Aj · τ1v +Aj · ṽ1 + τ1r̃
3
j + r̃1j )ηd⃗

∗
1,ρ(j) + (−τ1r̃3j − r̃1j )ηd⃗∗2,ρ(j)

+(Aj · τ2v +Aj · ṽ2 + τ2r̃
3
j + r̃2j )βd⃗

∗
3,ρ(j) + (−τ2r̃3j − r̃2j )βd⃗∗4,ρ(j)

= (Aj · v1 + r1j )⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j )⃗b3,ρ(j) − r2j b⃗4,ρ(j).

Thus we have a properly distributed normal ciphertext in this case.
If the exponents of the T terms do include the τ3 terms, then the exponent vector of C is

s1⃗b1 + s2⃗b2 + s3⃗b3, where s3 := τ3, the exponent vector of C0 is s1⃗b1,0 + s2⃗b2,0 + s3⃗b3,0, and the
exponent vector of each Cj is:

(Aj · v1 + r1j )⃗b1,ρ(j) − r1j b⃗2,ρ(j) + (Aj · v2 + r2j )⃗b3,ρ(j) − r2j b⃗4,ρ(j)

+(Aj · v + r̃3j )τ3⃗b5,ρ(j) − r̃3j τ3⃗b6,ρ(j).

This is a properly distributed semi-functional ciphertext with v3 = τ3v and r3j = τ3r̃
j
3. (Note

that these values are distributed randomly and independently from v1, v2, r
1
j , r

2
j .)

Thus, when the τ3 terms are absent, B properly simulates Gamereal, and when the τ3
terms are present, B properly simulates Game0. As a result, B can leverage A’s non-negligible
difference in advantage between these games to gain a non-negligible advantage against the
subspace assumption.

Lemma 15. Under the subspace assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between Gamek−1 and GameNk for any k from 1 to Q.
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Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
Gamek−1 and GameNk for some k, we will create a PPT algorithm B to break the subspace
assumption. We will employ the subspace assumption with parametersm = U+2, ni = 3, ki = 1
for two values of i, and ni = 6, ki = 2 for the rest of the values of i. In order to reconcile the
notation of the assumption with the notation of our construction as conveniently as possible,
we will denote the bases involved in the assumption by (B,B∗), (B0,B∗

0) ∈ Dual(Z3
p, ψ) and

(B1,B∗
1), . . . , (BU ,B∗

U ) ∈ Dual(Z6
p, ψ). B is given (we will ignore µ3 because it will not be

needed):

G, p, g, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U ],

gη⃗b
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gη⃗b

∗
1,0 , gβb⃗

∗
2,0 , gb⃗

∗
3,0 , {gηb⃗

∗
1,i , gηb⃗

∗
2,i , gβb⃗

∗
3,i , gβb⃗

∗
4,i , gb⃗

∗
5,i , gb⃗

∗
6,i}i∈[U ],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , U1,0 = gµ1b⃗1,0+µ2b⃗2,0+µ3b⃗3,0 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U ],

T1, T1,0, {T1,i, T2,i}i∈[U ].

The exponents of the unknown terms T1, T1,0 are distributed either as τ1η⃗b
∗
1+τ2βb⃗

∗
2 and τ1η⃗b

∗
1,0+

τ2βb⃗
∗
2,0 respectively, or as τ1η⃗b

∗
1+τ2βb⃗

∗
2+τ3⃗b

∗
3 and τ1η⃗b

∗
1,0+τ2βb⃗

∗
2,0+τ3⃗b

∗
3,0 respectively. Similarly,

the exponents of the unknown terms T1,i, T2,i are distributed either as τ1η⃗b
∗
1,i + τ2βb⃗

∗
3,i and

τ1η⃗b
∗
2,i+τ2βb⃗

∗
4,i respectively, or as τ1η⃗b

∗
1,i+τ2βb⃗

∗
3,i+τ3⃗b

∗
5,i and τ1η⃗b

∗
2,i+τ2βb⃗

∗
4,i+τ3⃗b

∗
6,i respectively.

It is B’s task to determine if these τ3 contributions are present or not.
B implicitly sets (B,B∗), (B0,B∗

0), {(Bi,B∗
i )} as the bases for the construction. It chooses

random values α̃1, α̃2 ∈ Zp and implicitly sets α1 = ηα̃1 and α2 = βα̃2. This allows it to

compute e(g, g)α1ψ as e3(g
b⃗1 , gηb⃗

∗
1)α̃1 , and e(g, g)α2ψ as e3(g

b⃗2 , gβb⃗
∗
2)α̃2 . B can thus produce the

public parameters, and it gives these to A.
To respond to A’s first k−1 key queries, B acts as follows. To produce a semi-functional key

for an attribute set S, it chooses random values t̃1, t̃2, ũ1, ũ2, γ ∈ Zp. It implicitly sets t1 = ηt̃1,
t2 = βt̃2, u1 = ηũ1, u2 = βũ2. It forms the key as:

K =
(
gηb⃗

∗
1

)α̃1+t̃1+ũ1 (
gβb⃗

∗
2

)α̃2+t̃2+ũ2
gγb⃗

∗
3 ,

K0 =
(
gη⃗b

∗
1,0

)ũ1 (
gβb⃗

∗
2,0

)ũ2
,

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gη⃗b

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

In this way, B produces properly distributed semi-functional keys in response to the first k − 1
key requests. We note that B can similarly produce normal keys in response to key requests

k + 1 and onward using the same procedure except leaving off gγb⃗
∗
3 from K.

To create the kth key for some attribute set S, B proceeds as follows. It chooses random
values ũ1, ũ2, ũ3 ∈ Zp. It implicitly sets t1 = ητ1, t2 = βτ2, u1 = η(τ1ũ3 + ũ1), and u2 =
β(τ2ũ3 + ũ2). We note that these values are independently random because τ1, τ2, ũ1, ũ2 are
independently random. The key is formed as:

K =
(
gηb⃗

∗
1

)α̃1+ũ1 (
gβb⃗

∗
2

)α̃2+ũ2
T1(T1)

ũ3 ,

K0 =
(
gηb⃗

∗
1,0

)ũ1 (
gβb⃗

∗
2,0

)ũ2
T ũ31,0,
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Ki = T1,iT2,i ∀i ∈ S.

If the exponents of the T terms here do not include the τ3 terms, then this is a properly
distributed normal key. If they do include the τ3 terms, then this is a properly distributed
nominal semi-functional key with t3 = τ3 and u3 = τ3ũ3. (Note that these values are random
and independent of t1, t2, u1, u2.)

To create the semi-functional ciphertext for some n × ℓ access matrix (A, ρ), B chooses
random values r̃1j , r̃

2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also chooses a random vector v ∈ Znp

with first entry equal to 1, and random vectors ṽ1, ṽ2 ∈ Znp with first entries equal to 0. It
implicitly sets s1 = µ1, s2 = µ2, s3 = µ3, v1 = s1v+ ṽ1, v2 = s2v+ ṽ2, v3 = s3v, r

1
j = µ1r̃

3
j + r̃1j ,

r2j = µ2r̃
3
j + r̃2j , and r3j = µ3r̃

3
j . We note that these values are properly distributed. The

ciphertext is formed as:

M ′ =Mbe3(U1, g
ηb⃗∗1)α̃1e3(U1, g

βb⃗∗2)α̃2 , C = U1, C0 = U1,0,

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j (
gb⃗2,ρ(j)

)−r̃1j (
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j (
gb⃗4,ρ(j)

)−r̃2j
U
Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

for all j from 1 to ℓ.
Thus, when the τ3 terms are absent, B properly simulates Gamek−1, and when the τ3

terms are present, B properly simulates GameNk . As a result, B can leverage A’s non-negligible
difference in advantage between these games to gain a non-negligible advantage against the
subspace assumption.

Lemma 16. Under the three party Diffie-Hellman assumption, no polynomial time attacker can
achieve a non-negligible difference in advantage between GameNk and GameTk for any k from 1
to Q1 (recall these are all the Phase I queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameNk and GameTk for some k between 1 and Q1, we will create a PPT algorithm B to break
the three party Diffie-Hellman assumption. B is given g, gx, gy, gz, T , where T is either gxyz or
a random element of G. B will simulate either GameNk or GameTk with A depending on the
nature of T .
B chooses random dual orthonormal bases (D,D∗), (D0,D∗

0) of dimension 3 and (D1,D∗
1),

. . ., (DU ,D∗
U ) of dimension 6, all with the same value of ψ. It then implicitly sets (B,B∗) and

(B0,B∗
0) as follows:

b⃗1 = d⃗1, b⃗2 = d⃗2, b⃗3 = (xy)−1d⃗3, b⃗
∗
1 = d⃗∗1, b⃗

∗
2 = d⃗∗2, b⃗

∗
3 = xyd⃗∗3,

b⃗1,0 = d⃗1,0, b⃗2,0 = d⃗2,0, b⃗3,0 = (xy)−1d⃗3,0, b⃗
∗
1,0 = d⃗∗1,0, b⃗

∗
2,0 = d⃗∗2,0, d⃗

∗
3,0 = xyd⃗∗3,0.

We note (B,B∗) and (B0,B∗
0) are properly distributed.

B sets the normal portions of (B1,B∗
1), . . ., (BU ,B∗

U ) as follows:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, b⃗3,i = d⃗3,i, b⃗4,i = d⃗4,i ∀i = 1, . . . ,U ,

b⃗∗1,i = d⃗∗1,i, b⃗
∗
2,i = d⃗∗2,i, b⃗

∗
3,i = d⃗∗3,i, b⃗

∗
4,i = d⃗∗4,i ∀i = 1, . . . ,U .

The semi-functional portions of these bases will be set later (at which point we may verify that
all of (B1,B∗

1), . . ., (BU ,B∗
U ) are properly distributed).

B chooses α1, α2 ∈ Zp randomly. We observe that B can now produce the public parameters,
and also knows the master secret key (enabling it to create normal keys). It gives the public
parameters to A. To create the first k−1 semi-functional keys in response to A’s key requests, B
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first creates a normal key, then raises gd⃗
∗
3 to a random exponent in Zp and multiplies this by K.

We are using here that B does not need to know gb⃗
∗
3 precisely in order to create well-distributed

semi-functional keys - it suffices for B to know gc⃗b
∗
3 for some (nonzero) c ∈ Zp.

A requests the kth key for some attribute set S ⊂ [U ]. At this point, B implicitly defines
the semi-functional parts of the bases (B1,B∗

1), . . ., (BU ,B∗
U ) as follows (note that these have

not been involved in the game before this):

b⃗5,i = x−1d⃗5,i, b⃗6,i = d⃗6,i b⃗
∗
5,i = xd⃗∗5,i, b⃗

∗
6,i = d⃗∗6,i ∀i /∈ S,

b⃗5,i = d⃗5,i, b⃗6,i = d⃗6,i, b⃗
∗
5,i = d⃗∗5,i, b⃗

∗
6,i = d⃗∗6,i ∀i ∈ S.

We observe that all of (B,B∗), (B0,B∗
0), (B1,B∗

1), . . ., (BU ,B∗
U ) are properly distributed, and

their distribution is independent of x, y, and S (the involvement of x, y, and S is only present
in B’s view and is information-theoretically hidden from A, see Lemma 11).

To create the kth key, B first creates a normal key with components K,K0, {Ki}i∈S . To
create the semi-functional components, it chooses a random value ũ3 and implicitly sets t3 = z,
u3 = (xy)−1ũ3. It then forms the semi-functional component for K0 as

gu3b⃗
∗
3,0 = gũ3d⃗

∗
3,0

and the semi-functional component for each Ki as

gt3b⃗
∗
5,i+t3b⃗

∗
6,i = (gz)d⃗

∗
5,i+d⃗

∗
6,i ∀i ∈ S.

It forms the semi-functional component for K as:

T d⃗
∗
3gũ3d⃗

∗
3 .

If T = gxyz, then the exponent vector here is xyzd⃗∗3+ũ3d⃗
∗
3 = (z+u3)⃗b

∗
3, as required for a nominal

semi-functional key. Otherwise, this exponent vector is distributed as a random multiple of b⃗∗3,
as required for a temporary semi-functional key. B multiplies these semi-functional components
with the normal K,K0, {Ki}i∈S to produce the key it gives to A.

At some later point, A requests the challenge ciphertext for some ℓ×n access matrix (A, ρ)
that is not satisfied by the attribute set S. B first creates a normal ciphertext with components
M ′, C, C0, {Cj}ℓj=1. To create the semi-functional components, B first computes a vector ν ∈ Znp
that has first entry equal to 1 and is orthogonal to all of the rows Aj of A such that ρ(j) ∈ S
(such a vector must exist since S fails to satisfy A, and it is efficiently computable). B also
chooses a random vector ṽ3 ∈ Znp subject to the constraint that the first entry is zero. It
implicitly sets s3 = xy and sets v3 = xyν + xṽ3. We note that s3 is random because all of the
dual orthonormal bases are distributed independently of x, y, and v3 is distributed as a random
vector with first entry equal to s3. B also chooses random values r3j ∈ Zp for all j such that

ρ(j) ∈ S and random values r̃3j ∈ Zp for all j such that ρ(j) /∈ S. For values of j such that

ρ(j) /∈ S, it implicitly sets r3j = xr̃3j . B can then produce the semi-functional components of the
ciphertext as:

gs3b⃗3 = gd⃗3 , gs3b⃗3,0 = gd⃗3,0 ,

g(Aj ·v3+r3j )⃗b5,ρ(j)−r3j b⃗6,ρ(j) = (gy)Aj ·νd⃗5,ρ(j) g(Aj ·ṽ3+r̃3j )d⃗5,ρ(j) (gx)−r̃
3
j d⃗6,ρ(j) ∀j s.t. ρ(j) /∈ S,

g(Aj ·v3+r3j )⃗b5,ρ(j)−r3j b⃗6,ρ(j) = (gx)Aj ·ṽ3d⃗5,ρ(j) gr
3
j d⃗5,ρ(j)−r3j d⃗6,ρ(j) ∀j s.t. ρ(j) ∈ S.

Here we have used the fact that Aj · ν ≡ 0 modulo p to avoid needing to produce a multiple of

gxyd⃗5,ρ(j) for j such that ρ(j) ∈ S.
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B multiplies these semi-functional components by the normal components to form the semi-
functional ciphertext, which is gives to A. It can respond to the rest of A’s key queries by calling
the normal key generation algorithm. If T = gxyz, then B has properly simulated GameNK , and if
T is a random group element, then B has properly simulated GameTk . Thus, B can leverage A’s
non-negligible difference in advantage between these games to gain a non-negligible advantage
against the three party Diffie-Hellman assumption.

Lemma 17. Under the source group q-parallel BDHE assumption, no polynomial time attacker
can achieve a non-negligible difference in advantage between GameNk and GameTk for a k > Q1

using an access matrix (A, ρ) of size ℓ× n where ℓ, n ≤ q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameNk and GameTk for some k such that Q1 < k ≤ Q using an access matrix with dimensions
≤ q, we will create a PPT algorithm B to break the source group q-parallel BDHE assumption.
Our B is given: g, gf , gdf , gc

i ∀i ∈ [2q] \ {q + 1}, gci/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q], gdfbj ∀j ∈ [q],

gdfc
ibj′/bj ∀i ∈ [q], j, j′ ∈ [q] such that j ̸= j′, and T , where T is either equal to gdc

q+1
or is a

random element of Gp2 . B will simulate either GameNk or GameTk with A, depending on T .
B chooses random dual orthonormal bases (D,D∗), (D0,D∗

0) of dimension 3 and (D1,D∗
1),

. . ., (DU ,D∗
U ) of dimension 6, all with the same value of ψ. It then implicitly sets (B,B∗) and

(B0,B∗
0) as follows:

b⃗1 = d⃗1, b⃗2 = d⃗2, b⃗3 = (cd)−1d⃗3, b⃗
∗
1 = d⃗∗1, b⃗

∗
2 = d⃗∗2, b⃗

∗
3 = (cd)d⃗∗3,

b⃗1,0 = d⃗1,0, b⃗2,0 = d⃗2,0, b⃗3,0 = (c)−1d⃗3,0, b⃗
∗
1,0 = d⃗∗1,0, b⃗

∗
2,0 = d⃗∗2,0, b⃗

∗
3,0 = (c)d⃗∗3,0.

We note that (B,B∗) and (B0,B∗
0) are properly distributed.

B sets the normal portions of (B1,B∗
1), . . ., (BU ,B∗

U ) as follows:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, b⃗3,i = d⃗3,i, b⃗4,i = d⃗4,i ∀i = 1, . . . ,U ,

b⃗∗1,i = d⃗∗1,i, b⃗
∗
2,i = d⃗∗2,i, b⃗

∗
3,i = d⃗∗3,i, b⃗

∗
4,i = d⃗∗4,i ∀i = 1, . . . ,U .

The semi-functional portions of these bases will be set later (at which point we may verify that
all of (B1,B∗

1), . . ., (BU ,B∗
U ) are properly distributed).

B chooses α1, α2 ∈ Zp randomly. We observe that B can now produce the public parameters,
and also knows the master secret key (enabling it to create normal keys). It gives the public
parameters to A. To create the first k− 1 semi-functional keys in response to A’s key requests,

B first creates a normal key, then raises gd⃗
∗
3 to a random exponent in Zp and multiplies this

by K. As in the proof of the previous lemma, we note here that B does not need to know gb⃗
∗
3

precisely in order to create well-distributed semi-functional keys.
Before requesting the kth key, A will request the challenge ciphertext for some access matrix

(A, ρ) of size ℓ×n, where both ℓ, n ≤ q. For each attribute i, we let Ji denote the set of indices
j ∈ [ℓ] such that ρ(j) = i. For each i, B chooses a random value η̃i and defines a value ηi ∈ Zp
by

ηi = η̃i +
∑
j∈Ji

cAj,1/bj + . . .+ cnAj,n/bj .

At this point, B implicitly sets the semi-functional portions of the bases (B1,B∗
1), . . ., (BU ,B∗

U )
as follows (note that these have played no role in the game before this point):

b⃗5,i = d⃗5,i, b⃗6,i = η−1
i d⃗6,i b⃗

∗
5,i = d⃗∗5,i, b⃗

∗
6,i = ηid⃗

∗
6,i ∀i.

We observe that (B1,B∗
1), . . ., (BU ,B∗

U ) are properly distributed.
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To create the challenge ciphertext, B first creates a normal ciphertext using the normal
encryption algorithm. To create the semi-functional components, it implicitly sets s3 = cdf .
It also chooses random values y2, . . . , yn ∈ Zp and random values r̃3j ∈ Zp for each j ∈ [ℓ]. It

implicitly sets v3 = (cdf, dfc2 + y2, . . . , dfc
n + yn). This is distributed as a random vector with

first entry equal to s3. For each j ∈ [ℓ], B implicitly sets rj3 = −dfbjηρ(j) + r̃j3ηρ(j). These are
distributed as uniformly random elements because each r̃3j is random and ηρ(j) ̸= 0 (with all
but negligible probability). We observe:

Aj · v3 + r3j = df(cAj,1 + c2Aj,2 + . . .+ cnAj,n) +Aj,2y2 + . . .+Aj,nyn

−dfbj

η̃ρ(j) + ∑
j′∈Jρ(j)

cAj′,1/bj′ + . . .+ cnAj′,n/bj′

+ r̃3jηρ(j)

By definition, j ∈ Jρ(j), so we have some cancelation here:

Aj ·v3+r3j = Aj,2y2+. . .+Aj,nyn−dfbj

η̃ρ(j) + ∑
j′∈Jρ(j)\{j}

cAj′,1/bj′ + . . .+ cnAj′n/bj′

+r̃3jηρ(j).

We now see that B can compute gAj ·v3+r3j using the terms it is given in the assumption, enabling

it to produce g(Aj ·v3+r3j )d⃗5,ρ(j) = g(Aj ·v3+r3j )⃗b5,i . We also see that

−r3j b⃗6,ρ(j) = −r
j
3η

−1
ρ(j)d⃗6,i = (dfbj − r̃j3)d⃗6,i,

so B can also produce g−r
3
j b⃗6,ρ(j) . In this way, B produces the semi-functional component of Cj

for each j with the proper distribution.
B also produces the semi-functional components of C and C0 as:

gs3b⃗3 =
(
gf

)d⃗3
, gs3b⃗3,0 =

(
gdf

)d⃗3,0
.

It gives the resulting properly distributed semi-functional ciphertext to A.
At some later point in the game, A requests the kth key for some attribute set S. B can

create the normal parts of the key using the normal key generation algorithm. To create the
semi-functional parts, B proceeds as follows. Since S does not satisfy (A, ρ), B can (efficiently)
compute a vector w ∈ Znp such that its first entry is non-zero and w is orthogonal (modulo p)
to all rows Aj of A such that ρ(j) ∈ S. We may assume the first entry of w is randomized. B
implicitly sets t3 = w1c

q + . . .+wnc
q−n+1, which is properly distributed because w1 is random

(and c is nonzero with all but negligible probability). B also chooses a random value ũ3 and
implicitly sets u3 = −w2c

q−1 − . . . − wncq−n+1 + fc−1ũ3. This is properly distributed because
ũ3 is random (and fc−1 is nonzero with all but negligible probability).

We observe that
(t3 + u3)⃗b

∗
3 = (w1dc

q+1 + dfũ3)d⃗
∗
3.

B forms the semi-functional part of K as: Tw1d⃗∗3
(
gdf

)ũ3d⃗∗3 . If T = gdc
q+1

, this is equal to

g(t3+u3 )⃗b
∗
3 , as required for a nominal semi-functional key. Otherwise, this exponent is distributed

as a random multiple of b⃗∗3, as required for a temporary semi-functional key. We also have

u3⃗b
∗
3,0 = (−w2c

q − . . .− wncq−n+2 + fũ3)d⃗
∗
3,0,

enabling B to produce gu3b⃗
∗
3,0 using the terms given in the assumption.
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Now, B can also produce gt3 , and hence can compute gt3b⃗
∗
5,i = gt3d⃗

∗
5,i for each i ∈ S. We

observe
t3⃗b

∗
6,i = t3ηid⃗

∗
6,i,

and

t3ηi =
(
w1c

q + . . .+ wnc
q−n+1

)η̃i + ∑
j∈Ji

cAj,1/bj + . . .+ cnAj,n/bj

 .

For each j ∈ Ji, we have ρ(j) = i. So for i ∈ S, we have Aj · w = 0 modulo p for every j ∈ Ji.
Thus, all of the terms involving cq+1 cancel, and we are left with terms that can be created
in the exponent from the group elements given in the assumption (note that n ≤ q, so 2q is

an upper bound on the powers of c involved here). This shows that B can create gt3b⃗6,i for all
i ∈ S, and hence can produce properly distributed semi-functional components for each Ki of
the kth key.
B can respond to the rest of A’s key requests by producing normal keys via the normal key

generation algorithm. If T = gdc
q+1

, then B has properly simulated GameNk . If T is distributed
randomly, then B has properly simulated GameTk . Thus, B can leverage A’s non-negligible
difference in advantage between these games to achieve a non-negligible advantage against the
source group q-parallel BDHE assumption.

Lemma 18. Under the subspace assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between GameTk and Gamek for any k from 1 to Q.

Proof. This proof is almost identical to the proof of Lemma 15, except that B adds an additional

term of gγb⃗
∗
3 to K for the kth key (where it chooses γ ∈ Zp randomly). This ensures that when

the τ3 terms are not present, the kth key will be a properly distributed semi-functional key.

Lemma 19. Under the subspace assumption, no polynomial time attacker can achieve a non-
negligible difference in advantage between GameQ and Gamefinal.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between
GameQ and Gamefinal, we will create a PPT algorithm B to break the subspace assumption. We
will employ the subspace assumption with parameters m = U + 2, ni = 3, ki = 1 for two values
of i, and ni = 6, ki = 2 for the rest of the values of i. To coincide with our notation for the con-
struction, we will denote the bases involved in the assumption by (B,B∗), (B0,B∗

0) ∈ Dual(Z3
p, ψ)

and (B1,B∗
1), . . . , (BU ,B∗

U ) ∈ Dual(Z6
p, ψ). B is given (we will ignore µ3 and T1,0, {T1,i, T2,i}i∈[U ]

because they will not be needed):

G, p, g, gb⃗1 , gb⃗2 , gb⃗1,0 , gb⃗2,0 , {gb⃗1,i , . . . , gb⃗4,i}i∈[U ],

gη⃗b
∗
1 , gβb⃗

∗
2 , gb⃗

∗
3 , gη⃗b

∗
1,0 , gβb⃗

∗
2,0 , gb⃗

∗
3,0 , {gηb⃗

∗
1,i , gηb⃗

∗
2,i , gβb⃗

∗
3,i , gβb⃗

∗
4,i , gb⃗

∗
5,i , gb⃗

∗
6,i}i∈[U ],

U1 = gµ1b⃗1+µ2b⃗2+µ3b⃗3 , U1,0 = gµ1b⃗1,0+µ2b⃗2,0+µ3b⃗3,0 ,

{U1,i = gµ1b⃗1,i+µ2b⃗3,i+µ3b⃗5,i , U2,i = gµ1b⃗2,i+µ2b⃗4,i+µ3b⃗6,i}i∈[U ], T1.

The exponent of the unknown term T1 is distributed either as τ1η⃗b
∗
1 + τ2βb⃗

∗
2, or as τ1η⃗b

∗
1 +

τ2βb⃗
∗
2 + τ3⃗b

∗
3. It is B’s task to determine if this τ3 contribution is present or not.

B sets (B,B∗), (B0,B∗
0), {(Bi,B∗

i )} as the bases for the construction. It will implicitly set

α1 = ητ1 and α2 = βτ2. It forms e(g, g)α1ψ as e3(T1, g
b⃗1) and e(g, g)α2ψ as e3(T1, g

b⃗2). It gives
the public parameters to A.
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To create a semi-functional key for an attribute set S, B proceeds as follows. It chooses
random values t̃1, t̃2, ũ1, ũ2, γ̃ ∈ Zp. It implicitly sets t1 = ηt̃1, t2 = βt̃2, u1 = ηũ1, and
u2 = βũ2. It creates the key as:

K = T1

(
gη⃗b

∗
1

)t̃1+ũ1 (
gβb⃗

∗
2

)t̃2+ũ2 (
gb⃗

∗
3

)γ̃
,

K0 =
(
gη⃗b

∗
1,0

)ũ1 (
gβb⃗

∗
2,0

)ũ2
,

Ki =
(
gηb⃗

∗
1,i

)t̃1 (
gηb⃗

∗
2,i

)t̃1 (
gβb⃗

∗
3,i

)t̃2 (
gβb⃗

∗
4,i

)t̃2
∀i ∈ S.

We note that the multiple of b⃗∗3 appearing in the exponent of K is either equal to γ̃ or γ̃ + τ3,
depending on the nature of T1. Either way, this is a properly distributed semi-functional key
(whose distribution is independent of τ3 even if it is present).

To create the semi-functional ciphertext for some n × ℓ access matrix (A, ρ), B can use
the same procedure employed in the proof of Lemma 15 to use the U terms to provide the
semi-functional components. We repeat the description of this procedure below for the reader’s
convenience. The only difference here comes in computing the blinding factor for M ′.
B chooses random values r̃1j , r̃

2
j , r̃

3
j ∈ Zp for each j from 1 to ℓ. It also chooses a random

vector v ∈ Znp with first entry equal to 1, and random vectors ṽ1, ṽ2 ∈ Znp with first entries
equal to 0. It implicitly sets s1 = µ1, s2 = µ2, s3 = µ3, v1 = s1v + ṽ1, v2 = s2v + ṽ2,
v3 = s3v, r

1
j = µ1r̃

3
j + r̃

1
j , r

2
j = µ2r̃

3
j + r̃

2
j , and r

3
j = µ3r̃

3
j . We note that these values are properly

distributed. The ciphertext is formed as:

M ′ =Mbe3(U1, T1), C = U1, C0 = U1,0,

Cj =
(
gb⃗1,ρ(j)

)Aj ·ṽ1+r̃1j (
gb⃗2,ρ(j)

)−r̃1j (
gb⃗3,ρ(j)

)Aj ·ṽ2+r̃2j (
gb⃗4,ρ(j)

)−r̃2j
U
Aj ·v+r̃3j
1,ρ(j) U

−r̃3j
2,ρ(j),

for all j from 1 to ℓ.
If the exponent of T1 is equal to τ1η⃗b

∗
1 + τ2βb⃗

∗
2, then we have

e3(U1, T1) = e(g, g)(α1s1+α2s2)ψ,

and hence we have a properly distributed semi-functional encryption of Mb, as required in
GameQ. If instead the exponent of T1 is equal to τ1η⃗b

∗
1 + τ2βb⃗

∗
2 + τ3⃗b

∗
3, then we have

e3(U1, T1) = e(g, g)(α1s1+α2s2+µ3τ3)ψ.

Since τ3 is random (and independent of the semi-functional keys and the rest of the ciphertext),
this blinding factor is distributed as a freshly random group element of GT . Therefore the
ciphertext is distributed as a semi-functional encryption of a random message, as required in
Gamefinal. Thus, B can leverage A’s non-negligible difference in advantage between these games
to achieve a non-negligible advantage against the subspace assumption.

Combining the above lemmas with Lemma 20 in Appendix A, we have completed the proof
of Theorem 13.
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6 Conclusion

We have presented CP-ABE schemes in composite order and prime order bilinear groups that
are fully secure and allow arbitrary reuse of attributes in access policies. Along the way, we
have developed a methodology for combining proof techniques in the selective setting with dual
system encryption in order to obtain full security proofs. As a consequence of the limitations of
current selective techniques for CP-ABE systems, we inherit a reliance on a q-based complexity
assumption. Obtaining a proof of full security in the standard model from static assumptions
without imposing any efficiency-losing restrictions remains an important open problem.
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A Proof that DLIN Implies the Subspace Assumption

Lemma 20. If the decisional linear assumption holds for a group generator G, then the sub-
space assumption stated in Definition 12 also holds for G (for any fixed values of m,n1 ≥
3k1, . . . , nm ≥ 3km).

Proof. We assume there exists a PPT algorithm A breaking the subspace assumption with
non-negligible advantage (for some fixed positive integers m,n1, . . . , nm, k1, . . . , km satisfying
n1 ≥ 3k1, . . . , nm ≥ 3km). We create a PPT algorithm B which breaks the decisional linear
assumption with non-negligible advantage. B is given g, f, v, f c1 , vc2 , T , where T is either gc1+c2

or T is a uniformly random element of G. We let ℓf denote the discrete logarithm base g of f
and ℓv denote the discrete logarithm base g of v, i.e. f = gℓf and v = gℓv .
B simulates the subspace assumption for A as follows. B first chooses ψ at random from

Zp, then (independently) samples random dual orthonormal bases (D1,D∗
1) ∈ Dual(Zn1

p , ψ), . . .,
(Dm,D∗

m) ∈ Dual(Znm
p , ψ). B then implicitly sets:

η⃗b∗1,i = d⃗∗2ki+1,i + ℓf d⃗
∗
1,i, η⃗b

∗
2,i = d⃗∗2ki+2,i + ℓf d⃗

∗
2,i, . . . , η⃗b

∗
ki,i

= d⃗∗3ki,i + ℓf d⃗
∗
ki,i
,

βb⃗∗ki+1,i = d⃗∗2ki+1,i + ℓvd⃗
∗
ki+1,i, βb⃗

∗
ki+2,i = d⃗∗2ki+2,i + ℓvd⃗

∗
ki+2,i, . . . , βb⃗

∗
2ki,i

= d⃗∗3ki,i + ℓvd⃗
∗
2ki,i

,

b⃗∗2ki+1,i = d⃗∗2ki+1,i, . . . , b⃗
∗
ni,i = d⃗∗ni,i

for each i from 1 to m. In other words, B has set η = ℓf and β = ℓv, with b⃗
∗
1,i = η−1d⃗∗2ki+1,i+ d⃗

∗
1,i

for example.
B sets the dual basis as:

b⃗1,i = d⃗1,i, b⃗2,i = d⃗2,i, . . . , b⃗2ki,i = d⃗2ki,i,

b⃗2ki+1,i = d⃗2ki+1,i − ℓ−1
f d⃗1,i − ℓ−1

v d⃗ki+1,i, . . . , b⃗3ki,i = d⃗3ki,i − ℓ
−1
f d⃗ki,i − ℓ

−1
v d⃗2ki,i,

b⃗3ki+1,i = d⃗3ki+1,i, . . . , b⃗ni,i = d⃗ni,i.

We note that each pair (B1,B∗
1), . . . , (Bm,B∗

m) is a indeed a pair of dual orthonormal bases.

We also note that B can produce all of gη⃗b
∗
1,i , . . . , g

ηb⃗∗ki,i , g
βb⃗∗ki+1,i , . . . , g

βb⃗∗2ki,i , g
b⃗∗2ki+1,i , . . . , g

b⃗∗ni,i ,

gb⃗1,i , . . . , gb⃗2ki,i , and gb⃗3ki+1,i , . . . , gb⃗ni,i for each i from 1 tom, but cannot produce gb⃗2ki+1,i , . . . , gb⃗3ki,i .
We now observe that η = ℓf , β = ℓv, b⃗1, . . . , b⃗n and (B1,B∗

1), . . . , (Bm,B∗
m) are properly

distributed. Indeed, this follows from the fact that ℓf , ℓv are randomly distributed and from
Lemma 11, since we have applied a change of basis to each (Di,D∗

i ).
Now B creates U1,i, . . . , Uki,i for each i as follows. It chooses random values µ′1, µ

′
2, µ

′
3 ∈ Zp.

It sets:
U1,i = gµ

′
1b⃗1,i+µ

′
2b⃗ki+1,i+µ

′
3d⃗2ki+1,i .
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We note that

µ′1b⃗1,i + µ′2b⃗ki+1,i + µ′3d⃗2ki+1,i = (µ′1 + ℓ−1
f µ′3)⃗b1,i + (µ′2 + ℓ−1

v µ′3)⃗bki+1,i + µ′3b⃗2ki+1,i.

In other words, B has implicitly set µ1 = µ′1 + ℓ−1
f µ′3, µ2 = µ′2 + ℓ−1

v µ′3, and µ3 = µ′3. We
note that these values are uniformly random, and µ3 is known to B. B can then similarly form
U2,i, . . . , Uki,i as:

U2,i = gµ
′
1b⃗2,i+µ

′
2b⃗ki+2,i+µ

′
3d⃗2ki+2,i , . . . , Uki,i = gµ

′
1b⃗ki,i+µ

′
2b⃗2ki,i+µ

′
3d⃗3ki,i .

B then implicitly sets τ1 = c1 and τ2 = c2. We note that for each i from 1 to m:

τ1η⃗b
∗
1,i + τ2βb⃗

∗
ki+1,i = (c1 + c2)d⃗

∗
2ki+1,i + c1ℓf d⃗

∗
1,i + c2ℓvd⃗

∗
ki+1,i,

...

τ1η⃗b
∗
ki,i

+ τ2βb⃗
∗
2ki,i

= (c1 + c2)d⃗
∗
3ki,i

+ c1ℓf d⃗
∗
ki,i

+ c2ℓvd⃗
∗
2ki,i

.

The terms which are multiples of c1ℓf and c2ℓv are not difficult for B to produce as exponents
of g, since B has f c1 = gc1ℓf and vc2 = gc2ℓv . For the multiples of c1 + c2, B needs to use T .
B computes for each i:

T1,i = T
d⃗∗2ki+1,i (f c1)d⃗

∗
1,i (vc2)

d⃗∗ki+1,i , . . . , Tki,i = T
d⃗∗3ki,i (f c1)

d⃗∗ki,i (vc2)
d⃗∗2ki,i .

If T = gc1+c2 , then these are distributed as V1,i, . . . , Vki,i. If T = gc1+c2+w (for random w), then
these are distributed as W1,i, . . . ,Wki,i, with τ3 implicitly set to w.
B gives

D :=
(
{gb⃗1,i , gb⃗2,i , . . . , gb⃗2ki,i , gb⃗3ki+1,i , . . . , gb⃗ni,i , gηb⃗

∗
1,i , . . . , g

ηb⃗∗ki,i , g
βb⃗∗ki+1,i , . . . , g

βb⃗∗2ki,i ,

g
b⃗∗2ki+1,i , . . . , g

b⃗∗ni,i , U1,i, U2,i, . . . , Uki,i}
m
i=1, µ3

)
to A, along with {T1,i . . . , Tki,i}mi=1. B can then leverage A’s non-negligible advantage in dis-
tinguishing between the distributions {V1,i, . . . , Vki,i} and {W1,i, . . . ,Wki,i} to achieve a non-
negligible advantage in distinguishing T = gc1+c2 from T = gc1+c2+w, violating the decisional
linear assumption.

B Proof of Our q-Based Assumption in the Generic Group
Model

We prove a lower bound for the complexity of our source group parallel BDHE assumption in
the generic group model. We do this for the prime order version of the assumption, though the
proof for the composite-order version in a subgroup is analogous.

In the generic group model [33], an adversary is not given direct access to the group, but
rather only receives “handles” representing elements. It must interact with an oracle to perform
the group operation (multiplication and division are both enabled) and obtain handles for new
elements. It is assumed that it can only use handles which it has previously received from the
oracle. We consider an experiment where an adversary is given handles for the group elements
given out in the assumption as well as a handle for the challenge term Tβ (here, β is a uniformly
random bit). The adversary may then interact with the oracle to perform group operations and
pairings. It is then given the handles for the group elements resulting from these operations.
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Finally, the adversary must guess the bit β. The difference between the adversary’s success
probability and one half is defined to be its advantage. For other examples of uses of the
generic group model to justify assumptions in bilinear groups, see [8, 21].

We now develop some convenient notation. We consider c, d, f, b1, . . . , bq as variables over
Zp, and we defineM to be the following set of rational functions over these variables:

M := {1, f, df, c1, . . . , cq, cq+2, . . . , c2q, ci/bj ∀i ∈ [2q] \ {q + 1}, ∀j ∈ [q],

dfbj ∀j ∈ [q], dfcibj′/bj ∀i ∈ [q], ∀j, j′ ∈ [q] s.t. j ̸= j′}.

These are the exponents of the group elements given out in our source group q-parallel BDHE
assumption. We let E(M) denote the set of all pairwise products of functions inM. This set of
rational functions represents the exponents of elements in GT that can be obtained by pairing
elements with exponents inM.

We say a function T is dependent on a set of functions S = {S1, . . . , Sk} if there exist
constants r1, . . . , rk ∈ Zp such that T = r1S1 + · · ·+ rkSk. This is an equality of functions over
Zp, and hence must hold for all settings of the variables. If no such constants exist, we say that
T is independent of S. We begin by establishing the following lemma.

Lemma 21. For each function M ∈ M ∪ {dcq+1}, the product M · dcq+1 is independent of
E(M)∪ dcq+1(M\M). (Here, dcq+1(M\M) denotes the set formed by removing M fromM
and then multiplying all remaining elements by dcq+1.)

Proof. We note that every element ofM∪{dcq+1} and every element of E(M)∪dcq+1(M\M) is
a ratio of monomials. Hence, the only wayM(dcq+1) can be dependent on E(M)∪dcq+1(M\M)
is if it is in fact contained in the set E(M) ∪ dcq+1(M \M). First, we note that d2c2q+2 is
not contained in E(M) ∪ dcq+1M. For any M ∈ M, it is clear that dcq+1M /∈ dcq+1(M\M).
Thus it suffices to prove that for each M , dcq+1M /∈ E(M). In other words, we must show that
E(M) does not intersect with the set dcq+1M (the set formed by multiplying each element of
M by dcq+1. To see this, we examine the set dcq+1M.

By definition, we have that

dcq+1M = {dcq+1, dfcq+1, d2fcq+1, dcq+2, . . . , dc2q+1, dc2q+3, . . . , dc3q+1,

dci/bj ∀j ∈ [q], ∀i ∈ {q + 2, . . . , 3q + 1} \ {2q + 2}, d2fbjcq+1 ∀j ∈ [q],

d2fcibj′/bj ∀i ∈ {q + 2, . . . , 2q + 1}, ∀j, j′ ∈ [q] s.t. j ̸= j′}.

We now must check if any of these are in E(M), which is the set of pairwise products of things
inM. We observe that inM, every occurrence of d is accompanied by f and f−1 never appears:
so it is impossible for E(M) to contain any elements which have higher powers of d than f .
This rules out all of the elements in dcq+1M above except for dfcq+1.

To also rule out dfcq+1, we consider all the possible ways it might be formed as a product
of two elements ofM. Since this term contains f , one of the two factors inM must be a term
containing f . We note that neither f or df can be one of the factors, since dcq+1, cq+1 /∈ M.
We note that an element of the form dfbj cannot be one of the two factors, since cq+1/bj /∈M.
Similarly, an element of the form dfcibj′/bj cannot be one of the two factors, since cq+1−ibj/bj′ /∈
M. We have thus dismissed all ways the f could be obtained, and we conclude that dfcq+1 /∈
E(M).

We now proceed similarly to the proof strategy in [8, 21] to establish the following theorem:
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Theorem 22. For any adversary A that makes Q queries to the oracles computing the group
operations in G,GT and the bilinear map e : G × G → GT , the advantage of A against the

source group q-parallel BDHE assumption in the generic group model is at most O
(
Q2q
p

)
.

Proof. In the real experiment, the variables c, d, f, b1, . . . , bq are first set randomly, and then the
adversary is given handles for the group elements corresponding to the terms given out in the
assumption and to Tβ. A can then issue oracle queries for handles corresponding to products,
divisions, or pairings of elements that it already has handles for. We define a new experiment
in which the variables are never concretely instantiated, but instead the handles correspond to
formal functions. Two elements are now given the same handle if and only if they are equal as
formal functions over the variables.

This differs only from the real experiment when it happens that two formal functions are
unequal, but happen to coincide for the particular choice of the variable settings. All of the
functions created in the course of the experiment are linear combinations of rational functions
whose numerators are polynomials of degree ≤ 4q and whose denominators are always among
{b1, . . . , bq}. Multiplying such a rational function by the product b1 · · · bq will thus yield a
polynomial of degree ≤ 5q. The probability that two formal polynomials of degree ≤ 5q are
unequal but happen to be equal for a random setting of the variables modulo p is upper bounded
by 5q

p by the Schwartz-Zippel Lemma. Thus, the probability of the particular setting of the

variables causing a difference between the two experiments is O
(
Q2q
p

)
.

Now, in this new experiment where formal variables are maintained, the only way for the
adversary to have any advantage in guessing β is for it to generate a two formal functions during
the course of the experiment that are the same only when β takes a particular value. In our
case, this must mean that the attacker generates two functions that are equal only when the
challenge term is gdc

q+1
. We can rearrange terms and express this equality as dcq+1h1 = h2 for

functions h1 and h2 satisfying the following constraints: h1 must be non-zero and generated in G
(so without using pairings). Thus, h1 must be a linear combination of elements ofM∪{dcq+1}.
Also, h2 must be a linear combination of elements in E(M) (note that this set includes M
since 1 ∈ M). But this means that for some M ∈ M ∪ {dcq+1}, dcq+1M is dependent on
E(M) ∪ dcq+1(M\M), contradicting Lemma 21.
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