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Abstract In this paper, we present a new class of knapsack type PKC referred to as K(II)ΣΠPKC. In K(II)ΣΠPKC,

Bob randomly constructs a very small subset of Alice’s set of public key whose order is very large, under the con-

dition that the coding rate ρ satisfies 0.01 < ρ < 0.5. In K(II)ΣΠPKC, no secret sequence such as super-increasing

sequence or shifted-odd sequence but the sequence whose component is constructed by a product of the same number

of many prime numbers of the same size, is used. We show that K(II)ΣΠPKC is secure against the attacks such as

LLL algorithm, Shamir’s attack etc. , because a subset of Alice’s public keys is chosen entirely in a probabilistic

manner at the sending end. We also show that K(II)ΣΠPKC can be used as a member of the class of common

key cryptosystems because the list of the subset randomly chosen by Bob can be used as a common key between

Bob and Alice, provided that the conditions given in this paper are strictly observed, without notifying Alice of his

secret key through a particular secret channel.

Key words Public-key cryptosystem(PKC), Knapsack-type PKC, Product-sum type PKC, LLL algorithm, PQC.

1. Introduction

Various studies have been made of the Public-Key Cryp-

tosystem (PKC). The security of the PKC’s proposed so far,

in most cases, depends on the difficulty of discrete logarithm

problem or factoring problem. For this reason, it is desired

to investigate another classes of PKC’s that do not rely on

the difficulty of these two problems.

One of the promising candidates among the classes of PKC

are the code-based PKC and the product-sum type PKC

[1]∼[23].

In this paper, we present a new class of knapsack type PKC

referred to as K(II)ΣΠPKC. In K(II)ΣΠPKC, Bob randomly

constructs a very small subset of Alice’s set of public key

whose order is very large, under the condition that the cod-

ing rate ρ satisfies 0.01 < ρ < 0.5. In K(II)ΣΠPKC, no secret

sequence such as super-increasing sequence or shifted-odd se-

quence but the sequence whose components are constructed

by the products of the same number of many prime num-

bers of the same size, is used. It should be noted that the

components of the secret sequence such as super-increasing

sequence or shifted-sequence have different entropies. On

the other hand the components of the secret sequence used

in K(II)ΣΠPKC take on the same entropy.

We show that K(II)ΣΠPKC is secure against the attacks

such as LLL algorithm, Shamir’s attack etc. , because a sub-

set of Alice’s public keys is chosen entirely in a probabilistic

manner at the sending end. We also show that K(II)ΣΠPKC

can be used as a member of the class of common key cryp-

tosystems because the list of the subset randomly chosen by

Bob can be used as a common key between Bob and Alice,

provided that the conditions given in this paper are strictly

observed, without notifying Alice of his secret key through a

particular secret channel.

2. K(II)ΣΠPKC for two messages

2. 1 Preliminaries

Let us define several symbols :

mi : Message symbol over Z; i = 1, 2, · · · , λ.

Γ : Intermediate message.

pi : Prime number ; i = 1, 2, · · · , n.

p : (p1, p2, · · · , pn), prime number vector.

s : (s1, s2, · · · , sn), secret sequence.

— 1 —



|A| : Size of A in bit.

#S : Order of set S.

The conventional knapsack type PKC’s are constructed

using the following sequences:

(i) : super-increasing sequence[5]

(ii) : shifted-odd sequence[13∼15]

(iii) : J-step uniform sequence[19,20]

In these sequences, entropies of the components are not

necessarily same.

On the other hands, the entropies of the components of

the secret sequence used in K(II)ΣΠPKC are exactly same.

(a)Super-increasing (b)Shifted-odd (c)K(II)ΣΠPKC
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Fig. 1 Entropys of secret sequences

We shall refer to such secret sequence as uniform sequence.

In the following sections, when the variable xi takes on an

actual value x̃i, we shall denote the corresponding vector,

x = (x1, x2, · · · , xn), as

x̃ = (x̃1, x̃2, · · · , x̃n). (1)

The C̃ and M̃ et al. will be defined in a similar manner.

2. 2 Summary of idea of K(II)ΣΠPKC

In this sub-section let us summarize the idea of a secret

system using K(II)ΣΠPKC for two messages.

Let the Alice’s set of public key, be denoted {ki}A.
For the message m = (mA,mB), Bob randomly chooses

two keys, kA and kB , from the set of Alice’s public key {ki}A.
Bob encrypts the message m into

m 7→ C = mAkA +mBkB . (2)

Alice decrypts the ciphertext C into

C 7→ m = (mA,mB). (3)

2. 3 Problem 1

Let us suppose that two public keys are chosen and in ac-

cordance with this random choice two secret keys qA and qB

are chosen from the set {qi}. The intermediate message Γ is

Γ = mAqA +mBqB . (4)

Problem 1 : Construct the set of secret keys {qi} so that

Γ may be decoded as

Γ 7→ m = (mA,mB), (5)

under the conditions that :

(i) qA and qB are randomly chosen from {qi} whose order

is very large,

(ii) coding rate ρ satisfies 0.01 < ρ < 0.5,

(iii) completely uniform sequence is used.

In the next sub-sections we shall present a scheme for con-

structing {qi} based on the maximum length code [24],as one

of the solutions for Problem 1.

2. 4 Maximum length code

In this sub-section, we assume that n is given by

n = 2g − 1. (6)

The maximum length code {FM (x)} is a cyclic code that

satisfies

FM (x) ≡ 0 mod
xn − 1

GF (x)
, (7)

where GF (x) over F2 is a primitive polynomial of degree g.

In the followings {FM (x)} will also be denoted simply by

{FM}.
Let the two code words of {FM}, Mα and Mβ over F2, be

denoted by

Mα = (α1, α2, · · · , αn) (8)

and

Mβ = (β1, β2, · · · , βn). (9)

Let the sets S1, S2, S3 be defined as follows :

S1 : Set of pairs (αi, βi)’s such that

αi = 1, βi = 1 ; i = 1, 2, · · · , n.

S2 : Set of pairs (αi, βi)’s such that

αi = 0, βi = 0 ; i = 1, 2, · · · , n.

S3 : Set of pairs (αi, βi)’s such that

αi = 0, βi = 1 ; i = 1, 2, · · · , n.

S4 : Set of pairs (αi, βi)’s such that

αi = 1, βi = 0 ; i = 1, 2, · · · , n.

Theorem 1 : The orders #S1, #S2, #S3 and #S4 are given

by

#S1 =
n+ 1

4
, (10)

#S2 =
n− 3

4
, (11)

#S3 = #S4 =
n+ 1

2
. (12)
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Proof : The Hamming weight of any code word of the max-

imum length code {FM} is n+1
2

. As the maximum length

code {FM} is a member of the class of linear codes,

MC = MA +MB ; MA |= MB (13)

is also a code word of {FM}. Namely the weight of MC is

also n+1
2

, which implies that the following relations hold:

(#S3) + (#S4) =
n+ 1

2
, (14)

(#S1) + (#S2) = n− n+ 1

2
=

n− 1

2
. (15)

Eqs.(14) and (15) imply that

(#S3) = (#S4), (16)

and

(#S1) = (#S2) + 1. (17)

From Eqs.(15) and (17), #S2 is given by #S2 = (n−1
2

−
1)/2 = n−3

4
, which implies that #S1 = n+1

4
. 2

2. 5 Construction of the set of composite number

{qi}
Let A be a code word of {FM} and p, a prime number vec-

tor whose components are randomly chosen prime numbers.

Let A and p be denoted by

A = (a1, a2, · · · , an) (18)

and

p = (p1, p2, · · · , pn), (19)

where we assume that pi has the same size ; i = 1, · · · , n.
Let wA be defined by

wA = (a1p1, a2p2, · · · , anpn). (20)

Let the composite number q(A) be defined by the prod-

ucts of non-zero components of wA. Namely q(A) can be

represented by

q(A) =
n∏

i=1

a′
ipi, (21)

where we let a′
ipi be aipi for aipi = pi and 1, for aipi = 0 .

Let another code word B be denoted

B = (b1, b2, · · · , bn). (22)

The following composite number q(B) can be obtained from

wB = (b1p1, b2p2, · · · , bnpn) in a similar manner as q(A) :

q(B) =

n∏
i=1

b′ipi. (23)

7654321
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Fig. 2 Maximum length code generated by (x+ 1)(x3 + x+ 1)

We have the following straightforward theorem.

Theorem 2 : Letting the largest common divisor (q(A), q(B))

be denoted dA,B , it is

dA,B =

n∏
i=1

p
(A,B)
i , (24)

where p
(A,B)
i denotes the i-th prime number of p for which

(ai, bi) ∈ S1 holds.

Example 1 : Maximum length code of length n = 23 − 1.

Let GF (x) be

GF (x) = x3 + x+ 1. (25)

All the code words generated by (x7 + 1)/GF (x) = (x +

1)(x3 + x2 + 1) are listed in Fig.2.

Let us assume that the two code words M2 and M5 in Fig.2

have been randomly chosen from {FM}.
Let the prime number vector be represented by

p = (p1, p2, · · · , p7). (26)

From Fig.2, w2 and w5 are

w2 = (p1, 0, 0, p4, 0, p6, p7) (27)

and

w5 = (0, p2, p3, p4, 0, 0, p7). (28)

The q(M2) and q(M5) are

q(M2) = p1p4p6p7 (29)

and

q(M5) = p2p3p4p7. (30)

From Eqs.(29) and (30), we see that the largest common

divisor (q(M2), q(M5)), dM2,M5 is given by

dM2,M5 = p4p7. (31)

Let the largest common divisor (q(Mi), q(Mj)) be simply

denoted by di,j instead of dMi,Mj . In Fig.3 we show the

correspondence between pipj and two code words Mi, Mj .
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Fig. 3 di,j for Mi,Mj

We see that all the pair (Mi,Mj)’s can be decoded

uniquely from di,j ’s .

2. 6 Construction of intermediate message

Bob randomly selects two public keys kA and kB from

{ki}A. In accordance with this random choice, two code

words MA and MB ∈ {FM} are chosen. As a result the

intermediate message Γ is given by

Γ = mAq
(A) +mBq

(B). (32)

Let q(A) and q(B) be represented by

q(A) = q(A)dA,B (33)

and

q(B) = q(B)dA,B . (34)

From Eqs.(32), (33) and (34), the intermediate message is

given by

Γ = (mAq
(A) +mBq

(B))dA,B . (35)

When a component of p, pi, satisfies

dA,B ≡ 0 mod pi, (36)

we let pi be denoted by pi.

Theorem 3 : From the set {pi}, the two code words, MA

and MB , randomly chosen at the sending end are correctly

decoded (See Fig.3).

Proof : The column vectors shown in Fig.2 are proved the

code words of
{
F

′
M

}
, whose generator polynomial G

′
F (x)

is x3(x−3 + x−1 + 1) = x3 + x2 + 1, which is obtained as

x3GF (x
−1). From Theorem 1, #S1 = 2, yielding the proof.

2

Let w and W be relatively prime positive integers such

that

w < W, (37)

(w,W ) = 1. (38)

The set of public keys, {ki}, is given by

wqi ≡ ki mod W ; i = 1, · · · , n. (39)

Public key : {ki}
Secret key : w, W , {qi}, Mi

[Decryption Process]

Given Γ̃, the messages m̃A and m̃B are decoded by

Γ̃
{
q(A)

}−1

≡ m̃A mod q(B) (40)

and

Γ̃
{
q(B)

}−1

≡ m̃B mod q(A). (41)

respectively.

3. A new class of PKC scheme based on

K(II)ΣΠPKC

— Possible applications to the field of

common key cryptosystem —

3. 1 Construction

Bob randomly chooses λ code words of {FM}. Without

loss of generality let us assume that the list of the randomly

chosen code words by Bob are the followings:

M1 = (t11, t12, · · · , t1n),

M2 = (t21, t22, · · · , t2n),

...

Mλ = (tλ1, tλ2, · · · , tλn).

(42)

Let the column vector ti be denoted by

ti =


t1i

t2i
...

tλi

 . (43)
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Let the total number of ti’s such that ti’s take on the same

value a(i) over F2 be denoted by N(a(i)).

Theorem 4 : The N(a(i)) is given by

N(a(i)) = 2g−λ for ti |= 0,

= 2g−λ − 1 for ti = 0.
(44)

Proof : See, for example, Ref.[24]. 2

When User J, in accordance with a random choice of λ

public keys, selects λ code words among the code words of

{FM} for given messages m1,m2, · · · ,mλ, the largest com-

mon divisor of q(M1), q(M2), · · · , q(Mλ) is given by a product

of 2g−λ prime numbers (Theorem 4).

As a generalized form of Eq.(4), the intermediate message

Γ is given as

Γ = m1q
(M1) +m2q

(M2) + · · ·+mλq
(Mλ). (45)

The q(Mi), the product of prime numbers a′
1p1, · · · , a′

npn,

randomly chosen according to the code word Mi, can be rep-

resented as

q(Mi) = q(Mi)d1∼λ ; i = 1, · · · , λ, (46)

where d1∼λ is the largest common divisor of q(M1), · · · , q(Mλ).

3. 2 Brief sketch of a communication system using

K(II)ΣΠPKC

In Fig.4 let us show a brief sketch of a communication sys-

tem where K(II)ΣΠPKC for λ messages can be successfully

applied.

Encryption process can be performed as follows :

Step 1 : User J randomly chooses λ keys kJ1, kJ2, · · · , kJλ

by just taking a look at Alice’s public key set {ki}A.

Step 2 : User J encrypts messages m̃1, m̃2, · · · , m̃λ into

C̃J = m̃1kJ1 + m̃2kJ2 + · · ·+ m̃λkJλ. (47)

Step 3 : User J sends the ciphertext C̃J to Alice.

Decryption process by Alice is given as follows :

Step 1 : Alice decrypts C̃J by

Ai
k }{

Alice

11 }{
i
kS =

User 1

22 }{
i
kS =

User 2

NiN
kS }{=

User N

・・・

JiJ
kS }{=

User J

・・・

Fig. 4 A new class of communication scheme using K(II)ΣΠPKC

w−1C̃J ≡ ΓJ = m̃1qJ1 + m̃2qJ2 + · · ·+ m̃λqJλ mod W.

(48)

Step 2 : By simply calculating the largest common divi-

sor of qJ1, qJ2, · · · , qJλ, Alice decodes MJ1, MJ2, · · · , MJλ

randomly chosen by User J.

Theorem 5 : For the given messages m̃1, m̃2, · · · , m̃λ, the

ciphertext can be uniquely decoded, as far as

log2 λ+ 2g−λ ≧ g (49)

is satisfied.

Proof : We see that when all the code words whose gen-

erator polynomial is given by (xn − 1)/GF (x) are listed as

shown in the example given in Fig.2, any column vector is a

code word generated by (xn − 1)/xgGF (x
−1). We then see

that the following relation:

λ · 2t ≧ n+ 1, (50)

where t = (n+1) 2−λ

is required to be satisfied, for uniquely decoding

m̃1, m̃2, · · · , m̃λ, yielding the proof. 2

It is easy to see that when λ is 2a, a = 1, 2, 3, · · · , the equal-
ity holds in Eq.(49). we shall refer to such λ as optimum λ

and denote it by λo. We shall also refer to the largest λ such

that it satisfies the inequality of Eq(49) as quasi-optimum λ

and denote it by λqo. Evidently λqo is given by g − 3.

3. 3 Parameters

Let the size of mi be

|mi| = 2g−λ|pi| − 1 (bit). (51)

The size of the intermediate message, Γ, is

|Γ| = |mi|+ 2g−1|pi|+ ⌈log2 λ⌉ (bit). (52)

where ⌈x⌉ denotes the smallest integer larger than x.

The sizes of W , ki and C are

|W | = |Γ|+ 1, (53)

|ki| = |W | (54)

and (55)

|C| = |mi|+ |ki|+ ⌈log2 λ⌉. (56)

The coding rate ρ is

ρ =
λ|mi|
C

. (57)

Let the probability that all the elements of SJ is correctly

estimated by an attacker be denoted PC [ŜJ ]. The PC [ŜJ ] is

PC [ŜJ ] =

(
n

λ

)−1

. (58)
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3. 4 Example

In Table 1 we present several examples under the condition

that

PC [ŜJ ] < 2−80 = 8.27× 10−25,

|pi| = 80(bit).
(59)

Table 1 Examples of K(II)ΣΠPKC for λ

n λ ρ PC [ŜJ ]
|{ki}A|
(MB)

|{ki}J |
(KB)

|C|
(KB)

4095 8 0.0592 5.13× 10−25 84.5 165.1 20.8

8191 8 0.0615 2.00× 10−27 338.1 330.2 41.6

16383 7 0.106 1.59× 10−26 1352.6 577.9 83.2

32767 6 0.182 5.18× 10−25 5410.5 990.7 166.4

Although the details of doing so are omitted we can show

that the coding rate can be improved by increasing n and

by decreasing λ under the condition that PC [ŜJ ] takes on a

sufficiently small value.

In Appendix, in order to improve the coding rate, we

present a generalized version of K(II)ΣΠPKC, referred to as

K(III)ΣΠPKC.

3. 5 Security considerations

Attack 1 : Exhaustive attack on {ki}J
By letting n be sufficiently large and appropriately de-

terming the size of λ, the probability of successfully estimat-

ing the subset of {ki}J , PC [ŜJ ], can be made sufficiently

small. 2

Attack 2 : Shamir’s attack on secret keys

In a sharp contrast with the conventional knapsack type

PKC where super-increasing sequence or shifted-odd se-

quence is used, K(II)ΣΠPKC uses a uniform sequence whose

components have the same entropy. Namely a random prod-

uct of the same number of prime numbers of the same size (

>∼ 80 bit). Thus it seems very hard to attack on the secret

keys k1, k2, · · · , kn, with Shamir’s attack. 2

Attack 3 : LLL attack on the ciphertext

In K(II)ΣΠPKC, n takes on a sufficiently large value, re-

alizing a sufficiently high security, for the LLL attack.

3. 6 Key trace and its application

As shown in Fig.4, Alice’s group members,1,2,· · · ,N, are

communicating with Alice through a secret channel using

K(II)ΣΠPKC. Assuming that a member of the group, UJ

randomly chooses a sequence of keys kJ1, kJ2, · · · , kJλ, for

a given message sequence m1, m2, · · · , mλ, we shall refer to

the order of the key sequence as key trace and denote it by

TKJ

Remark 1 : It would be very hard for any user to forge

UserJ’s ciphertext sent to Alice provided that PC [ŜJ ] is made

sufficiently small. 2

The K(II)ΣΠPKC realizes a secret communication system

having the following features :

F1 : Key trace, TKJ , is not necessarily required to be re-

vised each time when User J sends his or her message to

Alice, as far as TKJ , is kept secret.

F2 : As a result, for a period, TJ , the trace can be used as

a secret key between Alice and User J just as like in the con-

ventional common key cryptosystem. We define the period

TJ as the time required for sending λ− 1 or less ciphertexts.

It should be noted that no secret channel for notifying their

common key is required. Besides during this period, Alice’s

decryption process performed on the User J’s ciphertext can

be made much simplified, because it requires no decoding

process for Bob’s trace TKJ . When User J wants to revise

the trace TKJ , it is only required to append a short note to

the message sequence being sent, for notifying Alice of the

revision of TKJ .

F3 : K(II)ΣΠPKC can be used as a common key cryptosys-

tem provided that the TKJ is successfully hided through a

non-linear transformation.

4. Conclusion

We have presented a new class of PKC, K(II)ΣΠPKC.

In a sharp ccontrast with the convetional knapsack PKC

where the super-increasing sequence or shifted-odd sequence

is used, in K(II)ΣΠPKC, a uniform sequence is used.

As any component of the secret sequence used in

K(II)ΣΠPKC has the same entropy, K(II)ΣΠPKC would be

secure against the Shamair’s attack.

K(II)ΣΠPKC can be used as a common key cryptosystem

provided that the TKJ is successfully hided through a non-

linear transformation.

As a generalized version of K(II)ΣΠPKC, we have pre-

sented K(III)ΣΠPKC, yielding a higher rate compared with

K(II)ΣΠPKC.
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Appendix : K(III)ΣΠPKC

In this appendix, we present a generalized version of

K(II)ΣΠPKC, referred to as K(III)ΣΠPKC.

Let us denote µ classes of the maximum length code of

length n, by {FM}1, {FM}2, · · · , {FM}µ.
K(II)ΣΠPKC is a particular class of K(III)ΣΠPKC for

which µ = 1 holds.

Let the intermediate message Γ be given by

Γ = Γ1 + Γ2A2 + · · ·+ ΓµA2A3 · · ·Aµ, (60)

where Ai is a prime number, i = 2, · · · , µ .

The sizes of Γi and Ai are

|Γi| = |Γ1| = |m1|+ 2g−λ(|m1|+ 1) + ⌈log2 λ⌉,

|A2| = |A3| = · · · = |Aµ| = |Γi|+ 1.
(61)

With the method given in Ref[13], all the intermediate

messages Γ1,Γ2, · · · ,Γµ can be successfully decoded.

From Γi, the message m
(i)
1 ,m

(i)
2 , · · · ,m(i)

λ assigned to Γi

are decoded in the same manner as we have discussed in

Section 3.

Example A : µ = 2, n = 4095, λ = 4

The PC [ŜJ ] is

PC [ŜJ ] =

(
4095

4

)−2

= 7.29× 10−27. (62)

The coding rate ρ is approximately given by

ρ ∼= 0.40. (63)

The sizes of public key are

|{ki}A| = 377MB (64)

and

|{k}J | = 368KB. (65)

Although the details of doing so are omitted K(III)ΣΠPKC

presented in this example would be secure against the various

attacks. 2

Example B : µ = 3, n = 1023, λ = 3

The PC [ŜJ ] is

PC [ŜJ ] =

(
1023

3

)−3

= 1.78× 10−25 < 2−80. (66)

The coding rate ρ is
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ρ = 0.43. (67)

The sizes of public key are

|{ki}A| = 60.1MB (68)

and

|{ki}J | = 176KB. (69)

We see that the sizes of key in Examples A and B take on

much smaller values than those for K(II)ΣΠPKC.
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