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Abstract

Order-preserving encryption (OPE) preserves the order of data in their ciphertexts and,
hence, allows range search on the encrypted data without needing to decrypt them. Security
analysis of OPE schemes is very important because OPE is not a perfect encryption algorithm
(the ciphertexts leak the ordering information of the plaintexts). Most of the existing security
analysis for the OPE schemes are informal: they are either based on author-defined attacks or
experiments. The authors in [4] initiates the cryptographic study of the OPE scheme. They
define the security notion POPF-CCA to qualify the security of OPE. In POPF-CCA, the “ideal”
OPE object is defined where the encryption function is uniformly randomly selected from all
order-preserving functions (generally the “ideal” OPE object is not computationally feasible),
and a (constructed) “real” OPE scheme is secure under POPF-CCA if it is computationally
indistinguishable from the ideal object. In other words, although the “ideal” OPE object is not
computationally feasible, it is used as the security goal, and a (constructed) “real” OPE scheme
is secure if it is as secure as the “ideal” OPE object. Such approach conceives the assumption
(but not clearly stated and proved) that the “ideal” OPE object is the most secure OPE. But
the correctness of the assumption is an easily ignored problem.

In this paper, we investigate the security of the OPE in more depth. We first give example
to show that the “ideal” OPE object may not always be the most secure OPE. It indicates
that we need to use the “ideal” encryption object more cautiously in the security analysis of
OPE. Additionally we extend the concept of OPE to generalized OPE (GOPE). Unlike OPE,
the ciphertexts of GOPE may not be numbers, but GOPE still enables the comparisons on the
encrypted data without needing to decrypt them. We present two GOPEs in polynomial-sized
and superpolynomial-sized domains that satisfy stronger notions of security than that of the
ideal OPE object, respectively.

Key Words: Order-preserving encryption; range query processing; ideal OPE object and gener-
alized OPE; big jump attack and small jump attach; IND-OCPA and IND-OLCPA.

1 Introduction

Order preserving encryption (OPE) [1, 3, 4, 7, 10] is a very important technique for database related
applications due to its capability of supporting range query processing [2, 6, 8, 9, 11, 12] directly
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on encrypted data without needing to decrypt them and expose them to potential attackers who
may have compromised the system. The OPEs do not have perfect security since the ciphertexts
leak the ordering information of the plaintexts. But on the other hand, when it is desirable to
have a reasonable performance for range query processing while achieving a reasonable degree of
security protection, the OPE scheme can be used as long as there is a good understanding of its
security risks. However, how secure is the OPE scheme has not been sufficiently analyzed and
further research is needed to investigate its security properties.

There are various constructions of the OPE scheme. In [3], the proposed OPE algorithm first
generates a sequence of random numbers and then encrypts an integer x to the sum of the first
x random numbers. In [10], a sequence of strictly increasing polynomial functions are used to
construct the OPE algorithm. The encryption of an integer x is the outcome of the iterative
operations of those functions on x. In [7], the OPE algorithm is constructed by using a mapping
function composed of partition and identification functions. The partition function divides the range
into multiple partitions, and the identification function assigns an identifier to each partition. Then,
the mapping function maps an integer x to an identifier. Since different integers may be mapped
to the same identifier, the OPE algorithm may output false comparison results. In [1], the authors
construct the OPE algorithm following three steps: modeling the input and target distributions,
flattening the plaintext database into a flat database, and transforming the flat database into the
cipher database. However, security analysis for these and other OPE algorithms has not been fully
investigated.

Some partial security analysis has been performed on some OPE algorithms. In [1], the authors
construct an OPE scheme and analyze its security, but the analysis has some limitations: (1) It
assumes that the adversaries can only view ciphertexts. (2) The analysis is not based on crypto-
graphic analysis, but based on experiments, i.e., they use Kolmogorov-Smirnov test to show that
the distribution of the ciphertexts and the target distribution cannot be distinguished. The au-
thors in [4] initiate the cryptographic study of the OPE scheme. They define the security notion
IND-OCPA where the adversary can only query the left-or-right encryption oracle with ordered
plaintext pairs. An encryption scheme is secure under IND-OCPA if the advantage of an efficient
adversary (probability to distinguish whether the returned ciphertexts are encrypted from the left
or the right plaintexts) is negligible. IND-OCPA is the highest security notion (with respect to
indistinguishability and left-or-right encryption oracle) for OPE algorithms. However, it can be
shown that the OPE scheme is susceptible to the big jump attack, and cannot be secure under
IND-OCPA unless its ciphertext-space is exponential in the size of the plaintext-space. Then the
paper takes an alternative approach: It defines the security notion POPF-CCA and constructs an
OPE scheme that is secure under POPF-CCA. In POPF-CCA, the “ideal” OPE object is defined
where the encryption function is uniformly randomly selected from all order-preserving functions
(the “ideal” OPE object is not computationally feasible), and a “real” OPE scheme is secure if it
satisfies the security implied by the ideal OPE object. In other words, although the “ideal” OPE
object is not computationally feasible, it is used as the security goal, and a “real” OPE scheme
is secure if it is computationally indistinguishable from the “ideal” OPE object. Such approach
conceives the assumption (but not clearly stated and proved) that the “ideal” OPE object is the
most secure OPE. But unfortunately, the assumption of the ideal OPE object has not been proved.

In this paper, we fist show the negative of the assumption, i.e., the ideal OPE object may not be
the most secure OPE. We consider a specific plaintext domain [m] = {1, 2} and ciphertext range
[n] = {j | 1 ≤ j ≤ 2λ}, construct a real OPE scheme SE = (K, E ,D) for [m] and [n] and prove that
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SE is secure under IND-OCPA, and prove that the ideal OPE object SE∗ for [m] and [n] is not secure
under IND-OCPA. For SE the encryption function E maps 1 to a random element r in [1, n − 1]
and maps 2 to r + 1. We compute the statistical distance between the probability distribution of
ciphertexts for plaintext 1 and the probability distribution of ciphertexts for plaintext 2, and prove
that it is negligibly small. Based on this fact, we prove that the success probability of every attack
against SE in IND-OCPA is also negligibly small. For the ideal OPE object SE∗, we compute
the statistical distance between the probability distribution of ciphertexts for plaintext 1 and the
probability distribution of ciphertexts for plaintext 2, and prove that it is significant (greater than
a positive constant). Based on this fact, we design an attack to distinguish left plaintext 1 and
right plaintext 2 according to the returned ciphertext y by comparing the conditional probabilities
Pr[y|1] and Pr[y|2]. We therefore prove that the success probability of the attack against SE∗ in
IND-OCPA is non-negligible. Our proofs indicate that we need to use the “ideal” OPE object more
cautiously in the security analysis of OPE.

Then we present two generalized OPE (GOPE) algorithms in polynomial-sized and superpolynomial-
sized domains that satisfy stronger notions of security than the ideal OPE object, respectively. The
difference between OPE and GOPE lies in that the ciphertexts of OPE are numbers while the ci-
phertexts of GOPE are allowed to be general mathematical objects. Hence, the GOPE scheme
requires a special comparison algorithm to compare the ciphertexts. First, we analyze the security
of the ideal OPE object and show that it is not secure under IND-OCPA even in polynomial-sized
domains. To demonstrate the existence of a GOPE algorithm that is secure under IND-OCPA in
polynomial-sized domains, we construct SE2, in which the ciphertext yi for plaintext xi is a “set”.
An element in yi is a share of the relation between xi and xj , for all j 6= i. When comparing
xi and xj , the matching pair of shares from xi and xj , namely, si,j and sj,i, can be retrieved to
reconstruct the relation (xi < xj or xi > xj). We show that SE2 is secure under IND-OCPA. Next,
we weaken the security notion from IND-OCPA to IND-OLCPA for OPE and GOPE schemes in
superpolynomial-sized domains. To prevent an adversary from launching the big jump attack, IND-
OLCPA has one more constraint to the adversary compared to IND-OCPA, the range of plaintexts
in the oracle queries is bounded by a polynomial g1, i.e., the difference between the largest and the
smallest plaintexts in the oracle query is less than or equal to g1. However, it can be shown that
an efficient adversary can still have a non-negligible advantage against any OPE algorithm under
IND-OLCPA. We design a small jump attack to prove this. Unlike the big jump attack where the
range of plaintexts in the oracle queries is m− 1, in the small jump attack, the range of plaintexts
in the oracle queries is 3. Nevertheless, the lower bound on the advantage of an adversary against
any OPE algorithm under IND-OCPA is 1; while the lower bound on the advantage of an adversary
against any OPE algorithms under IND-OLCPA decreases to 1

g , where g is a polynomial. With
IND-OLCPA and considering superpolynomial-sized domains, we show that the ideal OPE object
cannot achieve the lower bound on the advantage of an adversary. Hence, we construct another
GOPE algorithm, SE3, which achieves the lower bound on the advantage of an adversary under
IND-OLCPA. SE3 is constructed based on two building blocks SE4 and SE5. SE4 is adapted from
SE2 such that the ciphertext of a plaintext xi is a set, including the shares of the relations between
xi and g2 − 1 plaintexts that are closest to xi, where g2 is a polynomial. We prove that SE4 is
secure under IND-OLCPA if g2 ≥ 2g1 + 1. Note that SE4 can only support comparison between
two plaintexts whose difference is bounded by g2−1

2 . SE5 is designed to facilitate the comparison

between two plaintexts xi and xj , where |xi−xj | ≥ g2−1
2 . Thus, ciphertexts yi and yj in SE5 should

preserve the order of the corresponding plaintexts xi and xj , when |xi − xj | ≥ g2−1
2 . Note that

under IND-OLCPA, the adversary can query plaintexts within the range g1. Thus, SE5 should
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also guarantee that the ciphertexts yi and yj have a small statistical distance if |xi − xj | ≤ g1.
With these two requirements, we construct SE5 as follows: The ciphertexts of the first l (for some
l, l > g1) plaintexts x1 to xl are randomly selected numbers. The ciphertext of xj , j > l, is
yj = yj−l + 1. This way, the two requirements are satisfied. Since SE3 includes SE4 and SE5, for
any pair of plaintexts, either SE4 or SE5 will fulfill the comparison task. Also, since the attacker
can only query plaintexts within the range g1, the ciphertexts from SE4 are indistinguishable and
the ciphertexts from SE5 have a small statistical distance. Thus, SE3 achieves the lower bound on
the advantage of an adversary.

The rest of the paper is organized as follows. In Section 2 we introduce the primitives and how
[4] proceeds the security analysis of OPE. In Section 3, we construct an example to prove that the
ideal OPE object is not the most secure OPE. In Sections 4, 5, 6 we present two generalized OPE
(GOPE) algorithms in polynomial-sized and superpolynomial-sized domains that satisfy stronger
notions of security than the ideal OPE object, respectively. Specifically, in Section 4, we prove
that the ideal OPE object is not secure under IND-OCPA in polynomial-sized domains. Then, the
concept of the GOPE scheme and its construction is introduced. Also, we prove that GOPE is
secure under IND-OCPA in polynomial-sized domains. In Section 5, we define the security notion
IND-OLCPA, design the small jump attack, and derive a lower bound on the advantage of an
adversary under IND-OLCPA in superpolynomial-sized domains. In Section 6, we show that the
ideal OPE object does not achieve the lower bound on the advantage of an adversary under IND-
OLCPA in superpolynomial-size domains. Also, a GOPE algorithm which can achieve the derived
lower bound is constructed. Finally, we conclude the paper in Section 7.

2 Preliminaries

Let λ be the security parameter and ν be a negligible function. Let x
$←− A denote that x is

uniformly randomly selected from set A, x
$←− X denote that randomized algorithm X returns

value x, and XY denote that algorithm X is accessible to oracle Y. For positive integers m and n
satisfying m ≤ n, let [m] = {i|1 ≤ i ≤ m} denote the domain of plaintexts and [n] = {i|1 ≤ i ≤ n}
denote the range of ciphertexts. The definition of the order-preserving encryption (OPE) scheme
[4] is presented as follows.

Definition 2.1 (OPE scheme [4]). An OPE scheme SE = (K, E ,D) is a deterministic symmetric-
key encryption scheme, where K : {0, 1}∗ → {0, 1}∗ is a key generation algorithm, E : [m]×{0, 1}∗ →
[n] is a deterministic encryption algorithm, and D : [n]× {0, 1}∗ → [m] is a decryption algorithm.
SE satisfies that

Pr[D(E(x, k), k) = x] > 1− ν(λ)

for any x ∈ [m] and key k, and

E(x, k) < E(x′, k)

for any x < x′. �

Various security notions are defined attempting to qualify the security of OPE. We start from the
basic security notion IND-CPA (indistinguishability under chosen-plaintext attack) and define it
in Definition 2.2.
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Definition 2.2 (IND-CPA). Let SE = (K, E ,D) be a symmetric-key encryption scheme and b ∈
{0, 1}. Let Ek(LR(·, ·, b)) be a left-or-right encryption oracle such that for queries {(xu0 , xu1)}hu=1, it
returns

E(xub , k)
$←− Ek(LR(xu0 , x

u
1 , b))

for 1 ≤ u ≤ h. Let A be an adversary that can access Ek(LR(·, ·, b)) and finally returns a bit b′ as
a guess of b. Consider the following experiment.

Experiment ExpIND-CPA-b
SE,A

k
$←− K; b′

$←− AEk(LR(·,·,b)); Return b′

The encryption scheme SE is said to be secure under IND-CPA if for every probabilistic polynomial
time (PPT) adversary A, the advantage of A, defined by

AdvIND-CPA
SE,A = Pr[ExpIND-CPA-1

SE,A = 1]− Pr[ExpIND-CPA-0
SE,A = 1],

is bounded by a negligible function of the security parameter. �

OPE schemes are not secure under IND-CPA because the ciphertexts leaks the ordering information
of plaintexts. Consider the adversary queries (x1

0, x
1
1) and (x2

0, x
2
1), where x1

0 < x2
0 and x1

1 ≥ x2
1. If

b = 0, x1
0 and x2

0 will be encrypted, where x1
0 < x2

0; if b = 1, x1
1 and x2

1 will be encrypted where
x1

1 ≥ x2
1. Since OPE preserves order, the adversary can distinguish whether the plaintexts are x1

0

and x2
0 or x1

1 and x2
1 by comparing the corresponding ciphertexts. Thus, the advantage of such

adversary is 1.

Thus, the security notion is necessarily weakened to IND-OCPA (indistinguishability under ordered
chosen-plaintext attack) [4], where the adversary is forbidden to query plaintexts with different
orders.

Definition 2.3 (IND-OCPA [4]). IND-OCPA has the same definition as that of IND-CPA except
that the adversary is only allowed to query {(xu0 , xu1)}hu=1, where the condition xu0 < xv0 ⇔ xu1 <
xv1, 1 ≤ u, v ≤ h is satisfied. �

IND-OCPA is the highest security notion (with respect to indistinguishability and left-or-right
encryption oracle) for OPE algorithms. However, it has been shown in [4] that OPE schemes are
susceptible to the following the big jump attack under IND-OCPA.

Definition 2.4 (Big jump attack [4]). Consider the following PPT adversary ABJ with three oracle
queries in the experiment of security notion IND-OCPA.

Adversary ABJ
Ek(LR(·,·,b))

x
$←− {1, ...,m− 1}

y1 ←− Ek(LR(1, x, b))

y2 ←− Ek(LR(x, x+ 1, b))

y3 ←− Ek(LR(x+ 1,m, b))

Return 1 if y3 − y2 > y2 − y1; else return 0 �
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In the big jump attack, the attacker chooses left plaintexts 1, x, and x+ 1, and the right plaintexts
x, x+1, and m, where x is randomly selected from {1, ...,m−1}. From the ciphertexts, if y3−y2 >
y2 − y1, then the attacker can guess that the right plaintexts were encrypted; if y3 − y2 ≤ y2 − y1,
then the attacker can guess that the left plaintexts were encrypted. Since the distance between
two ciphertexts can reflect, to some extent, the distance between the corresponding two plaintexts,
such guess could have a high probability of being correct. The lower bound on advantage of the
adversary has been derived in [4] and is cited in Lemma 2.5.

Lemma 2.5. AdvIND-OCPA
SE,ABJ ≥ 1− 2 logn

m−1 .

Remark 1. Note that for efficient OPE, both logm and log n should be bounded by a polynomial
of λ. Therefore AdvIND-OCPA

SE,ABJ ≥ 1 − ν(λ) if m is a superpolynomial of λ, which implies that it
is impossible to construct an OPE that is secure under IND-OCPA if m is a superpolynomial of
λ. However, the lower bound on advantage of the adversary does not eliminate the possibility for
designing an OPE scheme that is secure under IND-OCPA if m is bounded by a polynomial of λ.

Because of the big jump attack, the authors in [4] take an alternative approach: They define
the security notion POPF-CCA (pseudorandom order-preserving function under chosen-ciphertext
attack) based on the ideal OPE object defined as follows.

Definition 2.6 (Ideal OPE Object [4]). Let [m] be the plaintext domain and [n] be the ciphertext
range. The ideal OPE object SE∗ = (K∗, E∗,D∗) is defined as follows.

- K∗: It uniformly randomly selects f ∈ OPEm,n = {f : [m]→ [n] | x < x′ ⇔ f(x) < f(x′)};
- E∗: For plaintext x, it returns f(x);

- D∗: For ciphertext y, it returns f−1(y). �

For a “real” OPE scheme SE = (K, E ,D), it is secure under POPF-CCA if it is computationally
indistinguishable from the ideal OPE object SE∗ = (K∗, E∗,D∗). Formally, the security notion
POPF-CCA is defined as follows.

Definition 2.7 (POPF-CCA [4]). Let the advantage of the adversary in POPF-CCA be

AdvPOPF-CCA
SE,A = Pr[k

$← K : AE(k,·),D(k,·) = 1]− Pr[f
$← K∗ : AE∗(·),D∗(·) = 1].

The encryption scheme SE is said to be secure under POPF-CCA if AdvPOPF-CCA
SE,A is bounded by

a negligible function of the security parameter for every PPT adversary A. �

Based on the security notion POPF-CCA, the authors in [4] construct a real OPE scheme and prove
that it is secure under POPF-CCA. In other words, in their approach the ideal OPE object is used
as the security goal and construct real OPE scheme to achieve that security goal. However, the
problem is: is the ideal OPE object always the most secure OPE. We construct a counterexample
to show the negative conclusion in the next section.

3 Counterexample and the Security Analysis

In this section we show that there exists situation such that the ideal OPE object is not the most
secure OPE. We consider a specific plaintext domain [m] and ciphertext range [n], construct a real
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OPE scheme SE = (K, E ,D) for [m] and [n] and prove that SE is secure under IND-OCPA, and
prove that the ideal OPE object SE∗ for [m] and [n] is not secure under IND-OCPA.

Plaintext domain and ciphertext range: In this section, let m = 2 and n = 2λ where λ is
the security parameter. Then the plaintext domain is [m] = {1, 2} and the ciphertext range is
[n] = {j | 1 ≤ j ≤ 2λ}.
The real OPE scheme: First we construct a real OPE scheme SE = (K, E ,D) as follows.

- K: It uniformly randomly selects f ∈ {f : [m]→ [n] | f(2) = f(1) + 1};
- E : For plaintext x, it returns f(x);

- D: For ciphertext y, it returns f−1(y).

Unlike the ideal OPE object, in the real OPE scheme SE the encryption function is uniformly
randomly selected from a subset of order-preserving functions. The encryption function E has the
property such that 1 is encrypted to a random element r in [1, n−1] while 2 is encrypted to r+1. To
show that the real OPE scheme SE is secure under IND-OCPA, we compute the statistical distance
between the probability distribution of ciphertexts for plaintext 1 and the probability distribution
of ciphertexts for plaintext 2, and prove that it is negligibly small. Based on this fact, we show
that the success probability of every attack in IND-OCPA is also negligibly small.

Lemma 3.1. Let ∆ be the statistical distance between E(1) and E(2). Then ∆ = ν(λ).

Proof. According to the definition of E , E(i) ∈ [n] subjects to the probability distribution such that

Pr[E(1) = j] =

{
1

n−1 for 1 ≤ j < n

0 for j = n
and Pr[E(2) = j] =

{
0 for j = 1

1
n−1 for 1 < j ≤ n

Thus

∆ =
1

2

∑
j

|Pr[E(1) = j]− Pr[E(2) = j]|

=
1

n− 1
=

1

2λ − 1
= ν(λ).

Proposition 3.2. SE is secure under IND-OCPA. Specifically, AdvIND-OCPA
SE,A = ν(λ) for every

PPT adversary A.

Proof. Note that the adversary has to query ordered plaintext pairs to LR in IND-OCPA and here
are the all possible queries of the adversary: {(1, 1)}, {(2, 2)}, {(1, 1), (2, 2)}, {(1, 2)}, and {(2, 1)}.
We analyze the security of SE according to these queries.

(1) The adversary queries {(1, 1)} to LR. In this case, since the left plaintext equals to the right
plaintext, the returned ciphertexts cannot help the adversary to decide whether the left plaintext
or right plaintext is encrypted. Hence AdvIND-OCPA

SE,A = 0.

(2) The adversary queries {(2, 2)} or {(1, 1), (2, 2)} to LR. The situation is similar to that in (1)
and hence AdvIND-OCPA

SE,A = 0.

(3) The adversary queries {(1, 2)} to LR. According to Lemma 3.1,

AdvIND-OCPA
SE,A = Pr[ExpIND-CPA-1

SE,A = 1]− Pr[ExpIND-CPA-0
SE,A = 1] = ∆ = ν(λ).
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(4) The adversary queries {(2, 1)} to LR. The situation is similar to that in (3) and hence
AdvIND-OCPA

SE,A = ν(λ).

According to (1)-(4), AdvIND-OCPA
SE,A = ν(λ) for every PPT adversary A.

The ideal OPE object: According to Definition 2.6, the ideal OPE object SE∗ = (K∗, E∗,D∗) is
defined as follows.

- K∗: It uniformly randomly selects f ∈ {f : [m]→ [n] | f(1) < f(2)};
- E∗: For plaintext x, it returns f(x);

- D∗: For ciphertext y, it returns f−1(y).

To show that the ideal OPE object SE∗ is not secure under IND-OCPA, we compute the statistical
distance between the probability distribution of ciphertexts for plaintext 1 and the probability
distribution of ciphertexts for plaintext 2, and prove that it is significant (greater than a positive
constant). Based on this fact, we design an attack to distinguish left plaintext 1 and right plaintext
2 according to the returned ciphertext y by comparing the conditional probabilities Pr[y|1] and
Pr[y|2]. It can be shown that the success probability of the attack is non-negligible (greater than
a positive constant).

Lemma 3.3. Let ∆∗ be the statistical distance between E∗(1) and E∗(2). Then ∆∗ = Ω(1).

Proof. Since |OPEm,n| =
(
n
m

)
and |{f ∈ OPEm,n | f(i) = j}| =

(
j−1
i−1

)(
n−j
m−i
)
, for i ∈ [m], E∗(i) ∈ [n]

subjects to the negative hypergeometric distribution(
j−1
i−1

)(
n−j
m−i
)(

n
m

) , 1 ≤ j ≤ n.

Thus

∆∗ =
1

2

∑
j

∣∣∣∣∣
(
j−1

0

)(
n−j
m−1

)(
n
m

) −
(
j−1

1

)(
n−j
m−2

)(
n
m

) ∣∣∣∣∣
=

1

2

∑
j

∣∣∣∣∣
(
j−1

0

)(
n−j

1

)(
n
2

) −
(
j−1

1

)(
n−j

0

)(
n
2

) ∣∣∣∣∣
=

∑
j |n− 2j + 1|

2
(
n
2

)
=

n

2(n− 1)
≥ 1

2
= Ω(1).

For the ideal OPE object, if 1 is encrypted to j, then 2 must be encrypted to [j + 1, n], and hence
there is more choices of the encryption of 2 if j is small; similarly if 2 is encrypted to j, then
1 must be encrypted to [1, j − 1], and hence there is more choices of the encryption of 1 if j is
large. Since the encryption function of the ideal OPE object is uniformly randomly selected from
all order-preserving functions, 1 is more likely to be encrypted to [1, n+1

2 ] and 2 is more likely
to be encrypted to [n+1

2 , n]. Lemma 4.1 indicates that the difference of the encryptions of 1 and 2
is significant. Such significant difference can be used to design the attack, and based on the attack
we prove that the ideal OPE object is not secure under IND-OCPA in Proposition 4.2 .

8



Proposition 3.4. For the ideal OPE object SE∗ with the plaintext domain [m] and the ciphertext
range [n], there exists an adversary A who can distinguish plaintexts 1 and 2 with one oracle query
under IND-OCPA such that AdvIND-OCPA

SE∗,A = Ω(1). In other words, the ideal OPE object SE∗ is
not secure under IND-OCPA.

Proof. Since |OPEm,n| =
(
n
m

)
and |{f ∈ OPEm,n | f(i) = j}| =

(
j−1
i−1

)(
n−j
m−i
)
, for i ∈ [m], E∗(i) ∈ [n]

subjects to the negative hypergeometric distribution(
j−1
i−1

)(
n−j
m−i
)(

n
m

) , 1 ≤ j ≤ n.

Note that (
j−1

0

)(
n−j
m−1

)(
n
m

) >

(
j−1

1

)(
n−j
m−2

)(
n
m

) ⇐⇒
(
n− j
m− 1

)
> (j − 1)

(
n− j
m− 2

)
⇐⇒n− j −m+ 2 > (j − 1)(m− 1)

m=2⇐⇒n− j > j − 1

⇐⇒j < n+ 1

2
.

Thus we construct the PPT adversary A with one oracle query in the experiment of security notion
IND-OCPA as follows (note that y 6= n+1

2 since n = 2λ).

Adversary AE∗k (LR(·,·,b))

y ←− E∗k (LR(1, 2, b))

Return 0 if y <
n+ 1

2

Return 1 if y >
n+ 1

2

Then

AdvIND-OCPA
SE∗,A = Pr[ExpIND-OCPA-1

SE∗,A = 1]− Pr[ExpIND-OCPA-0
SE∗,A = 1]

= ∆∗ = Ω(1).

Remark 2. The proofs in Lemma 4.1 and Proposition 4.2 can be generalized to show that the ideal
OPE object is not secure under IND-OCPA for any plaintext domain [m] and ciphertext range [n].

We conclude the results in this section in the following theorem.

Theorem 3.5. The ideal OPE object SE∗ is not the most secure OPE for m = 2 and n = 2λ.
Specifically, there exists a real OPE scheme SE secure under IND-OCPA while the ideal OPE object
SE∗ is not secure under IND-OCPA.

4 Ideal OPE and GOPE in Polynomial-sized Domain

In Subsection 4.1, we extend the proof in Section 3 to show that SE∗ is not secure under IND-OCPA
in the polynomial-sized domain. Then, in Subsection 4.2, we construct a generalized OPE scheme
in the polynomial-sized domain and show that it is secure under IND-OCPA.
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4.1 Ideal OPE Object in Polynomial-sized Domain

Let SE∗ = (K∗, E∗,D∗) be the ideal OPE object [4]. Analogous to the proofs in Section 3, we
compute the statistical distance between the probability distribution of ciphertexts for plaintext
1 and the probability distribution of ciphertexts for plaintext 2, and prove that it is greater than
a positive constant. Based on this fact, we design an attack to distinguish left plaintext 1 and
right plaintext 2 according to the returned ciphertext y by comparing the conditional probabilities
Pr[y|1] and Pr[y|2]. It can be shown that the success probability of the attack is a positive constant.

Lemma 4.1. Let SE∗ = (K∗, E∗,D∗) be the ideal OPE object with the plaintext domain [m] and
the ciphertext range [n], where 2 ≤ m ≤ n. Let ∆ be the statistical distance between E∗(1) and
E∗(2). Then ∆ = Ω(1).

Proof. Since |SIFm,n| =
(
n
m

)
and |{f ∈ SIFm,n | f(i) = j}| =

(
j−1
i−1

)(
n−j
m−i
)
, for i ∈ [m], E∗(i) ∈ [n]

subjects to the negative hypergeometric distribution(
j−1
i−1

)(
n−j
m−i
)(

n
m

) , 1 ≤ j ≤ n.

Thus

∆ =
1

2

∑
j

∣∣∣∣∣
(
j−1

0

)(
n−j
m−1

)(
n
m

) −
(
j−1

1

)(
n−j
m−2

)(
n
m

) ∣∣∣∣∣ =
1

2

∑
j

∣∣∣∣1− (j − 1)(m− 1)

n− j −m+ 2

∣∣∣∣
(
n−j
m−1

)(
n
m

)
=

1

2

∑
j

∣∣∣∣ n− jm+ 1

n− j −m+ 2

∣∣∣∣ mn n− jn− 1
· · · n− j −m+ 2

n−m+ 1
.

Note that

n− jm+ 1

n− j −m+ 2
≥ 1

2
⇔ 2n− 2jm+ 2 ≥ n− j −m+ 2⇔ j ≤ n+m

2m− 1
;

n− j
n− 1

≥ m− 1

m
⇔ mn−mj ≥ mn−m− n+ 1⇔ j ≤ n+m− 1

m
;

· · ·
n− j −m+ 2

n−m+ 1
≥ m− 1

m
⇔ mn−mj −m2 + 2m ≥ mn−m2 +m− n+m− 1⇔ j ≤ n+ 1

m
.

If n
2m ≥ 1, it can be verified that all the above inequalities hold for j ≤ n

2m . Hence

∆ ≥ 1

2
· n

2m
· 1

2
· m
n
· (m− 1

m
)m−1 ≥ 1

8e
,

where (m−1
m )m−1 = (1 + 1

m−1)−(m−1) ≥ 1
e for m ≥ 2. If n

2m < 1, it can be verified that n−jm+1
n−j−m+2 =

n−j
n−1 = · · · = n−j−m+2

n−m+1 = 1 for j = 1. Hence

∆ ≥ 1

2
· m
n
>

1

4
.

Consequently ∆ = Ω(1).
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Proposition 4.2. For the ideal OPE object SE∗ with the plaintext domain [m] and the ciphertext
range [n], where 2 ≤ m ≤ n, there exists an adversary A1 who can distinguish plaintexts 1 and 2
with one oracle query under IND-OCPA such that AdvIND-OCPA

SE∗,A1
= Ω(1).

Proof. Since |SIFm,n| =
(
n
m

)
and |{f ∈ SIFm,n | f(i) = j}| =

(
j−1
i−1

)(
n−j
m−i
)
, for i ∈ [m], E∗(i) ∈ [n]

subjects to the negative hypergeometric distribution(
j−1
i−1

)(
n−j
m−i
)(

n
m

) , 1 ≤ j ≤ n.

Note that(
j−1

0

)(
n−j
m−1

)(
n
m

) >

(
j−1

1

)(
n−j
m−2

)(
n
m

) ⇔
(
n− j
m− 1

)
> (j − 1)

(
n− j
m− 2

)
⇔ n− j −m+ 2 > (j − 1)(m− 1).

Consider the PPT adversary A1 with one oracle query in the experiment of security notion IND-
OCPA.

Adversary A1
E∗k (LR(·,·,b))

y ←− E∗k (LR(1, 2, b))

Return 0 if n− y −m+ 2 > (y − 1)(m− 1)

Return b′
$←− {0, 1} if n− y −m+ 2 = (y − 1)(m− 1)

Return 1 if n− y −m+ 2 < (y − 1)(m− 1)

Then

AdvIND-OCPA
SE∗,A1

= Pr[ExpIND-OCPA-1
SE∗,A1

= 1]− Pr[ExpIND-OCPA-0
SE∗,A1

= 1]

= ∆ = Ω(1).

Note that for encryption E∗ : [m] → [n], if the adversary retrieves plaintext ciphertext pair (x, y),
then E∗|{i|x+1≤i≤m} : {i | x + 1 ≤ i ≤ m} → {j | y + 1 ≤ j ≤ n} remains to be ideal OPE
encryption. Thus A1 can be extended to PPT adversary A2 to distinguish plaintexts x + 1 and
x+ 2, 1 ≤ x ≤ m− 2, with two oracle queries under IND-OCPA.

Corollary 4.3. For the ideal OPE object SE∗ with the plaintext domain [m] and the ciphertext
range [n], where 2 ≤ m ≤ n, there exists an adversary A2 who can distinguish plaintexts x+ 1 and
x+ 2, 1 ≤ x ≤ m− 2, with two oracle queries under IND-OCPA such that AdvIND-OCPA

SE∗,A2
= Ω(1).

Proof. Consider the PPT adversary A2 with two oracle queries in the experiment of security notion
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IND-OCPA.

Adversary A2
E∗k (LR(·,·,b))

x
$←− {1, ...,m− 2}

y ←− E∗k (LR(x, x, b))

y′ ←− E∗k (LR(x+ 1, x+ 2, b))

Return 0 if n− y′ − (m− x) + 2 > (y′ − y − 1)(m− x− 1)

Return b′
$←− {0, 1} if n− y′ − (m− x) + 2 = (y′ − y − 1)(m− x− 1)

Return 1 if n− y′ − (m− x) + 2 < (y′ − y − 1)(m− x− 1)

Then AdvIND-OCPA
SE∗,A2

= Ω(1) based on the same proof of Proposition 4.2.

Proposition 4.2 and Corollary 4.3 imply that the advantages of adversaries A1 and A2 against
SE∗ are greater than a positive constant, where 2 ≤ m ≤ n. Therefore, SE∗ is not secure under
IND-OCPA in polynomial-sized domains.

4.2 Generalized OPE in the Polynomial-sized Domain

We define the concept of the generalized OPE (GOPE) scheme. Unlike OPE whose ciphertext-
space is [n], GOPE adopts general mathematical objects as ciphertexts. Hence a special comparison
algorithm is needed to compare the ciphertexts.

Definition 4.4 (GOPE scheme). A GOPE scheme SE = (K, E ,D, C) is a symmetric-key encryption
scheme, where K : {0, 1}∗ → {0, 1}∗ is a key generation algorithm, E : [m] × {0, 1}∗ → R is an
encryption algorithm, D : R×{0, 1}∗ → [m] is a decryption algorithm, and C : R×R→ {=, >,<}
is a comparison algorithm. SE satisfies that

Pr[D(E(x, k), k) = x] > 1− ν(λ)

for any x ∈ [m] and key k, and

Pr[C(E(x, k), E(x′, k)) = w] > 1− ν(λ)

for any xwx′ and w ∈ {=, >,<}. �

Next we construct the GOPE scheme SE2 = (K2, E2,D2, C2) with m being a polynomial of λ, and
prove that it is secure under IND-OCPA. In SE2 the ciphertext y for plaintext x is a “set”. An
element in y is a share of the relation between x and x′, for all other plaintexts x′. When comparing
x and x′, the matching pair of shares from x and x′ can be retrieved to reconstruct the relation
(x < x′ or x > x′). Let the symbol “<” encoded to 1 ∈ Z3 and the symbol “>” encoded to 2 ∈ Z3.
SE2 is constructed as follows.

- K2: Given the domain size m, it randomly picks a permutation π of the set {(x, x′) | 1 ≤ x < x′ ≤
m}, and randomly generates rxx′ ∈ Z3 for 1 ≤ x < x′ ≤ m. It returns {π, rxx′ | 1 ≤ x < x′ ≤ m};
- E2: For plaintext x, it returns the ciphertext y = {(π(x′, x), rx′x) | x′ < x} ∪ {(π(x, x′), 1 + rxx′) |
x′ > x};
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- D2: For ciphertext y, it retrieves (any) two elements (i, s) and (i′, s′) from the set y, and returns
plaintext x which appears in both π−1(i) and π−1(i′);

- C2: For ciphertexts y and y′, if y = y′, it returns =. Otherwise, it retrieves (i, s) from the set y
and (i, s′) from the set y′, if s− s′ = 1, it returns <; if s− s′ = 2, it returns >.

The efficiency, correctness, and security of SE2 are presented in Lemma 4.5 and Theorem 4.6.

Lemma 4.5. SE2 is efficient and correct.

Proof. The efficiency of SE2 and correctness of decryption algorithm can be easily verified. It
suffices to verify the correctness of comparison algorithm. For x = x′, since E2(x, k) = E2(x′, k), it
is correct for the comparison algorithm to return =. For x 6= x′, there exist unique i, s, s′ such that
(i, s) ∈ E2(x, k) and (i, s′) ∈ E2(x′, k). If x < x′, E2(x, k) = {..., (π(x, x′), 1+rxx′), ...} and E2(x′, k) =
{..., (π(x, x′), rxx′), ...}, thus (1 + rxx′)− rxx′ = 1, hence it is correct for the comparison algorithm
to return <; if x > x′, E2(x, k) = {..., (π(x′, x), rx′x), ...} and E2(x′, k) = {..., (π(x′, x), 1 + rx′x), ...},
thus rxx′ − (1 + rxx′) = −1 = 2, hence it is correct for the comparison algorithm to return >.

Theorem 4.6. SE2 is secure under IND-OCPA. Specifically, AdvIND-OCPA
SE2,A = 0.

Proof. Assume that the adversary queries {(xu0 , xu1)}hu=1 under IND-OCPA. According to the re-
striction under IND-OCPA, xu0 = xv0 ⇔ xu0 = xv0. Since it will not increase the advantage by
querying two identical plaintexts pairs, it suffices to consider x1

0 < x2
0 < ... < xh0 and x1

1 < x2
1 <

... < xh1 . Hence, the adversary views (E2(x1
0, k), ..., E2(xh0 , k)) for b = 0, and the adversary views

(E2(x1
1, k), ..., E2(xh1 , k)) otherwise. It suffices to prove that the above two probability distributions

are identical because it implies that AdvIND-OCPA
SE2,A = 0.

We use mathematical induction on h to prove that the two probability distributions (E2(x1
0, k), ..., E2(xh0 , k))

and (E2(x1
1, k), ..., E2(x1

1, k)) are identical. For h = 1, it is necessary to show that the prob-
ability distribution E2(x1

0, k) equals to the probability distribution E2(x1
1, k). We denote Π =

{(x, x′) | 1 ≤ x < x′ ≤ m}. Let Ij , 1 ≤ j ≤ m − 1, be the probability distribution such that
Pr[I1 = i1, ..., Im−1 = im−1] = 1∏m−2

j=0 (|Π|−j) for (i1, ..., im−1) ∈ Πm−1 and ij 6= ij′ if j 6= j′. Let Sj ,

1 ≤ j ≤ m− 1, be the uniform distribution on Z3. Then according to the construction of E2,

E2(x1
0, k) = {(Ij , Sj) | 1 ≤ j ≤ m− 1} = E2(x1

1, k).

We assume that the two probability distributions are identical for h < h′. For h = h′, we consider
the following two conditional probability distributions

X = E2(xh
′

0 , k) | E2(x1
0, k) = y1, ..., E2(xh

′−1
0 , k) = yh′−1

and

Y = E2(xh
′

1 , k) | E2(x1
1, k) = y1, ..., E2(xh

′−1
1 , k) = yh′−1,

where yu = {(iuj , suj ) ∈ Π × Z3 | 1 ≤ j ≤ m − 1}, 1 ≤ u ≤ h′ − 1. y1, ..., yh′−1 will affect E2(xh
′

0 , k)

(E2(xh
′

1 , k)). First, for 1 ≤ u ≤ h′ − 1, there exists unique iuj (for some j) appears in E2(xh
′

0 , k)

(E2(xh
′

1 , k)) according to the construction of E2. On the other hand, there exists unique iuj′ (for some
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j′) appears in yu′ , 1 ≤ u′ 6= u ≤ h′ − 1; hence those iuj′ will not appear in E2(xh
′

0 , k) (E2(xh
′

1 , k)).
Thus, let

Π̄u = {iuj | iuj appears in yu but does not appear in yu′ for any 1 ≤ u′ 6= u ≤ h′ − 1},

1 ≤ u ≤ h′ − 1. Then there exists iuj ∈ Π̄u such that (iuj , s
u
j − 1) appears in E2(xh

′
0 , k) (E2(xh

′
1 , k)),

1 ≤ u ≤ h′ − 1. Note that the elements of a set do not have orders, without loss of generality, for
1 ≤ u ≤ h′−1, let (Iu, Su) be the probability distribution such that Pr[(Iu, Su) = (iuj , s

u
j −1)] = 1

|Π̄u|
.

The rest probability distributions are similar to those for the situation of h = 1. Let

Π̄ = {(x, x′) ∈ Π | (x, x′) does not appear in yu, 1 ≤ u ≤ h′ − 1}.

For h′ ≤ u ≤ m−1, let Iu be the probability distribution such that Pr[Ih′ = ih′ , ..., Im−1 = im−1] =
1∏m−h′−1

j=0 (|Π̄|−j)
for (ih′ , ..., im−1) ∈ Π̄m−h′ and iu 6= iu′ if u 6= u′. Let Su, h′ ≤ u ≤ m − 1, be the

uniform distribution on Z3. Then

X = {(Iu, Su) | 1 ≤ u ≤ m− 1} = Y. (1)

Consequently,

Pr[E2(x1
0, k) = y1, ..., E2(xh

′
0 , k) = yh′ ]

= Pr[E2(x1
0, k) = y1, ..., E2(xh

′
0 , k) = yh′ ] · Pr[X = yh′ ]

= Pr[E2(x1
1, k) = y1, ..., E2(xh

′
1 , k) = yh′ ] · Pr[Y = yh′ ] (induction hypothesis and (1))

= Pr[E2(x1
1, k) = y1, ..., E2(xh

′
1 , k) = yh′ ].

Hence it implies that the two probability distributions are identical for h = h′, which completes
induction.

Remark 3. In order to improve the efficiency of SE2, π and π−1 can be substituted with deterministic
symmetric-key encryption and decryption algorithms, and rxx′ can be generated by a pseudorandom
number generator. It is obvious that the improved scheme remains secure under IND-OCPA. �

5 IND-OLCPA

Now we consider security notion for OPE schemes in superpolynomial-sized domains. Accord-
ing to the big jump attack, if m is a superpolynomial of λ, then the adversary ABJ can have
AdvIND-OCPA

SE,ABJ ≥ 1−ν(λ) by using three oracle queries. From this we can conclude that IND-OCPA
is too strong a security notion for OPE schemes in the superpolynomial-sized domain. Thus, we
further weaken IND-OCPA and define the security notion IND-OLCPA (indistinguishability under
ordered and local chosen-plaintext attack), where the range of the oracle queries is bounded by a
polynomial of λ (to prevent the adversary from launching the big jump attack). The definition of
IND-OLCPA is given as follows.

Definition 5.1 (IND-OLCPA). The security notion IND-OLCPA has the same definition as that
of IND-CPA except that the adversary is restricted so that it can only query {(xu0 , xu1)}hu=1 where

xu0 < xv0 ⇔ xu1 < xv1 (2)
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for 1 ≤ u, v ≤ h, and there exists a polynomial g1 such that

|xui − xvj | ≤ g1(λ) (3)

for 1 ≤ u, v ≤ h and 0 ≤ i, j ≤ 1. �

We design the following attack (and call it the small jump attack) against OPE schemes under
IND-OLCPA. Similar to the big jump attack, the small jump attack also decides whether the
ciphertexts are encrypted from the left or the right plaintexts based on the differences in distances
between the ciphertexts.

Definition 5.2 (Small jump attack). Consider the following PPT adversary ASJ with three oracle
queries in the experiment of security notion IND-OLCPA.

Adversary ASJ
Ek(LR(·,·,b))

x
$←− {1, ...,m− 3}

y1 ←− Ek(LR(x, x, b))

y2 ←− Ek(LR(x+ 1, x+ 2, b))

y3 ←− Ek(LR(x+ 3, x+ 3, b))

Return 1 if y3 − y2 < y2 − y1; else return 0 �

In the small jump attack given above, the left plaintexts are x, x+1, and x+3, and the corresponding
right plaintexts are x, x + 2, and x + 3, where x is randomly selected from {1, ...,m − 3}. The
following lemma show that the small jump attack can distinguish these two cases with non-negligible
probability.

Lemma 5.3. There is no efficient OPE scheme that is secure under IND-OLCPA (because of ASJ)
if m is a superpolynomial of λ. Specifically, there exists a polynomial g such that AdvIND-OLCPA

SE,ASJ ≥
1

g(λ)·g1(λ) .

Proof. Let di = E(i+1, k)−E(i, k) be the distance of the two ciphertexts, 1 ≤ i < m. Suppose that
the adversary selects x = i in the small jump attack. Then y3 − y2 = di+1 + di+2 and y2 − y1 = di
if b = 0; y3 − y2 = di+2 and y2 − y1 = di + di+1 if b = 1. Therefore adversary ASJ returns correct b
if the following condition holds.

di + di+1 > di+2 and di < di+1 + di+2 (4)

Consequently, adversary ASJ may return incorrect b if either of the following two conditions (called
small jump and small reverse-jump) holds.

di + di+1 ≤ di+2 (5)

di ≥ di+1 + di+2 (6)

Note that condition (5) implies that the distance series increases faster than Fibonacci numbers,
and condition (6) implies that the reversed distance series increases faster than Fibonacci numbers.
Since the formula of Fibonacci Numbers is

1√
5

[(1 +
√

5

2

)i − (1−
√

5

2

)i]
,
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and log di must be bounded by a polynomial, it implies that condition (5) (resp. condition (6))
cannot consecutively happen superpolynomial times. Moreover, condition (6) cannot happen con-
secutively after condition (5). Otherwise

di + di+1 ≤ di+2 and di+1 ≥ di+2 + di+3 ⇒ di + di+1 + di+2 + di+3 ≤ di+2 + di+1

⇒ di + di+3 ≤ 0,

which causes contradiction.

Consider {(di, di+1, di+2)}m−3
i=1 . Suppose that (di, di+1, di+2) satisfies condition (5) or condition (6),

and m− 3− i is a superpolynomial. Since condition (5) (resp. condition (6)) cannot consecutively
happen superpolynomial times and condition (6) cannot happen consecutively after condition (5),
there must exist polynomial gi such that (di+gi , di+1+gi , di+2+gi) satisfies condition (4). Hence the
points in the set

{i | (di, di+1, di+2) satisfy condition (4)}

partition [m] into polynomial-sized segments. Let g · g1 be the maximum polynomial. Then there
are at least m−3

g·g1 many i’s such that (di, di+1, di+2) satisfies condition (4). Since adversary ASJ
returns correct b if it selects x = i and (di, di+1, di+2) satisfies condition (4),

AdvIND-OLCPA
SE,ASJ ≥ 1

m− 3
· m− 3

g · g1
=

1

g · g1
.

Proposition 5.4. If the adversary repeats the small jump attack, then the lower bound on the
advantage of the adversary will become 1

g .

Proof. Since the range of plaintexts in the oracle queries is bounded by g1, the probability for some
i in the set {i | (di, di+1, di+2) satisfy condition (4)} in the proof of Lemma 5.3 will fall into the
range is at least g1

m−3 ·
m−3
g·g1 = 1

g . Therefore the lower bound on the advantage of the adversary will

increase to 1
g .

6 Ideal OPE and GOPE in the Superpolynomial-sized Domain

According to the same adversaries A1 in Proposition 4.2 and A2 in Corollary 4.3, the ideal OPE
object SE∗ does not achieve the lower bound on the advantage of the adversary 1

g (Proposition
5.4) under IND-OLCPA in superpolynomial-sized domains. Next We design a GOPE scheme
SE3 = (K3, E3,D3, C3) in the superpolynomial-sized domain, and prove that it achieves that lower
bound. SE3 is constructed based on two building blocks: SE4 and SE5. SE4 is adapted from SE1

and it is secure under IND-OLCPA; but it can only support “local” comparisons (i.e. comparisons
for ciphertexts whose plaintexts are closeby). The ciphertexts of SE5 have proper remote order to
support “remote” comparisons (i.e. comparisons for ciphertexts whose plaintexts are far apart).

First we design SE4 = (K4, E4,D4, C4). Let g2 denote a polynomial. In SE4 the ciphertext of x can
be compared with g2(λ)− 1 (instead of m− 1) other ciphertexts whose plaintexts are close to x.

- K4: Given the domain size m, it randomly picks a permutation π of the set {(x, x′) | 1 ≤ x < x′ ≤
m}, and randomly generates rxx′ ∈ Z3 for 1 ≤ x < x′ ≤ m. It returns {π, rxx′ | 1 ≤ x < x′ ≤ m};
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- E4: For plaintext x, it returns the ciphertext

y = {(π(x′, x), rx′x) | x′ < x} ∪ {(π(x, x′), 1 + rxx′) | x < x′ ≤ g2(λ)} if x ≤ g2(λ)
2 ;

y = {(π(x′, x), rx′x) | x − g2(λ)
2 < x′ < x} ∪ {(π(x, x′), 1 + rxx′) | x < x′ ≤ x + g2(λ)

2 } if
g2(λ)

2 < x < m− g2(λ)
2 ;

y = {(π(x′, x), rx′x) | m− g2(λ) ≤ x′ < x} ∪ {(π(x, x′), 1 + rxx′) | x < x′} if x ≥ m− g2(λ)
2 ;

- D4: For ciphertext y, it retrieves (any) two elements (i, s) and (i′, s′) from the set y, and returns
plaintext x which appears in both π−1(i) and π−1(i′);

- C4: For ciphertexts y and y′, if y = y′, it returns =. Otherwise, it retrieves (i, s) from the set y
and (i, s′) from the set y′. If s− s′ = 1, it returns <. If s− s′ = 2, it returns >.

The correctness, security, and efficiency of SE4 are presented in Lemmas 6.1 and 6.2.

Lemma 6.1. The decryption of SE4 is correct. Also for plaintexts x1, x2 ∈ [m], the comparison of

E4(x1, k) and E4(x2, k) is correct if |x1 − x2| ≤ g2(λ)−1
2 .

Proof. The correctness of the decryption can be easily verified. Note that ciphertext of x1 (resp.
x2) can compare with other g2(λ)−1 ciphertexts whose plaintexts are close to x1 (resp. x2). Hence

E4(x1, k) and E4(x2, k) are comparable if |x1 − x2| ≤ g2(λ)−1
2 . The comparison is correct referring

to the proof of Lemma 4.5.

Lemma 6.2. Suppose that the range of oracle queries under IND-OLCPA is bounded by polynomial
g1. Then SE4 is secure under IND-OLCPA if g2 ≥ 2g1 + 1. Furthermore, SE4 can be revised to
achieve efficiency and remain secure under IND-OLCPA.

Proof. The security proof is analogous to that of Theorem 4.6. It is worthy to note that the
condition g2 ≥ 2g1 + 1 will be used in the inductive step to guarantee two conditional probability
distributions are identical. The detailed proof is presented as follows.

Assume that the adversary queries {(xu0 , xu1)}hu=1 under IND-OLCPA. According to the restriction
condition (2) under IND-OLCPA, xu0 = xv0 ⇔ xu0 = xv0. Since it will not increase the advantage by
querying two identical plaintexts pairs, it suffices to consider x1

0 < x2
0 < ... < xh0 and x1

1 < x2
1 <

... < xh1 . Hence, the adversary views (E4(x1
0, k), ..., E4(xh0 , k)) for b = 0, and the adversary views

(E4(x1
1, k), ..., E4(xh1 , k)) otherwise. It suffices to prove that the above two probability distributions

are identical because it implies that AdvIND-OLCPA
SE4,A = 0.

We use mathematical induction on h to prove that the two probability distributions (E4(x1
0, k), ..., E4(xh0 , k))

and (E4(x1
1, k), ..., E4(x1

1, k)) are identical. For h = 1, it is necessary to show that the probability
distribution E4(x1

0, k) equals to the probability distribution E4(x1
1, k). We denote Π = {(x, x′) |

1 ≤ x < x′ ≤ m}. Let Ij , 1 ≤ j ≤ g2(λ) − 1, be the probability distribution such that
Pr[I1 = i1, ..., Ig2(λ)−1 = ig2(λ)−1] = 1∏g2(λ)−2

j=0 (|Π|−j)
for (i1, ..., ig2(λ)−1) ∈ Πg2(λ)−1 and ij 6= ij′ if

j 6= j′. Let Sj , 1 ≤ j ≤ g2(λ) − 1, be the uniform distribution on Z3. Then according to the
construction of E4,

E4(x1
0, k) = {(Ij , Sj) | 1 ≤ j ≤ g2(λ)− 1} = E4(x1

1, k).

We assume that the two probability distributions are identical for h < h′. For h = h′, we consider
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the following two conditional probability distributions

X = E4(xh
′

0 , k) | E4(x1
0, k) = y1, ..., E4(xh

′−1
0 , k) = yh′−1

and

Y = E4(xh
′

1 , k) | E4(x1
1, k) = y1, ..., E4(xh

′−1
1 , k) = yh′−1,

where yu = {(iuj , suj ) ∈ Π × Z3 | 1 ≤ j ≤ m − 1}, 1 ≤ u ≤ h′ − 1. For oracle queries xui and xvj ,

since |xui −xvj | ≤ g1(λ) ≤ g2(λ)−1
2 , they are comparable according to Lemma 6.1. So y1, ..., yh′−1 will

affect E4(xh
′

0 , k) (E4(xh
′

1 , k)). First, for 1 ≤ u ≤ h′ − 1, there exists unique iuj (for some j) appears

in E4(xh
′

0 , k) (E4(xh
′

1 , k)). On the other hand, there exists unique iuj′ (for some j′) appears in yu′ ,

1 ≤ u′ 6= u ≤ h′ − 1; hence those iuj′ will not appear in E4(xh
′

0 , k) (E4(xh
′

1 , k)). Thus, let

Π̄u = {iuj | iuj appears in yu but does not appear in yu′ for any 1 ≤ u′ 6= u ≤ h′ − 1},

1 ≤ u ≤ h′ − 1. Then there exists iuj ∈ Π̄u such that (iuj , s
u
j − 1) appears in E4(xh

′
0 , k) (E4(xh

′
1 , k)),

1 ≤ u ≤ h′ − 1. Note that the elements of a set do not have orders, without loss of generality, for
1 ≤ u ≤ h′−1, let (Iu, Su) be the probability distribution such that Pr[(Iu, Su) = (iuj , s

u
j −1)] = 1

|Π̄u|
.

The rest probability distributions are similar to those for the situation of h = 1. Let

Π̄ = {(x, x′) ∈ Π | (x, x′) does not appear in yu, 1 ≤ u ≤ h′ − 1}.

For h′ ≤ u ≤ g2(λ) − 1, let Iu be the probability distribution such that Pr[Ih′ = ih′ , ..., Ig2(λ)−1 =

ig2(λ)−1] = 1∏g2(λ)−h′−1
j=0 (|Π̄|−j)

for (ih′ , ..., ig2(λ)−1) ∈ Π̄g2(λ)−h′ and iu 6= iu′ if u 6= u′. Let Su,

h′ ≤ u ≤ g2(λ)− 1, be the uniform distribution on Z3. Then

X = {(Iu, Su) | 1 ≤ u ≤ g2(λ)− 1} = Y. (7)

Consequently,

Pr[E4(x1
0, k) = y1, ..., E4(xh

′
0 , k) = yh′ ]

= Pr[E4(x1
0, k) = y1, ..., E4(xh

′
0 , k) = yh′ ] · Pr[X = yh′ ]

= Pr[E4(x1
1, k) = y1, ..., E4(xh

′
1 , k) = yh′ ] · Pr[Y = yh′ ] (induction hypothesis and (7))

= Pr[E4(x1
1, k) = y1, ..., E4(xh

′
1 , k) = yh′ ].

Hence it implies that the two probability distributions are identical for h = h′, which completes
induction.

To achieve efficiency of SE4, π and π−1 can be substituted with deterministic symmetric-key encryp-
tion and decryption algorithms, and rxx′ can be generated by a pseudorandom number generator.
It is obvious that the revision is efficient and remains secure under IND-OLCPA.

Note that the original SE4 is given because it is easier to understand its GOPE construction. It
is revised to achieve better efficiency. For convenience, from this point onwards, SE4 refers to the
revised version. Next we design SE5 = (K5, E5, C5). Since SE4 supports decryption and “local” com-
parisons, SE5 does not need a decryption algorithm but should support “remote” comparisons. In
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order to assure security, the ciphertexts should have small statistical distances if the corresponding
plaintexts are close to each other. To achieve this, for 1 ≤ i ≤ l, SE5(i, k) are randomly selected
from [n′], where n′ and l are positive integers. Then the subsequent ciphertexts are gradually
increased. The construction of SE5 is shown as follows.

- K5: It randomly selects ri ∈ [n′] for 0 ≤ i ≤ l − 1 and returns (r0, ..., rl−1);

- E5: For plaintext x ∈ [m], we compute a and b, a ≥ 0 and 0 ≤ b < l, such that x− 1 = a · l + b.
E5 returns ciphertext y = rb + a;

- C5: For ciphertexts y and y′, if y > y′, it returns >; if y < y′, it returns <.

The correctness of SE5 is presented in Lemma 6.3.

Lemma 6.3. For plaintexts x1, x2 ∈ [m], the comparison of E5(x1, k) and E5(x2, k) is correct if
|x1 − x2| ≥ n′l + l.

Proof. Without loss of generality, we assume that x1 < x2. Then x2 − x1 ≥ n′l + l. Let xi − 1 =
ai · l + bi satisfying ai ≥ 0 and 0 ≤ bi < l, 1 ≤ i ≤ 2. Then

n′l + l ≤ x2 − x1 = (a2 − a1) · l + (b2 − b1) < (a2 − a1) · l + l⇒ a2 − a1 > n′.

Hence,

E5(x1, k) = rb1 + a1 < rb1 + (a2 − n′) = (rb1 − n′) + a2 < rb2 + a2 = E5(x2, k),

which implies that the comparison is correct.

If the queries by the adversary against SE5 are in the interval [cl + 1, (c + 1)l], for some c ≥ 0,
then the adversary cannot distinguish the corresponding ciphertexts because they are independent
identical random variables generated by E5. If the queries involve plaintexts in two consecutive
intervals [cl + 1, (c + 1)l] and [(c + 1)l + 1, (c + 2)l], then the advantage of the adversary is not 0,
but it can be controlled by l and n′. The security of SE5 is given in the following Lemma.

Lemma 6.4. Suppose that the range of oracle queries under IND-OLCPA is bounded by polynomial
g1. For polynomial g ≥ 1, AdvIND-OLCPA

SE5,A ≤ 1
g(λ) if l > g1(λ) and n′ ≥ g(λ) · g1(λ).

Proof. Assume that the adversary queries {(xu0 , xu1)}hu=1 under IND-OLCPA. According to the
restriction condition (2) under IND-OLCPA, xu0 = xv0 ⇔ xu0 = xv0. Since it will not increase the
advantage by querying two identical plaintexts pairs, it suffices to consider x1

0 < x2
0 < ... < xh0

and x1
1 < x2

1 < ... < xh1 . Let xui − 1 = aui · l + bui satisfying aui ≥ 0 and 0 ≤ bui < l, then
E5(xui , k) = rbui +aui , 1 ≤ u ≤ h and 0 ≤ i ≤ 1. Hence, the adversary views (rb10 +a1

0, ..., rbh0
+ah0) for

b = 0, and the adversary views (rb11 + a1
1, ..., rbh1

+ ah1) otherwise. Let ∆ be the statistical distance

between (rb10 + a1
0, ..., rbh0

+ ah0) and (rb11 + a1
1, ..., rbh1

+ ah1). Since AdvIND-OLCPA
SE5,A ≤ ∆, it suffices to

prove that ∆ ≤ 1
g(λ) .

We study the properties of those probability distributions. Since

|(aui − avj ) · l + (bui − bvj )| = |xui − xvj | ≤ g1(λ) < l,

it implies that |aui − avj | ≤ 1 and bui = bvj ⇒ aui = avj , 1 ≤ u, v ≤ h and 0 ≤ i, j ≤ 1. Furthermore

bui = bvj ⇒ aui = avj and xu0 6= xv0 if u 6= v implies that bu0 6= bv0 if u 6= v. Therefore rb10 +a1
0, ..., rbh0

+ah0
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are independent uniform distributions on [n′] + a1
0, ..., [n

′] + ah0 . Similarly, rb11 + a1
1, ..., rbh1

+ ah1 are

independent uniform distributions on [n′]+a1
1, ..., [n

′]+ah1 . Hence ∆ equals to the statistical distance
between independent uniform distributions X1, ..., Xh on [n′] + a1

0, ..., [n
′] + ah0 and independent

uniform distributions Y1, ..., Yh on [n′] + a1
1, ..., [n

′] + ah1 , i.e.

∆ =
1

2

∑
wu∈([n′]+au0 )∪([n′]+au1 ),1≤u≤h

|Pr[(X1, ..., Xh) = (w1, ..., wh)]− Pr[(Y1, ..., Yh) = (w1, ..., wh)]| .

Since |au0 − au1 | ≤ 1 for 1 ≤ u ≤ h, ∆ ≤ h·n′h−1+h·n′h−1

2n′h
= h

n′ ≤
g1(λ)
n′ ≤

1
g(λ) .

SE3 = (K3, E3,D3, C3) is constructed by combining SE4 and SE5. In order to achieve full comparison
capability, g2, l, and n′ are chosen to satisfy the condition g2−1

2 ≥ n′l+ l (Lemmas 6.1 and 6.3). In
order to achieve security, g2, l, and n′ are chosen to satisfy the conditions g2 ≥ 2g1 + 1, l > g1, and
n′ ≥ g · g1 (Lemmas 6.2 and 6.4). We can solve these inequalities, and get l > g1, n′ ≥ g · g1, and
g2 ≥ max{2(n′l + l) + 1, 2g1 + 1} = 2(n′l + l) + 1. Specifically, we can set l = g1 + 1, n′ = g · g1,
and g2 = 2(n′l + l) + 1. SE3 encrypts plaintext x into (E4(x, k), E5(x, k)). Since g and g1 are
polynomials, SE3 is an efficient encryption scheme. Given two ciphertexts (E4(x1, k), E5(x1, k)) and
(E4(x2, k), E5(x2, k)), SE3 first compares E4(x1, k) and E4(x2, k) by using C4; if it fails, SE3 then
compares E5(x1, k) and E5(x2, k) by using C5. Also, E4(x, k) can be decrypted by D4. We summarize
these results in the following theorem.

Theorem 6.5. Suppose that the range of oracle queries under IND-OLCPA is bounded by poly-
nomial g1. For any polynomial g ≥ 1, there exists an efficient GOPE scheme SE3 such that
AdvIND-OLCPA

SE3,A ≤ 1
g(λ) .

Proof. The proof is based on Lemmas 6.1 6.2 6.3 and 6.4.

7 Conclusion and Future Research

In this paper, we first prove that the ideal OPE object may not be the most secure OPE. To this
end, we construct a “real” OPE scheme for the specific plaintext domain and ciphertext range and
prove that it is secure under IND-OCPA, and prove that the ideal OPE object for the specific
plaintext domain and ciphertext range is not secure under IND-OCPA. The results indicates that
we need to use the “ideal” encryption object more cautiously in the security analysis of OPE.

We then study the security of OPE and GOPE schemes under various security notions. First we
consider polynomial-sized domains and show that the ideal OPE object is not secure under IND-
OCPA even in polynomial-sized domains. Also, we construct a generalized OPE scheme which is
secure under IND-OCPA in polynomial-sized domains. Then, we weaken the security notion from
IND-OCPA to IND-OLCPA to prevent the big jump attack in superpolynomial-sized domains.
Correspondingly, we design a small jump attack under IND-OLCPA and derive the lower bound on
the advantage of an adversary against OPE schemes under IND-OLCPA. Based on the small jump
attack, it is shown that the ideal OPE object does not achieve the lower bound. So, we construct
another generalized OPE schemes to achieve the lower bound. The results are summarized in Tables
1, where SE represents any OPE scheme, SE∗ represents the ideal OPE object, SE2 represents the
GOPE scheme constructed in Subsection 4.2, SE3 represents the GOPE scheme constructed in
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Section 6; A represents any PPT adversary, ABJ represents the big jump attack, ARSJ represents
repeated small jump attacks, A1 represents the attack against the ideal OPE object defined in
Proposition 4.2, A2 represents the attack against the ideal OPE object defined in Corollary 4.3.

OPE in the polynomial-sized domain OPE in the superpolynomial-sized domain

IND-OCPA AdvIND-OCPA
SE,ABJ ≥ 1− 2 logn

m−1 ([4]) AdvIND-OCPA
SE,ABJ ≥ 1− ν(λ) ([4])

AdvIND-OCPA
SE∗,A1

= Ω(1) (Proposition 4.2)

AdvIND-OCPA
SE∗,A2

= Ω(1) (Corollary 4.3)

IND-OLCPA AdvIND-OLCPA
SE,ARSJ ≥ 1

g(λ) (Proposition 5.4)

AdvIND-OLCPA
SE∗,A1

= Ω(1)

AdvIND-OLCPA
SE∗,A2

= Ω(1)

GOPE in the polynomial-sized domain GOPE in the superpolynomial-sized domain

IND-OCPA AdvIND-OCPA
SE2,A = 0 (Theorem 4.6)

IND-OLCPA AdvIND-OLCPA
SE3,A ≤ 1

g(λ) (Theorem 6.5)

Table 1: Security of OPE and GOPE Schemes Under Various Security Notions

There are many unsolved problems that require further research. For instance, we prove that
the ideal OPE object is not the most secure OPE for the specific plaintext domain [m] = {1, 2}.
Unfortunately the construction of the “real” OPE scheme cannot be generalized to other plaintext
domains. Thus, it is still unknown whether the ideal OPE is the most secure OPE for plaintext
domains with size greater than 2. The more important problem is: if the ideal OPE object is not
the secure OPE for plaintext domains with size greater than 2, then what is the most secure OPE.
For GOPE, we construct GOPE schemes SE2 and SE3 to achieve lower bounds on the advantage
of an adversary against OPE schemes under IND-OCPA in the polynomial-sized domain and under
IND-OLCPA in the superpolynomial-sized domain. A natural question is: can GOPE schemes do
better, i.e. can we construct GOPE schemes to exceed those bounds? We plan to conduct research
to investigate these problems. Also, we plan to investigate other novel approaches to improve the
design of OPE schemes.
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