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Abstract. Introduced in 1996 and greatly developed over the last few years,
Lattice-based cryptography offers a whole set of primitives with nice features,
including provable security and asymptotic efficiency. Going from “asymptotic”
to “real-world” efficiency seems important as the set of available primitives
increases in size and functionality. In this present paper, we explore the im-
provements that can be obtained through the use of an FPGA architecture for
implementing an ideal-lattice based cryptographic primitive. We chose to target
two of the simplest, yet powerful and useful, lattice-based primitives, namely
the SWIFFT and SWIFFTX primitives. Apart from being simple, those are also
of central use for future primitives as Lyubashevsky’s lattice-based signatures.
We present a high-throughput FPGA architecture for the SWIFFT and
SWIFFTX primitives. One of the main features of this implementation is
an efficient implementation of a variant of the Fast Fourier Transform of order
64 on Z257. On a Virtex-5 LX110T FPGA, we are able to hash 0.6GB/s, which
shows a ca. 16× speedup compared to SIMD implementations of the literature.
We feel that this demonstrates the revelance of FPGA as a target architecture
for the implementation of ideal-lattice based primitives.

Keywords: Lattice-based cryptography, Provably secure, Hardware accel-
erator, FPGA, FFT, Hash functions

1 Introduction

Lattice-based cryptography (see [25] for a beautiful survey) has been developing
at a quick pace over the last fifteen years since the seminal paper by Ajtai [2].
Its main attractive features, among others (including no known quantum attack
at the time this paper is written) are probably rigorous asymptotic security
analyses and asymptotic efficiency.

Such an analysis has been obtained through the identification of two specific
and versatile problems, SIS [3] and LWE [30,31], such that the average instance
of those problems is at least as hard as the worst-case instance of a lattice
problem. This lattice problem is actually a slight relaxation of the problem of
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finding a shortest non-zero vector of a lattice in the `2 norm, known to be NP-
hard under randomized reductions. The cryptographer then only has to prove
the equivalence of breaking the cryptosystem and solving a random instance of
either SIS or LWE to get a strong asymptotic security guarantee.

As for efficiency, it should be noted that the basic operation in lattice-based
cryptography is a matrix-vector product, which has quadratic complexity in the
size of the vector. This complexity was actually lowered to quasi-linear through
the introduction of structured matrices, idea which originated in the well-known
NTRU cryptosystem [16] and was revived by Micciancio, who introduced ma-
trices with a specific block-Toeplitz structure, namely negacyclic structure1. As
the product of such a matrix by a vector amounts to computing a product of
two polynomials modulo Xn + 1, one can get a quasi-linear computation time
via the use of an FFT-type algorithm for multiplying polynomials. This has
given rise to the definition and study of the hardness of structured variants of
the LWE [23] and SIS [21,27] problems, which have proven to be as versatile as
their purely linear counterparts and to enjoy similar security reductions, while
offering cryptographic primitives with asymptotic quasi-linear complexity.

However, envisioning the deployment of lattice-based cryptography requires
a practical, not only asymptotic, assessment of its parameters in order to reach
a good efficiency/security compromise. By using the explicit reductions from
the cryptosystems to classical lattice problems such as SIVPγ (a variant of the
Shortest nonzero Vector Problem, see e.g. [25]), one can derive rather pre-
cise estimates for security of lattice-based primitives, using the significant body
of work performed on lattice basis reduction and enumeration of short vectors.
Such studies of lattice problems and the impact they have on parameters choice
for lattice-based cryptography have been made on a variety of platforms, see
e.g. for CPUs [5, 8, 11, 19, 25], for GPUs [14, 15, 18] and for FPGA [9]. How-
ever, the assessment of the efficiency of (ideal-) lattice-based primitives does
not seem to have given rise to much interest, except in software (CPU), though
significant activity has been observed over the last months concerning homo-
morphic encryption, see e.g. [12, 26, 32]. In particular, this raises an important
question on what various architectures (CPU, GPU, FPGA) can bring (advan-
tages and drawbacks) as far as implementation of ideal-lattice-based primitives
are concerned.

The main purpose of this paper is to study the relevance of FPGA imple-
mentation for an ideal-lattice-based cryptography primitive, and to compare
it with highly optimized software implementation. In order to do this, we de-
scribe a high-throughput architecture for the simplest, though powerful and
useful, of the lattice-based primitives, namely the SWIFFT [22] hash function
and its improved version SWIFFTX [4]. The former enjoys a security proof for
its collision-resistance properties (which is both desirable and highly unusual for
a hash function), whereas the latter is an extension of the former, adding some
scrambling steps to avoid undesirable linearity properties. Further, SWIFFT
is used in other important cryptographic primitives such as Lyubashevsky’s

1 A matrix is said to be negacyclic if its coefficients are constant along each diagonal, up to
a sign change when the diagonal wraps around
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signature algorithm2 [20]. The present work can thus be considered as a first
step towards the implementation of more advanced lattice-based primitives.
Our major contributions to the high throughput hardware implementation of
the SWIFFT and SWIFFTX hash functions can be summarized as follows:

– Pipelined implementation of the modular Fast Fourier Transform over Zp,
p = 2k + 1, using the diminished-one number system;

– Packing the SWIFFT function descriptor constant coefficient multipliers
into BlockRAM primitives;

– DSP overclocking for hardware reuse;

– Pipelined implementation of the ConvertToBytes function.

The paper is organized as follows: Section 2 presents an overview of the
SWIFFT hash function introduced in [22], and briefly argues the choice to stick
to the original SWIFFT parameters. Section 3 describes our high-throughput
hardware implementation for the modular FFT. Though we restrict to the orig-
inal SWIFFT parameters, it must be pointed that the FFT is a basic building
block for all ideal-lattice based cryptography. Section 4 shows the proposed
architecture for the SWIFFT hash function. Section 5 presents the hardware
architecture for the SWIFFTX hash function which uses SWIFFT as its basic
building block. Experimental results are shown in Section 6, while concluding
remarks and future work are presented in Section 7.

2 The SWIFFT hash function

2.1 Description of SWIFFT

Let n be a power of 2, p a prime number such that 2n|p − 1, and R be the
ring Zp[α]/(αn + 1), which can be identified to the set of polynomials over Zp
with degree < n. Let m be an integer such that m ≥ log p. The SWIFFT hash
function with parameters n,m, p takes as input m elements of R, and computes
a linear combination of those with prescribed coefficients A = (A0, . . . , Am−1) ∈
Rm, namely

SWIFFTA(x0, . . . , xm−1) =

m−1∑
i=0

Ai × xi, (1)

where, in order to hash a binary string, the input message µ is cut into chunks
of mn bits, which are in turn interpreted as the binary polynomials

(x0, . . . , xn−1) = (µ0+µ1α+· · ·+µn−1αn−1, µn+· · ·+µ2n−1αn−1, . . . , µ(m−1)n+· · ·+µmn−1αn−1) ∈ Rm.

In particular, SWIFFT hashes mn bits to ndlog pe bits.

2 Note that though Lyubashevsky does not directly point SWIFFT, one of the basic opera-
tions of his signature algorithm amounts to compute A · y mod q, which is the same if A
has a suitable structure.
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2.2 FFT aspects of SWIFFT

As pointed in [22], the polynomial products in Equation (1) can be efficiently
computed using (part of) a 2n-order Discrete Fourier Transform (DFT) per-
formed over Zp (sometimes referred to as Number Theoretic Transform (NTT),
see eg. [29]). Let ω be a primitive 2n-th root of unity lying in some extension
field F of Zp. Define ODFT2n,ω(P ) by

ODFT2n,ω

(
n−1∑
i=0

uiX
i

)
=

n−1∑
j=0

ω(2k+1)juj


0≤k≤n−1

=

n−1∑
j=0

(
ω2
)kj

(ωjuj)


0≤k≤n−1

.

As suggested by the last equality, this modified DFT can be computed
by the classical FFT algorithm [6], with order n and primitive root ω2, ap-
plied to the polynomial

∑n−1
i=0 ω

iuiX
i. This requires a quasi-linear number

of operations in the field F. Further, ODFT is suited to computing polyno-
mial products modulo Xn + 1 (our goal here), since it is readily checked that
ODFT2n,ω(P ·Q mod (Xn+1)) = ODFT2n,ω(P )?ODFT2n,ω(Q), where ? stands
for the componentwise multiplication of vectors.

The setting where p = 1 mod 2n is especially favourable since in that case
Zp contains a 2n-th primitive root of unity ω, so that we have F = Zp. All the
underlying FFT computation is thus performed by arithmetic over Zp. Further
note that such moduli (powers of 2 plus one – recall that n is a power of 2) are
also well-suited to efficient implementation of modular reduction.

A slight change of definition of the SWIFFT function allows for further op-
timizations, see [22]. Indeed, as the multipliers Ai are fixed in advance, it is pos-
sible to store their Fourier representation instead of evaluating it3. Also, since
ODFT is a bijection between Znp and polynomials over Zp of degree < n, the
hash value can be represented by the value ODFT(SWIFFT(u0, . . . , un−1)) (in
other words, in the Fourier domain) and there is no need to compute the inverse
FFT; in the sequel, we shall denote this output FFT vector by (Z0, . . . , Zn−1).

Based on the above observations, the algorithm for computing the hash
value can be formulated as follows:

Input : String to be hashed, seen as an element of {0, 1}n×m.
Output : The hash value (Z0, ..., Zn−1) ∈ Zn

p

’Diffusion’ step:

Multiply the ith row of the input matrix by ωi;
Apply the ODFT over each column of the resulting matrix:

(Y0,j , ..., Yn−1,j) = ODFT (ω0 · x0,j , ..., ω
n−1 · xn−1,j).

’Confusion’ step:
Multiply the ith column by the element Ai,j ;
Compute the sum of the elements on a row:

Zi =

m−1∑
j=0

Ai,j × Yi,j .

Algorithm 1: The SWIFFT hash function algorithm

3 or, instead, to choose the Fourier transform Âi uniformly at random instead of choosing
Ai, both giving rise to the same distribution.
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2.3 Parameter choice for FFT/SWIFFT

Based on security as well as performance considerations, the authors of [22]
propose the following concrete parameters for the hash function: n = 64,m =
16, p = 257. Indeed, as was previously pointed, since p = 1 mod 2n, for these
parameter values, one can use ω = 42 ∈ Zp, and the function maps a binary
input of length m×n = 1024 bits to an output vector in the range Znp that can
be represented on 520 bits.

The original paper and the survey [25] argue that those parameters guaran-
tee strong security (the latter mentionning a 100-bit equivalent for the symmet-
ric security corresponding to enumeration attacks). Recent work by Buchmann
and Lindner [5] argues that those parameters only provide roughly 68 bit of
symmetric security. However, this security analysis accounts for the resistance
to pseudo-collisions (roughly speaking, collisions where the xi are “small” but
not restricted to {0, 1}), whereas the security level for resistance to real colli-
sions seems to remain higher than 100 bits. For this reason, but also because
we wanted to stick to the original parameters of SWIFFT in order to be able
to plug the latter into SWIFFTX, we stick to those parameters values in the
sequel.

3 Hardware architecture for the FFT

The performance of the modular FFT depends on the efficient implementation
of the basic modular arithmetic operators such as addition and multiplication
in Zp. This section describes the proposed implementation of the modular arith-
metic operators, and, based on them, presents a high-throughput design for the
FFT.

3.1 Modular Arithmetic Operators Implementation

All arithmetic operations involved in the transform are performed over the Zp
field. We shall use here the fact that the standard value of p for SWIFFT,
257, is equal to 28 + 1. Note that this is a strong requirement, as conjecturally,
only finitely many (and probably very few) prime numbers of that form (the
so-called Fermat primes) do exist.

As proposed in [1], an efficient way to represent numbers modulo p = 2k + 1
is to apply the diminished-one number system, where a non-zero number A is
represented as Adim := A− 1 on log2(p) bits, while number zero is indicated by
a special flag A.z. We will denote the tuple (Adim,A.z) by A′.

Modular Addition and Subtraction Modular addition in this system can
be carried out as follows [1]:

Sdim = (Adim +Bdim + 1)[2k + 1] = (Adim +Bdim + cout)[2
k], (2)

where Sdim is the diminished-one representation of the sum A + B while cout
represents the carry-out bit of the addition Adim +Bdim. Besides implementing
Equation (2), the modular adder must have a zero-detection circuit that asserts
the zero flag. The design of the modular adder is shown in Figure 1.

Modular subtraction can be carried out by adding the modular complement
of Bdim which is equivalent with its ones’ complement representation.
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log2(p)

A.dim

A.z

B.dim

B.z

log2(p) log2(p)

S.dim

S.z

+

cin

cout +

cin

cout
0

Fig. 1. Architecture of the modular adder unit based on diminished-one representation

Modular Multiplication The FFT requires the evaluation of polynomials at
the n roots of unity, i.e. ω0, ω2, . . . , ω2n−2. Besides additions and subtractions,
this evaluation requires multiplication of the polynomial coefficients by the roots
of unity at a certain power that can be considered as constants (ω = 42 for our
parameter choice).

We considered several modulo 2k + 1 multiplier architectures based on the
techniques proposed in [7] and [35]. These techniques can be divided into four
classes as follows:

1. Multiplication by means of lookup tables, where the operands form the
address of the lookup table and the content of the table stores the product.

2. Quarter-squared method that uses lookup tables for evaluating (A/2)2.
Then, the product of two arbitrary numbers is computed based on the equa-
tion:

(A×B)[2k + 1] =

((
A+B

2

)2

−
(
A−B

2

)2
)

[2k + 1].

3. Multiplication by k × k bits multiplier using the following equation:

(A×B)[2k + 1] = ((A×B) mod 2k − (A×B) div 2k)[2k + 1]. (3)

4. Rewrite modular multiplication as a sum of partial products. If A =∑k−1
i=0 2iai and B =

∑k−1
i=0 2ibi:

(A×B)[2k + 1] = (
k−1∑
i=0

(PPi + 1) + 2)[2k + 1],

PPi = ai · bk−i−1 . . . b0bk−1 . . . bk−i + ai · 0 . . . 0︸ ︷︷ ︸
k−i

1 . . . 1︸ ︷︷ ︸
i

.

The multiplication methods were evaluated for the cases when both operands
are variable and also when one of the operands is constant. The area utilizations
of the multiplication methods expressed as the number of 6-input LUTs are
given in Table 1.

Based on the concrete parameters for SWIFFT (k = 8), we implemented the
modular multiplication by ω2i by means of lookup tables. Figure 2 shows the
design of this multiplier, where the ith ROM block stores the diminished-one
representation of the product resulting from the multiplication of all non-zero
numbers modulo p by ω2i. The zero flag of the product is asserted only if the
input zero flag is asserted (ω2i is non-zero for all i). Thus, the zero flag does
not have to be stored and no logic resources are required for generating it.
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Table 1. Number of FPGA lookup tables (LUT) required for modulo (2k + 1) multiplier

Method Variable inputs Constant coefficient

k = 8 k = 16 k = 8 k = 16

Lookup tables 8× 103 1× 109 32 16× 103

Quarter-squared 158 32× 103 32 16× 103

Multiplier-based 105 345 35 63

Partial product-based 72 145 N/A N/A

ROMi

0 * ω2i [p]

1 * ω2i [p]

addr. 0

addr. 1

(p-1) * ω2i [p]addr. p-1

log2(p) bits

log2(p)

A.dim

log2(p)

P.dim

A.z P.z

.

.

.

Fig. 2. Constant coefficient modular multiplier implemented by means of lookup tables

3.2 Overall FFT Architecture

Most of the FFT architectures reported in the literature apply a recursive de-
composition of the problem into multiple butterfly stages as shown in Fig-
ure 3 [6]. The hardware implementation can be iterative, serial or pipelined,
mostly depending on the size n of the transform, and the input pattern [17,24].
Also, a distributed serial arithmetic approach [28, 33] would be feasible in this
particular case.
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Fig. 3. Traditional implementation of the FFT

Considering the size of the transform required for SWIFFT (n = 64) and
that the algorithm applies the transform multiple times, we opted for a Radix-
2 decomposition pipelined architecture consisting of log2(n) butterfly stages
where each stage consists of n/2 butterflies. The control logic for the FFT is
implemented using the valid-ready handshaking protocol, as shown in Figure 4.

The butterfly scheme consists in the previously presented modular addition-
subtraction unit and constant coefficient multiplier. Thus, all operations inside
the FFT are carried out in the diminished-one number system and there is no
need to convert the intermediary values back to their normal representation.
The throughput of the proposed implementation is 1 cycle / sample.
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Fig. 4. Pipelined FFT architecture

Note that this FFT architecture could still be optimized in terms of latency -
one possible improvement could consist in reducing the overall latency by imple-
menting an FFT of degree 8 by means of lookup tables instead of the traditional
decomposition into FFTs of degree 4 and 2. This would reduce the latency by
2 cycles but it would increase the FPGA device resource consumption.

4 Hardware architecture for SWIFFT

As presented in Section 2, the SWIFFT hash function performs FFTs m times
to compute the Fourier coefficients of each polynomial of degree < n formed
by the input message bits. The overall time needed to execute all the FFT
transforms for SWIFFT is m + log2(n) cycles.

4.1 Multiplication by the function descriptor matrix

After obtaining the Fourier coefficients Y0,j , ..., Yn−1,j of the polynomials formed
by input coefficients X0,j , ..., Xn−1,j , these coefficients are multiplied by the
function descriptor elements A0,j , ..., An−1,j . The resulting products are accu-
mulated for j = 0, ...,m− 1 to obtain Zi:

Zi =

m−1∑
j=0

Ai,j × Yi,j . (4)

Considering that Yi,j is represented in diminished-one format, Equation (4)
becomes:

Z ′i =

m−1∑
j=0

(Ai,j × Y ′i,j + 1) +

m−1∑
j=0

A′i,j . (5)

The pipelined implementation of the FFT proposed in Section 3 computes a
new set of Fourier coefficients in each clock cycle. Hence, Equation (5) can
be efficiently implemented in hardware as a Multiply-Accumulate unit (MAC)
consisting of a pipelined modular multiplier, modular adder and the internal
register. The Fourier coefficients generated throughout the m consecutive clock
cycles are multiplied by their corresponding function descriptor element and the
product is accumulated using the diminished-one modular adder. The second
term of Equation (5) is a constant and can be set as the synchronous reset value
of the internal register.

The hash value Z ′i (represented in the Fourier domain) is obtained after m
iterations of the MAC. The internal register has to be reset in the following
clock cycle to start a new operation. This reset implies inserting a stall cycle
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in the FFT pipeline. The overall throughput of the MAC thus becomes m+ 1
cycles per sample.

Figure 5 shows the SWIFFT architecture that consists of the FFT and MAC
components.
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Fig. 5. Overall hardware architecture for the SWIFFT hash function

We considered two approaches for implementing the multipliers inside the
Multiply-Accumulate Unit (first term in Equation (5)) having different area and
performance trade-offs. In the first approach, we treat the function descriptors
Ai,j as constants and implement constant coefficients multipliers by means of
lookup tables, similar to the one shown in Figure 2. The benefit of this approach
is that the memory can store the modulo reduced products in diminished-one
format and thus multiplication is executed in one clock cycle. However, this
option also implies implementing m× n memories of size 2k × (k + 1) bits.

Based on the parameters proposed for SWIFFT in [22], this is still feasible:
the memories evaluating the product of all the Fourier coefficients at a certain
index i can be efficiently packed into a single Xilinx BlockRAM primitive inside
the FPGA chip. Thus, we obtain a multiplier structure as shown in Figure 6.

BlockRAMi

Am-1,i Multiplier 

log2(p) bits

log2(p)

Y.dim

log2(p)

P.dim

Y.z P.z

A1,i Multiplier 

A0,i Multiplier
0

p-1

(m-1)*p

m*p-1

addr data

Counter

log2(m)

p

2*p-1

Fig. 6. Multiplier by function descriptor elements A0,i, ..., Am−1,i packed into BlockRAM
primitive

If the size of the function descriptor Ai,j is larger or if there are multiple
function descriptors (as in the case of the SWIFFTX hash function [4]) using
the ROM-based method is unattractive due to excessive storage requirements.
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The second approach consists in applying an unsigned k × k bits multiplier
and computing the modulo reduced product based on Equation (3). An efficient
solution for implementing the multiplier is to use the DSP primitives dedicated
for this purpose. The DSP48E slices of a Xilinx FPGA can operate at a higher
frequency compared to other primitives - in order to reduce the overall number
of required DSP48E slices, it is possible to overclock these primitives to execute
two multiplications per cycle [34]. Registers are inserted at the input and the
output of the DSP48E blocks which, together with the embedded registers, form
double synchronizers that transfer data from/to the double-frequency clock do-
main. The final architecture of the modular multiplier is shown in Figure 7.
Thus, the overall number of DSP48E blocks required for SWIFFT is n/2.
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Fig. 7. Implementation of modulo 2k + 1 multiplier using overclocked DSP48E primitive

4.2 Overall SWIFFT Architecture

The overall hardware architecture for SWIFFT is shown in Figure 5. We opted
for the BlockRAM-based implementation of the MAC multipliers (the first ap-
proach) having one cycle latency. The input message is read in n-bit blocks
through m consecutive cycles. The input multiplexers implement the multiplica-
tion of the input polynomial coefficient bits by ωi. The output of the multiplexer
is already represented in the diminished one format. The FFT starts processing
one n-bit block of the input message in each clock cycle and has a latency of
log2(n) cycles. The MAC accumulates the Fourier coefficients to generate the
final hash value. The overall execution time of SWIFFT is log2(n) + m + 2
cycles. The hash value obtained is represented in the diminished-one format -
converting it back to the normal representation is covered in the next section.

5 Hardware architecture for the SWIFFTX hash function

The SWIFFTX hash function [4] uses SWIFFT as its basic building block. The
function consists of three layers as shown in Figure 8, whose detailed function-
ality and design rationale are described in [4]:
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1. An inner layer of 3 parallel invocations of SWIFFT on the same input data
with different function descriptor matrices;

2. An intermediary layer that converts the output of the inner layer from
modulo p to binary and applies S-boxes to break the linearity property
of SWIFFT;

3. An outer layer consisting of a single invocation of SWIFFT on the output
of the intermediary layer.

SWIFFT [A0
nxm

]

x0,0

x0,1

x0,m-1

...

x1,0

x1,1

x1,m-1

...

xn-1,0

xn-1,1

xn-1,m-1

...

...

SWIFFT [A1
nxm

] SWIFFT [A2
nxm

]

... ... ...

ConvertToBytes

Z’0,0 Z’0,1 Z’0,n-1

ConvertToBytes

Z’1,0 Z’1,1 Z’1,n-1

ConvertToBytes
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Fig. 8. The SWIFFTX compression function

The proposed hardware implementation follows a data-flow architecture
where all the three layers are placed on a single FPGA chip and intercon-
nected by pipeline registers. This leads to an increased area/throughput ratio,
but it also results in a high-throughput architecture. In order to process the in-
put message at a fixed rate without additional storage requirements, the three
SWIFFT invocations in the inner layer have to be executed in parallel. Consid-
ering the SWIFFT architecture proposed in Section 4.2 (Figure 5), it is clear
that the component implementing the FFT can be shared across the three in-
stantiations. Hence, only the multiply-accumulate units that perform the linear
combination by the function descriptor matrices have to be instantiated three
times.

Thus, the architecture of the inner layer implies 3 × n modular multiplier
blocks operating in parallel. For the concrete parameters of SWIFFTX (p = 28+
1), this can be efficiently implemented using 3n/4 DSP48E blocks considering
that:
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1. the DSP48E blocks are overclocked to multiply two Fourier coefficients per
cycle;

2. the DSP48E input port is divided into upper and lower 16-bit words, so that
it multiplies one Fourier coefficient by two elements from different function
descriptors, A0

i,j and A1
i,j .

The output of the inner layer is comprised of elements in Z257 that need to
be converted into binary qauntities for further use. This is done by the so-called
ConvertToBytes function introduced in [4] which is an injective mapping of n =
64 elements of Z257 into 65 bytes. The ConvertToBytes function performs the
change of base from 257 to 256 by taking groups of 8 elements Z ′i, ..., Z

′
i+7 ∈ Z257

and producing 8 elements Zi, ..., Zi+1 ∈ Z256 and a bit b based on the following
formula:

7∑
i=0

Z ′i × 257i =

7∑
i=0

Zi × 256i + b× 2568. (6)

Then, each of the outputs Zi ∈ Z256 are fed to an S-box that performs a simple
permutation over {0, 1}8. The additional bits b generated by the execution
of the ConvertToBytes function are combined over 8 groups to form a byte.
This combined byte is then also permuted by the S-box. Finally, the algorithm
executes SWIFFT over the output bytes produced by the S-box.

Based on Equation (6), Zi ∈ Z256 can be expressed as shown in the equations
below:

σ−1 = 0, σi × 256 + Zi =

7∑
k=i

(

(
k

i

)
× Z ′k) + σi−1 for i = 0, . . . , 7, b = σ7. (7)

As all Z ′k become available in the same cycle, we implement Equation (7) as a
pipelined accumulator using a binary tree of 16-bit adders to compute Zi. The
generic design for Z3 is shown in Figure 9.
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Fig. 9. Pipelined Multiply-Accumulate Unit for computing Z3 in the ConvertToBytes function

The binomial sum from Equation (7) is computed in 3 cycles. For computing
Zi, σi−1 becomes available after i + 3 cycles - we insert i pipeline registers
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on the datapath in order to compensate the delay. The proposed hardware
architecture for the intermediary layer consists of a pipelined implementation of
the ConvertToBytes function over one group of 8 elements and 8 S-box instances
implemented as lookup tables that permute the outputs of the ConvertToBytes
function.

The connection between the inner and intermediary layers is realized
through 8 parallel-in serial-out shift registers. The output of the intermedi-
ary layer is fed to the outer layer instantiation of SWIFFT.

The overall SWIFFTX architecture is shown in Figure 10. Note that the
SWIFFTX hash function has as its final step the so-called FinalTransform pro-
cedure. This procedure converts the final 520-bits output of the hash function
into 512 uniformly distributed bits. Due to resource limitation, this transform
step is still implemented in software. Considering that it is invoked only after
the entire message has been hashed, this would not have a significant impact
on the function’s throughput when hashing long messages.
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Fig. 10. Hardware architecture for the SWIFFTX hash function

6 Experimental Results and Analysis

The hardware architectures for the FFT, SWIFFT and SWIFFTX, respectively
presented in Sections 3, 4 and 5 were implemented in VHDL and tested on a
Xilinx ML509 platform featuring a Virtex-5 LX110T FPGA. For synthesis and
place-and-route we used the ISE 13.4 design suite. The whole architecture was
thoroughly simulated in ModelSIM and tested in the field. For implementing
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SWIFFT, the parameters of the function were set as proposed in [22], i.e. n =
64,m = 16, p = 257 and ω = 42.

The function descriptor multipliers are implemented using the BlockRAM-
based approach that has one cycle latency. For SWIFFTX, parameter m is set to
32 as proposed in [4] and the function descriptor multipliers are implemented in
DSP48E blocks. Both hash functions use the same implementation of the FFT.

The resource utilizations obtained for the FFT, SWIFFT and SWIFFTX 4

hash functions are presented in Table 2. In our implementation, the FFT core is
optimized for maximum throughput - this is achieved by the Radix-2 pipelined
decomposition consisting of (n/2) · log2(n) butterfly operators suited for small
values of n (n ≤ 64). If n is further increased, it will be necessary to explore
different techniques for executing the FFT. On the other hand, increasing pa-
rameter m impacts only the execution time of the algorithm but it does not
affect the resource requirements significantly.

Table 2. Resource utilization for FFT, SWIFFT and SWIFFTX cores on Virtex-5 LX110T

Core Slices BlockRAM DSP48E Cycles/sample Latency (cycles) Frequency (MHz)

FFT 3,639 (21%) 68 (23%) 0 (0%) 1 log2(n) 150

SWIFFT 4,004 (23%) 96 (32%) 0 (0%) m + 1 m + log2(n) + 1 150

SWIFFTX 16,645 (96%) 69 (23%) 64 (100%) m + 1 2(log2(n) + m + 1) + n/2 + 2 120

In terms of the execution rate, the implementation of the FFT yields a
throughput of 1 cycle / sample with a latency of log2(n) cycles. SWIFFT con-
sists of m executions of the FFT and the accumulation of the resulting Fourier
coefficients. Before starting to process a new message block, a pipeline stall
has to be inserted in the FFT - this is required to afford a reset cycle for the
Multiply-Accumulate unit. Thus, the next hashing operation can start after
m + 1 cycles. SWIFFTX instantiates SWIFFT both in the inner and outer
layers and the ConvertToBytes function in the intermediary and outer layers.
Due to pipelining, the next message block can be hashed after m+ 1 cycles, as
in the case of SWIFFT. The ConvertToBytes function processes a group of 8
elements, thus it is executed 3n/8 + 1 times in the intermediary layer and n/8
times in the outer layer - this increases the latency of the hash function. The
execution rates and latencies are summarized in Table 2.

For SWIFFTX, the DSP48E blocks are clocked at 240 MHz (twice the op-
erational frequency of the rest of the design). The synthesis on Virtex6 and
Virtex7 FPGA devices yields the same maximal operating frequency but the
device utilization ratio is better due to larger lookup tables.

Based on the information in Table 2 we compute the throughput of the
SWIFFT and SWIFFTX hash functions for long messages when operating in
chaining mode. As shown in Table 3, the proposed hardware implementations of
the two hash functions achieve a significantly higher (at least one order of mag-
nitude) speed compared to the SIMD optimized software implementations. We
feel that the main meaning of this comparison is the fact that FPGA is a suit-

4 The area utilization excludes the FinalTransform procedure.
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able architecture for the implementation of (ideal) lattice-based cryptographic
primitives.

Table 3. Throughput of the SWIFFT and SWIFFTX hardware implementation

Core Proposed FPGA-based SIMD software
implementation (MB/s) implementation (MB/s) Speedup

SWIFFT 530 40 [22] 13.3x

SWIFFTX 607 37 [4] 16.4x

Compared to the leading commercial cores [13] and state-of-the-art imple-
mentations of the SHA-256 and SHA-512 hash functions (which remain de-facto
standards in the industry) [10], the proposed hardware implementation of the
SWIFFT and SWIFFTX hash functions achieve a higher throughput due to
pipelining. On the other hand, pipelining also has an impact on area require-
ment - as given in Table 4, the SWIFFT and SWIFFTX hash functions are
not as efficient regarding the resource utilization compared to the hardware
implementation of other hashing algorithms. However, a remarkable aspect is
that the implementation still fits in a single FPGA chip of medium size. Com-
pared to the SHA-3 finalists, SWIFFT and SWIFFTX give a stronger security
guarantee by proving that finding collisions in SWIFFT is at least as difficult
as finding short vectors in ideal lattices. However, based on Table 4, it can be
seen that this guarantee comes at a higher hardware cost.

Table 4. Comparison of the proposed hardware implementation of the SWIFFT and
SWIFFTX hash function with published implementation of the SHA-2 and SHA-3 finalist
hash functions

Core Compression ratio Max. clock (MHz) Throughput (Gbps) Slices

SHA-256 core reported in [10] 2 177 1,4 396

SHA-512 core reported in [10] 2 159 2.01 798

Helion Fast SHA-256 core [13] 2 221 1.71 319

Helion Fast SHA-512 core [13] 2 190 2.37 608

Proposed implementation of SWIFFT 2 150 4.24 4,004

Proposed implementation of SWIFFTX 4 120 4.85 16,645

BLAKE core reported in [10] 2 210 7.55 3,495

Groestl core reported in [10] 2 243 12.48 2,971

JH core reported in [10] 2 348 8.29 2,312

Keccak core reported in [10] 2 276 12.52 2,123

Skein core reported in [10] 2 230 5.34 1858

7 Conclusion and Future Work

This paper presented a pipelined architecture for the FFT performed over Zp
using the diminished-one number system. Based on the FFT, a high throughput
hardware implementation for the SWIFFT [22] and SWIFFTX [4] lattice-based
cryptographic hash functions is proposed. The implementations of both hash
functions were simulated and tested in real hardware (Xilinx Virtex5 FPGA



16 Tamás Györfi, Octavian Creţ, Guillaume Hanrot and Nicolas Brisebarre

chips) and achieve a significant speedup (more than one order of magnitude)
compared to the SIMD software implementations reported in [22] and [4]. Com-
pared to the hardware implementation of the SHA-256 and SHA-512 hash func-
tions, the proposed implementation of SWIFFT and SWIFFTX obtain a higher
throughput, though with increased area utilization. The throughput to area ra-
tio of SWIFFT and SWIFFTX are below the ratio of the hardware implemen-
tations for the SHA-3 finalist functions.

As mentioned in the introduction, the proposed implementations for
SWIFFT and SWIFFTX are optimized for the concrete parameters proposed
in [22] and are not scalable regarding area requirements. However, it should
be pointed that our architecture can, up to minor modifications, accomodate
slightly larger values of n, such as the last parameter set of Table 1 of [5], in
order to reach larger levels of security: one just needs to use the decomposition
of an FFT of size 2n into two FFTs of size n, at a cost of a factor of 2 loss in
throughput. An increase of m can similarly be dealt with, up to a linear loss in
throughput.

Our implementation choice however makes heavy use of the choice p = 257.
One might think of exploring more generic or scalable architectures for the
modular FFT. Since this modular FFT is the building block of all lattice-based
primitives, this would be of great use for future work. We intend to continue
in this direction in a forthcoming paper regarding Lyubashevsky’s signature
scheme [20].
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