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Abstract

In this paper, we propose an efficient, standard model, semi-generic transformation of selective-
secure (Hierarchical) Identity-Based Encryption schemes into fully secure ones. The main step is
a procedure that uses admissible hash functions (whose existence is implied by collision-resistant
hash functions) to convert any selective-secure wildcarded identity-based encryption (WIBE)
scheme into a fully secure (H)IBE scheme. Since building a selective-secure WIBE, especially
with a selective-secure HIBE already in hand, is usually much less involved than directly building
a fully secure HIBE, this transform already significantly simplifies the latter task. This black-box
transformation easily extends to schemes secure in the Continual Memory Leakage (CML) model
of Brakerski et al. (FOCS 2010), which allows us obtain a new fully secure IBE in that model.
We furthermore show that if a selective-secure HIBE scheme satisfies a particular security notion,
then it can be generically transformed into a selective-secure WIBE. We demonstrate that several
current schemes already fit this new definition, while some others that do not obviously satisfy
it can still be easily modified into a selective-secure WIBE.
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1 Introduction

The concept of identity-based encryption (IBE) is a generalization of the standard notion of public-
key encryption in which the sender can encrypt messages to a user based only on the identity of
the latter and a set of user-independent public parameters. In these systems, there exists a trusted
authority, called private key generator, that is responsible for generating decryption keys for all
identities in the system. Since being introduced by Shamir in 1984 [33], IBE has received a lot of
attention due to the fact that one no longer needs to maintain a separate public key for each user.
Despite being an attractive concept, it was only in 2001 that the first practical IBE construction
was proposed based on elliptic curve pairings [13]. Later that year, Cocks proposed an alternative
IBE construction based on the quadratic residuosity problem [23].

The now-standard definition of security of IBE schemes, first suggested by Boneh and Franklin
[13], is indistinguishability under adaptive chosen-identity attacks (we refer to it as full security).
In this security model, the adversary is allowed to obtain secret keys for adaptively chosen identities
before deciding the identity upon which it wishes to be challenged. By allowing these queries, this
notion implicitly captures resistance against collusion attacks as different users should be unable to
combine their keys in an attempt to decrypt ciphertexts intended to another user.

In 2002, Horwitz and Lynn introduced the notion of hierarchical identity-based encryption
(HIBE), which allows intermediate nodes to act as private key generators. They also provided
a two-level HIBE construction based on the Boneh-Franklin IBE scheme, but their scheme could
provide full collusion resistance only in the upper level. The first HIBE scheme to provide full col-
lusion resistance in all levels is due to Gentry and Silverberg [26]. Like the Horwitz-Lynn HIBE
scheme, the Gentry-Silverberg HIBE scheme was also based on the Boneh-Franklin IBE scheme and
proven secure in the random-oracle model [6].

The first HIBE to be proven secure in the standard model is due to Canetti, Halevi, and Katz [20],
but in a weaker security model, called the selective-identity model. Unlike the security definitions
used in previous constructions of (H)IBE schemes, the selective-identity model requires the adversary
to commit to the challenge identity before obtaining the public parameters of the scheme. Despite
providing weaker security guarantees, Canetti, Halevi, and Katz showed that the selective-identity
model is sufficient for building forward-secure encryption schemes, which was the main motivation
of their paper.

Although the selective-identity model has been considered in many works, and is interesting
in its own right (e.g., it implies forward-secure public key encryption), if we focus solely on the
(H)IBE application, then the selective notion is clearly unrealistic because it does not model the
real capabilities of an adversary attacking a (H)IBE scheme. So while the design of selective-identity
secure schemes seems to be an easier task, the quest for fully secure solutions is always considered
the main goal for (H)IBE construction.

It is therefore a very interesting problem to investigate whether there are ways to efficiently
convert a selective secure scheme into a fully secure one. In the random oracle model, this question
has been resolved by Boneh, Boyen and Goh [10], who provided a very efficient black-box transfor-
mation. In the standard model, however, no such conversion is known1, and all fully-secure (H)IBE
schemes (e.g., [9], [35], [22]) had to be constructed and proved secure essentially from scratch.

1It was shown by Boneh and Boyen in [8] that any selective secure IBE scheme is already fully secure, but the
concrete security degrades by a factor 1/|ID|, where ID is the scheme’s identity space. Since ID is usually of exponential
size, this conversion is too expensive in terms of efficiency to be considered practical.
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1.1 Our results

In this paper, we explore the relationship between selective-identity and fully secure (H)IBE schemes
in the standard model.

From selective-secure WIBE to fully-secure HIBE. Our first main contribution is a generic
construction of fully-secure HIBE schemes from selective-pattern-secure wildcarded identity-based
encryption (WIBE) schemes. The notion of a WIBE, introduced by Abdalla et al. [1], is very
similar to the notion of a HIBE except that the sender can encrypt messages not only to a specific
identity, but to a whole range of receivers whose identities match a certain pattern defined through
a sequence of fixed strings and a special wildcard symbol (*). The security notion, called selective-
pattern security, requires the adversary to commit ahead of time to the pattern P ∗ that he intends
to attack. He can then ask for the secret keys of any identity not matching P ∗, and for the challenge
ciphertext on any pattern P matching P ∗. This notion of security is slightly more general and
natural than that given in [1]. Yet, as noted in Remark 2.5 at the end of Section 2, it is satisfied by
all known WIBE constructions.

Our transformation from any selective-pattern-secure WIBE to a fully-secure HIBE is generic
and relies on the notion of admissible hash functions (whose existence is implied by collision-resistant
hash functions) introduced by Boneh and Boyen in [9]. Since building selective-pattern-secure WIBE
schemes seems to be much easier than directly building a fully secure HIBE scheme, this trans-
formation already significantly simplifies the latter task. In fact, it is worth noticing that the
selective-pattern security of all currently-known instantiations of WIBE schemes follows from the
selective-identity security of their respective underlying HIBE schemes (see [1]).

One direct consequence of our construction is that several existing fully secure (H)IBE schemes
can be seen as a particular case of our transformation. For instance, the fully secure IBE scheme
of Boneh and Boyen in [9] turns out to be a particular case of our generic construction when
instantiated with the selective-pattern-secure Boneh-Boyen WIBE scheme given in [1]. Likewise, the
fully secure HIBE by Cash, Hofheinz, Kiltz, and Peikert [22] can be seen as the result of our generic
transformation when applied to our new WIBE scheme in Section 6. Another consequence of our
transformation is that one can obtain new constructions of fully secure HIBE schemes by applying
our methodology to existing selective-pattern-secure WIBE schemes, such as the Boneh-Boyen-Goh
WIBE in [1]. Interestingly, the result obtained from this instantiation closely resembles the Waters
(H)IBE scheme [35].

The transformation in the Continual Memory Leakage model. An important point about
our transformation from WIBE to (H)IBE is that it also works in the Continual Memory Leakage
(CML) model [19, 24]. In this model, security is defined with respect to an adversary that may learn
a bounded number of bits related to the secret information of a user, such as his secret key, over
a given time period. In particular, secret keys are updated regularly and information about new
secret keys and the randomness used during their updates may also leak to the adversary. In [19],
Brakerski et al. extended the IBE construction in [17] to obtain a selective-secure IBE in the CML
model based on the Decision Linear assumption. While Brakerski and Kalai’s IBE construction can
be made fully secure using admissible hash functions as suggested in [17], a similar result is not
known to hold in the CML model. In this paper, we show how to modify the scheme in [19] into a
WIBE scheme and prove it selective-pattern-secure in the CML model under the same assumption.
Then, by applying our transformation to this newly-constructed WIBE, we obtain a (CML) fully-
secure version of the IBE in [19]. As in the original IBE, our new IBE construction assumes that
there is no leakage from the master secret key. We observe, however, that this restriction is not that
critical because, in the case of IBE, it may be reasonable to assume that the key generation center
uses strong countermeasures to avoid leaking secret information.
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The role of WIBE in our transformation. Somewhat surprisingly, our transformation seems
to imply that the WIBE notion is of central importance when going from selective to full security
in (H)IBE. To see why, one has to take a look at our proof strategy and at the notion of Admissible
hash functions (AHF). AHFs are a tool which allows to partition the identity space into two subsets,
B and R (both of which are of exponential size) so that in the security proof the identities of secret key
queries fall in B while the challenge identity falls in R. In particular, by carefully selecting the AHFs
parameters (as described in [9], for instance) one can make sure that the above (good) event occurs
with non-negligible probability. In our proof from selective-secure WIBE to fully-secure HIBE, the
simulator first uses AHFs to partition the identity space into B and R. Next, it declares to the WIBE
challenger a challenge pattern which corresponds to R, by expressing R in the form of a pattern.
By the property of AHFs, if the good event occurs (for all key derivation queries and the challenge
identity chosen by the adversary), then the simulator can easily forward all queries to the WIBE
challenger. In particular, it is guaranteed that the challenge identity falls in R. When that happens,
the simulator can output the challenge identity chosen by the adversary as its own challenge.

We remark that the proof strategy described above does not work if one starts from a selective-
secure HIBE instead of a WIBE. Unlike the selective-WIBE simulator, the simulator against the
selective security of a HIBE should commit to the challenge identity ID∗ at the very beginning. And
even if the simulator chooses the AHFs parameters so that all secret key queries fall in B and the
challenge identity falls in R, it still needs to guess ID∗ in R at the very beginning. But the probability
that the challenge identity chosen by the adversary matches such ID∗ is 1/|R|, which is negligible
(recall that both B and R are of exponential size).

Selective WIBE from selective HIBE. The second main contribution of this paper is to iden-
tify conditions under which we can generically transform a selective-identity-secure HIBE scheme
into a selective-pattern-secure WIBE scheme. Towards this goal, we introduce a new notion of
security for HIBE schemes, called security under correlated randomness, which allows us to trans-
form a given HIBE into a WIBE by simply re-encrypting the same message to a particular set
of identities by reusing the same randomness. Informally speaking, in order for a HIBE scheme
to be secure under correlated randomness, it must satisfy the following two properties. First,
when given an encryption of the same message under the same randomness for two identity vectors
ID0 = (ID0,1, . . . , ID0,j , . . . , ID0,λ) and ID1 = (ID1,1, . . . , ID1,j , . . . , ID1,λ) differing in exactly one
position (say j), one can easily generate a ciphertext for any identity vector matching the pattern
ID = (ID1,1, . . . , *, . . . , ID1,λ). Secondly, when given these two ciphertexts, the adversary should
not be able to generate an encryption of the same message under the same randomness for any
identity vector that does not match the pattern. In Section 4 we show that selective-correlated-
randomness-secure HIBE schemes can be converted to selective-pattern-secure WIBEs. Moreover,
in Appendix B, we show that several existing HIBE schemes already satisfy this slightly stronger
notion of security, e.g., [8, 10, 35], and in particular we show that their security under correlated
randomness black-box reduces to their selective-identity security.

Hence, if we combine our first generic transformation from selective-pattern-secure WIBE to
fully-secure (H)IBE, together with our second result described above, we obtain a compiler that
allows us to construct a fully secure (H)IBE starting from a selective-secure (H)IBE. In particular,
the resulting transformation works in the standard model and is semi-generic because the second part
assumes a specific property of the underlying scheme (i.e., security under correlated randomness).
Nevertheless, by reducing the task of building fully secure HIBE schemes to that of building a
selective-pattern-secure WIBE scheme, we believe that our result makes the former task significantly
easier to achieve.

New WIBE schemes. One final contribution of this paper are two constructions of selective-
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pattern-secure WIBE schemes.
The first one, whose description is given in Section 5, is obtained by modifying the IBE in [19].

It is based on pairings and is secure under the Decision Linear assumption in the CML model.
Such modification essentially follows the correlated-randomness paradigm. Since for some technical
reasons (related to the specific scheme) the selective-pattern security of this WIBE cannot be black-
box reduced to the selective-identity security of the related IBE (like we do for other pairing-based
WIBEs), we decided to give a direct proof under the Decision Linear assumption. However, we
notice that such proof closely follows the one in [19].

The second WIBE is based on lattices and its security follows from the selective-identity secure
HIBE construction from [22]. Even though the Cash-Hofheinz-Kiltz-Peikert HIBE scheme does not
meet the notion of security under correlated randomness introduced in Section 4 (because the scheme
is not secure when the same randomness is reused for encryption), we show in Section 6 that one can
easily modify it to obtain a selective-pattern-secure WIBE scheme. Similarly to the case of pairing-
based WIBE schemes, the selective-pattern security of the new WIBE can be reduced directly to
the selective-identity security of the original Cash-Hofheinz-Kiltz-Peikert HIBE scheme. However,
in this case, it turns out to be even simpler to prove the selective-pattern security of our scheme
directly from the decisional Learning With Errors Problem (LWE) [32, 31].

Discussion. In this paper, we concentrate on building HIBE schemes that are adaptive-identity-
secure against chosen-plaintext attacks. As shown by Boneh, Canetti, Halevi, and Katz [21, 15, 12],
such schemes can easily be made chosen-ciphertext-secure with the help of one-time signature
schemes or message authentication codes. Similarly to the (H)IBE schemes by Boneh and Boyen [9],
by Waters [35], and by Cash, Hofheinz, Kiltz, and Peikert [22], the schemes obtained via our trans-
formation are only provably secure when the maximum hierarchy’s depth L is some fixed constant
due to the loss of a factor which is exponential in L. While for lattice-based HIBE schemes [22, 3, 4],
this seems to be the state of the art, the same is not true for pairing-based HIBE schemes. More
precisely, there have been several proposals in recent years (e.g., [25, 34, 29, 28]), which are fully
secure even when the HIBE scheme has polynomially many levels. Most of these schemes use a new
proof methodology, known as dual system encryption [34].

Organization. The paper is organized as follows. In Section 2, we start by recalling some standard
definitions and notations used throughout the paper. Next, in Section 3, we present our first main
contribution, which is a generic construction which can transform any selective-pattern-secure WIBE
into a fully secure HIBE scheme. Then, in Section 4, we introduce the notion of security under
correlated randomness for HIBE schemes and show how such schemes can be used to build selective-
pattern-secure WIBEs. Though such security notion does not necessarily hold for all HIBE schemes,
we show in Appendix B that several existing selective-identity-secure HIBE schemes do meet this
notion. Next, in Sections 5 and 6, we show two selective-pattern-secure WIBE schemes that are
obtained by transforming, respectively, the Brakerski-Kalai-Katz-Vaikuntanathan IBE and the Cash-
Hofheinz-Kiltz-Peikert HIBE. Finally, in Section 7, we summarize some future directions left open
by our work.

2 Basic Definitions

In this section we describe the notation and the basic definitions that we use in the paper.
Notation. We say that a function is negligible if it vanishes faster than the inverse of any polynomial.
If S is a set, then x

$← S indicates the process of selecting x uniformly at random over S. If A(·)
is an algorithm then we denote with y

$← A(·) the operation of running A (on some input) and
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assigning the output to y. For any ` ∈ N we denote with [`] the set {1, 2, . . . , `}. “PPT” stands for
probabilistic polynomial time and “PTA” for PPT algorithm or adversary.

2.1 Code-Based Games

In this work, we state our definitions and give our proofs using code-based games [7]. A game is
usually defined by two procedures Initialize and Finalize, and by other procedures that model the
answers to the adversary’s oracle queries. A game G is executed with an adversary A as follows.
First, A runs Initialize, and gets its output. Then, A can make oracle queries by executing the
corresponding procedures. At the end, before halting, the adversary is required to execute the
procedure Finalize whose output is the output of the game G. If b is G’s output, then we denote
all this process by writing GA ⇒ b. Usually, a game keeps a flag bad which is initialized to false,
and that may be set true during the execution of the game. We denote with Badi (resp. Goodi) the
event that GAi sets (resp. does not set) bad← true.

Two games Gi and Gj are said “identical-until-bad” if their code differs only in statements that are
executed when bad is set. Bellare and Rogaway show in [7] that if Gi and Gj are identical-until-bad,
and A is an adversary, then Pr[Badi] = Pr[Badj ]. Moreover, the fundamental lemma of game-playing
[7] states that if Gi and Gj are identical-until-bad, then for any b: |Pr[GAi ⇒ b] − Pr[GAj ⇒ b]| ≤
Pr[Badi].

In our work we use a variant of this lemma formulated by Bellare and Ristenpart in [5]:

Lemma 2.1 [[5]] If Gi and Gj are identical-until-bad games, and A is an adversary, then for any b:

Pr[GAi ⇒ b ∧ ¬Badi] = Pr[GAj ⇒ b ∧ ¬Badj ].

2.2 (Hierarchical) Identity Based Encryption

A hierarchical identity-based encryption scheme (HIBE) is defined by a tuple of algorithms HIBE =
(Setup,KeyDer,Enc,Dec), a message space M, and an identity space ID. The algorithm Setup is
run by a trusted authority to generate a pair of keys (mpk ,msk) such that mpk is made public,
whereas msk is kept private. The users are hierarchically organized in a tree of depth L whose
root is the trusted authority. The identity of a user at level 1 ≤ ` ≤ L is represented by a vector−→
ID = (ID1, . . . , ID`) ∈ ID`. A user at level ` with identity

−→
ID = (ID1, . . . , ID`) can use the

key derivation algorithm KeyDer(sk−→
ID
,
−→
ID ′) to generate a secret key for any of its children

−→
ID ′ =

(ID1, . . . , ID`, ID`+1) at level `+ 1. Since this process can be iterated, every user can generate keys
for all its descendants. Then, every user holding the master public key mpk , can encrypt a message
m ∈ M for the identity

−→
ID by running C

$← Enc(mpk ,
−→
ID ,m). Finally, the ciphertext C can be

decrypted by running the deterministic decryption algorithm, m← Dec(sk−→
ID ′
, C).

For correctness, it is required that for all honestly generated master keys (mpk ,msk) $← Setup,
for all messages m ∈M, all identities

−→
ID ∈ ID` and all

−→
ID ′ ancestors of

−→
ID ,

m← Dec(KeyDer(msk ,
−→
ID ′),Enc(mpk ,

−→
ID ,m))

holds with overwhelming probability. An IBE is defined as an HIBE with a hierarchy of depth 1.
The security of a HIBE scheme is captured by the standard notion of indistinguishability under

chosen-plaintext attacks. In particular, this is formalized by a game, IND-HID-CPA, that we recall
in Figure 1 using the notation of code-based games. The game is defined by four procedures that
can be run by an adversary A and works as follows. As usual, A starts by executing Initialize
and runs Finalize before halting. We assume that A makes at most one query (

−→
ID∗,m0,m1) to

5



Game IND-HID-CPA
procedure Initialize

(mpk ,msk) $← Setup

β
$← {0, 1}

Return mpk

procedure Extract(
−→
ID)

sk−→
ID

$← KeyDer(msk ,
−→
ID)

Return sk−→
ID

procedure LR(
−→
ID ,m0,m1)

C
$← Enc(mpk ,

−→
ID ,mβ)

Return C

procedure Finalize(β′)
Return (β′ = β)

Game IND-sHID-CPA

procedure Initialize(
−→
ID∗)

(mpk ,msk) $← Setup; β $← {0, 1}
Return mpk

procedure LR(m0,m1)

C
$← Enc(mpk ,

−→
ID∗,mβ)

Return C

Figure 1: On the left the definition of Game IND-HID-CPA. On the right the procedures Initial-
ize and LR of the game IND-sHID-CPA. Notice that in the latter game the procedures Extract and
Finalize are the same as those of game IND-sHID-CPA.

the LR procedure, under the requirement that |m0| = |m1| (i.e., the two messages have the same
length), and that all the identities submitted to Extract and LR are legitimate. For this notion, a
set of queries is said legitimate if A never queries Extract on an identity

−→
ID such that

−→
ID =

−→
ID∗

or
−→
ID is an ancestor of

−→
ID∗. We define the IND-HID-CPA-advantage of any adversary A against a

HIBE scheme HIBE as

AdvIND-HID-CPA
HIBE (A) = 2 · Pr[IND-HID-CPAA⇒ 1]− 1

where IND-HID-CPAA⇒ 1 denotes that a run of the IND-HID-CPA with adversary A outputs 1.

Definition 2.2 [IND-HID-CPA-security] A HIBE scheme is IND-HID-CPA-secure if for any PPT
adversary A, AdvIND-HID-CPA

HIBE (A) is at most negligible.

In the context of hierarchical identity-based encryption a lot of works in the literature also
considered a weaker notion of security, called selective-identity indistinguishability under chosen-
plaintext attacks (IND-sHID-CPA). The main difference with the standard IND-HID-CPA notion
is that here the adversary is required to commit ahead of time to the identity that he will use to
query the LR procedure. The corresponding game is recalled in Figure 1, on the right. Precisely,
we describe only the procedures Initialize and LR, as Extract and Finalize remain the same as
in the game IND-HID-CPA. The IND-sHID-CPA-advantage of any adversary A against a HIBE
scheme HIBE is defined as

AdvIND-sHID-CPA
HIBE (A) = 2 · Pr[IND-sHID-CPAA⇒ 1]− 1

Definition 2.3 [IND-sHID-CPA-security] A HIBE scheme is IND-sHID-CPA-secure if for any PPT
adversary A, AdvIND-sHID-CPA

HIBE (A) is at most negligible.

Sometimes, in order to have a clear distinction with the standard notion of IND-HID-CPA, the
latter is called “full security”.

2.3 Identity Based Encryption with Wildcards

The notion of Identity-Based Encryption with Wildcards was introduced by Abdalla et al. in [1]
as a generalization of the HIBE’s notion. A WIBE scheme is defined by a tuple of algorithms
WIBE = (Setup,KeyDer,Enc,Dec) that works exactly as a HIBE, except that here the encryption
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algorithm takes as input a value P ∈ (ID ∪ *)` (for 1 ≤ ` ≤ L), i.e., the pattern, instead of an
identity vector. Such pattern may contain a special “don’t care” symbol *, the wildcard, at some
levels. An identity

−→
ID = (ID1, . . . , ID`) ∈ ID` is said to match a pattern P ∈ (ID ∪ *)`

′
, denoted as

−→
ID ∈* P , if and only if ` ≤ `′ and ∀i = 1, . . . , `: ID i = Pi or Pi = *. Note that under this definition,
any ancestor of a matching identity is also a matching identity. This makes sense for the notion of
WIBE, as any ancestor can derive the secret key of a matching descendant identity anyway. For
any pattern P ∈ (ID ∪ *)`, we denote with W(P ) the set of indices j ∈ [`] such that Pj = *. For
correctness, it is required that for all honestly generated master keys (mpk ,msk) $← Setup, for all
messages m ∈ M, all patterns P ∈ (ID ∪ *)`

′
and all identities

−→
ID ∈ ID` such that

−→
ID ∈* P ,

m← Dec(KeyDer(msk ,
−→
ID),Enc(mpk , P,m)) holds with all but negligible probability.

procedure Initialize(P ∗)

(mpk ,msk) $← Setup ; β $← {0, 1}
Return mpk

procedure Extract(
−→
ID)

sk−→
ID

$← KeyDer(msk ,
−→
ID)

Return sk−→
ID

procedure LR(P,m0,m1)

C
$← Enc(mpk , P,mβ)

Return C

procedure Finalize(β′)
Return (β′ = β)

Figure 2: Game IND-sWID-CPA.

Similarly to HIBE, WIBE allows for similar notions of security under chosen-plaintext attacks.
In particular, in our work we consider only the notion of selective security. Roughly speaking, it is
similar to the IND-sHID-CPA notion for HIBE, except that here the adversary has to commit to a
pattern P ∗ at the beginning of the game. Next, when he calls the LR procedure, he can provide a
pattern P that matches P ∗, i.e., such that either P is an identity matching P ∗, or P is a sub-pattern
of P ∗. The security notion is formalized by the game IND-sWID-CPA in Figure 2. So, we define
the IND-sWID-CPA-advantage of any adversary A against a WIBE scheme WIBE as

AdvIND-sWID-CPA
WIBE (A) = 2 · Pr[IND-sWID-CPAA⇒ 1]− 1

Definition 2.4 A WIBE scheme is IND-sWID-CPA-secure if AdvIND-sWID-CPA
WIBE (A) is negligible for

any PTA A.

Remark 2.5 We notice that our notion of selective-security for WIBE schemes is slightly more
general than the one that was originally proposed in [1]. The main difference is that in the original
work of Abdalla et al. the notion is purely selective, meaning that the adversary declares the
challenge pattern P ∗ at the beginning of the game, and later it receives an encryption of either
m0 or m1 under P ∗. Instead, our notion allows for more flexibility. Indeed, the adversary still
declares P ∗ at the beginning of the game, but later it may ask the challenge ciphertext on a pattern
P , possibly different from P ∗, but such that P matches P ∗. We stress that this property is not
artificial for at least two reasons. First, it is more general than the previous one. Second, it is
satisfied by all known WIBE schemes, and in particular we will show that it is satisfied by those
schemes obtained through our transformation, from selective-secure HIBE to selective WIBE, that
we describe in Section 4.

2.4 The Continual Memory Leakage Model

In this section we present an extension of the definitions of hierarchical identity-based encryption
and wildcarded identity-based encryption in the Continual Memory Leakage (CML) Model proposed
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Game CML-IND-HID-CPA

procedure Initialize

(mpk ,msk) $← Setup

β
$← {0, 1}

C[
−→
ID ]← ⊥ ∀

−→
ID

L[
−→
ID , 0]← 0 ∀

−→
ID

Return mpk

procedure Extract(
−→
ID)

If C[
−→
ID ] = ⊥ Then

sk−→
ID,0

$← KeyDer(msk ,
−→
ID)

C[
−→
ID ]← 0

Return sk−→
ID,C[

−→
ID]

procedure Challenge(
−→
ID∗)

Store
−→
ID∗

procedure LR(m0,m1)

C
$← Enc(mpk ,

−→
ID∗,mβ)

Return C

procedure Finalize(β′)
Return (β′ = β)

procedure Leak(f,
−→
ID)

If
−→
ID 6=

−→
ID∗ and

−→
ID not ancestor of

−→
ID∗ Then

Return ⊥
Else continue
let i← C[

−→
ID ]

If i = ⊥ Then
sk−→

ID,0

$← KeyDer(msk ,
−→
ID)

C[
−→
ID ]← 0

If L[
−→
ID , i] + |f(sk−→

ID,i
)| < ρM · |sk−→

ID,i
| Then

L[
−→
ID , i]← L[

−→
ID , i] + |f(sk−→

ID,i
)|

Return f(sk−→
ID,i

)
Else Return ⊥

procedure Update(f,
−→
ID)

If
−→
ID 6=

−→
ID∗ and

−→
ID not ancestor of

−→
ID∗ Then

Return ⊥
Else continue
let i← C[

−→
ID ]

sk−→
ID,i+1

$← Updateuser(mpk , sk−→
ID,i

, r)

C[
−→
ID ]← i+ 1

If L[
−→
ID , i] + |f(sk−→

ID,i
, r)| < ρU · |sk−→

ID,i
| Then

L[
−→
ID , i+ 1]← |f(sk−→

ID,i
, r)|

Return f(sk−→
ID,i

, r)
Else Return ⊥

Figure 3: Definition of Game CML-IND-HID-CPA.

by Brakerski et al. [19].
In particular, we consider the model with the restriction that there is no leakage from the master

secret key. This means that both the Setup and KeyDer algorithms do not leak secret information.
In this setting a (H)IBE scheme is defined by the same algorithms as a standard (H)IBE with an
additional Updateuser algorithm that takes as input the public parameters, the secret key of some
identity

−→
ID and some randomness (from an appropriate domain), and it outputs a new updated

secret key for the same identity
−→
ID .

The notion of indistinguishability under chosen-plaintext attack in the CML model (that we call
CML-IND-HID-CPA) is defined as follows.

The game consists of six procedures that can be run by an adversary A and it works in the follow-
ing way. As usual, A starts by executing Initialize and runs Finalize before halting. The adversary
can run the procedure Extract and then it is allowed one query to the procedure Challenge on
some identity

−→
ID∗ such that

−→
ID∗, nor an ancestor of it, have been asked to Extract before. Next,

the adversary can run procedures Extract, Leak and Update as described in Figure 3. Notice
that Leak and Update can be queried on identities

−→
ID that decrypt

−→
ID∗. These procedures take as

input also a computable function f . As specified in the figure, such functions must have a sufficiently
bounded output size. We also assume that A makes at most one query (m0,m1) to the LR pro-
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cedure, under the requirement that |m0| = |m1| (i.e., the two messages have the same length), and
that all identities submitted to Extract, Leak, Update and LR are legitimate. Finally, once the
adversary has queried LR it can no longer run Leak and Update. In the CML model, a set of
queries is said legitimate if A never queries Extract on an identity

−→
ID such that

−→
ID =

−→
ID∗ or

−→
ID

is an ancestor of
−→
ID∗. Furthermore, the total number of bits of each secret key of

−→
ID∗ (or of any

ancestor of
−→
ID∗) that are leaked through Leak and Update must be less than ρM · |sk−→

ID∗
| and

ρU · |sk−→
ID∗
| respectively. So, ρM and ρU represent the fraction of bits that can be leaked from the

memory (i.e., from a secret key) and from the update operation (i.e., from the secret key and the
randomness used in the update). Notice that (ρM , ρU ) parametrize the security game.

We define the CML-IND-HID-CPA-advantage of any adversary A against a HIBE scheme HIBE
with leakage rate (ρM , ρU ) as

AdvCML-IND-HID-CPA
HIBE (A) = 2 · Pr[CML-IND-HID-CPAA⇒ 1]− 1

where CML-IND-HID-CPAA⇒1 denotes that a run of the experiment CML-IND-HID-CPA (parametrized
by (ρM , ρU )) with adversary A outputs 1.

Definition 2.6 [CML-IND-HID-CPA-security] A HIBE scheme is CML-IND-HID-CPA-secure with
leakage rate (ρM , ρU ) if for any PPT adversary A, AdvCML-IND-HID-CPA

HIBE (A) is at most negligible.

In a very similar way it is possible to define the notion of selective security, CML-IND-sHID-CPA,
for (H)IBE in the CML model. The game is described by the procedures in Figure 4. The procedures
are similar to the ones of the CML-IND-HID-CPA game, but they are a bit simpler. For consistency,
in order for the game to make sense, we require that the total number of bits of secret keys of

−→
ID∗

(or of any ancestor of
−→
ID∗) that are leaked through Leak and Update must be less than ρM · |sk−→

ID∗
|

and ρU · |sk−→
ID∗
| respectively.

Definition 2.7 [CML-IND-sHID-CPA-security] A HIBE scheme is CML-IND-sHID-CPA-secure with
leakage rate (ρM , ρU ) if for any PPT adversary A, AdvCML-IND-sHID-CPA

HIBE (A) is at most negligible.

WIBE in the CML model. Finally, we extend the security notion of WIBE to the CML model.
To do this, we define the game CML-IND-sWID-CPA which is similar to IND-sWID-CPA, except
that in addition it contains the procedures Leak and Update. The game is described in details
in Figure 5. The main difference is in the definition of what is the set of legitimate queries in this
setting. First, we require that the adversary calls the LR procedure on a pattern P that matches
the pattern P ∗ provided to Initialize at the beginning of the game. Second, we require that Leak
and Update are queried on identities matching the challenge pattern, and that for each of these
identities the total number of leaked bits is at most ρM · |sk−→

ID
| and ρU · |sk−→

ID
| respectively.

Definition 2.8 [CML-IND-sWID-CPA-security] A WIBE scheme is CML-IND-sWID-CPA-secure
with leakage rate (ρM , ρU ) if for any PPT adversary A, AdvCML-IND-sWID-CPA

WIBE (A) is at most negli-
gible.

3 Fully-Secure HIBE from Selective-Secure WIBE

In this section we concentrate on the first part of our main result. We show how to construct a
fully-secure HIBE scheme starting from any WIBE scheme that is secure only in a selective sense.
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Game CML-IND-sHID-CPA

procedure Initialize(
−→
ID∗)

(mpk ,msk) $← Setup

β
$← {0, 1}

i← ⊥
L[i]← 0
sk−→

ID∗,0

$← KeyDer(msk ,
−→
ID∗)

Return mpk

procedure Extract(
−→
ID)

sk−→
ID

$← KeyDer(msk ,
−→
ID)

Return sk−→
ID

procedure LR(m0,m1)

C
$← Enc(mpk ,

−→
ID∗,mβ)

Return C

procedure Leak(f)
If L[i] + |f(sk−→

ID,i
)| < ρM · |sk−→

ID,i
| Then

L[i]← L[i] + |f(sk−→
ID,i

)|
Return f(sk−→

ID,i
)

Else Return ⊥
procedure Update(f)

sk−→
ID,i+1

$← Updateuser(mpk , sk−→
ID,i

, r)
If L[i] + |f(sk−→

ID,i
, r)| < ρU · |sk−→

ID,i
| Then

L[i+ 1]← |f(sk−→
ID,i

, r)|
Return f(sk−→

ID,i
, r)

i← i+ 1
Else Return ⊥
procedure Finalize(β′)
Return (β′ = β)

Figure 4: Definition of Game CML-IND-sHID-CPA.

Game CML-IND-sWID-CPA

procedure Initialize(P ∗)

(mpk ,msk) $← Setup

β
$← {0, 1}

C[
−→
ID ]← ⊥ ∀

−→
ID

L[
−→
ID , 0]← 0 ∀

−→
ID

Return mpk

procedure Extract(
−→
ID)

If C[
−→
ID ] = ⊥ Then

sk−→
ID,0

$← KeyDer(msk ,
−→
ID)

C[
−→
ID ]← 0

Return sk−→
ID,C[

−→
ID]

procedure LR(P,m0,m1)

C
$← Enc(mpk ,

−→
ID ,mβ)

Return C

procedure Finalize(β′)
Return (β′ = β)

procedure Leak(f,
−→
ID)

let i← C[
−→
ID ]

If i = ⊥ Then
sk−→

ID,0

$← KeyDer(msk ,
−→
ID)

C[
−→
ID ]← 0

If L[
−→
ID , i] + |f(sk−→

ID,i
)| < ρM · |sk−→

ID,i
| Then

L[
−→
ID , i]← L[

−→
ID , i] + |f(sk−→

ID,i
)|

Return f(sk−→
ID,i

)
Else Return ⊥

procedure Update(f,
−→
ID)

let i← C[
−→
ID ]

sk−→
ID,i+1

$← Updateuser(mpk , sk−→
ID,i

, r)

C[
−→
ID ]← i+ 1

If L[
−→
ID , i] + |f(sk−→

ID,i
, r)| < ρU · |sk−→

ID,i
| Then

L[
−→
ID , i+ 1]← |f(sk−→

ID,i
, r)|

Return f(sk−→
ID,i

, r)
Else Return ⊥

Figure 5: Definition of Game CML-IND-sWID-CPA.

Our transformation is black-box and makes use of admissible hash functions, a notion introduced
by Boneh and Boyen in [9] that we recall below.

Admissible Hash Functions. Admissible hash functions were first introduced by Boneh and
Boyen in [9] as a tool for proving the full security of their identity-based encryption scheme in
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the standard model. Such functions turn out to be particularly suitable for this purpose as they
provide a way to implement the so-called “partitioning technique”, a proof methodology that allows
to secretly partition the identity space into two sets, the blue set and the red set, both of exponential
size, so that there is a non-negligible probability that the adversary’s secret key queries fall in the
blue set and the challenge identity falls in the red set. This property has been shown useful to prove
the full security of some identity-based encryption schemes (e.g., [9, 35, 22]). In particular, it fits
those cases when, in the reduction, one can program the simulator so that it can answer secret key
queries for all the blue identities, whereas it is prepared to generate a challenge ciphertext only for
red identities.

In our work we employ admissible hash functions for a similar purpose, i.e., constructing a fully-
secure HIBE from a selective-secure WIBE, and in particular we adopt a definition of admissible
hash functions which follows the one used by Cash et al. in [22]. The formal definition follows.

Let k ∈ N be the security parameter, w and λ be two values that are at most polynomial in k,
and Σ be an alphabet of size s. Let H = {H : {0, 1}w → Σλ} be a family of functions. For H ∈ H,
K ∈ (Σ ∪ {*})λ and any x ∈ {0, 1}w we define the following function which colors strings in {0, 1}w
as follows:

FK,H(x) =
{

R if ∀i ∈ {1, . . . , λ} : H(x)i = Ki or Ki = *
B if ∃i ∈ {1, . . . , λ} : H(x)i 6= Ki

For any µ ∈ {0, . . . , λ}, we denote with K(λ,µ) the uniform distribution over (Σ ∪ {*})λ such that
exactly µ components are not *. Moreover, for every H ∈ H, K ∈ K(λ,µ), and every vector ~x ∈
({0, 1}w)Q+1 we define the function

γ(~x) = Pr[FK,H(x0) = R ∧ FK,H(x1) = B ∧ FK,H(x2) = B ∧ · · · ∧ FK,H(xQ) = B].

Definition 3.1 [Admissible Hash Functions] H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-
admissible hash functions if for every polynomial Q = Q(k), there exists an efficiently computable
function µ = µ(k), efficiently recognizable sets badH ⊆ ({0, 1}w)∗ and an inverse of a polynomial
δmin = 1/δ(k,Q) such that the following properties holds:

1. For every PPT algorithm A that, on input H ∈ H, outputs ~x ∈ ({0, 1}w)Q+1, there exists a
negligible function ε(k) such that:

AdvadmH (A) = Pr[~x ∈ badH : H ← H, ~x← A(H)] ≤ ε(k)

2. For every H ∈ H, K $← K(λ,µ), and every vector ~x ∈ ({0, 1}w)Q+1 \ badH such that x0 /∈
{x1, . . . , xQ} we have: γ(~x) ≥ δmin.

3.1 Our transformation

Let WIBE be a WIBE scheme with identity space ID = Σ of size s and depth ≤ λ · L, and
H = {H : {0, 1}w → Σλ} be a family of functions. Then we construct the following HIBE scheme
that has identity space ID ′ = {0, 1}w and depth at most L:

HIBE .Setup: run (mpk ′,msk ′) $←WIBE .Setup and select H1, . . . ,HL
$← H. Output mpk = (mpk ′,

H1, . . . ,HL) and msk = msk ′.

HIBE .KeyDer(msk ,
−→
ID): let

−→
ID = (ID1, . . . , ID`) and define ~I = (H1(ID1), . . . ,H`(ID`)) ∈ Σλ·`.

Output sk−→
ID

= WIBE .KeyDer(msk , ~I).
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HIBE .Enc(mpk ,
−→
ID ,m): let

−→
ID = (ID1, . . . , ID`) and define ~I = (H1(ID1), . . . ,H`(ID`)) ∈ Σλ·`.

Output C = WIBE .Enc(mpk , ~I,m).

HIBE .Dec(sk−→
ID
, C): return m = WIBE .Dec(sk−→

ID
, C).

Our scheme is very simple. Essentially, the HIBE algorithm uses the algorithms of the WIBE scheme
in a black-box way, where each identity component ID i is first hashed using a function Hi ∈ H.
Boneh and Boyen show how to construct admissible hash functions based on collision-resistance and
error-correction, and propose some concrete parameters for their instantiation (which satisfy our
definition). In particular, for convenience of their construction, they consider functions that map to
strings in an alphabet Σ of size s = 2. Here we notice that if the given WIBE has an alphabet Σ′ of
size s′ > 2, then one can simply choose two values x1, x2 ∈ Σ′, set Σ = {x1, x2}, and then consider
the same WIBE restricted to these two identities.

The security of our scheme follows from the following theorem.

Theorem 3.2 If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-admissible hash functions, and
WIBE is IND-sWID-CPA-secure, then the scheme HIBE given in Section 3 is IND-HID-CPA-secure,
where the maximum hierarchy’s depth L is some fixed constant.

Proof Intuition. Although the scheme is simple, its proof of security is rather technical. There-
fore, we first provide some informal intuitions about our strategy. Intuitively speaking, the proof
proceeds by showing an algorithm B that plays game IND-sWID-CPA against the scheme WIBE
and simulates the game IND-HID-CPA to an adversary A against HIBE . B first generates the
parameters for the admissible hash functions, which define partitions B and R of the identity space,
and then it declares the set R as the challenge pattern (notice that by definition of K ∈ K(λ,µ), R
can be described in a compact way using a pattern). Next, all secret key queries made by A for
identities in B are forwarded by B to its own challenger, and the same can be done if the challenge
identity chosen by A falls in R. In particular, by the properties of admissible hash functions, the
event that the identities of secret key queries fall in B and the challenge identity falls in R occurs with
non-negligible probability. However, things are not that simple, as there may be unlucky events in
which B is unable to simulate the right game to A and thus it needs to abort. As it already occurred
in other works [35, 22], these events may not be independent of the adversary’s view, and one so-
lution is to force the simulator to run an expensive artificial abort step. Our proof of Theorem 3.2
proceeds in this way, requiring B to (eventually) artificially abort at the end of the simulation.

Alternatively, one can extend the techniques introduced by Bellare and Ristenpart in [5] to obtain
a proof of Theorem 3.2 which avoids the need of artificial aborts. However, this requires a slightly
different definition of admissible hash functions. In Appendix A we describe this alternative proof
without artificial aborts. It may be of independent interest.

Proof: To prove Theorem 3.2 we describe a sequence of games that allows to show that an adversary
for the game IND-HID-CPA can be efficiently turned into an adversary for the game IND-sWID-
CPA.

The simulator algorithm B. In Figure 6 we describe an adversary B that plays game IND-sWID-CPA
against the scheme WIBE , by simulating the game IND-HID-CPA to an adversary A. To avoid con-
fusion between the games IND-sWID-CPA and IND-HID-CPA, we prepend the prefix sW to the
procedures of IND-sWID-CPA.

In order to show that such simulation can be carried on efficiently, we proceed by describing a se-
quence of games G0–G8, where G0 is the game simulated by our algorithm B, and G8 is essentially
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Algorithm B:

K1, . . . ,KL
$← K(λ,µ)

P ∗ ← (K1, . . . ,KL)
Run mpk ′ ← sW.Initialize(P ∗)
H1, . . . ,HL

$← H
cnt← 1
mpk ← (mpk ′, H1, . . . ,HL)
Run A′(mpk), answering queries as follows:

Extract(
−→
ID):

Xcnt ←
−→
ID , cnt← cnt+ 1

let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

sk−→
ID
← ⊥

If FHi,Ki
(ID i) = R ∀i = 1 to ` Then

bad← true

Else sk−→
ID

$← sW.Extract(~I)
Return sk−→

ID

LR(ID ,m0,m1):
X0 ←

−→
ID

let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

C∗ ← ⊥
If ∃i ∈ [`∗] : FHi,Ki(ID i) = B Then

bad← true

Else
C∗

$← sW.LR(~I,m0,m1)
return C∗

let β′ be A′’s output
If ∃i ∈ [L] : Xi ∈ badHi

Then β′
$← {0, 1}

If bad 6= true
η̃ ← 0
for j = 1 to dkS/δLmine do
K̃1, . . . , K̃L

$← K(λ,µ)

If
∧L
i=1(FK̃i,Hi

(X0
i ) = R ∧ FK̃i,Hi

(X1
i ) = B∧

∧ · · · ∧ FK̃i,Hi
(XQ

i ) = B) Then
η̃ ← η̃ + 1

δ̃ ← η̃/dkS/δLmine
Set bad← true with probability 1− δLmin/δ̃

If bad = true Then β′
$← {0, 1}

sW.Finalize(β′)

procedure Initialize: Games G0 −G3

001 K1, . . . ,KL
$← K(λ,µ)

002 P ∗ ← (K1, . . . ,KL)
003 (mpk ′,msk ′) $←WIBE .Setup;β $← {0, 1}
004 H1, . . . ,HL

$← H
005 cnt← 1
006 mpk ← (mpk ′, H1, . . . ,HL)
007 return mpk

procedure Extract(
−→
ID): Games G0, G1

010 Xcnt ←
−→
ID ; cnt← cnt+ 1

011 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

012 sk−→
ID
← ⊥

013 If FHi,Ki(ID i) = R ∀i = 1 to ` Then
014 bad← true

015 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)

016 Else sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)
017 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Games G0, G1

020 X0 ←
−→
ID

021 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

022 C∗ ← ⊥
023 If ∃i ∈ [`∗] : FHi,Ki

(ID i) = B Then
024 bad← true

025 C∗
$←WIBE .Enc(mpk ′, ~I,mβ)

026 Else
027 C∗

$←WIBE .Enc(mpk ′, ~I,mβ)
028 return C∗

procedure Finalize(β′): Games G0, G1

030 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
031 β′′ ← β′

032 If bad 6= true
033 η̃ ← 0
034 for j = 1 to dkS/δLmine do
035 K̃1, . . . , K̃L

$← K(λ,µ)

036 If
∧L
i=1(FK̃i,Hi

(X0
i ) = R ∧ FK̃i,Hi

(X1
i ) = B

∧ · · · ∧ FK̃i,Hi
(XQ

i ) = B) Then
037 η̃ ← η̃ + 1
038 δ̃ ← η̃/dkS/δLmine
039 Set bad← true with probability 1− δLmin/δ̃
040 If bad = true Then β′′

$← {0, 1}, β′′ ← β′

041 If β′′ = β Then return 1
042 Else return 0

Figure 6: Adversary B and description of the games G0 and G1.
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IND-HID-CPA with some additional code that, however, does not condition the output. Our ap-
proach is based on code-based games where each game is defined as a set of procedures that can be
run by the adversary.

Before focusing on the game sequence, we first show that the simulation provided by B is correct
whenever bad is not set, and that B plays the game IND-sWID-CPA correctly. For ease of exposition
we assume that the adversary always outputs identities of the same (maximum) length L. However,
this can be formalized by assuming that for any set of identities (

−→
ID0, . . . ,

−→
IDQ) output by A, for

i = 1 to Q all those
−→
ID i such that |

−→
ID i| < L are padded to reach length L using some special symbol

so that FHi,Ki(ID i
j) always returns B on positions j such that |

−→
ID i| < j ≤ L. On the other hand, if

the challenge identity has length `∗ < L, then it is padded with some symbol so that FHi,Ki(ID0
j )

always returns R on positions j > `∗.

First, observe that all the identities ~I for which B runs sW.Extract(~I) are legitimate queries,
namely they do not match the challenge pattern P ∗ declared by B to sW.Initialize. In the code of
B, if sW.Extract(~I) is called, then there exists an index i ∈ {1, . . . , `} for which FKi,Hi(ID i) = B,
namely Ii 6= Pi (and Pi 6= *), thus ~I 6∈* P ∗. Second, note that the ciphertext C∗ is distributed
as the challenge ciphertext in the game IND-HID-CPA for the scheme HIBE . However, we have
also to check that the procedure sW.LR be run on an identity ~I ∈* P ∗. To see this, observe that
the procedure is run only if bad is not set, namely when FHi,Ki(ID i) = R for all i ∈ [`∗], which is
equivalent to say ~I ∈* P ∗.
A critical part in B’s simulation is that it may set bad ← true and, as a consequence, B returns
a random bit (basically, it fails its simulation). Such bad event depends on the values K1, . . . ,KL

chosen by B as well as on the set of identities asked by A to Extract and LR. As shown in
other works, such as [35], these cases are problematic as the event that the simulation fails is not
independent of the adversary’s view. This difficulty is overcome by introducing an “artificial” abort
event in the simulation that allows to balance the probability of failing so that it is sufficiently
independent of the adversary’s view. This is why, at the end of the simulation, even if bad was not
set, the algorithm B may abort. Precisely, the simulator B proceeds as follows. Before terminating
the simulation, B repeats dkS/δLmine times the following step: it samples L vectors K̃1, . . . , K̃L as
at the beginning of the simulation, and for each sample it checks whether such choice (combined
with the given set X of identities returned by the adversary) would set bad ← true or not. At the
end of this step, B evaluates “on the fly” the average probability, over the random choices of the
vectors K̃i, that bad is set, given the set X. Let δ̃ be such estimation, then B sets bad← true with
probability 1 − δLmin/δ̃. In particular, here S is an arbitrary polynomial such that by Hoeffding’s
inequality, dkS/δLe samples are sufficient to get δ̃ ≥ δL such that

Pr
[∣∣∣Γ(X)− δ̃

∣∣∣ ≥ δL

S

]
≤ 1

2k
. (1)

The sequence of games. Now, let us focus on the sequence of games G0−G8. In particular, the
Lemma 3.3 given below proves that we can move from the game IND-sWID-CPA played by B to
game G4.

Following the notation given in Section 2, we write GAi ⇒ b to denote that an execution of game
Gi by A returns b. Also, let Badi (resp. Goodi) be the event that Gi sets (resp. does not set)
bad← true.

Our adversary B and the games G0–G8 are described in Figures 6 and 7. When some games share
a procedure with very similar code we use a compact description with boxed statements. If a
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procedure Extract(
−→
ID): Game G2

210 Xcnt ←
−→
ID ; cnt← cnt+ 1

211 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

212 If FHi,Ki
(ID i) = R ∀i = 1 to ` Then

213 bad← true

214 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)(~I)
215 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Game G2

220 X0 ←
−→
ID

221 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

222 If ∃i ∈ [`∗] : FHi,Ki
(ID i) = B Then

223 bad← true

224 C ′
$←WIBE .Enc(mpk ′, ~I,mβ)

225 return C∗

procedure Finalize(β′): Game G2, G3

230 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
231 for j = 1 to cnt do
232 let `j ← |

−→
IDj |

233 If FHi,Ki
(Xj

i ) = R ∀i = 1 to `j Then
234 bad← true
235 If ∃i ∈ [`∗] : FHi,Ki

(X0
i ) = B Then

236 bad← true

237 If bad 6= true
238 η̃ ← 0
239 for j = 1 to dkS/δLmine do
240 K̃1, . . . , K̃L

$← K(λ,µ)

241 If
∧L
i=1(FK̃i,Hi

(X0
i ) = R ∧ FK̃i,Hi

(X1
i ) = B

∧ · · · ∧ FK̃i,Hi
(XQ

i ) = B) Then
242 η̃ ← η̃ + 1
243 δ̃ ← η̃/dkS/δLmine
244 Set bad← true with probability 1− δLmin/δ̃
245 If β′ = β Then return 1
246 Else return 0

procedure Initialize(`∗): Games G4 −G8

400 (mpk ′,msk ′) $←WIBE .Setup;β $← {0, 1}
401 H1, . . . ,HL

$← H
402 mpk ← (mpk ′, H1, . . . ,HL)
403 cnt← 1
404 return mpk

procedure Finalize(β′): Game G6

640 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
641 Set bad← true with probability 1− δLmin
642 If bad = true Then β′

$← {0, 1}
643 If β′ = β Then return 1
644 Else return 0

procedure Extract(
−→
ID): Games G3 −G8

310 Xcnt ←
−→
ID ; cnt← cnt+ 1

311 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

312 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)(~I)
313 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Game G3 −G8

320 X0 ←
−→
ID

321 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

322 C∗
$←WIBE .Enc(mpk ′, ~I,mβ)

323 return C∗

procedure Finalize(β′): Game G4, G5

430 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
431 K1, . . . ,KL

$← K(λ,µ)

432 for j = 1 to cnt do
433 let `j ← |

−→
IDj |

434 If FHi,Ki
(Xj

i ) = R ∀i = 1 to `j Then
435 bad← true
436 If ∃i ∈ [`∗] : FHi,Ki

(X0
i ) = B Then

437 bad← true
438 If bad 6= true
439 η̃ ← 0
440 for j = 1 to dkS/δLmine do
441 K̃1, . . . , K̃L

$← K(λ,µ)

442 If
∧L
i=1(FK̃i,Hi

(X0
i ) = R ∧ FK̃i,Hi

(X1
i ) = B

∧ · · · ∧ FK̃i,Hi
(XQ

i ) = B) Then
443 η̃ ← η̃ + 1
444 δ̃ ← η̃/dkS/δLmine
445 Set bad← true with probability 1− δLmin/δ̃

446 If bad = true Then β′
$← {0, 1}

447 If β′ = β Then return 1
448 Else return 0

procedure Finalize(β′): Game G7

740 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
741 If β′ = β Then return 1
742 Else return 0

procedure Finalize(β′): Game G8

840 If β′ = β Then return 1
841 Else return 0

Figure 7: Description of the Games from G2 to G8.
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procedure is shared by games Gi,Gj , . . . ,Gk, if Gi is boxed, then the code of the given procedure
in Gi includes the boxed statements, whereas its code in the other games does not. To better
understand the notation one may look at Figure 6 for an example. There, the Finalize procedure is
shared by games G0 and G1, and G1 is written in a box. This means that Finalize in G1 contains
the statement β′′ ← β′ of line 040, whereas this statement is not present in game G0.

Lemma 3.3 AdvIND-sWID-CPA
WIBE (B) = 2 · Pr[GA4 ⇒ 1 ∧ Good4]− Pr[Good4].

Proof: To prove the lemma we will analyze the differences between each consecutive pair of games.

First, we focus on the code of B and game G0. The procedure Initialize contains in line 003 the code
of sW.Initialize. Moreover, line 016 and line 027 contain the code of sW.Extract and sW.LR
respectively. Finally, it is not hard to notice that the code of the Finalize procedure is an equivalent
implementation of the way B concludes its simulation and executes sW.Finalize. Therefore, we
have:

Pr[IND-sWID-CPAB⇒ 1] = Pr[GA0 ⇒ 1]

= Pr[GA0 ⇒ 1|Bad0] Pr[Bad0] + Pr[GA0 ⇒ 1 ∧ Good0]

=
1
2

Pr[Bad0] + Pr[GA0 ⇒ 1 ∧ Good0] (2)

where Equation (2) is justified from that the Finalize procedure of G0 outputs a random bit when
bad is set.

If we look at the differences between the games G0 and G1 we can observe that G1 contains some
additional lines of code (highlighted in the framed boxes). Such changes make sure that Extract
and LR never return ⊥. Also, in G1 Finalize is modified in line 040 (by adding β′′ ← β′) so that
the procedure’s output does not depend on bad = true. Since in game G0 the events that Extract
and LR return ⊥ and that Finalize takes β′′ at random both occur only if bad is set, then we have
that G0 and G1 are identical-until-bad. Thus, we can apply Lemma 2.1 to obtain:

Pr[Bad0] = Pr[Bad1] and Pr[GA0 ⇒ 1 ∧ Good0] = Pr[GA1 ⇒ 1 ∧ Good1] (3)

Now, let us compare games G1 and G2. The changes in the Extract and Finalize procedures are
only syntactical. Lines 015, 016 (resp. 025, 027) of G1 have been moved to line 214 (resp. 224) of
G2. So G2 is equivalent to G1:

Pr[Bad1] = Pr[Bad2] and Pr[GA1 ⇒ 1 ∧ Good1] = Pr[GA2 ⇒ 1 ∧ Good2] (4)

Let us now consider G2 and G3. In game G2, both Extract and LR may set bad in lines 212− 213
and 222 − 223 respectively. However, this operation does no longer influence the behavior of each
procedures. So, in G3 these lines are moved to the end of the game, into the procedure Finalize.
Moreover, in order for this change to be described correctly, G3 introduces a counter and a labeling
for the queried identities. Again, these changes in the code are only syntactical. Thus the two games
are identical, and we have:

Pr[Bad2] = Pr[Bad3] and Pr[GA2 ⇒ 1 ∧ Good2] = Pr[GA3 ⇒ 1 ∧ Good3] (5)
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Finally, we show that G3 and G4 are identically distributed as well. The only change is that line
001 of G3 is moved to line 431 of Finalize in G4. Since in G3 the values K1, . . . ,KL are used only
into Finalize, this code can be postponed there. Thus we have:

Pr[Bad3] = Pr[Bad4] and Pr[GA3 ⇒ 1 ∧ Good3] = Pr[GA4 ⇒ 1 ∧ Good4] (6)

Finally, if we put together Equations (2), (3), (4), (5) and (6) we obtain:

AdvIND-sWID-CPA
WIBE (B) = 2 · Pr[IND-sWID-CPAB⇒ 1]− 1

= Pr[Bad4] + 2 · Pr[GA4 ∧ Good4]− 1

= 2 · Pr[GA4 ∧ Good4]− Pr[Good4] (7)

which completes the proof of the Lemma.

Next, if we look at games G4 and G5, we notice that the only difference is that G5 changes the value
of β′ with a random bit when bad = true. Since this action is performed only if bad is set, then we
have that games G4 and G5 are identical-until-bad, and thus we can apply the restatement of the
fundamental Lemma of game-playing (i.e., Lemma 2.1) to obtain:

Pr[Bad4] = Pr[Bad5] and Pr[GA4 ⇒ 1 ∧ Good4] = Pr[GA5 ⇒ 1 ∧ Good5] (8)

Now, let us focus on the games G5 and G6. We observe that lines 431−445 of game G5 are substituted
with line 641 in game G6. In particular, in the latter game bad is set true with independent probability
1 − δLmin. Since Pr[Good5] = δLmin ·

Γ(X)

δ̃
, and the condition of Equation (1) holds, then we obtain

that the difference

|Pr[Good5]− Pr[Good6]| = δLmin ·
δ̃ − Γ(X)

δ̃
≤ δLmin

S

holds with probability 1− 1/2k. Thus we have:

∣∣Pr[GA5 ⇒ 1]− Pr[GA6 ⇒ 1]
∣∣ ≤ δLmin

S
+

1
2k

(9)

Game G7 is the same as G6 except that the Finalize procedure does not set bad. So we have:

2 · Pr[GA6 ⇒ 1]− 1 = δLmin(2 · Pr[GA7 ⇒ 1]− 1) (10)

Finally, observe that game G8 differs from game G7 as it does no longer contain line 740. So, it is
easy to observe that a trivial reduction would show that any efficient distinguisher between the two
games would reduce to the first condition of admissible hash functions, namely:

|Pr[GA8 ⇒ 1]− Pr[GA7 ⇒ 1]| ≤ L ·AdvadmH,C (k) (11)
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Finally, one can easily note that game G8 is essentially the same as the game IND-HID-CPA with
some additional book-keeping. So we can write:

AdvIND-HID-CPA
HIBE (A) = 2 · Pr[GA8 ⇒ 1]− 1

≤ 2 · Pr[GA7 ⇒ 1]− 1 + 2L ·AdvadmH (C) (12)

=
2 · Pr[GA6 ⇒ 1]− 1

δLmin
+ 2L ·AdvadmH (C) (13)

≤ 2 · Pr[GA5 ⇒ 1]− 1
δLmin

+ 2
(

1
S

+
1

2kδLmin

)
+ 2L ·AdvadmH (C) (14)

≤ 2 · Pr[GA4 ⇒ 1 ∧ Good4]− Pr[Good4]
δLmin

+ 2
(

1
S

+
1
2k

)
+

+2L ·AdvadmH (C) (15)

≤
AdvIND-sWID-CPA

WIBE (B)
δLmin

+ 2
(

1
S

+
1
2k

)
+ 2L ·AdvadmH (C) (16)

Equation (12) is obtained by applying Equation (11), while Equation (13) derives from Equation (10).
Equation (14) is obtained by applying the difference between game G5 and G6 noted in Equation (9).
Equation (15) comes from that G4 and G5 are identical-until-bad (see Equation (8)), and finally the
last result (16) is obtained by combining Equations (15) and (7).

This completes the proof of Theorem 3.2. Due to the exponential factor L, we notice that the
reduction is meaningful when the maximum hierarchy’s depth L is some fixed constant.

Remark 3.4 Even though our transformation requires a WIBE scheme with λ · L levels to get a
HIBE with L levels, we observe that the HIBE key derivation algorithm will use the WIBE key
derivation at most L times. The point is that while L is supposed to be a constant, λ can be instead
non-constant, as it is the case for known constructions of admissible hash functions, whose output
length depends on the number of secret key queries made by the adversary. This might have been a
problem for those WIBE schemes that do not support key derivation (delegation) for a polynomial
number of levels, such as our lattice-based scheme in Section 6.

3.2 Extensions of our transformation

Our transformation easily allows for two extensions.

Obtaining an IBE. If one is interested into constructing only an IBE, then our transformation
easily works. In particular, we observe that to construct an IBE we can use a WIBE scheme with
hierarchy of depth λ (instead of λ·L). Furthermore the WIBE does not need to satisfy the delegation
property. Therefore, we can state the following Corollary:

Corollary 3.5 Let IBE be the IBE scheme defined as HIBE using a scheme WIBE of depth λ.
If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-admissible hash functions, and WIBE is IND-
sWID-CPA-secure (even without the delegation property), then the scheme IBE described above is
IND-ID-CPA-secure.

The transformation in the CML model. It is interesting to note that our transformation
from a selective-secure WIBE to a fully-secure HIBE scheme works also in the CML model (whose
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formal definition is given in Section 2.4). More precisely, let WIBE be a WIBE scheme that is
(ρM , ρU )-CML-IND-sWID-CPA-secure, then we can build a HIBE scheme HIBE that is (ρM , ρU )-
CML-IND-HID-CPA-secure. The construction is almost identical to the one described in this section.
The only difference is that we have to define the Updateuser algorithm of the HIBE. This can simply
use the Updateuser algorithm of the scheme WIBE .

So, we can prove the following Corollary:

Corollary 3.6 Let HIBE be the (H)IBE scheme defined as before with in addition the Updateuser
algorithm. If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin)-admissible hash functions, and WIBE
is (ρM , ρU )-CML-IND-sWID-CPA-secure, then such scheme HIBE is (ρM , ρU )-CML-IND-HID-CPA-
secure.

The proof can be obtained by rewriting the proof of Theorem 3.2. In particular, observe that in
the CML-IND-HID-CPA game the challenge identity is declared using the Challenge procedure,
before running LR. So, the main observation here is that if the coloring induced by the admissible
hash function on the set of identities queried by the adversary does not set bad ← true, then the
simulator can forward all queries to the respective oracles of the WIBE game. In particular, consider
the good event that the challenge identity

−→
ID∗ is red. In this case the adversary is allowed to query

Leak and Update on identities
−→
ID that would decrypt

−→
ID∗. However, these identities, according

to our transformation, will match the challenge pattern P ∗. So the simulator can simply forward
such queries to the Leak and Update procedures of the WIBE game.

Remark 3.7 In this work, we only consider the CML model with no leakage from the master secret.
However, we notice that our transformation would easily extend even to the more general case where
leakage from the master secret is allowed, as long as admissible hash functions are “public-coins”, i.e.,
the randomness used to sample them can be publicly revealed (this is the case for the constructions
considered in our work).

4 Selective WIBE schemes from selective HIBE

In this section we investigate methodologies that allow to build a selective-pattern secure WIBE
scheme starting from a HIBE which is selective-identity secure. In particular, we identify conditions
under which this transformation works, and then, in Appendix B, we will show that such conditions
are satisfied by many known schemes, e.g., [8, 10, 35]. Then, by combining this result, i.e., a
transformation from selective-identity secure HIBE to selective-pattern secure WIBE, with the result
of Section 3, i.e., a conversion from selective-pattern secure WIBE to fully-secure HIBE, we obtain
a methodology which allows to turn a selective-secure HIBE into a fully-secure one.

Towards this goal, our first contribution is a notion of security for HIBE schemes, called secu-
rity under correlated randomness that we describe in details in the following section. Informally
speaking, a HIBE scheme is secure under correlated randomness if it satisfies two properties. First,
when given the encryptions of the same message, using the same randomness, for two identities
(ID1, . . . , IDj , . . . , IDL) and (ID1, . . . , ID ′j , . . . , IDL) which differ only at position j, then one can
efficiently generate a new valid ciphertext encrypting the same message, and intended for any iden-
tity matching the pattern (ID1, . . . , *, . . . , IDL). Second, given the above property, we want to
ensure that one can actually generate ciphertexts only for those identities matching the pattern
(ID1, . . . , *, . . . , IDL), meaning that an adversary should not be able to generate encryptions for any
identity outside the pattern.

Next, in Section 4.2 we will show that HIBE schemes that are secure under correlated randomness
can be used to build selective-pattern secure WIBE. Given the intuition above, one can easily
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imagine how this property can allow to create encryptions that are intended to patterns rather than
to identities. Roughly speaking, what we will show in the next sections is a way to extend this
intuition to a more general case which allows to describe patterns according to the WIBE notion.

4.1 Security under Correlated Randomness for HIBE

In this section, we introduce the notion of “security under correlated randomness” for HIBE schemes.
Before going into the formal details, we first give an informal description of the notion.

The main idea follows the intuition sketched before as follows. Assume that one is given encryp-
tions of the same message with the same randomness but for different identities

−→
ID0, . . . ,

−→
IDn. Then

there should be an efficient algorithm that allows to efficiently generate a new ciphertext encrypting
the same message but intended to another identity

−→
ID ′ ∈ ID ′ ⊆ ID. The first technical point is

to delineate which is this subspace ID ′ of the identity space. So, our first contribution is to show
that ID ′ follows from the differences between the identities

−→
ID0, . . . ,

−→
IDn. More technically, we will

show that starting from any set of identities
−→
ID0, . . . ,

−→
IDn one can define a matrix ∆ whose column i

contains the vector which is computed as the difference between
−→
ID0 and

−→
ID i (i.e., ∆(i) =

−→
ID0−

−→
ID i).

Then the identity subspace ID ′ fixed by
−→
ID0, . . . ,

−→
IDn is the set of all identities that can be obtained

by making affine operations over
−→
ID0 and ∆. (i.e.,

−→
ID0 plus vectors obtained from integer linear

combinations of vectors in ∆). Given this property, encrypting a message with the same randomness
for
−→
ID0, . . . ,

−→
IDn is equivalent to encrypting for the entire subspace ID ′. As one may guess, this

is already a first step towards building a WIBE, in which the set of recipients of an encryption is
actually a subspace of ID described by the pattern P .

With this intuition in mind, now we start to formalize these ideas. First, we introduce some
useful definitions.

Let HIBE be an HIBE of depth ≤ L with identity space ID = Zλq (where q ≥ 2 and λ ≥ 1).
Basically, in a very generic way, we assume that identities can be represented as integers (in Zq, for
some integer q) or vectors of integers (e.g., binary strings). An identity at level ` in the hierarchy is
represented as a vector

−→
ID = (ID1, . . . , ID`) such that each ID i ∈ ID. When ID = Zλq and λ > 1,

we further denote ID i = (ID i,1, . . . , ID i,λ).
Let (

−→
ID0, . . . ,

−→
IDn) be n identities such that each

−→
ID i ∈ ID`. We define the matrix

∆(
−→
ID0, . . . ,

−→
IDn) =

[
∆(1)|| · · · ||∆(n)

]
∈ ID(`×n) = Z(λ`×n)

q

where each vector ∆(i) =
−→
ID0 −

−→
ID i,∀i = 1, . . . , n. For simplicity, when it is clear from the context,

we simply write ∆(
−→
ID0, . . . ,

−→
IDn) as ∆. The matrix ∆ essentially contains the differences between

each vector
−→
ID i and the vector

−→
ID0. We notice that the choice of

−→
ID0 for computing the differences

is completely arbitrary. The same definition may be given w.r.t.
−→
IDk, for any 0 ≤ k ≤ n. Moreover,

given
[−→
ID0|| · · · ||

−→
IDn

]
, notice that the matrix

[−→
ID0||∆

]
is obtained through a simple transformation

of the former that fixes the first column
−→
ID0, and then makes linear operations (i.e., subtractions)

over the other columns. Hence, the information contained in the two matrices is the same.
For any (

−→
ID0, . . . ,

−→
IDn) ∈ (ID`)n+1, we define its Span as:

Span(
−→
ID0, . . . ,

−→
IDn) = {

−→
ID =

−→
ID0 + ∆ · ~k : ~k ∈ Zn}.

Here, we remark that all the operations must be defined according to the identity space. For instance,
if the identity space is ID = Zλq , then we have to consider additions mod q.
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Given the notion of Span described above, we can now define in a more formal way the property
for HIBE schemes that we call Ciphertext Conversion. Intuitively, the property says that, given n+1
ciphertexts (C0, . . . , Cn) encrypting the same message with the same randomness r, under identi-
ties (

−→
ID0, . . . ,

−→
IDn) respectively, one can generate a new ciphertext (encrypting the same message)

intended to any
−→
ID ∈ Span(

−→
ID0, . . . ,

−→
IDn). More formally:

Property 1 (Ciphertext Conversion) A HIBE scheme satisfies Ciphertext Conversion if there
exists an efficient algorithm Convert(mpk , C0,

−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) such that: for all honestly gen-

erated public keys mpk, for any identities (
−→
ID0, . . . ,

−→
IDn) ∈ (ID`)n+1, for all messages m ∈ M,

and all ciphertexts (C0, . . . , Cn) such that Ci
$← Enc(mpk ,

−→
ID i,m; r), it works as follows. If

−→
ID ∈

Span(
−→
ID0, . . . ,

−→
IDn) (or

−→
ID is an ancestor of some

−→
ID ′ ∈ Span(

−→
ID0, . . . ,

−→
IDn)), then it outputs a

ciphertext C such that C = Enc(mpk ,
−→
ID ,m; r′) for some randomness r′ (not necessarily equal to r).

Otherwise it outputs ⊥.

procedure Initialize(
−→
ID0, . . . ,

−→
IDn)

(mpk ,msk) $← Setup ; β $← {0, 1}
Return mpk

procedure Extract(
−→
ID)

sk−→
ID

$← KeyDer(msk ,
−→
ID)

Return sk−→
ID

procedure LR(m0,m1)
Sample randomness r
for i = 0 to n do
Ci

$← Enc(mpk ,
−→
ID i,mβ ; r)

Return (C0, . . . , Cn)

procedure Finalize(β′)
Return (β′ = β)

Figure 8: Game IND-sCR-CPA.

From the point of view of the security, however, this property itself may be “subtle”. In fact,
only the fact that a HIBE scheme satisfies Ciphertext Conversion does not guarantee that any user
receiving a set of ciphertexts generated for different identities with the same randomness cannot get
more than what the Convert algorithm produces. Therefore, we would like to be sure that identities in
Span(

−→
ID0, . . . ,

−→
IDn) (and their ancestors) are the only ones that might recover the message m, when

given (C0, . . . , Cn). In order to formalize this idea, we introduce the notion of selective-security under
correlated randomness (IND-sCR-CPA). To do this we define the game IND-sCR-CPA (see Figure 8)
which consists of four procedures that can be run by an adversary A. In particular, we assume that
A makes only one query (m0,m1) to the LR procedure such that |m0| = |m1| (i.e., the two messages
have the same length), and that A makes only legitimate queries to the Extract procedure. In this
setting, we say that a query Extract(

−→
ID) is not legitimate if

−→
ID ∈ Span(

−→
ID0, . . . ,

−→
IDn) or

−→
ID is an

ancestor of some
−→
ID ′ ∈ Span(

−→
ID0, . . . ,

−→
IDn). Moreover, we consider the above game parametrized

by a distribution R over ID`×(n+1). This means that the game is valid whenever the adversary
executes the Initialize procedure on input a set (

−→
ID0, . . . ,

−→
IDn) ∈ R. Notice that by properly

varying the distribution R one can obtain different notions of security. For instance, one can obtain
the most generic definition by letting R be all the space ID`×(n+1). Otherwise, one can impose some
conditions on the distributions of the tuple (

−→
ID0, . . . ,

−→
IDn), and thus one obtains a more restricted

notion of security.
We define the IND-sCR-CPA-advantage of an adversary A against a scheme HIBE as

AdvIND-sCR-CPA
HIBE (A) = 2 · Pr[IND-sCR-CPAA⇒ 1]− 1.
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Definition 4.1 [IND-sCR-CPA-security] A HIBE scheme HIBE is IND-sCR-CPA-secure w.r.t. the
distribution R if for any PPT adversary A, AdvIND-sCR-CPA

HIBE (A) is at most negligible.

4.2 From HIBE selective-secure under Correlated Randomness to selective-secure
WIBE

Now that we have defined the notion of selective security under correlated randomness (IND-sCR-
CPA), we can show how to build a selective-pattern secure WIBE from an IND-sCR-CPA-secure
HIBE. Let us first introduce some notation and basic definitions.

Let ID = Zλq be the identity space, for some q ≥ 2 and λ ≥ 1. For any pattern P ∈ (ID ∪ {*})`

we define the function (
−→
ID0, . . . ,

−→
IDn)← F (P ) as follows. Let {j1, . . . , jn′} = W(P ) ⊆ {1, . . . , `} be

the set of levels in which P contains *. Let n = n′ · λ, (
−→
ID0, . . . ,

−→
IDn) is defined as:

ID0
i =

{
Pi if Pi 6= *
0λ if Pi = *

IDk+l−1
i,m =

{
−1 if i = jk ∧m = l
ID0

i,m otherwise
:

1 ≤ k ≤ n′, 1 ≤ l ≤ λ
1 ≤ i ≤ `, 1 ≤ m ≤ λ

Moreover, we let B =
[
B(1)|| · · · ||B(`λ)

]
∈ {0, 1}`λ×`λ be the canonical basis of R`λ.

The function F (P ) allows to specify a set of identities (
−→
ID0, . . . ,

−→
IDn) such that the induced

subspace Span(
−→
ID0, . . . ,

−→
IDn) is exactly the same subspace described by the pattern P . Intuitively,

this can be seen by looking at the way the identities are defined.
−→
ID0 is equal to P on all the

positions different from * and 0 elsewhere. Instead each identity
−→
ID i is such that its difference with−→

ID0 leads to a 1 in the single position where they differ and 0 elsewhere. Basically, this means that
the matrix ∆ obtained from F (P ) contains a subset of vectors in B. In this way, adding linear
combinations of these vectors to

−→
ID0 allows to reach identities

−→
ID such that ID i = Pi where Pi 6= *,

while ID i can take any value in ID in those positions i where Pi = *. Notice that the number n of
such linearly independent vectors strictly depends on the number of * in P . We formally show this
property of F (·) by proving the following claim:

Claim 1 For any P ∈ (ID ∪ {*})` and any
−→
ID ∈ ID` it holds

−→
ID ∈ Span(F (P )) iff

−→
ID ∈* P .

Proof: By looking at the definitions of F (·) and ∆ we can see that

Span(F (P )) = {
−→
ID =

−→
ID0 + ∆(F (P )) · ~k : ~k ∈ Zn}

where

ID0
i =

{
Pi if Pi 6= *
0λ if Pi = *

Moreover, in the case where all the identities
−→
ID1, . . . ,

−→
IDn are generated by F (P ), we have

∆ =
[
B(j1)|| · · · ||B(j1+λ−1)|| · · · ||B(jn′ )|| · · · ||B(jn′+λ−1)

]
∈ {0, 1}`λ×n′λ

where {j1, . . . , jn′} = W(P ) and the B(i)’s are vectors of the basis B.

It is not hard to see that {
−→
ID ∈ ID` :

−→
ID ∈* P, ` · λ = |P |} describes the same space.
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4.2.1 Our WIBE scheme

Let HIBE = (Setup′,KeyDer′,Enc′,Dec′,Convert) be a HIBE scheme with identity space ID = Zλq
(for q ≥ 2 and λ ≥ 1), and equipped with an efficient algorithm Convert satisfying Property 1. Then
we construct the scheme WIBE = (Setup,KeyDer,Enc,Dec) as follows.

Setup: Return the output of Setup′.

KeyDer(sk−→
ID ′
,
−→
ID): Run sk−→

ID

$← KeyDer′(sk−→
ID ′
,
−→
ID) and output sk−→

ID
.

Enc(mpk , P,m): Let (
−→
ID0, . . . ,

−→
IDn)← F (P ). For all i = 0 to n, compute Ci

$← Enc′(mpk ,
−→
IDk,m; r),

where r is taken at random from the randomness space of HIBE .Enc. Finally, output C =
(C0, . . . , Cn).

Dec(sk−→
ID
, C, P ): If

−→
ID 6∈* P , then output ⊥. Otherwise, compute (

−→
ID0, . . . ,

−→
IDn) ← F (P ), run

C ′ ← Convert(mpk , C0,
−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) and then output m← Dec′(sk−→

ID
, C ′).

Remark 4.2 We notice that our transformation assumes a HIBE scheme that works with the iden-
tities returned by our function F (·). This function is defined so that it assigns to the identities
values Pi, 0 or −1. However, it may be the case that 0 and/or 1 are not considered valid values in
some specific identity space (e.g., assume ID = Zq \ {0}). This issue can be overcome by observing
that everything still works if one takes any two different (and valid) values of the identity space,
instead of 0 and 1. All we want is that when we compute the matrix ∆, if two identity components
are equal, then their difference becomes 0, otherwise they lead to some value c (not necessarily 1).
To see that everything works even with any constant c, observe that it is possible to consider our
operations over ∆/c.

Now, we prove the security of our scheme via the following theorem.

Theorem 4.3 If HIBE satisfies Property 1 and is IND-sCR-CPA-secure w.r.t. R = ID`×(n+1),
then the scheme WIBE described above is correct and IND-sWID-CPA secure.

Proof: First, we show that the scheme is correct. Assume by contradiction that WIBE is not
correct. Then at least one the following cases holds:

1. the scheme HIBE is not correct;

2. the algorithm Convert is not correct;

3. ∃P ∈ (ID ∪ {*})`,−→ID ′ ∈ ID` such that
−→
ID ′ ∈* P and

−→
ID ′ /∈ Span(F (P )).

Since we know by assumption that HIBE is correct and it satisfies Property 1, we can focus only
on the last case. However, by the property proved in Claim 1, the span of F (P ) and the identities
matching P describe the same space, thus also the third case cannot occur. Furthermore, it is easy
to see that this holds even for any ancestor of

−→
ID ′.

To prove the security of the scheme we show an algorithm B that simulates the game IND-sWID-CPA
to an adversary A against the scheme WIBE while B is playing the game IND-sCR-CPA against
the scheme HIBE . We describe the simulator B as follows:
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Initialize(P ∗): B receives as input a pattern P ∗. It computes (
−→
ID0, . . . ,

−→
IDn) ← F (P ∗), executes

mpk ← Initialize(
−→
ID0, . . . ,

−→
IDn), and returns mpk to A.

Extract(
−→
ID): B runs sk−→

ID
← Extract(

−→
ID) and returns sk−→

ID
to A.

LR(P,m0,m1): first, B runs (C0, . . . , Cn)← LR(m0,m1). Let P be a sub-pattern of P ∗ such that

`′ = |P | ≤ |P ∗|. If P = P ∗, then B returns C = (C0, . . . , Cn). Otherwise, let (ÎD
0
, . . . , ÎD

n′

)←
F (P ). By our definition of F (·), each of the identities in F (P ) is also in Span(F (P ∗)). There-

fore, we can use the convert algorithm to compute Ĉi ← Convert(mpk , C0,
−→
ID0, . . . , Cn,

−→
IDn, ÎD

i
),

for all i = 0 to n′. Finally, B returns C = (Ĉ0, . . . , Ĉn′).

Finalize(β′)): Let β′ be the bit returned byA. B concludes the simulation by executing Finalize(β′).

If B can simulate the game IND-sWID-CPA to A in a perfect way, then it is easy to see that
its advantage is the same as that of A. The correctness of the simulation mainly follows from
Claim 1, for which the pattern P ∗ and Span(F (P ∗)) describe exactly the same subspace of identities
of length |P ∗|. Thus the identities asked by A to the key derivation oracle always fall into the set of
key derivation queries that are “legitimate” for B. Moreover, by construction and correctness, the
challenge ciphertext is distributed as in the real case.

Therefore, we have:
AdvIND-sCR-CPA

HIBE (B) = AdvIND-sWID-CPA
WIBE (A)

4.2.2 A sufficient distribution for building a WIBE

In the previous section, we showed that an HIBE scheme satisfying Property 1 and the notion
of selective-security under correlated randomness can be transformed into a WIBE. In particular,
Theorem 4.3 considers the most general definition where the distribution R is arbitrary, i.e., R =
ID`×(n+1). However, we observe that in order for the transformation to work, it is sufficient to
consider a more restricted distribution that we call RWIBE .

Let B =
[
B(1)|| · · · ||B(`λ)

]
∈ {0, 1}`λ×`λ be the canonical basis defined in the previous section.

We define the distribution

RWIBE = {(
−→
ID0, . . . ,

−→
IDn) :

−→
ID0 ∈ Zλ`q ,

−→
ID i =

−→
ID0 + ki ·B(ji), 1 ≤ i ≤ n,

ji ∈ {1, . . . , λ`},~k ∈ Zn}

It is interesting to observe that for any pattern P the identities obtained from F (P ) follow the
distribution RWIBE . We prove the following simple claim.

Claim 2 For any pattern P ∈ (ID ∪ {*})` we have F (P ) ∈ RWIBE.

Proof: Since in RWIBE the first identity
−→
ID0 can take any value in Zλ`q , we have only to check

that the other identities are distributed correctly, namely, for all 1 ≤ i ≤ n, there exist ki ∈ Z and
ji ∈ {1, . . . , λ`} such that

−→
ID i =

−→
ID0 + ki · B(ji). However, looking at the definition of F (P ), one

can notice that this is the case by setting ~k = 1n and by taking {j1, . . . , jn} = {j1, . . . , j1 + λ −
1, j2, . . . , j2 + λ− 1, . . . , jn′ , . . . , jn′ + λ− 1} where {j1, . . . , jn′} = W(P ).

Hence, we can combine the results of Theorem 4.3 and Claim 2 to obtain the following Corollary.
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Corollary 4.4 If HIBE satisfies Property 1 and is secure under the IND-sCR-CPA notion w.r.t.
RWIBE, then the scheme WIBE described above is correct and IND-sWID-CPA-secure.

5 A leakage-resilient WIBE scheme based on Decision Linear

In this section, we give the construction of a WIBE scheme that is selective-pattern-secure in the
CML model based on the linear assumption. The scheme is obtained by adapting the selective-
secure IBE construction given in [19]. Precisely, our WIBE works for hierarchies of identities of
depth λ where each identity is one bit long, and it does not support delegation. Although this
may seem a limitation, our result can be interpreted as a proof of concept to support the utility
of our framework for obtaining fully-secure (H)IBEs. In fact, the given WIBE scheme satisfies the
assumptions of Corollaries 3.5 and 3.6, and thus it allows to obtain a fully-secure IBE in the CML
model.

Useful definitions. Before describing the scheme, we recall some notation and definitions. We
use bold uppercases to denote matrices A ∈ Zm×np and lowercases to denote vectors v ∈ Znp . Row
vectors are denoted by vT . If A ∈ Zm×np and g is a generator of a group G of order p, then we denote
by gA ∈ Gm×n the matrix where each element (gA)i,j = g(A)i,j .

For a matrix A ∈ Zm×np its rank is the maximum number of linearly independent rows or columns
in the matrix. Let Rkr(Zm×np ) be the set of all matrices in Zm×np that have rank r. For any matrix
A ∈ Zm×np we call the span, Span(A), its row span, i.e., Span(A) = {wT ·A : w ∈ Zmp }. The kernel
of a matrix A is the linear space orthogonal to its span: Ker(A) = {x ∈ Znp : A · x = 0}.
Decision Linear Assumption. We recall the Decision Linear assumption, first introduced in [11].
In particular, we consider a general form in terms of a matrix that has been shown to be implied by
the standard one [30]. Let G,GT be bilinear groups of prime order p such that p > 2k, where k ∈ N
is the security parameter. For r ∈ {2, 3}, let gC $← Dr be the distribution defined by the following
process: sample C $← Rkr(Z3×3

p ) and output gC. Then, the decision linear assumption holds in G if
for any PPT adversary A distributions D2 and D3 are computationally indistinguishable, that is

|Pr[A(gC) = 1|gC $← D2]− Pr[A(gC) = 1|gC $← D3]| ≤ 1
2

+ negl(k)

The IBE scheme in [19]. Here we recall the IBE scheme proposed by Brakerski et al. [19, 18].

Setup: Sample A0
$← Z2×2

p (such that it is non-invertible). Sample gAi,b
$← G2×2 for all i ∈ [λ] and

b ∈ {0, 1}. Set mpk = (gA0 , {gAi,b}i∈[λ],b∈{0,1}) and msk = A−1
0 . For any identity ID ∈ {0, 1}λ,

we denote AID = A0‖A1,ID1‖ . . . ‖Aλ,IDλ
.

KeyDer(msk , ID): Sample vectors x1, x2
$← ker(AID) and set sk ID = gX = [gx1 |gx2 ].

Updateuser(sk ID): Sample T $← Rk2(Z2×2
p ) and output sk ′ID = gX·T.

Enc(mpk , ID ,m): Let AID be the matrix obtained from A as described before. The ciphertext is
C = gv

T ∈ G2(λ+t∗+1) where vT $← Span(AID) if one encrypts m = 0, and vT
$← Z2(λ+t∗+1)

p if
one encrypts m = 1.

Dec(sk ID , C, P ): To decrypt, compute e(C, sk ID) = e(gv
T
, g~x). If the result is e(g, g)~0, then output

0, otherwise output 1.
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This scheme is proved selective-secure under the decision linear assumption with leakage rate
(ρU , ρM ) =

(
c·log k

(2λ+2)·log p ,
λ−2−γ
2(λ+1)

)
(for all γ, c > 0).

Our WIBE scheme. In what follows we describe the algorithms of our WIBE. We observe that the
Setup, KeyDer and Updateuser algorithms are the same as the ones of the IBE scheme by Brakerski
et al. [19].The only difference is in encryption and decryption.

Setup: Sample A0
$← Z2×2

p (such that it is invertible). Sample gAi,b
$← G2×2 for all i ∈ [λ] and

b ∈ {0, 1}. Set mpk = (gA0 , {gAi,b}i∈[λ],b∈{0,1}) and msk = A−1
0 . For any identity ID ∈ {0, 1}λ,

we denote AID = A0‖A1,ID1‖ . . . ‖Aλ,IDλ
.

KeyDer(msk , ID): Sample vectors x1, x2
$← ker(AID) and set sk ID = gX = [gx1 |gx2 ].

Updateuser(sk ID): Sample T $← Rk2(Z2×2
p ) and output sk ′ID = gX·T.

Enc(mpk , P,m): Let AP = A0‖A1,P1‖ . . . ‖Aλ,Pλ ∈ Z2×2(λ+t∗+1)
p where Ai,* = Ai,0|Ai,1 and t∗ is the

number of wildcards * in P . The ciphertext is C = gv
T ∈ G2(λ+t∗+1), where vT $← Span(AP )

if one encrypts m = 0, and vT
$← Z2(λ+t∗+1)

p to encrypt m = 1.

Dec(sk ID , C, P ): For every ID ∈* P , notice that AID is contained in AP . From the ciphertext
C we extract the ciphertext components C ′ that correspond to the matrix AID (notice that
C ′ ∈ Span(AID)). Compute e(C ′, sk ID). If the result is e(g, g)0, then output 0, otherwise
output 1.

By looking at the way encryption works, this scheme can also be seen as though it follows
the correlated-randomness paradigm described in Section 4. Indeed, encrypting to a pattern P
consists into making an encryption w.r.t. to the pattern’s components different from *, plus the
encryption (with the same linear combination, i.e., the same randomness) for both the bits of the
pattern’s components that are equal to *. For some technical reasons (related to the specific IBE
construction), it does not seem possible to prove the security of the WIBE by showing a direct
black-box reduction to the selective-security of the IBE. Thus, we prove directly that this WIBE
scheme is selective-secure in the CML model under the decision linear assumption.

Theorem 5.1 If the Decision Linear assumption holds in G, then, for any polynomial λ ≥ 3, the
WIBE scheme described above is (ρM , ρU )-CML-IND-sWID-CPA-secure with leakage-rate (ρU , ρM )
=
(

c·log k
(4λ+6) log p ,

2λ−4−γ
4(λ+1)

)
for all γ, c > 0.

Proof: The proof of this theorem is obtained by adapting the proof of selective-security of the IBE
scheme given in [18].

Assume by contradiction there exists an adversary A that is able to break the security of the given
WIBE scheme with non-negligible probability 1/2 + ε. Then we show how to build an algorithm B
that solves the Decision Linear problem with probability 1/2 + ε2/32− negl(k).

B is given as input a matrix gC ∈ G3×3 such that either C $← Rk2(Z3×3
p ) or C $← Rk3(Z3×3

p ). In
particular, we assume that the first two rows of C have always rank 2, and the last row is either a
linear combination of the first two rows or it is chosen independently at random.

B simulates the game procedures as follows.
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Initialize(P ∗): Let P ∗ ∈ ({0, 1} ∪ {*})λ. Without loss of generality and for ease of exposi-
tion, assume that the wildcard symbols are all at the last t positions, and let λ = λ′ + t,
` = λ + 1, `′ = λ′ + 1. B samples a full-rank matrix B $← Z3×2`′+4t

p and it sets gV =
gC·B ∈ G3×2`′+4t. We interpret B =

[
B0||B1|| · · · ||Bλ′ ||Bλ′+1,0||Bλ′+1,1|| · · · ||Bλ,0||Bλ,1

]
and V =

[
A
vT

]
where A ∈ Z2×2`′+4t

p are the first two rows. Moreover, we interpret gA as[
gA0 ||gA1,P∗1 || · · · ||g

Aλ′,P∗
λ′ ||gAλ′+1,0 ||gAλ′+1,1 || · · · ||gAλ,0 ||gAλ,1

]
, and

gv
T

=
[
gv

T
0 ||gvT1 ||gv

T
λ′ ||gv

T
λ′+1,0 ||gv

T
λ′+1,1 || · · · ||gv

T
λ,0 ||gv

T
λ,1

]
For all i = 1 to λ′, B chooses Ai,1−P ∗i

$← Z2×2
p full-rank.

The master public key is mpk = (gA0 , gA1,0 , gA1,1 , . . . , gAλ,0 , gAλ,1)

Extract(
−→
ID): Let ID ∈ {0, 1}λ be the queried identity such that ID 6∈* P ∗. Then, there exists an

index j ∈ [λ′] such that IDj 6= P ∗j . So, B can use the knowledge of Aj,IDj to sample a secret
key sk ID in Ker(AID).

LR(P ): Let P be a pattern matching P ∗ and wlog assume that it has the first λ′′ ≥ λ′ components
that are not wildcards. B sets the challenge ciphertext as

C∗ =
[
gv

T
0 ||gvT1 ||gv

T
λ′ ||g

vT
λ′+1,Pλ′+1 || · · · ||g

vT
λ′′,Pλ′′ ||gv

T
λ′′+1,0 ||gv

T
λ′′+1,1 || · · · ||gv

T
λ,0 ||gv

T
λ,1

]
Finalize(β′): Let β′ be the bit received by A. B returns the same bit β′.

Leak(f, ID) If a secret key for identity ID has been already generated (and maybe also updated),
answer with f(sk ID ,j) where j is its most updated version. Otherwise, first proceed with the
generation of the secret key.

Let ID ∈* P ∗. The simulator proceeds as follows.

Let BID =
[
B0|| · · · ||Bλ′ ||Bλ′+1,IDλ′+1

|| · · · ||Bλ,IDλ

]
∈ Z3×2`

p be the matrix obtained by ex-
tracting the columns related to ID from B.

Sample a random XID ∈ Z2`×(2`−3)
p such that BID ·XID = 0 (notice that XID is of rank 2`−3).

Next, pick TID ,0
$← Z(2`−3)×2

p of rank 2 and compute sk ID ,0 = gXID ·TID,0 ∈ G2`×2 and return
f(sk ID ,0).

Notice that the columns of XID are within negligible statistical distance from a set of 2` − 3
random vectors in Ker(AID). Moreover, we have the special property that XID is orthogonal
to the challenge ciphertext components that correspond to identity ID , that is vTID ·XID = 0
(vTID is defined in the usual way by extracting the columns related to ID). Clearly, this means
that such secret keys have a malformed distribution. However, we will argue that due to the
fact that subspaces are leakage-resilient this change is not noticeable by the adversary.

Update(f, ID): Assume that for the identity ID we have already generated a secret key (as de-
scribed in the Leak procedure) using a matrix XID . Let j be a counter for the total number
of update queries asked by A. We denote by sk ID ,j

$← DXID
the following process: choose

a random TID ,j
$← Z(2`−3)×2

p and compute sk ID ,j = gXID ·TID,j (using the same matrix XID

sampled to generate the secret key).

To answer the j-th update query for identity ID , the simulator proceeds as follows.
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1. First, sample an updated secret key sk ID ,j
$← DXID

.

2. For all leakage values α ∈ {0, 1}c log k check if α is “good” w.r.t. sk ID ,j .

• For µ = 1 to M , B runs a fresh emulation of A in which all the update queries
for time periods n > j are answered according to the real distribution. That is,
∀n > j, B computes sk ID ,n

$← Updateuser(sk ID ,n−1,Rn) where Rn
$← Z2×2

p and
answers with fn(sk ID ,n,Rn). Moreover, in this emulated game A is given a legal
challenge ciphertext, namely B flips a random bit β and gives to A a legal encryption
of β. All Leak queries (fn, ID) in time periods n > j are answered with fn(sk ID ,n)
as described before.
• If in the µ-th emulation A returns β′ = β, then B sets Zµ = 1, otherwise Zµ = 0.

• Let Z̄(j,α,sk ID,j) = 1
M

∑M
µ=1 Zµ.

• If j = 1 and Z̄(1,α,sk ID,1) ≥ 1
2 + 3

4ε−
ε

2(τ+1) , then α is “good” and set η1 = Z̄(1,α,sk ID,1).

• Otherwise, if j > 1 and Z̄(j,α,sk ID,j) ≥ ηj−1 − ε
2(τ+1) , then α is “good” and set

ηj = Z̄(j,α,sk ID,j).

3. If no good α is found and L = 1, then abort and return a random bit.

4. If no good α is found and L > 1, then repeat again from Step 1. If after J = τk/ε times
no good α is found, then abort the simulation and return a random bit.

To prove the theorem we have to show that the simulator succeeds with non-negligible probability
whenever A is successful with non-negligible probability. As we mentioned earlier, our proof is an
extension of the one given by Brakerski et al. in [18] to prove their IBE2.

Let Λ be the event that all the estimations (of A’s probability of success in the emulated game)
made by B during the simulation are close enough to the real value. More precisely, for j = 1, . . . , τ ,
all α ∈ {0, 1}c log k and for every secret key sk ID ,j generated during the simulation, let P(j,α,sk id,j) be
defined as follows. Fix the coin tosses of B until it receives the j-th update query from the adversary.
P(j,α,sk id,j) is the probability, conditioned on this fixing, that A wins in an emulated game where in
the j-th update query B generates the secret key sk ID ,j and returns α as the corresponding leakage
value. The rest of the emulated game is defined as described before, i.e., updating the secret keys
with the correct distribution. Let Pj be the value of P(j,α,sk id,j) for the values (α, sk ID ,j) that are
selected by B in the simulation.

Basically, by making M emulations, B tries to estimate the probability P(j,α,sk id,j) as Z̄(j,α,sk ID,j). Λ
is the event that all such estimations are close enough. Formally, Λ is true if for all 1 ≤ j ≤ τ , all
identities ID asked to Update, for every α ∈ {0, 1}c log k and all the values sk ID ,j generated by B,∣∣∣Z̄(j,α,sk ID,j) − P(j,α,sk ID,j)

∣∣∣ ≤ ε

8τ

Notice that Λ implies that ∀j = 1, . . . , τ it holds |ηj − Pj | ≤ ε
8τ .

To prove the theorem, we will show that the following claims hold.

Claim 3 Pr[Λ] = 1− negl(k).

2More precisely, the technical proof is that of the public-key encryption scheme, [18], Section 6.
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Proof: This proof is essentially the same as that of Claim 6.4 in [18]. We recall it here for com-
pleteness.

The idea is to apply a Chernoff bound to every tuple (j, α, sk ID ,j) used in the game to get:

Pr
[∣∣∣Z̄(j,α,sk ID,j) − P(j,α,sk ID,j)

∣∣∣ > ε

8τ

]
≤ 2e−ε

2M/(32τ2) = 2e−k/32.

Since the total number of tuples (j, α, sk ID ,j) is at most τ · kc · J = poly(k), the claim follows by
union bound.

Claim 4 Pr[b = b′|B does not abort ∧Λ] ≥ 1
2 + ε

8 − negl(k).

Proof: Since the event Λ occurs, we have that ητ ≥ 1
2 + ε

4 . Also, Λ implies that Pτ ≥ ητ − ε
2(τ+1) ≥

1
2 + ε

8 . However, notice that Pτ is the probability that A wins in the last emulated game where
the challenge ciphertext is a “legal” encryption of a bit β which does not depend on C, that is it
is independent of b. Instead, we are interested into bounding the probability that A wins in the
simulation provided by B when it is given the malformed challenge ciphertext gv

T
P where vTP · Yj

holds for all secret keys sk ID ,j = gYj of the identities ID matching P . Thus, we show that such
malformed ciphertext cannot change A’s probability of success by a non-negligible amount.

If b = 0 (i.e., C is rank 2), then gv
T

is a valid encryption of 0 and the secret keys all have the correct
distribution w.r.t. such ciphertext. The more tricky case is when b = 1 (i.e., C is rank 3). To show
that the distribution seen by A in the last emulated game is not too different from the one seen
in the simulation, we apply the result of Theorem 5.3 in [18] to the subspace Ker(AID) for all the
identities ID that have been asked to the Leak procedure. First, notice that in our simulation XID

is generated as a set of column vectors that are within negligible statistical distance from a set of
2`− 3 random vectors in Ker(AID). Let vT be the ciphertext seen by A in the simulation, and let
u

$← Z2`
p be a legal ciphertext encrypting 1 (like the one seen by A in the last emulated game, when

β = 1).

We can describe the view of the adversary in the simulation as

V iewS =
{

A, v, {hIDk,0(gXIDk
·TIDk,0), hIDk,1(gXIDk

·TIDk,1), . . .}Qk=1

}
where ID1, . . . , IDQ (Q ≤ τ) are all the identities for which A asked a Leak query to B, and for
each identity ID we consider all the leakage from the memory and the updates, represented by
the functions hID ,0, hID ,1, . . ., etc. Moreover, recall that in V iewS each XID is taken uniformly at
random in Ker(BID).

Our goal, is to show that this view is indistinguishable from

V iewR =
{

A, u, {hIDj ,0(gXIDj
·TIDj ,0), hIDj ,1(gXIDj

·TIDj ,1), . . .}Qj=1

}
which is A’s view in the last emulated game, where the only change is that A is given a legal challenge
ciphertext u.

To show indistinguishability we consider some intermediate distributions. Let V iewS,j,r be a modi-
fication of V iewS in which the matrix XID corresponding to the first j identities asked to Leak is
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sampled as XIDk

$← Ker(2`−3)(BIDk
) (∀k ≤ j), whereas ∀k > j XIDk

$← Ker(2`−3)(AID). More-
over, for r ∈ {0, 1}, the key updates of the first j − 1 + r identities are answered legally, i.e.,
ZIDk,i

$← Ker2(AIDk
):

V iewS,j,r =
{

A, v, {hIDk,0(gZIDk,0), . . .}j−1+r
k=1 , {hIDk,0(gXIDk

·TIDk,0), . . .}Qk=j+r

}
Clearly, V iewS = V iewS,1,0. Consider V iewS,Q,1, and let V iewR,Q,1 be the same distribution except
that it includes a random u

$← Z2`
p instead of v:

V iewR,Q,1 =
{

A, u, {hIDk,0(gZIDk,0), hIDk,1(gZIDk,1), . . .}Qk=1

}
Notice that the distributions V iewS,Q,1 and V iewR,Q,1 are the same as in V iewS,Q,1 the vector v is
independent of A (since it is an encryption of b = 1).

Then, similarly to the previous case, for j ∈ {1, . . . , Q}, r ∈ {0, 1} we define the distributions
V iewR,j,r. Observe that V iewR,1,0 = V iewR.

To show that the view of the adversary does not change when it is given a malformed ciphertext v,
we have to show that V iewS ≈ V iewR. First, observe that ∀j = 1 to Q we have that V iewS,j−1,1 ≈
V iewS,j,0 because the only change is in the sampling of XIDj . Then, for all j ∈ {1, . . . , Q}, we
can apply the result of Theorem 5.3 in [18] to show that V iewS,j,0 ≈ V iewS,j,1 (resp. V iewR,j,0 ≈
V iewR,j,1), both with statistical distance δ obtained as follows. First, we apply Theorem 5.3 with
parameters m̂ = 2`− 2, ˆ̀= 2`− 3 and the functions hi whose range is |W | = p4`·ρM · kc (assuming
that they contain the maximum amount of leakage from memory and updates). The value δ can be
derived from Theorem 5.2:

δ = J · τ ·

√
|W |
p2`−6

= J · τ ·

√
p4`·ρM · kc
p2`−6

If we assign our value of ρM = 2`−6−γ
4` , then we obtain δ = J · τ · p−γ/2 · kc/2 = negl(k). If we finally

consider that the total number of view transitions is at most τ = poly(k), and we sum up, then we
obtain that the statistical distance between the views V iewS and V iewR is negligible.

Claim 5 Pr[B does not abort|Λ] ≥ ε/4− negl(k).

Proof: The proof of this claim is essentially a rewriting of that of Claim 6.2 in [18]. We provide it
here for completeness.

To show that the simulator B does not abort with sufficient probability, we show that it could be
replaced by another algorithm B′ whose output distribution is computationally indistinguishable
from that of B. Then, we will bound the probability that B′ aborts.

B′ is identical to B except that in the simulation of the Update procedure, instead of sampling the
updated secret keys as sk ID ,j

$← DXID
, it uses a different distribution D′ defined as follows. Let

sk ID ,0 = gY0 be the “first” secret key of ID . D′ consists into sampling a matrix R $← Rk2(Z2×2
p )

and output gY0·R. So, this means that B′ samples the updated keys using the correct distribution
of the Updateuser algorithm. Observe that in B′ the leakage value α is still found in the same way
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as in B. However, if the keys are sampled from the correct distribution, then a good leakage value
α should exist.

If we look at the difference between the distributions produced by B and B′ respectively, this is
essentially the difference between DXID

and D′. As it is shown in [18] (Claim 6.2), these are
computationally indistinguishable under the decision linear assumption. So, one obtains that

Pr[B does not abort|Λ] ≥ Pr[B′ does not abort|Λ]− negl(k)

Finally, we bound the probability that B′ does not abort, conditioned on that the event Λ occurs.
First, consider the first update query. By Markov’s inequality we have that

Pr
[
P1 ≥

1
2

+
3
4
ε

]
≥ ε

4

holds when the good leakage value α is used. Observe that the probability is taken over the random
choices in the generation of sk ID ,1, that the first keys are generated with a distribution which is
within negligible statistical distance from the real one, and that the updates are done with the
correct distribution. Thus, a good α has to exist (with all but negligible probability), and for that
α sk ID ,1 is found with probability at least ε/4. Since Λ occurs, B′’s estimation in that case is close
enough to P1, and thus B′ does not abort in the first query with at least probability ε/4.

Then, we can apply the same argument recursively to query i (for i = 2 to τ). Recall that in query
i we did not abort so far, and thus the value ηi−1 is well defined, and Pi−1 ≥ ηi−1 − ε

8τ . Again, by
Markov’s inequality, when the good leakage value α is found, it holds

Pr
[
Pi ≥ ηi−1 −

ε

4τ

]
≥ ε

8τ

Moreover, J trials guarantee that a secret key sk ID ,i for such good α is found with all but negligible
probability. Since Λ holds, the estimation of Pi is close enough, and thus B′ does not abort in step
i with all but negligible probability.

Therefore, we have that
Pr[B′ does not abort|Λ] ≥ ε

4
− negl(k)

This concludes the proof of the Theorem.

6 Lattice-Based WIBE

In this section, we give a construction of a lattice-based selectively-secure WIBE, based on the hard-
ness of the LWE Problem [32], that very closely resembles the selectively-secure HIBE construction
from [22]. In fact, the master/secret key generation and delegation procedures are exactly the same
for the HIBE and the WIBE. The only difference lies in the encryption and decryption procedures;
yet even there, the distinction is fairly minor. For the benefit of those readers familiar with the
HIBE of [22], we present the constructions of the WIBE along with the construction of the HIBE
and also try to use the same notational conventions.
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6.1 Lattices and the LWE Problem

Lattices and Gaussian Distributions. An m-dimensional integer lattice Λ is an additive sub-
group of Zm. Every m-dimensional lattice can be described by a column basis B ∈ Zm×m. We will
denote by B̃, the Gram-Schmidt orthogonalization of the matrix B. For any matrix B, we define
‖B‖ to be the largest `2 norm of any column vector of B. We define the lattice Λ⊥(A) as

Λ⊥(A) = {x ∈ Zm : Ax ≡ 0 mod q}

and a “shifted lattice” Λ⊥y (A) as

Λ⊥y (A) = {x ∈ Zm : Ax ≡ y mod q}.

For any A ∈ Zn×m, y ∈ Znq , and any s > 0, the distribution DΛ⊥y (A),s assigns a probability

proportional to e−π‖x‖
2/s2 to every x ∈ Λ⊥y (A) and 0 everywhere else.

The LWE Problem. For any distribution χ over Z, and any vector x ∈ Znq we define Noisyχ(x)
to be the distribution obtained by first creating a vector y ∈ Zn each of whose coordinates is
independently sampled according to χ, and then outputting x + y mod q.

The decisional Learning With Errors Problem (LWEn,q,χ) is to distinguish between the following
two oracles: the oracle O0 outputs random elements in Zn+1

q , whereas the oracle O1 has a uniformly
random secret s, and whenever it is queried, it chooses a uniformly random a ∈ Znq and outputs(
a, Noisyχ

(
aT s

))
. In general, the distribution χ is set so that it produces values that are consid-

erably smaller than q. When χ is taken to be a discrete Gaussian distribution with a particular
standard deviation with respect to q, it is known that the LWEn,q,χ problem is as hard as certain
worst-case lattice problems [32, 31].

6.2 Algorithms used in constructing the HIBE and WIBE

We now briefly describe the algorithms that were used in [22] to construct the HIBE, which we will
be using in this section for constructing the WIBE.

1. GenBasis(1n, 1m, q) : This algorithm generates a matrix A ∈ Zn×mq (where m = Ω(n log q))
and a basis S ∈ Zm×m of Λ⊥(A) such that the distribution of A is negligibly close to uniform
over Zn×mq and ‖S̃‖ = O(

√
n log q).

2. ExtBasis(S,A′ = A||Ā) : This algorithm takes as input a matrix A′ = A||Ā ∈ Zn×(m+m̄)
q

and a matrix S ∈ Zm×m, which is basis of Λ⊥(A), and outputs a matrix S′ ∈ Z(m+m̄)×(m+m̄)

that is a basis of Λ⊥(A′) such that ‖S̃‖ = ‖S̃′‖.

3. SampleD(S,A,y, s) : This algorithm takes as input a basis S ∈ Zm×m of the lattice Λ⊥(A), a
vector y ∈ Znq , and a real number s ≥ ‖S̃‖ · ω(

√
log n) and outputs a vector z ∼ DΛ⊥y (A),s.

4. RandBasis(S, s) : This algorithm takes as input an m ×m lattice basis S and a real number
s ≥ ‖S̃‖ · ω(

√
log n), and outputs a basis S′ of the same lattice such that ‖S′‖ ≤ s

√
m.

Furthermore, if S0,S1 are bases of the same lattice and s > max{‖S̃0‖, ‖S̃1‖}, then the
distributions of RandBasis(S0, s) and RandBasis(S1, s) are statistically close.
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6.3 Our Lattice-Based WIBE scheme

We now describe the master key generation, key derivation, encryption and decryption algorithms
of our WIBE scheme. For any distribution χ over Z, and any vector x ∈ Znq let Noisyχ(x) be the
distribution obtained by first creating a vector y ∈ Zn each of whose coordinates is independently
sampled according to χ, and then outputting x + y mod q.

Master Key Generation. We assume that the identities are of the form {0, 1}t, for all t ≤ L. The
generation of the master public and secret keys is done exactly in the same fashion in the HIBE and
in the WIBE. The WIBE is parametrized by the integers n,m, q where n is the security parameter, m
is an integer of size Ω(n log q) and q is some prime whose size is related to the number of allowable key
derivations, and is discussed in Section 6.3. We first run the GenBasis(1n, 1m, q) procedure to obtain
a matrix A0 ∈ Zn×mq and a basis S0 ∈ Zm×m of Λ⊥(A). Then for all (i, j) ∈ {0, 1} × {1, . . . ,L},
we generate a uniformly random matrix A(i)

j ∈ Zn×mq , and choose a uniformly-random y ∈ Znq . The
master public key is [

A0,A
(0)
1 ,A(1)

1 , . . . ,A(0)
L ,A(1)

L ,y
]
,

and the master secret key is S0.

Key Derivation. The key derivation procedure is again performed exactly the same for the
HIBE and the WIBE. The public key of identity id = (id1, . . . , idt) is (Aid,y), where Aid =
A0‖A(id1)

1 ‖ . . . ‖A(idt)
t . The secret key of user id is (Sid,xid) where Sid is a “short” basis of the

lattice Λ⊥(Aid) and xid is a “short” vector satisfying AT
idxid = y. The matrix Sid will be used for

delegation, while the vector xid will be used for decryption.
If a user with id = (id1, . . . , idt) would like to generate a secret key for a user id′ = (id1, . . . , idt,

idt+1, . . . , idt′) whose public key is (Aid′ = Aid||Ā,y), where Ā = A(idt+1)
t+1 ‖ . . . ‖A(idt′ )

t′ , he computes
the following:

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), s)

xid′ ← SampleD(ExtBasis(Sid,Aid′),Aid′ ,y, s)

where s ≥ ‖S̃id‖ · ω(
√

log n). We point out that with every key derivation, the value of ‖S̃id‖
increases by a factor of Õ(

√
n). When the norm of the secret key gets too large, decryption becomes

impossible, and so, just like in [22], it is important to adjust the ratio of the size of the secret key
S0 and the prime q based on how many levels of delegations one wishes to have. With each level of
delegation increasing the norm of the user id by a factor of Õ(

√
n), the ratio between ‖S̃0‖ and q

should be on the order of
√
n
d, where d is the maximum allowable levels in the hierarchy. Since the

LWEn,q,χ problem becomes easier as q gets larger (and the distribution χ stays the same), there is a
trade-off between security and the maximum number of delegation levels. We direct the reader to
[22] for the precise parameters.

Encryption and Decryption. In the HIBE, encryption of a message κ ∈ {0, 1} is performed to
identity id = (id1, . . . , idt) by picking a random r ∈ Znq and outputting the pair (uid, v) ∈ Zm(t+1)+1

q ,
where

(uid, v) =
(
Noisyχ

(
AT
idr
)
, Noisyχ

(
yT r + κ · bq/2c

))
where

Aid = A0‖A(id1)
1 ‖ . . . ‖A(idt)

t (17)

and χ is some “narrow” distribution such that the LWEn,q,χ problem is hard.
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The decryption of the HIBE ciphertext by the identity id = (id1, . . . , idt) is performed as follows:
for a ciphertext (uid, v) and secret key xid, the algorithm computes v − xTiduid mod q and outputs 0
if the result is closer to 0 than to q/2, and outputs 1 otherwise.

In our WIBE, encryption is defined in essentially the same way as in the HIBE. To encrypt to a
pattern pat = (pat1, . . . , patt) ∈ {0, 1, *}t, we pick a random r ∈ Znq , define

Apat = A0‖A(pat1)
1 ‖ . . . ‖A(patt)

t (18)

where A*
i := A(0)

i ‖A
(1)
i , and output the pair (upat, v) ∈ Zm(t+t*+1)+1

q (where t* is the number of *
in the pattern pat),

(upat, v) =
(
Noisyχ(AT

patr), Noisyχ
(
yT r + κ · bq/2c

))
.

Notice that instead of the matrix Apat being n×mt as in the HIBE, it can be as large as n×2mt
because every position pati that contains the wildcard * results in the concatenation of both A(0)

i

and A(1)
i into the matrix Apat. Therefore the ciphertext of the WIBE could be twice as large as the

HIBE ciphertext.
The decryption procedure of the WIBE is also very similar to that of the HIBE. For every

id = (id1, . . . , idt) ∈ {0, 1}t, the matrix Apat contains the matrix Aid, where Aid is defined as in
(17). Therefore, since we know upat = Noisyχ(AT

patr), we can retrieve from it uid = Noisyχ(AT
idr).

And now, using the secret key xid, the user can decrypt the ciphertext (uid, v) the same way as in
the HIBE scheme by computing v − xTiduid mod q and outputting 0 if the result is closer to 0 than
to q/2, and 1 otherwise.

6.4 Security Proof

The security proof of our scheme is a simple adaptation of the HIBE security proof in [22].

Theorem 6.1 Given an adversary A who breaks the WIBE with parameters n,m, q allowing d key
derivations, there exists an algorithm S that solves the LWEn,q,χ problem where q > σ · nd/2 · poly(n)
where σ is the standard deviation of the distribution χ and poly(n) is some fixed polynomial function
in n.

Proof: S is given access to an adversary A who breaks the WIBE and to an LWE oracle that
either outputs uniformly random samples in Zn+1

q or samples from LWEn,q,χ. When the adversary
A presents the pattern pat = (pat1, . . . , patt), S proceeds to create the public key and the eventual
“challenge” ciphertext as follows. First, the algorithm S calls the LWE oracle once to obtain a sample
(y, v) ∈ Zn+1

q . Secondly, S calls the LWE oracle m times to obtain a matrix A0 ∈ Zn×mq and a vector
u0 ∈ Zmq . Then for all 1 ≤ i ≤ t, if pati is either 0 or 1, S calls the LWE oracle m times to obtain

a matrix A(pati)
i ∈ Zn×mq and a vector u(pati)

i ∈ Zmq , and if pati = *, it calls the LWE oracle 2m

times and obtains two matrices A(0)
i ,A(1)

i ∈ Zn×mq and two vectors u(0)
i ,u(1)

i ∈ Zmq . For all pairs

(i, j) ∈ {1, . . . ,L} × {0, 1}, if the matrix A(j)
i hasn’t been defined yet, S generates a random matrix

A(j)
i along with an m × m “trapdoor” matrix S(j)

i using the algorithm GenBasis(1n, 1m, q). The
public key is the collection [

A0,A
(0)
1 ,A(1)

1 , . . . ,A(0)
L ,A(1)

L ,y
]
.

After S sends the public key to the A, A proceeds to query the secret key of any identity id =
(id1, . . . , idt) that does not match the pattern pat. The public key of identity id is the matrix/vector
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pair (Aid,y) where Aid = A0‖A(id1)
1 ‖ . . . ‖A(idt)

t . Because id does not match pat, there must be
at least one i such that idi = 1 − pati, and by the construction of the public key, S knows a
“short” matrix S(idi)

i that is basis for the lattice Λ⊥
(
A(idi)
i

)
. Therefore S can use the key derivation

procedure in Section 6.3 to construct a secret key (Sid,xid) for the identity id3.

After A finishes querying for keys, he sends a pattern pat′ that matches pat and S will send him an
encryption of either 0 or 1 encrypted to the pattern pat′. S selects a random bit κ $← {0, 1} and
sends the encryption pair (upat′ , v + κ · bq/2c) where

uTpat′ = (u0)T ‖
(
u(pat′1)

1

)T
‖ . . . ‖

(
u(pat′t)
t

)T
, (19)

where we define
(
u(*)
i

)T
=
(
u(0)
i

)T
‖
(
u(1)
i

)T
. Notice that if the LWE oracle outputs valid pairs from

the LWEn,q,χ distribution for some secret vector r, then we have

(upat′ , v + κ · bq/2c) =
(
Noisyχ(AT

pat′r), Noisyχ
(
yT r + κ · bq/2c

))
,

where Apat′ is as defined in (18). Thus (upat′ , v + κ · bq/2c) is a valid encryption of κ. On the other
hand, if the LWE oracle just outputs random vectors, then (upat′ , v + κ · bq/2c) is uniformly random
and independent of κ and thus no adversary will succeed with probability > 1/2 in guessing κ. Thus
if A returns the correct value of κ, we guess that the LWE oracle is outputting from the LWEn,q,χ
distribution, and otherwise we guess that it is outputting random values.

7 Future Directions

First, in its most general form (i.e., without restrictions on the distribution R), our notion of
security under correlated randomness gives a generic methodology for encrypting messages to sets S
of recipients that are defined by Span(

−→
ID0, . . . ,

−→
IDn). In this sense, a WIBE can be seen as a special

case of this notion in which the recipients’ sets always have a fixed form specified by the pattern P ,
i.e., S = Span(F (P )). However, one may think of a more general notion in which these sets can have
a more “irregular” form that we can express using a set of identities (

−→
ID0, . . . ,

−→
IDn) and its Span.

Since we were mostly interested in building WIBE schemes in this work, we considered security
under correlated randomness w.r.t. the distribution RWIBE . However, as a future direction, it
would be interesting to explore whether there exist HIBE schemes that are IND-sCR-CPA-secure
according to the most generic notion, i.e., without any restriction on R. Perhaps more interestingly,
the resulting primitive could be seen as the dual version of the notion of Spatial Encryption proposed
by Boneh and Hamburg in [14]. In Spatial Encryption, ciphertexts are associated to points in Z`p,
while secret keys correspond to affine subspaces of Z`p. In this setting, a ciphertext for x ∈ Z`p can
be decrypted by any secret key for W ⊆ Z`p as long as x ∈ W . In contrast, our new notion would
consider ciphertexts that are associated to affine subspaces of ID`.

As a second direction, it would be interesting to investigate whether our techniques could be ap-
plied to other cryptographic primitives. Indeed, the problem of selective vs. full security has already
been considered in the context of other cryptographic notions, such as attribute-based encryption or

3Because S has the master public key, he has the ability to derive a rather short secret key for any identity id by
using a small s ≥ ‖fS0‖ · ω(

√
log n). But it’s possible that id is at a level in the hierarchy that has keys with larger

norms, in which case S will run the key derivation procedure with a larger s. The exact size of the parameter s depends
on the hierarchy structure of the WIBE.
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verifiable random functions (VRFs). In the particular case of VRFs, finding a fully secure scheme
has been a long standing open problem until the very recent works by Hohenberger and Waters [27]
and by Boneh et al. [16]. In fact, both of these works can be seen as obtaining a fully secure VRF
from a selective secure one. While the work of Boneh et al. explicitly builds a selective-secure VRF
and then turns it into a fully secure one, the work of Hohenberger and Waters can be interpreted as
a fully secure version of the selective-secure VRF scheme of Abdalla et al. [2].
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A A proof without artificial abort

In this section we show an alternative proof for the transformation given in Section 3 which does not
use an artificial abort step. In order to get this, we adopt a definition of admissible hash functions
which is slightly different from both the one introduced by Boneh and Boyen [9] and the one by
Cash et al. [22]. The main difference with the other definitions is that we require the functions to
explicitly provide a lower bound and an upper bound for the probability of the simulation-enabling
event, i.e., the event that the challenge identity is marked red and all the secret key queries identities
are marked blue. The point of this explicit requirement is that having these bounds allows to make
a reduction that avoids to introduce artificial aborts in the simulation. Moreover, we notice that
the construction of admissible hash functions proposed by Boneh and Boyen in [9] already provides
such bounds, and thus it can be employed in our transformation. The formal definition follows.
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Definition A.1 [Admissible Hash Functions]H = {H : {0, 1}w → Σλ} is a family of (Q, δmin, δmax)-
admissible hash functions if for every polynomial Q = Q(k), there exists an efficiently computable
function µ = µ(k), efficiently recognizable sets badH ⊆ ({0, 1}w)∗, and two inverses of polynomials
δmin = 1/δmin(k,Q) and δmax = 1/δmax(k,Q) such that the following properties holds:

1. For every PPT algorithm A that, on input H ∈ H, outputs ~x ∈ ({0, 1}w)Q+1, there exists a
negligible function ε(k) such that: AdvadmH (A) = Pr[~x ∈ badH : H ← H, ~x← A(H)] ≤ ε(k)

2. For every H ∈ H, K $← K(λ,µ), and every vector ~x ∈ ({0, 1}w)Q+1 \ badH such that x0 /∈
{x1, . . . , xQ} we have: δmin ≤ γ(~x) ≤ δmax

3. There exists a negligible function ν(k) such that: (δmax − δmin) ≤ ν(k)

Now we can prove the following theorem:

Theorem A.2 If H = {H : {0, 1}w → Σλ} is a family of (Q, δmin, δmax)-admissible hash functions,
and WIBE is IND-sWID-CPA-secure, then the scheme HIBE described in Section 3 is IND-HID-
CPA-secure.

Proof: To prove Theorem A.2 we describe a sequence of games that allows to show that an adversary
for the game IND-HID-CPA can be efficiently turned into an adversary for the game IND-sWID-
CPA.

The simulator algorithm B. The proof proceeds in a similar way to the one of Theorem 3.2.
In Figure 9 we describe an adversary B that plays game IND-sWID-CPA against the scheme
WIBE , by simulating the game IND-HID-CPA to an adversary A. To avoid confusion between
the games IND-sWID-CPA and IND-HID-CPA, we prepend the prefix sW to the procedures of
IND-sWID-CPA.

In order to show that such simulation can be carried on efficiently, we proceed by describing a se-
quence of games G0–G5, where G0 is the game simulated by our algorithm B, and G5 is essentially
IND-HID-CPA with some additional code that, however, does not condition the output. Our ap-
proach is based on code-based games where each game is defined as a set of procedures that can be
run by the adversary.

Before focusing on the game sequence, we first show that the simulation provided by B is correct
whenever bad is not set, and that B plays the game IND-sWID-CPA correctly. For ease of exposition
we assume that the adversary always outputs identities of the same (maximum) length L. However,
this can be formalized by assuming that for any set of identities (

−→
ID0, . . . ,

−→
IDQ) output by A, for

i = 1 to Q all those
−→
ID i such that |

−→
ID i| < L are padded to reach length L using some special symbol

so that FHi,Ki(ID i
j) always returns B on positions j such that |

−→
ID i| < j ≤ L. On the other hand, if

the challenge identity has length `∗ < L, then it is padded with some symbol so that FHi,Ki(ID0
j )

always returns R on positions j > `∗.

First, observe that all the identities ~I for which B runs sW.Extract(~I) are legitimate queries,
namely they do not match the challenge pattern P ∗ declared by B to sW.Initialize. In the code of
B, if sW.Extract(~I) is called, then there exists an index i ∈ {1, . . . , `} for which FKi,Hi(ID i) = B,
namely Ii 6= Pi (and Pi 6= *), thus ~I 6∈* P ∗. Second, note that the ciphertext C∗ is distributed
as the challenge ciphertext in the game IND-HID-CPA for the scheme HIBE . However, we have
also to check that the procedure sW.LR be run on an identity ~I ∈* P ∗. To see this, observe that
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Algorithm B:

K1, . . . ,KL
$← K(λ,µ)

P ∗ ← (K1, . . . ,KL)
Run mpk ′ ← sW.Initialize(P ∗)
H1, . . . ,HL

$← H
mpk ← (mpk ′, H1, . . . ,HL)
Run A′(mpk), answering queries as follows:

Extract(
−→
ID):

let ` = |
−→
ID |

sk−→
ID
← ⊥

~I ← (H1(ID1), . . . ,H`(ID`))
If FHi,Ki

(ID i) = R ∀i = 1 to ` Then
bad← true

Else sk−→
ID

$← sW.Extract(~I)
Return sk−→

ID

LR(
−→
ID ,m0,m1):

let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

C∗ ← ⊥
If ∃i ∈ [`∗] : FHi,Ki

(ID i) = B Then
bad← true

Else
C∗

$← sW.LR(~I,m0,m1)
return C∗

let β′ be A′’s output
If ∃i ∈ [L] : Xi ∈ badHi Then β′

$← {0, 1}
If bad = true Then β′

$← {0, 1}
sW.Finalize(β′)

procedure Initialize: Games G0 −G2, G3

001 K1, . . . ,KL
$← K(λ,µ)

002 P ∗ ← (K1, . . . ,KL)
003 (mpk ′,msk ′) $←WIBE .Setup;β $← {0, 1}
004 H1, . . . ,HL

$← H
005 mpk ← (mpk ′, H1, . . . ,HL)
006 cnt← 1
007 return mpk

procedure Extract(
−→
ID): Games G0, G1

010 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

011 sk−→
ID
← ⊥

012 If FHi,Ki(ID i) = R ∀i = 1 to ` Then
013 bad← true

014 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)

015 Else sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)
016 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Games G0, G1

020 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

021 C∗ ← ⊥
022 If ∃i ∈ [`∗] : FHi,Ki

(ID i) = B Then
023 bad← true

024 C∗
$←WIBE .Enc(mpk ′, ~I,mβ)

025 Else
026 C∗

$←WIBE .Enc(mpk ′, ~I,mβ)
027 return C∗

procedure Finalize(β′): Games G0, G1

030 If ∃i ∈ [L] : Xi ∈ badHi Then β′
$← {0, 1}

031 β′′ ← β′

032 If bad = true Then β′′
$← {0, 1}, β′′ ← β′

033 If β′′ = β Then return 1
034 Else return 0

Figure 9: Algorithm B and description of the first games of the sequence. In each procedure, if Gi

is boxed, then the given procedure in Gi includes the boxed statements, whereas the other games
do not include them.
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the procedure is run only if bad is not set, namely when FHi,Ki(ID i) = R for all i ∈ [`∗], which is
equivalent to say ~I ∈* P ∗.

The sequence of games. Now, let us focus on the sequence of games G0 − G5. In particular,
the Lemma 3.3 given below proves that we can move from the game IND-sWID-CPA played by B
to game G5. A critical part in B’s simulation is that it may set bad ← true and, as a consequence,
B returns a random bit (basically, it fails its simulation). Such bad event depends on the values
K1, . . . ,KL chosen by B as well as on the set of identities asked by A to Extract and LR. As shown
in other works, such as [35], these cases are problematic as the event that the simulation fails is not
independent of the adversary’s view. This difficulty has been usually overcome by introducing an
“artificial” abort event in the simulation that allows to balance the probability of failing so that it is
sufficiently independent of the adversary’s view. However, the artificial abort step needs additional
computation and degrades the final concrete security of the reduction. For the case of Waters’ IBE
scheme, Bellare and Ristenpart proposed in [5] an alternative proof of security that avoids the need
of the artificial abort and thus results in a more efficient reduction.

In the first part of our proof we extend Bellare and Ristenpart’s techniques to the case of admissible
hash functions. Similarly to [5], the most significant part of this proof is that we move from a game,
i.e., G0, where K1, . . . ,KL are chosen at the beginning, to another game, i.e., G4, where these values
are chosen at the end, that is after the adversary has output its set of queries. So, this choice is
made independently of the adversary’s queries. As we will notice later, this is not itself sufficient to
conclude that the bad event is independent of the adversary’s view as this event is jointly determined
by both the adversary’s and simulator’s choices. However, the techniques in [5] helps to find the
sufficient conditions to analyze the success probability of the experiment without having to consider
the specific adversary’s choices.

Following the notation given in Section 2, we write GAi ⇒ b to denote that an execution of game
Gi by A returns b. Also, let Badi (resp. Goodi) be the event that Gi sets (resp. does not set)
bad← true.

Our adversary B and the games G0–G5 are described in Figures 9 and 10. When some games
share a procedure with very similar code we use a compact description with boxed statements. If a
procedure is shared by games Gi,Gj , . . . ,Gk, if Gi is boxed, then the code of the given procedure
in Gi includes the boxed statements, whereas its code in the other games does not. To better
understand the notation one may look at Figure 9 for an example. There, the Finalize procedure is
shared by games G0 and G1, and G1 is written in a box. This means that Finalize in G1 contains
the statement β′′ ← β′ of line 032, whereas this statement is not present in game G0.

Lemma A.3 AdvIND-sWID-CPA
WIBE (B) = 2 · Pr[GA4 ⇒ 1 ∧ Good4]− Pr[Good4].

Proof: To prove the lemma we will analyze the differences between each consecutive pair of games.

First, we focus on the code of B and game G0. The procedure Initialize contains in line 003 the code
of sW.Initialize. Moreover, line 015 and line 026 contain the code of sW.Extract and sW.LR
respectively. Finally, it is not hard to notice that the code of the Finalize procedure is an equivalent
implementation of the way B concludes its simulation and executes sW.Finalize. Therefore, we
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procedure Extract(
−→
ID): Game G2

210 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

211 If FHi,Ki(ID i) = R ∀i = 1 to ` Then
212 bad← true

213 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)(~I)
214 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Game G2

220 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

221 If ∃i ∈ [`∗] : FHi,Ki
(ID i) = B Then

222 bad← true

223 C∗
$←WIBE .Enc(mpk ′, ~I,mβ)

224 return C∗

procedure Finalize(β′): Game G2, G3

230 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
231 for j = 1 to cnt do
232 let `j ← |

−→
IDj |

233 If FHi,Ki
(IDj

i ) = R ∀i = 1 to `j Then
234 bad← true
235 If ∃i ∈ [`∗] : FHi,Ki(ID0

i ) = B Then
236 bad← true

237 If β′ = β Then return 1
238 Else return 0

procedure Initialize: Games G4 −G5

400 (mpk ′,msk ′) $←WIBE .Setup;β $← {0, 1}
401 H1, . . . ,HL

$← H
402 mpk ← (mpk ′, H1, . . . ,HL)
403 cnt← 1
404 return mpk

procedure Extract(
−→
ID): Games G3 −G5

310
−→
IDcnt ←

−→
ID ; cnt← cnt+ 1

311 let ` = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`(ID`))

312 sk−→
ID

$←WIBE .KeyDer(msk ′, ~I)(~I)
313 Return sk−→

ID

procedure LR(
−→
ID ,m0,m1): Games G3 −G5

320
−→
ID0 ←

−→
ID

321 let `∗ = |
−→
ID |, ~I ← (H1(ID1), . . . ,H`∗(ID`∗))

322 C∗
$←WIBE .Enc(mpk ′, ~I,mβ)

323 return C∗

procedure Finalize(β′): Games G4 , G5

430 If ∃i ∈ [L] : Xi ∈ badHi
Then β′

$← {0, 1}
431 K1, . . . ,KL

$← K(λ,µ)

432 for j = 1 to cnt do
433 let `j ← |

−→
IDj |

434 If FHi,Ki
(IDj

i ) = R ∀i = 1 to `j Then
435 bad← true
436 If ∃i ∈ [`∗] : FHi,Ki(ID0

i ) = B Then
437 bad← true
438 If β′ = β Then return 1
439 Else return 0

Figure 10: Description of the games G2 − G5. In each procedure, if Gi is boxed, then the given
procedure in Gi includes the boxed statements, whereas the other games do not include them.
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have:

Pr[IND-sWID-CPAB⇒ 1] = Pr[GA0 ⇒ 1]

= Pr[GA0 |Bad0] Pr[Bad0] + Pr[GA0 ⇒ 1 ∧ Good0]

=
1
2

Pr[Bad0] + Pr[GA0 ⇒ 1 ∧ Good0] (20)

where the last line is justified from that the Finalize procedure of G0 outputs a random bit when
bad is set.

If we look at the differences between the games G0 and G1 we can observe that G1 contains some
additional lines of code (highlighted in the framed boxes). Such changes make sure that Extract
and LR never return ⊥. Also, in G1 Finalize is modified in line 032 (by adding β′′ ← β′) so that
the procedure’s output does not depend on bad = true. Since in game G0 the events that Extract
and LR return ⊥ and that Finalize takes β′′ at random occur only if bad is set, then we have that
G0 and G1 are identical-until-bad. Thus, we can apply Lemma 2.1 to obtain:

Pr[Bad0] = Pr[Bad1] and Pr[GA0 ⇒ 1 ∧ Good0] = Pr[GA1 ⇒ 1 ∧ Good1] (21)

Now, let us compare games G1 and G2. The changes in the Extract and Finalize procedures are
only syntactical. Lines 014, 015 (resp. 024, 026) of G1 have been moved to line 213 (resp. 223) of
G2. So G2 is equivalent to G1:

Pr[Bad1] = Pr[Bad2] and Pr[GA1 ⇒ 1 ∧ Good1] = Pr[GA2 ⇒ 1 ∧ Good2] (22)

Let us now consider G2 and G3. In game G2, both Extract and LR may set bad in lines 211− 212
and 221 − 222 respectively. However, this operation does no longer influence the behavior of each
procedures. So, in G3 these lines are moved to the end of the game, into the procedure Finalize.
Moreover, in order for this change to be described correctly, G3 introduces a counter and a labeling
for the queried identities. Again, these changes in the code are only syntactical. Thus the two games
are identical, and we have:

Pr[Bad2] = Pr[Bad3] and Pr[GA2 ⇒ 1 ∧ Good2] = Pr[GA3 ⇒ 1 ∧ Good3] (23)

Finally, we show that G3 and G4 are identically distributed as well. The only change is that line
001 of G3 is moved to line 431 of Finalize in G4. Since in G3 the values K1, . . . ,KL are used only
into Finalize, this code can be postponed there. Thus we have:

Pr[Bad3] = Pr[Bad4] and Pr[GA3 ⇒ 1 ∧ Good3] = Pr[GA4 ⇒ 1 ∧ Good4] (24)

Finally, if we put together Equations (20), (21), (22), (23) and (24) we obtain:

AdvIND-sWID-CPA
WIBE (B) = 2 · Pr[IND-sWID-CPAB⇒ 1]− 1

= Pr[Bad4] + 2 · Pr[GA4 ∧ Good4]− 1

= 2 · Pr[GA4 ∧ Good4]− Pr[Good4] (25)

which completes the proof of the Lemma.
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Conditional Independence. With the result of Lemma A.3 we reached a game where the values
K1, . . . ,KL are chosen only at the end, after the adversary’s set of queries as well as the game’s
output are fixed. However, to conclude the analysis we would need to evaluate Pr[Good4] which
still depends on the adversary’s queries. Therefore, to complete the proof we use the “Conditional
Independence Lemma” stated by Bellare and Ristenpart in [5]. We restate the lemma below using
our notation and we adapt it to our case. Indeed, in [5] the bad event is related to the behavior
of the specific Waters’ hash function, while in our case it is related to the “coloring” function F
associated to the family H. However, its proof remains essentially the same as the one in [5]. For
completeness, we show this at the end of this section.

Let ID be the space of identities (
−→
ID0, . . . ,

−→
IDQ) ∈ (IDL)Q+1 such that

−→
ID0 /∈ {

−→
ID1, . . . ,

−→
IDQ},

namely for all i ∈ {1, . . . , Q}, ∃j ∈ [L] : ID0
j 6= ID i

j . For ease of exposition we still assumes that the
queried identities are properly padded as described before.

For each hash function Hi, for 1 ≤ i ≤ L, and any X = (
−→
ID0, . . . ,

−→
IDQ) ∈ ID, we define the function

γi, which is the same as the γ given in Definition A.1:

γi(Xi) = Pr[FHi,Ki(ID0
i ) = R ∧ FHi,Ki(ID1

i ) = B ∧ · · · ∧ FHi,Ki(IDQ
i ) = B]

Also, we let Γ(X) =
∏L
i=1 γi(Xi). For any X ∈ ID, let Q(X) be the event that an execution of GA4

returns 1 and that A outputs X as its set of queries.

Lemma A.4 [Conditional Independence (restated from [5])] For any X ∈ ID

Pr[GA4 ⇒ 1 ∧ Good4 ∧Q(X)] = Γ(X) · Pr[GA4 ⇒ 1 ∧Q(X)] (26)

Pr[Good4 ∧Q(X)] = Γ(X) · Pr[Q(X)] (27)

where the probabilities are taken over all the random coins of both game G4 and the adversary.

Proof of Lemma A.4. For completeness, we give the proof of the Conditional Independence
Lemma by Bellare and Ristenpart [5] adapted to the notation of our case.

Let Ω be the set of all coin tosses made in the execution of G4 with the adversary A. This can be
seen as a cross product Ω = Ω′ × K(λ,µ). Namely, the coin tosses of an execution are a pair (ω, κ)
where κ represents the choice of the vectors K1, . . . ,KL ∈ K(λ,µ) made in line 431, and ω contains
all the other random coins (of both the game and the adversary).

For any X ∈ ID, let Ω′(X) be the set of all ω′ ∈ Ω′ such that the execution with ω′ produces X
(notice that when X is chosen, the vectors K1, . . . ,KL have not been chosen yet). Let Ω′1 be the
set of all ω′ ∈ Ω′ such that the execution outputs 1 (again, this is determined only by random coins
ω′). Let K(λ,µ)

Good(X) be the set of κ ∈ K(λ,µ) such that it holds

L∧
i=1

(FKi,Hi(X
0
i ) = R ∧ FKi,Hi(X1

i ) = B ∧ · · · ∧ FKi,Hi(X
Q
i ) = B).
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Notice that the set of coins for which GA4 ⇒ 1 is Ω′1 × K(λ,µ), whereas the set of coins leading to
(Good4 ∧Q(X)) is Ω′(X)×K(λ,µ)

Good(X). Thus

Pr[GA4 ⇒ 1 ∧ Good4 ∧Q(X)] =
|(Ω′1 ×K(λ,µ)) ∩ (Ω′(X)×K(λ,µ)

Good(X))|
|Ω′ ×K(λ,µ)|

=
|(Ω′1 ∩ Ω′(X))×K(λ,µ)

Good(X)|
|Ω′ ×K(λ,µ)|

=
|(Ω′1 ∩ Ω′(X))| · |K(λ,µ)

Good(X)|
|Ω′| · |K(λ,µ)|

=
|(Ω′1 ∩ Ω′(X))| · |K(λ,µ)|

|Ω′| · |K(λ,µ)|
·
|K(λ,µ)

Good(X)|
|K(λ,µ)|

=
|(Ω′1 ∩ Ω′(X))×K(λ,µ)|

|Ω′ ×K(λ,µ)|
·
|K(λ,µ)

Good(X)|
|K(λ,µ)|

= Pr[GA4 ⇒ 1 ∧Q(X)] · Γ(X).

which establishes Equation (26) of Lemma A.4.

Similarly, we have:

Pr[Good4 ∧Q(X)] =
|(Ω′(X)×K(λ,µ)

Good(X))|
|Ω′ ×K(λ,µ)|

=
|(Ω′(X)|
|Ω′|

·
|K(λ,µ)

Good(X))|
|K(λ,µ)|

=
|(Ω′(X)| · |K(λ,µ)|
|Ω′| · |K(λ,µ)|

·
|K(λ,µ)

Good(X))|
|K(λ,µ)|

=
|(Ω′(X)×K(λ,µ)|
|Ω′ ×K(λ,µ)|

·
|K(λ,µ)

Good(X))|
|K(λ,µ)|

= Pr[Q(X)] · Γ(X).

which establishes Equation (27) of Lemma A.4.

Concluding the proof. We can apply Lemma A.4 to the result of Lemma 3.3 to obtain:

AdvIND-sWID-CPA
WIBE (B) = 2 · Pr[GA4 ⇒ 1 ∧ Good4]− Pr[Good4]

=
∑
X∈ID

2 Pr[GA4 ⇒ 1 ∧ Good4 ∧Q(X)]−
∑
X∈ID

Pr[Good4 ∧Q(X)]

=
∑
X∈ID

2 · Γ(X) · Pr[GA4 ⇒ 1 ∧Q(X)]−
∑
X∈ID

Γ(X) · Pr[Q(X)]

Now, since the functions H1, . . . ,HL are taken from a family of (Q, δmin, δmax)-admissible hash
functions (and Xi /∈ badHi), then we have that each γi(Xi) ∈ [δmin, δmax]. Moreover, let Γmin = δLmin
and Γmax = δLmax be a lower bound and an upper bound respectively for the function Γ(X). Thus,
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we have:

AdvIND-sWID-CPA
WIBE (B) ≥ 2 · Γmin

∑
X∈ID

Pr[GA4 ⇒ 1 ∧Q(X)]− Γmax
∑
X∈ID

·Pr[Q(X)]

= 2 · Γmin Pr[GA4 ⇒ 1]− Γmax (28)

Since Game G5 is essentially the IND-HID-CPA′ game we have:

AdvIND-HID-CPA
HIBE (A) = 2 Pr[GA

′
5 ⇒ 1]− 1

≤ 2 · Pr[GA
′

4 ⇒ 1]− 1 + 2LAdvadmH (C) (29)

where Equation (29) is justified by observing that with a straightforward reduction one can show
that

|Pr[GA
′

5 ⇒ 1]− Pr[GA
′

4 ⇒ 1]| ≤ L ·AdvadmH (C)),

by the property of admissible hash functions.

Therefore, by putting together Equations (28) and (29), we obtain:

AdvIND-HID-CPA
HIBE (A) ≤

AdvIND-sWID-CPA
WIBE (B)

Γmin
+

Γmax − Γmin
Γmin

+ 2LAdvadmH (C)

≤
AdvIND-sWID-CPA

WIBE (B)
δLmin

+
ν(k)
δLmin

+ 2LAdvadmH (C) (30)

where Equation (30) follows from the property of admissible hash functions, together with the fact
that L ≥ 1 and 0 ≤ δmin ≤ δmax ≤ 1.

This completes the proof of Theorem A.2. Due to the exponential factor L, notice that the reduction
is meaningful when the maximum hierarchy’s depth L is some fixed constant.

B HIBE Schemes Selective-Secure under Correlated Randomness

In this section we motivate the notion of selective-security under correlated randomness, by showing
that several known HIBE schemes already satisfy this notion. In particular we show this for the
pairing-based schemes by Boneh and Boyen [8], Boneh, Boyen and Goh [10], and Waters [35]. As
the reader will see, our proofs show direct black-box reductions to the standard selective-security
(IND-sHID-CPA) of the respective schemes. Essentially, this means that the schemes already satisfy
our new notion without having to tweak the scheme or rely on other assumptions.

B.1 The case of the Boneh-Boyen HIBE [8, 1]

In this section we prove the IND-sCR-CPA-security of a variant of the Boneh-Boyen HIBE scheme
that is proposed in [1]. At the end of the section we will discuss why this is not possible for the
original BB scheme given in [8]. We briefly recall the scheme in Figure 11.

The scheme has identity space ID = Zp where p is a large prime. We first show that the scheme
satisfies Property 1 by describing the following algorithm:

BB.Convert(mpk , C0,
−→
ID0, . . . , Cn,

−→
IDn,

−→
ID). Assume that |

−→
ID0| = . . . = |

−→
IDn| = ` and |

−→
ID | = `′ ≤ `.

Recall that each Ci has form (Ci1, {Ci2,j}`j=1, C
i
3). First, consider the case when `′ = `. The

algorithm works as follows.

46



Setup:
g1, g2

$← G ; α $← Zp
h1 ← gα1 ; h2 ← gα2
ui,j

$← G for i = 1 . . . L, j = 0, 1
mpk ← (g1, g2, h1, u1,0, . . . , uL,1)
msk ← h2

Return (mpk ,msk)

KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
r`+1

$← Zp
d ′0 ← d0 ·

(
u`+1,0 · u

ID`+1
`+1,1

)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d ′`+1)

Enc(mpk ,
−→
ID ,m):

Parse
−→
ID as (ID1, . . . , ID`)

r
$← Zp ; C1 ← gr1

For i = 1, . . . , ` do
C2,i ←

(
ui,0 · uIDi

i,1

)r
C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,`, C3)

Dec(d(ID1,...,ID`), C):
Parse d(ID1,...,IDl) as (d0, . . . , d`)
Parse C as (C1, C2,1, . . . , C2,`, C3)

m′ ← C3 ·
Q`

i=1 ê(di,C2,i)

ê(C1,d0)

Return m′

Figure 11: The variant of the Boneh-Boyen HIBE scheme in [1].

Set C1 = C0
1 and C3 = C0

3 .

Find ~k ∈ Zn such that ∆~k = (
−→
ID −

−→
ID0), and compute

∆̃ =

C
0
2,1/C

1
2,1 C0

2,1/C
2
2,1 · · · C0

2,1/C
n
2,1

...
...

...
C0

2,`/C
1
2,` C0

2,`/C
2
2,` · · · C0

2,`/C
n
2,`

 =
[
∆̃(1)|| · · · ||∆̃(n)

]
∈ G`×n

Finally, for all j = 1 to `, set C2,j = C0
2,j ·

∏n
i=1(∆̃(i))ki , and output C = (C1, {C2,j}`j=1, C3).

If `′ < `, then one can first pad
−→
ID to get

−→
ID ′ of length ` (e.g., by setting ID ′i = ID0

i for
`′ < i ≤ `), and then use the above procedure to generate a ciphertext C ′ for

−→
ID ′. Finally, a

valid ciphertext for
−→
ID can be obtained by removing the elements C2,j for j > `′.

The correctness of the algorithm can be verified by inspection.

Theorem B.1 If there exists an adversaryA that has IND-sCR-CPA-advantage≥ ε against the BB-
HIBE scheme w.r.t. RWIBE , then there exists an adversary B that has IND-sHID-CPA-advantage
ε against the same scheme BB-HIBE. Namely:

AdvIND-sHID-CPA
BB−HIBE (B) = AdvIND-sCR-CPA

BB−HIBE (A)

Proof: We prove the theorem by describing the adversary B that plays the game IND-sHID-CPA
against the scheme BB −HIBE by simulating the game IND-sCR-CPA to the adversary A. The
idea

Initialize(
−→
ID0, . . . ,

−→
IDn): B takes as input a set of identities (

−→
ID0, . . . ,

−→
IDn) ∈ RWIBE such that

|
−→
ID i| = `∗ for all 0 ≤ i ≤ n. Let ∆ = ∆(

−→
ID0, . . . ,

−→
IDn) and define

Z(∆) = {j :
[
∆1
j , · · · ,∆n

j

]
= 01×n} ⊆ {1, . . . , `∗}.
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So, Z(∆) = {j1, . . . , jν∗} is the set of indices j such that the j-th row of ∆ has all zeros (i.e.,
all the identity components at level j are equal). For all i ∈ {1, . . . , L} we define the map:

π(i) =


k if jk ∈ Z(∆) ∧ i ≤ `∗
ν∗ + (i− `∗) if i > `∗

⊥ if i /∈ Z(∆) ∧ i ≤ `∗

B computes ĨD
∗

by setting ĨD
∗
i = ID0

i for all i = 1, . . . , `∗ such that π(i) 6= ⊥, and executes the
procedure ˜mpk ← Initialize(ĨD

∗
) of the game IND-sHID-CPA. The received master public

key is of the form ˜mpk = (g̃1, g̃2, h̃1, ũ0,1, ũ1,1, . . . , ũ0,L, ũ1,L). B constructs another master
public key mpk = (g1, g2, h1, u0,1, u1,1, . . . , u0,L, u1,L) as follows:

g1 = g̃1, g2 = g̃2, h1 = h̃1

ub,i =

{
ũb,π(i) if π(i) 6= ⊥
g
αb,i
1 for αb,i

$← Zp if π(i) = ⊥
, ∀i = 1, . . . , L, ∀b ∈ {0, 1}

Finally, B returns mpk to A.

We give some hints about our technique, that may help the reader to follow our proof. Given
in input the set of identities (

−→
ID0, . . . ,

−→
IDn), B is going to play the selective-identity game by

committing on the identity ĨD
∗

which is equal to
−→
ID0 in those positions where all the identities

are equal (i.e., π(i) 6= ⊥), and eliminates the other positions. This requires the remapping
that is formally defined by π(·). Then, when B receives the master public key, it keeps in the
new public key (that it returns to A) only some elements. Precisely, it changes the position of
all the elements ub,i of the given public key to some other positions (determined by π(i)), and
then it creates new elements ub,i for those positions i where the identities (

−→
ID0, . . . ,

−→
IDn) are

not all equal. In particular, for the latter elements notice that B knows their discrete log in
base g1.

Extract(
−→
ID): Let

−→
ID be the queried identity, and let ` = |

−→
ID |. B defines the identity ĨD by setting

ĨDπ(i) = ID i for all 1 ≤ i ≤ ` such that π(i) 6= ⊥ and asks for the secret key of ĨD by executing
sk fID ← Extract(ĨD). Let sk fID = (d̃0, d̃1, . . . , d̃ν) be the received secret key. B computes:

d0 = d̃0 ·

 ∏̀
i=1,π(i)=⊥

u0,iu
IDi
1,i

ri

, di =
{
d̃π(i) if π(i) 6= ⊥
gri1 if π(i) = ⊥ , ∀i = 1, . . . , `

where ri
$← Zp. Finally, B returns (d0, d1, . . . , d`).

Before continuing the description of the simulation, we quickly pause to show that the returned
secret key is valid, namely if (d̃0, d̃1, . . . , d̃ν) is a valid secret key for the identity ĨD , then
(d0, d1, . . . , d`) is a valid secret key for

−→
ID (under the HIBE system with master public key

mpk). We also observe that ĨD is a legitimate query for B. Recall that by definition
−→
ID falls

into one of the following cases:

1. |
−→
ID | = `∗ and

−→
ID /∈ Span(

−→
ID0, . . . ,

−→
IDn)

2. |
−→
ID | < `∗ and

−→
ID is not an ancestor of any

−→
ID ′ ∈ Span(

−→
ID0, . . . ,

−→
IDn)

3. |
−→
ID | > `∗
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If |
−→
ID | > `∗, then |ĨD | > ν∗, and thus ĨD is a legitimate query w.r.t. ĨD

∗
.

If |
−→
ID | = `∗ and

−→
ID /∈ Span(

−→
ID0, . . . ,

−→
IDn), then notice that there exists j ∈ Z(∆) such that

IDj 6= ID0
j . So, we have that ĨDπ(j) = IDj 6= ID0

j = ĨD
∗
π(j).

If |
−→
ID | < `∗ and

−→
ID is not an ancestor of any

−→
ID ′ ∈ Span(

−→
ID0, . . . ,

−→
IDn), then a similar

argument as the one in the previous case applies. Indeed, notice that this case is equivalent
to saying that any

−→
ID ’s descendant of length `∗ is not in Span(

−→
ID0, . . . ,

−→
IDn). In particular,

this must hold even for
−→
ID ′ defined such that ID ′i = ID i for all 1 ≤ i ≤ `, and ID ′i = ID0

i for
` < i ≤ `∗. Recall that

−→
ID ′ is a descendant of

−→
ID and it holds

−→
ID ′ /∈ Span(

−→
ID0, . . . ,

−→
IDn). This

means that there exists j ∈ Z(∆), such that ID ′j 6= ID0
j . However, by definition of

−→
ID ′, this

must hold for j ≤ ` < `∗. So, as in the previous case, we have that ĨDπ(j) 6= ĨD
∗
π(j).

LR(m0,m1): B executes the procedure C̃∗ ← LR(m0,m1) of the game IND-sHID-CPA. Let C̃∗ =
(C̃∗1 , C̃

∗
2,1, . . . , C̃

∗
2,ν∗ , C̃

∗
3 ) be an encryption of mβ (for some β ∈ {0, 1}) for the identity ĨD

∗
.

B computes and outputs the ciphertexts (C0, . . . , Cn) as it is described below.

For all i = 0 to n, B sets:
Ci1 = C̃∗1 , C

i
3 = C̃∗3

Ci2,j =

{
C̃∗2,π(j) if i ∈ Z(∆)

(C̃∗1 )α0,j+IDi
j ·α1,j if i /∈ Z(∆)

, ∀j = 1, . . . , `∗

By looking at the definition of π(i) and Z(∆), one can see that the produced ciphertexts follow
the correct distribution.

Finalize(β′): Let β′ be the bit received by A. B concludes its simulation by executing Finalize(β′).

Since B can perfectly simulate the game IND-sCR-CPA to the adversary A, we have:

AdvIND-sHID-CPA
BB−HIBE (B) = AdvIND-sCR-CPA

BB−HIBE (A)

which concludes the proof.

About the original BB scheme. As we mentioned at the beginning of this section, we proved
the IND-sCR-CPA security of a variant of the original BB scheme. The reason of this is that the
scheme proposed in [8] is not secure under correlated randomness. This is not an issue of the proof.
As we show below, the scheme completely breaks when many encryptions with the same randomness
and only two different identities are released.

To see this, we recall that the original scheme is the same as that given in Figure 11 except that
the public key contains only one element u1 in common for all the levels (instead of many ui,1).

Now, assume that one receives two ciphertexts generated with the same randomness r and for
two identities (ID0

1, ID0
2), (ID1

1, ID1
2) such that ID0

1 = ID1
1 and ID0

2 6= ID1
2. Then, one can recover

ur·c1 = C0
2,2/C

1
2,2 (where c = ID0

2 − ID1
2). This value then allows to generate ciphertexts for any

identity, i.e., for the pattern P = (*, *). So, in particular, an adversary in the IND-sCR-CPA game
can ask the challenge ciphertexts for the identities (

−→
ID0,

−→
ID1) mentioned before, then it generates a

ciphertext for some
−→
ID ′ /∈ Span(

−→
ID0,

−→
ID1), and finall ask for the secret key of

−→
ID ′ (this is a legitimate

query), which allows to decrypt and recover the message.
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B.2 The case of the Boneh-Boyen-Goh HIBE [10]

In this section we consider the HIBE scheme proposed by Boneh, Boyen and Goh in [10], and we
show that it satisfies Property 1 and that it is IND-sCR-CPA-secure w.r.t. RWIBE . We recall the
scheme in Figure 12. The scheme has identity space ID = Z∗p (i.e., 0 is not a valid identity) where
p is a prime of suitable length.

Setup:
g1, g2

$← G ; α $← Zp
h1 ← gα1 ; h2 ← gα2
ui

$← G for i = 1, . . . , L
mpk ← (g1, g2, h1, u0, . . . , uL)
d0 ← h2

For i = 1, . . . , L+ 1 do
di ← 1

msk ← (d0, d1, . . . , dL, dL+1)
Return (mpk ,msk)

KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL, dL+1)
r`+1

$← Zp
d ′0 ← d0 · d

ID`+1
`+1 ·

(
u0

∏`
i=1 u

IDi
i

)r`+1

For i = `+ 2, . . . , L do
d ′i ← di · u

r`+1
i

d ′L+1 ← dL+1 · g
r`+1
1

Return (d ′0, d
′
`+2, . . . , d

′
L, d

′
L+1)

Enc(mpk ,
−→
ID ,m):

Parse
−→
ID as (ID1, . . . , ID`)

r
$← Zp ; C1 ← gr1

C2 ←
(
u0

∏`
i=1 u

IDi
i

)r
C3 ← m · ê(h1, g2)r

Return (C1, C2, C3)

Dec(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, d`+1, . . . , dL+1)
Parse C as (C1, C2, C3)
m′ ← C3 · ê(C2,dL+1)

ê(C1,d0)

Return m′

Figure 12: The Boneh-Boyen-Goh HIBE scheme.

To show that the BBG-HIBE scheme is IND-sCR-CPA-secure we first show that it satisfies
Property 1 by describing the following algorithm for the ciphertext conversion. For ease of exposition,
we give our description using identities that may take value 0, even though 0 is not a valid identity
value. However, following Remark 4.2, everything can be defined by choosing any two other values
of Z∗p, e.g., 1 and 2, instead of 0 and 1.

BBG.Convert(mpk , C0,
−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) Assume that |

−→
ID0| = . . . = |

−→
IDn| = ` and |

−→
ID | = `′ ≤

`. Recall that each Ci has form (Ci1, C
i
2, C

i
3). First, consider the case when `′ = `. The

algorithm works as follows.

First, set C1 = C0
1 and C3 = C0

3 .

Find ~k ∈ Zn such that ∆~k = (
−→
ID −

−→
ID0), and compute

∆̃ =
[
C0

2/C
1
2 ||C0

2/C
2
2 || · · · ||C0

2/C
n
2

]
=
[
∆̃(1)|| · · · ||∆̃(n)

]
∈ G1×n

Finally, set C2 = C0
2 ·
∏n
i=1(∆̃(i))ki , and output C = (C1, C2, C3).

If `′ < `, then one can first pad
−→
ID to get

−→
ID ′ of length ` by setting ID ′i = 0 for `′ < i ≤ `, and

then use the above procedure. It is not hard to see that a ciphertext for such
−→
ID ′ is a valid

ciphertext for
−→
ID as well.

The correctness of the algorithm can be verified by inspection.
We prove its security via the following theorem.
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Theorem B.2 If there exists an adversary A that has IND-sCR-CPA-advantage ≥ ε against the
BBG-HIBE scheme w.r.t. RWIBE , then there exists an adversary B that has IND-sHID-CPA-
advantage ε against the same scheme BBG-HIBE. Namely:

AdvIND-sHID-CPA
BBG−HIBE (B) = AdvIND-sCR-CPA

BBG−HIBE (A)

Proof: We make the proof by describing an adversary B that plays the game IND-sHID-CPA against
the scheme BBG-HIBE by simulating the game IND-sCR-CPA to the adversary A. The main idea
of the proof is very similar to the one used in the proof of Theorem B.1. Namely, our simulator
is going to play a selective-identity game by declaring an identity ĨD

∗
which is equal to

−→
ID0 in all

positions where all the identities are equal. Then for these positions, the corresponding elements of
the public key are kept in the new public key (but relocated), and new elements, for which B knows
the discrete log, are introduced. This knowledge, basically, allows the simulator to convert the secret
keys and the challenge ciphertext received by its challenger into the ones to give to A.

Initialize(
−→
ID0, . . . ,

−→
IDn): B takes as input a set of identities (

−→
ID0, . . . ,

−→
IDn) ∈ RWIBE such that

|
−→
ID i| = `∗ for all 0 ≤ i ≤ n. Let ∆ = ∆(

−→
ID0, . . . ,

−→
IDn) and define

Z(∆) = {j :
[
∆1
j , · · · ,∆n

j

]
= 01×n} ⊆ {1, . . . , `∗}.

So, Z(∆) = {j1, . . . , jν∗} is the set of indices j such that the j-th row of ∆ has all zeros. For
all i ∈ {1, . . . , L} we define the map:

π(i) =


k if jk ∈ Z(∆) ∧ i ≤ `∗
ν∗ + (i− `∗) if i > `∗

⊥ if i /∈ Z(∆) ∧ i ≤ `∗

B computes ĨD
∗

by setting ĨD
∗
i = ID0

i for all i = 1, . . . , `∗ such that π(i) 6= ⊥, and executes
the procedure ˜mpk ← Initialize(ĨD

∗
) of the game IND-sHID-CPA. The received master

public key is of the form ˜mpk = (g̃1, g̃2, h̃1, ũ0, ũ1, . . . , ũL). B constructs a master public key
mpk = (g1, g2, h1, u0, u1, . . . , uL) as follows:

g1 = g̃1, g2 = g̃2, h1 = h̃1, u0 = ũ0

ui =

{
ũπ(i) if π(i) 6= ⊥
gαi1 for αi

$← Zp if π(i) = ⊥
, ∀i = 1, . . . , L

Finally, B returns mpk to A.

Extract(
−→
ID): Let

−→
ID be the identity asked by the adversary, and let ` = |

−→
ID |. The simulator

defines the identity ĨD by setting ĨDπ(i) = ID i for all 1 ≤ i ≤ ` such that π(i) 6= ⊥ and asks
for the secret key of ĨD by executing sk fID ← Extract(ĨD). Let sk fID = (d̃0, d̃ν+1, . . . , d̃L+1)

be the received secret key. B picks a random r′
$← Zp and computes:

d0 = d̃0 ·

(
u0

∏̀
i=1

uIDi
i

)r′
· (d̃L+1)

P`
i=1,π(i)=⊥ αiIDi , dL+1 = d̃L+1 · gr

′
1 ,

di =

{
d̃π(i) · ur

′

π(i) if π(i) 6= ⊥
(d̃L+1 · gr

′
1 )αi if π(i) = ⊥

, ∀i = ν + 1, . . . , L
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Finally, B returns (d0, dν+1, . . . , dL+1) to A.

Before describing the rest of the proof we show that if (d̃0, d̃ν+1, . . . , d̃L+1) is a valid secret
key for the identity ĨD , then (d0, dν+1, . . . , dL+1) is a valid secret key for

−→
ID (under the HIBE

system with master public key mpk). Assume that

d̃0 = h̃2

(
ũ0

ν∏
i=1

ũ
fIDi
i

)r
, d̃L+1 = g̃r1, d̃i = uri

for some randomness r ∈ Zp. Since we can write d̃0 = h2

(
u0
∏`
i=1,π(i)6=⊥ u

IDi
i

)r
, we have

d0 = h2

(
u0
∏`
i=1,π(i)6=⊥ u

IDi
i

)r
·
(
u0
∏`
i=1 u

IDi
i

)r′
· (d̃L+1)

P`
i=1,π(i)=⊥ αiIDi

= h2

(
u0
∏`
i=1,π(i)6=⊥ u

IDi
i

)r+r′
·
(∏`

i=1,π(i)=⊥ u
IDi
i

)r′
·
(∏`

i=1,π(i)=⊥ u
IDi
i

)r
= h2

(
u0
∏`
i=1 u

IDi
i

)r+r′
which is a valid secret key element for the identity

−→
ID and randomness r + r′. Furthermore,

as one can observe, dL+1 = gr+r
′

1 and di = ur+r
′

i that are also valid elements for randomness
r + r′.

Finally, following the same argument in the proof of Theorem B.1 we can see that ĨD is a
legitimate query for B.

LR(m0,m1): B executes the procedure C̃∗ ← LR(m0,m1) of the game IND-sHID-CPA. Let C̃∗ =
(C̃∗1 , C̃

∗
2 , C̃

∗
3 ) be an encryption of mβ (for some β ∈ {0, 1}) for the identity ĨD

∗
.

B computes and outputs the ciphertexts (C0, . . . , Cn) as it is described below.

For all i = 0 to n, B2 sets:

Ci1 = C̃∗1 , C
i
3 = C̃∗3 , C

i
2 = C̃∗2 · (C̃∗1 )

P`∗
j=1,π(j)=⊥ αjID

i
j .

To see that the computed ciphertexts are correct, assume s be the randomness used to create
C̃∗. So, we have: C̃∗1 = g̃s1 and

C̃∗2 =

ũ0

ν∗∏
j=1

ũ
fID∗j
j

s

=

u0

`∗∏
j=1,π(j)6=⊥

u
ID0

j

j

s

Thus ∀i = 0, . . . , n we obtain:

Ci2 = C̃∗2 ·

 `∗∏
j=1,π(j)=⊥

u
IDi

j

j

s

=

u0

`∗∏
j=1,π(j)6=⊥

u
ID0

j

j

s

·

 `∗∏
j=1,π(j)=⊥

u
IDi

j

j

s

Since the target identities are distributed according to RWIBE , we can see that the elements
Ci2 are distributed correctly as well.

Finalize(β′): Let β′ be the bit received by A. B concludes its simulation by executing Finalize(β′).

Since B can perfectly simulate the game IND-sCR-CPA to the adversary A, we have:

AdvIND-sHID-CPA
BBG−HIBE (B) ≥ AdvIND-sCR-CPA

BBG−HIBE (A)

which concludes the proof.
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B.3 The case of the Waters HIBE [35]

In this section we show that the HIBE scheme proposed by Waters in [35] has Property 1 and it is
IND-sCR-CPA-secure. We recall the scheme in Figure 13

Setup:
g1, g2

$← G ; α $← Zp
h1 ← gα1 ; h2 ← gα2
ui,j

$← G for i = 1, . . . , L; j = 0 . . . n
mpk ← (g1, g2, h1, u1,0, . . . , uL,n)
msk ← h2

Return (mpk ,msk)

KeyDer(d(ID1,...,ID`), ID`+1):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
r`+1

$← Zp
d ′0 ← d0 · F`+1(ID`+1)r`+1

d ′`+1 ← g
r`+1
1

Return (d ′0, d1, . . . , d`, d ′`+1)

Enc(mpk , ID ,m):
Parse ID as (ID1, . . . , ID`)
r

$← Zp ; C1 ← gr1
For i = 1 . . . ` do
C2,i ← Fi(ID i)r

C3 ← m · ê(h1, g2)r

Return (C1, C2,1, . . . , C2,`, C3)

Dec(d(ID1,...,ID`), C):
Parse d(ID1,...,ID`) as (d0, . . . , d`)
Parse C as (C1, C2,1, . . . , C2,`, C3)

m′ ← C3 ·
Q`

i=1 ê(di,C2,i)

ê(C1,d0)

Return m′

Figure 13: The Waters HIBE scheme.

The scheme has identity space Zλ2 where λ is sufficiently long so that one can hash identities
into strings of length λ avoiding collisions. We first show that the scheme satisfies Property 1 by
describing the following algorithm:

Waters.Convert(mpk , C0,
−→
ID0, . . . , Cn,

−→
IDn,

−→
ID) Assume that |

−→
ID0| = . . . = |

−→
IDn| = ` and |

−→
ID | =

`′ ≤ `. Recall that each Ci has form (Ci1, {Ci2,j}`j=1, C
i
3). First, consider the case when `′ = `.

The algorithm works as follows.

Set C1 = C0
1 and C3 = C0

3 .

Find ~k ∈ Zn such that ∆~k = (
−→
ID −

−→
ID0), and compute

∆̃ =

C
0
2,1/C

1
2,1 C0

2,1/C
2
2,1 · · · C0

2,1/C
n
2,1

...
...

...
C0

2,`/C
1
2,` C0

2,`/C
2
2,` · · · C0

2,`/C
n
2,`

 =
[
∆̃(1)|| · · · ||∆̃(n)

]
∈ G`×n

Finally, for all j = 1 to `, set C2,j = C0
2,j ·

∏n
i=1(∆̃(i))ki , and output C = (C1, {C2,j}`j=1, C3).

If `′ < `, then one can first pad
−→
ID to get

−→
ID ′ of length ` (e.g., by setting ID ′i = ID0

i for
`′ < i ≤ `), and then use the above procedure to generate a ciphertext C ′ for

−→
ID ′. Finally, a

valid ciphertext for
−→
ID can be obtained by removing the elements C2,j for j > `′.

The algorithm’s correctness can be verified by inspection.
We prove the security via the following theorem.

Theorem B.3 If there exists an adversary A that has IND-sCR-CPA-advantage ≥ ε against the
Wat-HIBE scheme w.r.t. RWIBE , then there exists an adversary B that has IND-sHID-CPA-
advantage ε against the same scheme Wat-HIBE. Namely:

AdvIND-sHID-CPA
Wat−HIBE (B) = AdvIND-sCR-CPA

Wat−HIBE (A)
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Proof: We prove the theorem by describing the adversary B that plays the game IND-sHID-CPA
against the scheme by simulating the game IND-sCR-CPA to the adversary A. Again, the idea
behind the techniques used in the proof is very similar to what we did in the proofs of Theorem B.1
and Theorem B.2.

Initialize(
−→
ID0, . . . ,

−→
IDn): B takes as input a set of identities (

−→
ID0, . . . ,

−→
IDn) ∈ RWIBE such that

−→
ID i ∈ Zλ`∗2 for all 0 ≤ i ≤ n. Let ∆ = ∆(

−→
ID0, . . . ,

−→
IDn) and define

Z(∆) = {j :
[
∆1

[j,jλ−1], · · · ,∆
n
[j,jλ−1]

]
= 0λ×n} ⊆ {1, . . . , `∗}

where ∆i
[j,k] denotes that we consider vector ∆i restricted to rows from j to k. So, Z(∆) =

{j1, . . . , jν∗} is the set of levels j such that all the identities agree at that level. For all
i ∈ {1, . . . , L} we define the following map:

π(i) =


k if jk ∈ Z(∆) ∧ i ≤ `∗
ν∗ + (i− `∗) if i > `∗

⊥ if i /∈ Z(∆) ∧ i ≤ `∗

B computes ĨD
∗

by setting ĨD
∗
i = ID0

i for all i = 1, . . . , `∗ such that π(i) 6= ⊥, and executes the
procedure ˜mpk ← Initialize(ĨD

∗
) of the game IND-sHID-CPA. The received master public

key is of the form ˜mpk = (g̃1, g̃2, h̃1, ũ0,1, ũ1,1, . . . , ũ0,L, ũ1,L). B constructs another master
public key mpk = (g1, g2, h1, {ui,j}i=1...,L,j=0,...,λ) as follows:

g1 = g̃1, g2 = g̃2, h1 = h̃1

ui,j =

{
ũπ(i),j if π(i) 6= ⊥
g
αi,j
1 for αi,j

$← Zp if π(i) = ⊥
, ∀i = 1, . . . , L, ∀j = 1, . . . , λ

Finally, Breturns mpk to A.

Extract(
−→
ID): Let

−→
ID be the queried identity, and let ` = |

−→
ID |. B defines the identity ĨD by setting

ĨDπ(i) = ID i for all 1 ≤ i ≤ ` such that π(i) 6= ⊥ and asks for the secret key of ĨD by executing
sk fID ← Extract(ĨD). Let sk fID = (d̃0, d̃1, . . . , d̃ν) be the received secret key. B computes:

d0 = d̃0 ·

 ∏̀
i=1,π(i)=⊥

ui,0 λ∏
j=1

u
IDi,j

i,j

ri , di =
{
d̃π(i) if π(i) 6= ⊥
gri1 if π(i) = ⊥ , ∀i = 1, . . . , `

where ri
$← Zp. Finally, B returns (d0, d1, . . . , d`) to A.

It is not hard to see that if (d̃0, d̃1, . . . , d̃ν) is a valid secret key for the identity ĨD , then
(d0, d1, . . . , d`) is a valid secret key for

−→
ID (under the HIBE system with master public key

mpk). Moreover, following the same argument showed in the proof of Theorem B.1, one can
see that ĨD is a legitimate query for B.

LR(m0,m1): B executes the procedure C̃∗ ← LR(m0,m1) of the game IND-sHID-CPA. Let C̃∗ =
(C̃∗1 , C̃

∗
2,1, . . . , C̃

∗
2,ν∗ , C̃

∗
3 ) be an encryption of mβ (for some β ∈ {0, 1}) for the identity ĨD

∗
.

B outputs the ciphertexts (C0, . . . , Cn) that are computed as follows.
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For all i = 0 to n, B2 sets:
Ci1 = C̃∗1 , C

i
3 = C̃∗3

Ci2,j =

{
C̃∗2,π(j) if i ∈ Z(∆)

(C̃∗1 )α0,j+
Pλ
l=1 αj,l·ID

i
j,l if i /∈ Z(∆)

, ∀j = 1, . . . , `∗

Finalize(β′): Let β′ be the bit received by A. B concludes its simulation by executing Finalize(β′).

Since B can perfectly simulate the game IND-sCR-CPA to the adversary A, then we have:

AdvIND−sID−CPAWat−HIBE (B) = AdvIND-sCR-CPA
Wat−HIBE (A)

which concludes the proof.
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