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Abstract. A (k, l) hash-function combiner for property P is a construction that, given access to l hash
functions, yields a single cryptographic hash function which has property P as long as at least k out of
the l hash functions have that property. Hash function combiners are used to hedge against the failure
of one or more of the individual components. One example of the application of hash function combiners
are the previous versions of the TLS and SSL protocols [10, 8].

The concatenation combiner which simply concatenates the outputs of all hash functions is an example
of a robust combiner for collision resistance. However, its output length is, naturally, significantly longer
than each individual hash-function output, while the security bounds are not necessarily stronger than
that of the strongest input hash-function. In 2006 Boneh and Boyen asked whether a robust black-box
combiner for collision resistance can exist that has an output length which is significantly less than that
of the concatenation combiner [4]. Regrettably, this question has since been answered in the negative
for fully black-box constructions (where hash function and adversary access is being treated as black-
box), that is, combiners (in this setting) for collision resistance roughly need at least the length of the
concatenation combiner to be robust [4, 5, 16, 17].

In this paper we examine weaker notions of collision resistance, namely: second pre-image resistance

and target collision resistance [20] and pre-image resistance. As a generic brute-force attack against

any of these would take roughly 2n queries to an n-bit hash function, in contrast to only 2n/2 queries it

would take to break collision resistance (due to the birthday bound), this might indicate that combiners

for weaker notions of collision resistance can exist which have a significantly shorter output than the

concatenation combiner (which is, naturally, also robust for these properties). Regrettably, this is not

the case.
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1 Introduction

In theory, hash functions are usually treated as ideal objects, that is, they are assumed to be random
oracles or to hold certain properties such as collision resistance (it is difficult to find two messages that
hash to the same value) or pre-image resistance (it is difficult, given an image, to find any pre-image).
Assuming that these properties hold, this then allows us to prove protocols or constructions to be secure
when instantiated with such a function. However, finding functions that provably hold any of the properties
usually demanded of good hash functions is a difficult problem. Consequently, in practice, hash functions
are heuristics that come only with a very limited number of guarantees. Thus it is not surprising that

1

http://www.cryptoplexity.de
arno.mittelbach@cased.de


with time, attacks against practical hash functions are usually found that drastically lower the bounds
assumed in theory. Many attacks have been presented for MD5 [25, 23, 21], and also for SHA-1 [13] first
attacks have been published [24, 7, 1, 6]. This, in turn, led NIST (National Institute of Standards and
Technology) to hold a competition to find a successor to the SHA-1 and SHA-2 families [14].1

Combiners.

Hash function combiners can be used to hedge against the failure of one (or more) of the components.
A (k, l)-combiner is a construction that given access to l primitives implements the same primitive while
guaranteeing that a certain property or multiple properties hold as long as a these are held by k out of
the l input primitives. If the combiner ensures this for some property then it is said to be robust for that
property.

Combiners are usually considered as black-box combiners, that is, the combiner only gets black-box
access to its input hash functions. This is due to that i) this allows us the use the combiner with any
hash functions; and ii) we are (so far) ignorant as to properly modeling white-box access. Consider, for
example, the somewhat “pathological” combiner CH1,H2 with two input hash functions which on input M
returns H1(M) if H1 is collision resistant and H2(M) otherwise. Naturally, this combiner does all we want
from a combiner for hash functions, but we have no idea, of how such a combiner could be implemented.
In this paper, we limit our investigation to black-box combiners and speak henceforth only of combiner.

For hash functions the classical combiner robust for collision resistance is the concatenation combiner,
i.e., C||(M) = H1(M)||H2(M) is a robust (1, 2)-combiner for collision resistance as naturally any two
messages (M,M ′) that collide under C|| also collide under both hash functions (i.e., Hb(M) = Hb(M

′) for
b = {1, 2}).

However, when simply concatenating the outputs of several hash functions, the output length grows
significantly, while the security guarantee of the combined hash function does not necessarily increase.
That is, we expect an adversary to find collisions for a hash function with output length n after roughly
2n/2 queries to the function (due to the generic birthday attack), a bound which can only be met by
the concatenation combiner if all input functions were “ideal” hash functions to begin with (for which
naturally a combiner would not be needed in the first place). Thus, Boneh and Boyen asked whether
robust combiners for collision resistance exist that have a significantly shorter output length than the
concatenation combiner [4]. This question has since been answered negatively [4, 5, 16, 17].

Weaker than Collision Resistance.

In practice, “full” collision resistance is not always required, i.e., for many applications a suitable level
of security can be achieved with weaker notions such as second pre-image or target collision resistance.
Here an adversary has to find a collision for a specific message. Think for example of checksums for
programs. If an adversary wants to maliciously change the program then it has to make sure not to change
the checksum in the process. Thus, the first part of the collision is fixed. Another example of a weaker
property is pre-image resistance where given an image the best strategy for an adversary of finding a
corresponding pre-image should be exhaustive search. Think password storage, for an application where
pre-image resistance yields sufficient security.

For these variants of collision resistance the concatenation combiner is, naturally, also robust. While the
generic birthday attack gives us an estimate of 2n/2 queries an adversary has to perform to find a (random)
collision for an ideal function, an adversary would have to search the entire domain to break any of the

1In terms of security guarantees for practical hash functions the SHA-3 competition is also very telling. NIST received
64 entries, many of which were shown to lack the desired properties. Currently the competition is in its final stages and five
finalists have been selected [14, 2, 11, 26, 3, 9].
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properties second pre-image-, target collision- or pre-image resistance when considering ideal functions. It
is thus interesting to study the question of finding combiners with short output that are robust for any of
these weaker properties. A promising indication is also that short output combiners exist for the related
(but privately-keyed) properties message authentication codes and pseudo-randomness. Regrettably, we
will show that, as for the collision resistance case, such combiners cannot exist.

Impossibility Results.

For our definitions and proofs we closely follow Pietrzak’s elegant proof for the collision resistance case
[17, 15]. We will define combiners in the style of [4] as a pair of algorithms (C,P ) where C implements
the combiner logic and P provides a reduction from attacks on the combiner to attacks on the input
functions. To prove the non-existence of a black-box combiner C with short output we will design an
attack oracle B (that we will call breaking oracle) which breaks the investigated property (e.g., second
pre-image resistance) for the combiner with noticeable probability but which does not help the security
reduction P too much in breaking the property for the necessary number of input hash functions (2 in
the case of a (1, 2)-combiner). The intuition is, that if the combiner compresses too much, than collisions
appear on the combiner due to the compression and not due to collisions on the input hash functions. If
we can guarantee that the breaking oracle only outputs such collisions, then the reduction P has to find
collisions without the aid of the breaking oracle. However, if the combiner was indeed robust then the
reduction P must, also with access to this specific breaking oracle, be able to break the property (e.g.,
find second pre-images) for all input hash functions (in case of a (1, 2)-combiner). Such a reduction P ,
on the other hand, allows us to compress a uniformly chosen random function R : {0, 1}w → {0, 1}v to
below 2wv bits. As this violates a corollary of Shannon’s source coding theorem [22] we can argue that
such combiners cannot exist.

The main contribution of our paper is to extend Theorem 1 given by Pietrzak [17] for the properties
second pre-image resistance, target collision resistance and pre-image resistance. That is, randomized
combiners robust for collision resistance, second pre-image resistance, target collision resistance or pre-
image resistance have to have long output. We give an informal version of our main theorem for the case
of deterministic combiners for two hash functions:

Theorem 1 (informal) For some n,m, v, w ∈ N assume C : {0, 1}m → {0, 1}n is an efficient black-box-
combiner for two hash functions of the form H : {0, 1}w → {0, 1}v that is robust for collision resistance,
second pre-image resistance, target collision resistance or pre-image resistance. Then the combiner’s output
length n is bounded by:

n ≥ 2v −O(ω) (1)

where ω is logarithmic in the number of hash function queries by the combiner.

Note that the bound roughly corresponds to the concatenation combiner’s output length of 2v. As Canetti
et al. showed in [5], it is however possible to chop off a logarithmic number of bits (logarithmic in the
number of oracle calls by the combiner) of the concatenation combiner while staying robust. As their
combiner achieves the bound given in equation (1) the bound is tight.

Further note that we will prove the result for finite domain hash functions. However, as this is an
impossibility result, proving it for a finite domain actually makes the result stronger, as every secure hash
function that takes arbitrary length messages also has to be secure when considering the subset of only
fixed length input messages.
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Related Work.

Combiners for the properties second pre-image resistance and pre-image resistance with short output
length have been studied by Rjasko [19] who gives an impossibility result for a special case of deterministic
combiners where the reduction can query the breaking oracle only once. As shown in [17] this simplification
allows for a much simpler proof (also see Appendix A) than the general case for probabilistic combiners
where the reduction can query the adversary (or breaking oracle in our terminology) multiple times.

2 Preliminaries

2.1 Notation

Unless stated otherwise, lower-case letters such as n ∈ N represent natural numbers. With 1n we denote
the unary representation of n and with 〈n〉b its binary representation padded with zeros to length b. Upper-
case letters in standard typeface like M stand for bit strings. We denote with {0, 1}n the set of all bit
strings M of length |M | = n, while {0, 1}∗ denotes the set of all bit strings. For bit strings X,Y ∈ {0, 1}∗
we denote with X||Y the concatenation. If X is a set then by |X | we denote its cardinality. By M ← X
we mean that M is chosen uniformly from X , if X is a distribution then M ← X denotes that M is chosen
accordingly. The logarithm log is always to base 2.

PTM stands for Polynomial time Turing Machine and PPTM for Probabilistic Polynomial time Turing
Machine. Upper-case letters in calligraphy like A usually denote a PPTM. We will often simply call them
adversary or algorithm and we write A(M) if M is initially written on the Turing Machine’s input tape
(i.e., the algorithm runs with input M). By X ← A we denote that X is output by algorithm A. If
the Turing Machine has black-box access to one or more oracles O1, ...,Oz (these will usually be hash
functions), we denote this by adding the oracles in superscript: AO1,...,Oz .2 In some instances we will
speak of oracle circuits instead of oracle PPTMs to hint that this Turing Machine runs in the non-uniform
complexity model.

By qryOi(AO1,...,Oz(M)) we denote the set of all of A’s queries to oracle Oi when algorithm A runs on
input M .

If X and Z are random variables then Pr[X = y] denotes the probability that X takes on the value of
y. By Pr[X = y|Z] we denote the conditional probability of X = y given Z. If pre is a predicate or event
then Pr[pre] denotes the probability that the predicate is true (the event occurs)

We write Pr[step1; ...; stepi : condition] which describes a random experiment and which should be
read as: the probability that the condition holds after the steps were executed in consecutive order.

If A is an event then by ¬A we denote the complementary event, that is, Pr[¬A] = 1− Pr[A]. By ∧
(resp. ∨) we denote the conjunction (resp. disjunction) of events: if A and B are events then Pr[A ∧ B]
is the probability that both events A and B occur and Pr[A ∨ B] is the probability that at least one of
the events A or B does occur.

2.2 Hash Functions and their Properties

Formally hash functions are defined as a family of functions together with a key generation algorithm
HKGen that picks one of the functions to be used. That is, A hash function (family) is a pair of efficient
algorithms H = (HKGen, H) where HKGen(1n) is a probabilistic algorithm that takes as input the security
parameter 1n and outputs a key K (note that the security parameter is implicit in K) and H(K,M) :=
HK(M) is a deterministic algorithm that takes a key K and message M ∈ {0, 1}∗ as input and outputs a

2In this case the Turing Machine has extra oracle tapes (one per oracle). A can write query X on oracle tape i and gets
the oracle’s answer Oi in the next step written on the tape.
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hash value HK(M) ∈ {0, 1}n. We will drop the subscript and write H(M) if it is clear from context which
key the function gets.

We require different properties from hash functions depending on the application. The properties that
we are interested in in this paper are collision resistance (CR, it should be difficult to find two messages
that hash to the same value), second pre-image resistance (SPR, it should be difficult given a message to
find a second message that hashes to the same value) its variant target collision resistance3 (TCR) and
pre-image resistance (OW, given an image it should be difficult to find a corresponding pre-image).

Definition 1 (Collision Resistance) A hash function H = (HKGen, H) is collision resistant (CR), if
the advantage for every efficient adversary A in the following experiment is negligible in n:

AdvcrA (n) = Pr

[
K ← HKGen(1n);

(M,M ′)← A(K)
:

M 6= M ′∧
HK(M) = HK(M ′)

]
≈ 0

The probability is over the selection of K ← HKGen(1n) and A’s internal coin tosses.

Second pre-image- and target-collision resistance are closely related to collision resistance. For success-
fully attacking the collision resistance property of a hash function it is sufficient for an attacker to find any
pair of messages (M,M ′) such that they hash to the same value. The idea behind second pre-image- and
target collision resistance is that it should be difficult for any attacker to find a specific collision and not
just a random one. By specific we mean that the first part of the collision M is somehow predefined. The
difference between the two definitions (second pre-image and target collision resistance) is who is specifying
the first part of the collision: when considering second pre-image resistance the first part of the collision
is sampled according to some distribution (in the upcoming definition denoted with M(1n)) while when
considering target collision resistance the adversary may choose the first part. The literature does often
not clearly distinguish between the two definitions or uses the terms interchangeably. An introduction to
several variants of these notions can be found in [20].

Definition 2 (Second Pre-Image Resistance) We call a hash function H = (HKGen,H) second
pre-image resistant (SPR) with respect to distribution M, if the advantage for every efficient adversary A
in the following experiment is negligible in n:

AdvsprA (n) = Pr

[
K ← HKGen(1n);M ←M(1n);

M ′ ← A(K,M)
:

M 6= M ′∧
HK(M) = HK(M ′)

]
≈ 0

The probability is over the selection of K ← HKGen(1n), the choice of M ← M and A’s internal coin
tosses.

Definition 3 (Target Collision Resistance) We call a hash function H = (HKGen,H) target colli-
sion resistant (TCR), if the advantage for every efficient adversary A = (A1,A2) in the following experi-
ment is negligible in n:

AdvtcrA (n) =

Pr

[
(M, st)← A1(1n);K ← HKGen(1n);

M ′ ← A2(K,M, st)
:

M 6= M ′∧
HK(M) = HK(M ′)

]
≈ 0

The probability is over the selection of K ← HKGen(1n) and A’s internal coin tosses.

3Target collision resistant hash functions are often also referred to as universal one-way hash functions [12].
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The additional value st in the definition of target collision resistance is meant to allow the adversary
to encode some sort of state shared between the first adversary A1 fixing the first part of the collision and
the second adversary A2 which is tasked with finding a collision for the fixed message.

A notion closely related to second pre-image resistance is that of one-wayness or pre-image resistance.
Here an adversary is given an image (but not the pre-image) and is tasked to find any pre-image that
hashes to the given image. Formally:

Definition 4 (Pre-Image Resistance) A hash function H = (HKGen,H) is called pre-image resistant
or one-way (OW) with respect to distribution M, if the advantage for every efficient adversary A in the
following experiment is negligible in n:

AdvowA (n) = Pr

[
K ← HKGen(1n);M ←M(1n);

M ′ ← A(K,HK(M))
: HK(M) = HK(M ′)

]
≈ 0

The probability is over the selection of K ← HKGen(1n), the choice of M ← M and A’s internal coin
tosses.

2.3 Predicates Capturing Events

In the upcoming proofs and in our definition of a robust combiner we need to formalize the event that an
adversary finds second pre-images, target collisions or simply pre-images. For this we examine a random
experiment AH1,...,Hl where an adversary plays against hash functions H1, . . . ,Hl. Here predicates spr
(resp. tcr or ow) are true if and only if the adversary in the course of the experiment finds a second
pre-image (resp., target collision, pre-image). By finding we mean that the adversary actually performs
one query to a hash function Hi which yields the second pre-image (or target collision or pre-image)
in respect to some target message(reps., target image). The definitions are closely related to Pietrzak’s
definition for collision resistance [17]. We here present the definition for second pre-image resistance and
give the definitions for the collision resistance, target collision resistance and pre-image resistance cases in
Appendix B (Definitions 10, 11 and 12).

Definition 5 The predicate sprHi(Xi)(AH1,...,Hl) is defined for the random experiment AH1,...,Hl and target
message Xi and holds if A finds a second pre-image for Xi for function Hi; that is, in the course of the
computation of AH1,...,Hl an oracle call to Hi is made with messages (Xspr) for which Hi(Xi) = Hi(Xspr)
and Xi 6= Xspr. Formally:

sprHi(Xi)(AH1,...,Hl) ⇐⇒
∃Xspr ∈ qryHi(AH1,...,Hl) : Xi 6= Xspr ∧Hi(Xi) = Hi(Xspr)

For subset H ⊆ {H1, ...,Hl} and target messages X1, ..., Xl we define the predicate sprHX1,...,Xl
(AH1,...,Hl)

to hold if second pre-images are found for all hash functions in H (for corresponding target message Xi):

sprHX1,...,Xl
(AH1,...,Hl) ⇐⇒ ∀Hi ∈ H : sprHi(Xi)(AH1,...,Hl)

For 1 ≤ n ≤ l we define the predicate sprn,X1,...,Xl
(AH1,...,Hl) to hold if a second pre-image is found for n

of the l hash oracles:

sprn,X1,...,Xl
(AH1,...,Hl) ⇐⇒ ∃H ⊆ {H1, ...,Hl}, |H| ≥ n : sprHX1,...,Xl

(AH1,...,Hl)
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2.4 Randomized Black-Box Combiners for Cryptographic Hash Functions

As usual for impossibility results we want to be as general as possible about the capabilities of the con-
sidered combiners. We consider randomized black-box combiners after Pietrzak [17] in the non-uniform
setting. This means that the combiners get as additional input their randomness R which can be regarded
as some sort of public key. The (k, l) combiner is formalized as a pair of algorithms (C,P ) where C is a
non-uniform circuit implementing the logic of the combiner and P provides a security reduction. For this C
gets access to the l hash functions H1, . . . ,Hl and P gets access to a breaking oracle4 B which can produce
second pre-images (or target collision, or pre-images respectively) with a certain success probability ρ. If
security reduction PB,H1,...,Hl finds second pre-images (or target collisions, pre-images) for l− k+ 1 of the
input hash functions with noticeable probability (with respect to the breaking oracle’s success rate ρ),
we call the combiner ρ-robust for second pre-image resistance (or target collision resistance, respectively).
Thus a combiner is ρ-robust if and only if such a breaking oracle cannot exist if at least k out of the l
input hash functions hold the property.

We here present the definition for randomized combiners for the case of second pre-image resistance.
For the collision resistant case see [17] or Definition 13 in the appendix, which also gives the definition for
the target collision resistance and pre-image resistance cases.

Definition 6 A randomized (k, l)-combiner for hash functions H1, ...,Hl of the forms {0, 1}w → {0, 1}v
is a pair of efficient algorithms (C,P ) where C : R × {0, 1}m → {0, 1}n is an oracle circuit and P is an
oPPTM5 providing the security reduction for C.

Let 0 ≤ ρ ≤ 1. Oracle Bspr ρ-breaks CH1,...,Hl (for SPR) if it outputs a second pre-image to input
message M ← {0, 1}m for CH1,...,Hl(R,M) with probability ρ (over the choice of message and randomness).
If no second pre-image is found it outputs ⊥.

The combiner is called ρ-robust for SPR if for some non-negligible 0 < ε ≤ 1 and any choice
of functions H1, ...,Hl and for any breaking oracle Bspr that ρ-breaks CH1,...,Hl, the random experiment
PB

spr,H1,...,Hl on input (M1, ...,Ml) with Mi ← {0, 1}m (for i = 1, ..., l) finds second pre-images for l−k+1
input hash functions with probability:

Pr[sprl−k+1,M1,...,Ml
(PB

spr,H1,...,Hl(M1, ...,Ml))] ≥ ε (2)

The combiner is called robust for SPR if it is efficient and ρ-robust for every non negligible ρ(v).

Note that the breaking oracle’s success probability ρ can be a function of v ∈ N, i.e., the hash func-
tions’ output length. Further note, that for second pre-image resistance we cannot take a fraction of the
randomness as success criterion for the breaking oracle (as we have in the TCR case and Pietrzak did for
the collision resistance case in [17]). This is due to that a hash function might be designed such that some
images have exactly one pre-image and thus a breaking oracle does not stand a chance in finding a second
pre-image for such a message/pre-image pair.

Finally, note that we could have fixed the reduction’s success probability ε to a constant value, due to
the fact that we are considering randomized combiners. Given some combiner (C,P ) that satisfies equation
(2) for some non-negligible ε, we can easily construct a new combiner C,P ∗ that satisfies equation (2) with
probability ε∗ > ε by simply repeatedly calling P with renewed random coins. We will later fix ε to 2/3
(an arbitrary choice) to simplify notation.

Definition 7 (Efficiency) Let qC be the number of oracle queries performed by C and qP an upper bound
for the number of oracle calls made by P , then the combiner (C,P ) is called efficient if both qP and qC
are polynomial in v.

4Think of the breaking oracle as the best known adversary against the combiner.
5See [17] for how to treat non-uniform reductions.
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Remark. [On efficiency definition] Note that it is sufficient to only count successful calls to the breaking
oracle, that is, we do not need to count queries to B where the answer is ⊥. By not counting unsuccessful
calls to the breaking oracle we actually make the impossibility result stronger as even then, as we will see
the reduction P will have to make exponentially many calls to the hash function oracle to succeed. This
can be done as, unsuccessful even the successful queries to B will not help P (too much) in its task and
unsuccessful queries cannot be used by P to hide hash function calls.

Further note that throughout this paper we assume that qC , q
H
P and qBP are at least one. This can be

safely assumed as the contrary would be rather uninteresting: consider for example a combiner which does
not use its hash functions. It is trivially non-robust as collisions for the combiner cannot be reduced to
collisions on any of the input functions.

3 Robust Combiners have Long Output

In this section we will give the formal definition of Theorem 1 together with its proof for the case of second
pre-image resistance. In Appendix D we present the necessary adaptations for the cases of target collision
resistance and pre-image resistance:

Theorem 2 For some n,m, v, w ∈ N assume (C,P ) is an efficient (k, l)-black-box-combiner for hash
functions of the form {0, 1}w → {0, 1}v. Let C : R× {0, 1}m → {0, 1}n be robust for collision resistance,
second pre-image resistance, target collision resistance or pre-image resistance. Then the combiner’s output
length n is bounded by:

n ≥ (l − k + 1)v −O(log qC) (3)

where qC is the number of hash function queries performed by C.

3.1 Additional Definitions

As a gentle introduction to the definitions presented so far we prove a specialized version of Theorem 2 in
Appendix A.

For the upcoming proof of our main theorem we need a notion of second pre-images (resp. target
collisions and pre-images) that are safe for the combiner. “Safe for the combiner” means that the evaluation
of the message pair (M,M ′) on a specific combiner C does not yield a trivial second pre-image for hash
function H and target message X.6 Trivial in the sense that during the evaluation combiner C on messages
M and M ′ queries hash function H on a message Xspr for which X 6= Xspr and H(X) = H(Xspr):

Definition 8 (Safe Second Pre-Image) Let H : {0, 1}w → {0, 1}v be a hash function and C : {0, 1}m →
{0, 1}n some oPPTM. Let Xtarget ∈ {0, 1}w. We say that the message Mspr ∈ {0, 1}m is a safe second
pre-image with respect to message M ∈ {0, 1}m and function H (with respect to CH and Xtarget) if

1. CH(M) = CH(Mspr) (but not necessarily M 6= Mspr, that is, (M,Mspr) may be a pseudocollision)

2. the evaluation of CH(·) on inputs M and Mspr does not involve a call to H(X) with X 6= Xtarget and
H(X) = H(Xtarget):

∀X ∈ qryH(CH(M)) ∪ qryH(CH(Mspr)) : X = Xtarget ∨H(X) 6= H(Xtarget)

We define the predicate safeSprC
H

H,X(M,Mspr) iff (M,Mspr) is a safe second pre-image for hash func-
tion H and target message X.

6Note that for the case of pre-image resistance we do not consider a message pair but only a single message M .
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For k ∈ N we denote with safeSprC
H1,...,Hl

k,X1,...,Xl
(M,Mspr) that (M,Mspr) is a safe second pre-image for

messages X1, .., Xl for k out of C’s l oracles Hi (i = 1, ..., l). Here Xi is the target message for function
Hi (i = 1, ..., l).

We give the definitions for safe target-collisions (Definition 14) and safe pre-images (Definition 15) in
Appendix B.3.

Compressibility.

The main idea in the upcoming proof is to show that if a robust combiner with short output exists then
we can compress a uniformly random function H : {0, 1}w → {0, 1}v below 2wv bits. This, however, is
not possible due to a result proved by Shannon (which we will present in Proposition 2) and hence such a
combiner cannot exist. To express this we need a notion of compressibility:

Definition 9 (Compressibility) A random variable H can be compressed to s bits, if two functions com
and dec (for compression, resp. decompression) exist such that on average the size of com(H̃) (where H̃ is
an instantiation of the random variable) is less or equal to s bits and that the probability of dec(com(H̃))
is exactly 1; that is dec(·) is always able to completely restore H̃:

E[|com(H̃)|] ≤ s and Pr[dec(com(H̃)) = H̃] = 1

3.2 Proof of Theorem 2

We will now present the proof of our main theorem for the case of second-preimage resistance. A description
of what parts need to be changed for the cases of target collision resistance and pre-image resistance is
given in Appendix D. Our argument follows Pietrzak’s in [17, 15] where he proves the theorem for collision
resistance. We are going to prove Theorem 2 indirectly by proving a proposition which informally says
that if the output length of a combiner (C,P ) is short, then it cannot be efficient, as P will have to make
exponentially many queries to its hash oracle for (C,P ) to be robust:

Proposition 1 For some n,m,w, v, l, k ∈ N Let C : R×{0, 1}m → {0, 1}n be an oracle circuit with input
domain m := l · (v+ 1), with qC oracle gates for every hash function Hi : {0, 1}w → {0, 1}v (for i = 1, ..., l)
and with output range

n := (l − k + 1) · (v − log qC)− t (t > 0) (4)

Let ρ := (1−2−t+l+2)/
(
l
k

)
. If (C,P ) is a ρ-robust (for SPR, TCR or OW) (k, l)-combiner where reduction

P has success probability at least 2/3, making qBP queries to the breaking oracle and qHP queries to its hash
functions then

v ≤ log qHP + 2 + log l (5)

or equivalently

2v ≤ qHP · 4 · l (6)

Before we prove the proposition, let us show how it implies Theorem 2:

Proof (of Theorem 2). Proposition 1 states that if a (k, l) combiner (C,P ) is ρ-robust with ρ = (1 −
2−t+l+2)/

(
l
k

)
and the combiner has domain m := l · (v + 1) and range n := (l− k + 1) · (v − log qC)− t for

some t > 0, then it needs to make exponentially many calls to its oracles as qHP ≥ 2v−2−l. That is, P is

not efficient. As every robust combiner is also ρ-robust for ρ = (1 − 2−t+l+2)/
(
l
k

)
this proves Theorem 2
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for the special case where the combiner is shrinking by m − n = l · (v + 1) − (l − k + 1) · (v − log qC) + t
as the combiner is either not efficient or not robust. However, as a combiner for arbitrary length hash
functions necessarily has to work for fixed length functions as well the result presented here directly applies
for arbitrary and infinite domain combiners. �

3.3 An Outline

To prove Proposition 1 we have to find oracles H1, . . . ,Hl and B such that the breaking oracle B finds
second pre-images for combiner CH1,...,Hl : {0, 1}m → {0, 1}n with range n < (l−k+ 1)v−O(log qC) while
k out of the l hash functions stay second pre-image resistant in relation to PB,H1,...,Hl ; that is, PB,H1,...,Hl is
not able to find second pre-images for more than l− k+ 1 hash functions even with access to the powerful
breaking oracle B.

For this we are going to use hash functions chosen uniformly at random from the space of all functions
of the form {0, 1}w → {0, 1}v. For the breaking oracle B we are going to carefully design a function which
outputs only safe second pre-images (cf. Definition 8) with respect to the target messages X1, . . . , Xl ∈
{0, 1}w (denoted by BX1,...,Xl) given to the security reduction P ; that is, P cannot simply use the breaking
oracle to get all the necessary second pre-images. We use the following idea: we take another random
function φ : {0, 1}∗ → {0, 1}m to completely define the breaking oracle. On receiving input (R,M) the
oracle starts counting upwards and tries every natural number i = 1, 2, .... concatenated to the randomness
as a possible collision:

CH1,...,Hl(R,φ(R||〈i〉)) ?
= CH1,...,Hl(R,M)

If a collision is found (note that this may be a pseudocollision, i.e., M = φ(R||〈i〉)) we need to make sure
that the found second pre-image does not yield trivial second pre-images for l− k+ 1 hash functions. The
problem is that, a priori, we do not know the target messages an adversary using the breaking oracle is
interested in. For now we will simply think of the breaking oracle as being initialized with the correct
message X1, . . . , Xl ∈ {0, 1}w. That is, the breaking oracle BX1,...,Xl will ensure that no trivial second
pre-images for messages X1, . . . , Xl are found. For this it checks whether the hash function calls during
the evaluation of CH1,...,Hl(R,M) and CH1,...,Hl(R,φ(R||〈i〉)) (i.e., the input the to breaking oracle (R,M)
and the found (pseudo)-collision by the breaking oracle) contains l − k + 1 trivial second pre-images for
message X1, . . . , Xl and hash functions H1, . . . ,Hl. If that is not the case the breaking oracle outputs
φ(R||〈i〉), otherwise it exits and outputs ⊥. In other words, we make sure that the collision found by the
breaking oracle is a safe second pre-image (cf. Definition 8) for messages X1, . . . , Xl.

After proving that such a breaking oracle initialized to message X1, . . . , Xl ∈ {0, 1}w does indeed break
the security of any (k, l)-combiner with high probability it remains to prove that the reduction PB,H1,...,Hl

with access to our breaking oracle and the (uniformly random) hash functions makes a poor job in finding
second pre-images. For this we will use a corollary from Claude E. Shannon’s source coding theorem (see
any good introduction to information theory or Shannon’s original [22]):

Proposition 2 A uniformly random function H : {0, 1}w → {0, 1}v (with prefix-free domain7) cannot be
compressed to less than 2wv bits.

What we will show is that if PB,H1,...,Hl is able to find enough (i.e., more than l−k) second pre-images
for H1, . . . ,Hl with noticeable probability, then we are able to compress H1, . . . ,Hl to less than l2wv bits.
That is, we are going to design a custom compression (com) and decompression (dec) algorithm that
given H1, . . . ,Hl, P and B uses P to compress the hash functions H1, . . . ,Hl. As these are uniformly
random, this forms a contradiction to Proposition 2 and hence such a P cannot exist. What is left to show

7Note that all functions {0, 1}w → {0, 1}v have a prefix-free domain and range, as all elements in either set have the same
length.
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is that in our case com and dec can initialize the breaking oracle with the target messages given to P
before P is given access to the breaking oracle (remember that our breaking oracle BX1,...,Xl outputs only
second pre-images that are safe for the specific messages X1, . . . , Xl). We will see that this is in fact the
case and that thus B will not be of too much use for P .

3.4 The Proof

The Oracles.

To prove Proposition 1 we begin by defining the l+ 1 oracles H1, ...,Hl and B. The hash functions Hi (i =
1, ..., l) are each sampled uniformly at random from the set of all functions of the form {0, 1}w → {0, 1}v.
The breaking oracle B will be defined by a function φ : {0, 1}∗ → {0, 1}m which is also sampled uniformly
at random from all functions of the form {0, 1}∗ → {0, 1}m. Function φ defines for a message M ∈ {0, 1}m
and randomness R ∈ R a pseudo-second pre-image Mspr for CH1,...,Hl(R,M) as Mspr := φ(R||〈i〉), where
i is the smallest integer such that CH1,...,Hl(R,M) = CH1,...,Hl(R,Mspr).

Our goal is to make sure that the breaking oracle outputs only safe second pre-images (with respect
to some target messages X1, . . . , Xl) where by safe we mean that the oracle’s output second pre-images

should be safe for k out of the l hash functions (i.e., safeSprC
H1,...Hl

k,X1,...,Xl
(M,Mspr), compare Definition 8).

Furthermore, each second pre-image output by B has to be safe for exactly the same k hash functions.
Let us assume that BX1,...,Xl was initialized with target messages X1, ..., Xl. As abbreviation we will

simply write B when we mean a breaking oracle that was initialized with fixed but random target messages.
We now introduce sets Si (for i = 1, ..., l) that comprise all safe message, randomness pairs for hash function
Hi. If Mspr is defined through φ as described above then we can define sets Si as:

Si := {(R,M) ∈ R× {0, 1}m : safeSpr
CH1,...,Hl
Hi,Xi

(M,Mspr)} for i ∈ {1, ..., l}

We now define the intersection of k out of the l sets Si such as to maximize the number of elements in the
intersection. Let therefor

Γmax := argmax
Γ⊆{1,...,l}
|Γ|=k

∣∣∣∣∣⋂
i∈Γ

Si

∣∣∣∣∣ .

With Γmax we can define the maximal intersection

RΓ :=
⋂

i∈Γmax

Si

which allows us to formalize the breaking oracle B as:

BX1,...,Xl(R,M) :=

{
Mspr if (R,M) ∈ RΓ

⊥ otherwise

Thus, on input (R,M) our breaking oracle BX1,...,Xl will output a second pre-image Mspr such that
CH1,...,Hl(R,M) = CH1,...,Hl(R,Mspr) only if it is safe for at least k of the l hash functions in regard to
the target messages X1, ..., Xl. Also note that two second pre-images for inputs (R,M) and (R′,M ′) will
be safe for (at least) the same k hash functions.

11



The breaking oracle B is ρ-robust for all (k, l)-combiners.

We will now show that our breaking oracle ρ-breaks every (k, l)-combiner with some noticeable ρ. Note
that, by definition, the breaking oracle ρ-breaks CH1,...,Hl with

ρ =
|RΓ|
|R| · 2m

This we will prove using the following lemma stating informally that sampled second pre-images will
be safe for at least k out of l hash functions for (k, l)-combiners most of the time.8 (The proof for Lemma 1
is given in Appendix C.1.).

Lemma 1 Let C : {0, 1}m → {0, 1}n be any oracle machine with qC oracle gates per hash function
Hi : {0, 1}w → {0, 1}v (with i = 1, .., l). Let X1, ..., Xl ∈ {0, 1}w be target messages for functions H1, ...,Hl.
For messages M,Mspr sampled as M ← {0, 1}m and Mspr ← (CH1,...,Hl)−1(M) we have:

Pr[safeSpr
CH1,...,Hl (·)
k,X1,...,Xl

(M,Mspr)] ≥ 1− ql−k+1
C ·

(
l

l − k + 1

)
· 2n−(v+1)(l−k+1)

From Lemma 1 we will now deduce a lower bound for ρ. Let IR,M := 1 if (R,M) is safe for at least k
of the l hash functions Hi and IR,M = 0 otherwise. Formally:

IR,M :=

{
1 if safeSpr

CH1,...,Hl (R,·)
k,X1,...,Xl

(M,Mspr)

0 otherwise

Lemma 1 gives us a lower bound on the probability for event IR,M = 1 as our breaking oracle samples
random second pre-images. Using an upper bound of 2l on the binomial coefficient we have that

Pr[IR,M = 1] ≥ 1− ql−k+1
C · 2n−(v+1)(l−k+1)+l

Now with n := (l − k + 1) · (v − log qC)− t (see equation 4) we get

Pr[IR,M = 1] ≥ 1− ql−k+1
C · 2n−(v+1)(l−k+1)+l

≥ 1− ql−k+1
C · 2(l−k+1)·(v−log qC)−t−(v+1)(l−k+1)+l

= 1− ql−k+1
C · 2log q

−(l−k+1)
C · 2−(l−k+1) · 2−t+l

≥ 1− 2−t+l

Remember that, by definition, the breaking oracle B has an inherent set RΓ and only outputs second
pre-images if the input (R,M) is an element of RΓ. With Γ we have fixed the set of k hash functions Hi

(i ∈ Γmax) such that RΓ is maximized. The indicator IR,M equals 1, if we have a safe second pre-image
for k hash functions but not necessarily for the k hash functions specified by Γmax. We can however
safely assume that ρ is greater than the probability of a safe second pre-image (Pr[IR,M = 1]) divided
by the possibilities of choosing k out of l elements (as Γmax) was designed to maximize this probability).
Thus, with the expectation value for event IR,M (note that E[IR,M ] = Pr[IR,M = 1]) we can lowerbound

ρ ≥ E[IR,M ]/
(
l
k

)
.

8Note that this lemma is essentially the only place where we need that the combiner’s output length is significantly less
than that of the concatenation combiner, n = (l − k + 1)(v − log(qC)− t (see equation(4)).
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Setting ẽ := 1− E[IR,M ] and applying the reverse Markov inequality, we have that:

Pr[E[IR,M ] < 1− γ2−t+l] = Pr[ẽ ≥ γ2−t+l]

≤
1− E[IR,M ]

1− 1 + γ2−t+l

≤ 1− 1 + 2−t+l

1− 1 + γ2−t+l
=

1

γ

Setting γ := 4 yields: Pr[E[IR,M ] < 1− 2−t+l+2] ≤ 1
4 . Using the estimate ρ ≥ E[IR,M ]/

(
l
k

)
we thus have:

Pr

[
ρ < (1− 2−t+l+2)/

(
l

k

)]
≤ Pr

[
E[IR,M ]/

(
l

k

)
< (1− 2−t+l+2)/

(
l

k

)]
≤ 1

4
(7)

We proved that with probability of at least 0.75, our breaking oracle ρ-breaks a (k, l)-combiner with
ρ = (1− 2−t+l+2)/

(
l
k

)
.

3.5 B does not help P

We will now present the lemma that allows us to prove Proposition 1. Informally this lemma states that
if the range of the combiner is as in the proposition and the reduction PB,H1,...,Hl finds second pre-images
with some probability then we can use this to compress the combined function table of hash functions
H1, ...,Hl below l2wv bits. This can then be used to prove Proposition 1 as the Hi (i = 1, ..., l) were chosen
uniformly at random and therefore, by Proposition 2, cannot be compressed below l2wv bits.

Lemma 2 Let (C,P) be as in Proposition 1 with

v > log qHP + log l + 2 (8)

Also let for any set of target messages X1, ..., Xl ∈ {0, 1}w

Pr[sprl−k+1,X1,...,Xl
(PB

X1,...,Xl ,H1,...,Hl(X1, ..., Xl))] ≥ 0.5 (9)

Then H1, ...,Hl can be compressed below l2wv bits.

Let us show how we can now prove our main proposition, Proposition 1:

Proof (of Proposition 1). Let ∆ denote the event that B ρ-breaks CH with ρ ≥ (1−2−t+3)/
(
l
k

)
(note that

Pr[∆] ≥ 0.75). With equation (7) and the bound on P from the definition of robust second-pre-image
combiners (see Proposition 1 and the discussion following Definition 6), we can derive the following bound
for any collection X l of input messages:

∀X l ∈
l times︷ ︸︸ ︷

{0, 1}w × ...× {0, 1}w :

Pr[sprl−k+1,Xl(PB,H1,...,Hl(X l))] = Pr[∆] · Pr[sprl−k+1,Xl(PB,H1,...,Hl(X l))|∆]

≥ 3

4
· 2

3
= 0.5

Assume the H1, ...,Hl are uniformly random, then by Lemma 2 the combined function table for
H1, ...,Hl can be compressed below l2wv bits. This contradicts Proposition 2 and hence equation (23)
must be wrong. Thus:

v ≤ log qHP + 2 + log l

which concludes the proof. �
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Compressing H1, ..., Hl with Second Pre-Images by PB,H1,...,Hl

We will here only present a proof sketch for Lemma 2 (the full proof is given in Appendix C.2).
Let us first take a closer look at the second pre-images sampled by the breaking oracle. By definition

B(R,M) will only output a (pseudo) second pre-image if it is a safe one. Let’s assume that PB,H1,...,Hl

was given the target messages X1, ..., Xl and that the breaking oracle BX1,...,Xl was initialized with exactly
these. For now think of P as being a fair player who honestly is telling B its target values (we will later
see why this can be assumed).

The breaking oracle BX1,...,Xl now only outputs safe second pre-images that are safe for k of the

l hash functions. For the reduction PB
Xl
,Hl

(for notational simplicity we write PB
Xl
,Hl

instead of

PB
X1,...,Xl ,H1,...,Hl) to be successful it has for its input (X1, ..., Xl) to find second pre-images for l − k + 1

of the l hash functions where Xi is the first part of the collision for hash function Hi (i = 1, ..., l). This,

however, directly implies that if PB
Xl
,Hl

(X1, ..., Xl) succeeds and outputs l−k+ 1 second-pre-images then
at least for one of the l − k + 1 hash functions the second pre-image was not generated by the breaking
oracle directly.

Let s denote the index of the hash function Hs (s ∈ {1, ..., l}) for which the second pre-image output

by PB
Xl
,Hl

was not trivially created via the breaking oracle BXl
. Let Xs

spr be the second pre-image for
hash function Hs for message Xs, i.e., Hs(Xs) = Hs(Xspr) and Xs 6= Xspr. What we now know is that
the oracle query Hs(X

s
spr) which resulted in this second pre-image is made by P directly and not by the

breaking oracle BXl
. Hence, Xs

spr is not present in any of the queries to Hs resulting from calls to the the
breaking oracle. Let us by

qryHi

BXl (R,M)
= qryHi(CH

l
(R,M)) ∪ qryHi(CH

l
(R,MBspr)) (10)

denote all the queries to hash function Hi that occur in the evaluation of a BXl
query on input (R,M), i.e.

the queries resulting from evaluating the combiner CH
l
(·) with input (R,M) (the request to the breaking

oracle) and (R,MBspr) (the oracle’s answer). Then we can rephrase the above statement about the second

pre-image Xs
spr found by PB

Xl
,Hl

for hash function Hs:

Xs
spr /∈ qryHs

BXl (MB)
∀ MB ∈ qryB(PB

Xl
,Hl

(M)) (11)

This could again be rephrased as: PB
Xl
,Hl

(M1, ...,Ml) cannot find trivial second-pre-images for all l−k+1

hash functions; PB
Xl
,Hl

cannot simply let BXl
do all the work.

Now how does this help in compressing the function table of H1, . . . ,Hl? The idea is to design a
compression algorithm com together with a corresponding decompression algorithm dec. Both algorithms
com and dec share a common, combined target message Xτ = (X1, ..., Xl) with (Xi ∈ {0, 1}w for i =
1, ..., l). The algorithms make use of the security reduction P and provide P with the input Xτ and the
oracles that P expects: a breaking oracle B and hash functions H1, . . . ,Hl.

If P succeeds in generating a second-preimage Xspr, the compression algorithm com reduces the
combined function table of H1, . . . ,Hl by Xτ . It further removes all the calls from P and B to any of the
hash functions Hi (note that as com provided P and B with the hash functions it can easily track all those
queries). The compression algorithm com then prepends the reduced function table with the hash values
that P and B request during the execution of P . The new function table now contains one hash value
less (the one from the second pre-image for one of the target messages in Xτ ) than the original function
table and we have thus compressed the function table by v bits. For decompression we can simply again
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simulate P (with the same random coins) and if we can identify the query with the second pre-image we
can reconstruct the function table.

The difficulty will be to identify the call Xs
spr from P to hash function Hs which yields the second

pre-image as it may not be P ’s last call. As we have said, com and dec can track which query goes to
which hash function. Thus if we store the index of the call to Hs which yielded the second pre-image
relative to the number of calls made by P (we know that this is bound by qP , compare Definition 7).

Finally we have to make sure that the breaking oracle B given to P is initialized with the correct
messages (X1, . . . , Xl) = Xτ . Again, as com and dec provide the breaking oracle to P they can simply
initialize the breaking oracle before “handing it over”. ♦

With this we have completed the proof of Theorem 2 for the case of second pre-images. See Appendix D
for a description of the changes needed for target collision resistance and pre-image resistance.

4 Conclusion and Outlook

We have given a strong indication that combiners with short output robust for second pre-image resistance,
target collision resistance or pre-image resistance do not exist. By this, we have extended Pietrzak’s
Theorem where he gave the result for the case of plain collision resistance [17]. Note that our work, as
well as Pietrzak’s only applies to fully black-box reductions in the terminology of Reingold et al. [18]. One
possibility of bypassing such an impossibility result, is to consider white-box access to the hash functions
(resp. the breaking oracle). A different approach would be to consider combiners only for a specific class
of hash functions (e.g., efficiently implementable functions) instead of combiners that need to be robust
for any choice of functions. Ideally, this class of hash functions should contain functions used in practice,
such as the SHA familiy.
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A Proving a Specialized Case

In this section we prove that a certain class of combiners have to have long output if they are robust
for second pre-image resistance, target collision resistance or pre-image resistance. This result (which has
also been studied in [19]) is a special case of Theorem 2 but allows for a much simpler proof, which will
allow us to introduce some of the notation presented in Section 2. What is different from the general case
is that we want the security reduction P to generate a second pre-image (target collision or pre-image,
resp.) given only a single second pre-image (target collision or pre-image, resp.) for the combiner. We
model this, by allowing P to make only a single call to the breaking oracle. We will present this for the
(1, 2)-deterministic-combiner case which is the form of combiner that is usually used in practice. As the
proofs are almost identical for second pre-image resistance and target collision resistance we will present
the sections that differ side by side (second pre-image resistance on the left and target collision resistance
on the right). We omit the prove for pre-image resistance as it is (almost) identical to the one for second
pre-image resistance: simply exchange target messages for target images. We closely follow the reasoning
for the collision resistance case (see Proposition 1 in [17]).

Proposition 3 For some n,m, v, w ∈ N with m > n, assume that (C,P ) with C : {0, 1}m → {0, 1}n is a
robust (1, 2)-black-box-combiner for SPR, TCR or OW, for hash functions of the form {0, 1}w → {0, 1}v,
with the additional constraint, that P is querying the breaking oracle only once.

Let ε denote the success probability of P, i.e., for tar-
get messages X1, X2 ← {0, 1}w and a breaking oracle
B which on input M ∈ {0, 1}m outputs a second pre-
image M ′ such that (M,M ′) collide under CH1,H2 :

Pr[sprH1,H2

X1,X2
(PB,H1,H2(X1, X2))] ≥ ε

Let ε denote the success probability of P , i.e., for
a breaking oracle B that breaks the two round TCR
protocol for CH1,...,Hl (i.e., B on input some ran-
domness outputs a target message and after getting
access to CH1,...,Hl outputs a second message which
is different from the target message but shares the
same hash value):

Pr[tcrH1,H2(PB,H1,H2)] ≥ ε

Then the output length n of the combiner C satisfies:

n ≥ 2v − 2 log qP + log ε− 1 (12)

The idea in the upcoming proof is to choose two hash functions randomly from the space of all functions
and then to derive two bounds on the probability that an adversary can find second pre-images (target
collision or pre-images, resp.): an upper bound using the union bound and a lower bound using the
reduction P guaranteed by robust combiners. By then combining the two bounds we can derive the bound
on the combiner’s output length given in equation (12).

Proof. Let H1, H2 : {0, 1}w → {0, 1}v be two functions chosen uniformly at random and independently
from the space of all functions of the form {0, 1}w → {0, 1}v. Let A1 be an oPPTM that makes at most
qA calls to each of its oracles. As the hash functions are random functions we can examine the random
experiment, that A1 given a pre-image X ← {0, 1}w finds one (or possibly more) second pre-image(s)
within its qA oracle queries to H1 for hash function H1. This experiment has a binomial distribution
B(qA, 2

−v) and we can hence upper-bound A1’s success probability of finding a second-pre-image for H1

with:

Pr[sprH1(X)(AH1,H2
1 (X))] = 1−B(0|qA, 2−v) = 1− (1− 2−v)qA ≤ qA

2v
(13)
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AsH1 andH2 were chosen independently, the probability that adversaryA1 finds a second pre-image for
target messages X1 and X2 for both its hash functions is simply the square of what we had in equation (13):

Pr[sprH1,H2

X1,X2
(AH1,H2

1 (X1, X2))] ≤ (
qA
2v

)2 (14)

Note that the probability is the same if adversary A1 was allowed to choose messages X1, X2 before getting
access to the hash functions (TCR case).

Let us now consider a robust combiner (C,P ) as given in the proposition. We will compute a lower
bound for the success probability of a second adversary A2. Adversary A2 simply calls reduction P to do
the work and tries to simulate the breaking oracle B that is expected by reduction:

Adversary A2 simply passes its input messages X1

and X2 to algorithm PB,H1,H2 . It relays P ’s queries
to hash functions H1 and H2 to its oracles and an-
swers P ’s single query Mb to the breaking oracle B
with message M ′b ← {0, 1}∗ sampled uniformly at
random.

Adversary A2 calls P . Before P can call the hash
function oracles it has to commit to messages X1

and X2. On receiving the messages A2 commits
to them as well. Now P (and A2) may query the
hash functions and A2 simply relays P ’s queries
to its respective oracle. At some point (this may
come before or after P committed to its messages)
P makes its query to B and expects a commitment
message. A2 answers that query with a random mes-
sage Mb ← {0, 1}m. Now P expects B to come up
with a target collision for Mb and A2 fulfills this by
generating another random message M ′b.

Reduction P will output second pre-images (or target collisions, respectively) for H1 and H2 with
probability ε conditioned on the event that M ′b is a correct second pre-image (target collision) for Mb (i.e.,
CH1,H2(Mb) = CH1,H2(M ′b) and Mb 6= M ′b). We can thus give a lower bound on A2’s success probability.
To shorten the notation we define the event Φ to hold if A2 answers the oracle query to B “correctly”, i.e:

Φ ⇐⇒ CH1,H2(Mb) = CH1,H2(M ′b) ∧Mb 6= M ′b

As Pr[Mb = M ′b] = 2−m and Pr[CH1,H2(Mb) = CH1,H2(M ′b)] ≥ 2−n we can lowerbound the probability
of event Φ by the probability of having a random collision minus the probability of sampling the same
message (using m > n in the last step):9

Pr[Φ] ≥ 2−n − 2−m ≥ 2−n−1

Hence, we can derive a lower bound on A2’s success probability as it is equal to that of PB
∗,H1,H2 where

B∗ represents the simulated breaking oracle.10

Pr[sprH1,H2

X1,X2
(AH1,H2(X1, X2))] =Pr[sprH1,H2

X1,X2
(PB

∗,H1,H2(X1, X2))]

=Pr[sprH1,H2

X1,X2
(PB

∗,H1,H2(X1, X2))|Φ] · Pr[Φ]+

Pr[sprH1,H2

X1,X2
(PB

∗,H1,H2(X1, X2))|¬Φ] · Pr[¬Φ]

Let B be a breaking oracle, succeeding in finding second pre-images with probability 1, then by dropping
the second summand, and observing that

Pr[sprH1,H2

X1,X2
(PB

∗,H1,H2(X1,X2))|Φ] = Pr[sprH1,H2

X1,X2
(PB,H1,H2(X1, X2))]

9Note that for pre-image resistance the restriction of not sampling the “same” pre-image is not required, as there is no
original pre-image. Hence we have that Pr[Φ] ≥ 2−n.

10We will prove the following steps for SPR. For TCR simply exchange the predicate.
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(notice the changing breaking oracle: B instead of B∗), we arrive at the following lower bound for A2’s
success probability:

Pr[sprH1,H2

X1,X2
(AH1,H2(X1, X2))] ≥ Pr[sprH1,H2

X1,X2
(PB,H1,H2(X1, X2))] · Pr[Φ]

≥ ε · (2−n − 2−m) ≥ ε · 2−n−1 (15)

As this bound is valid for any choice of functions H1 and H2 it is also valid for uniformly random
functions. We can thus combine the bounds computed for A1 in equation (14) and for A2 in equation (15)
to arrive at an inequality:

ε · 2−n−1 ≤ Pr[sprH1,H2

X1,X2
(AH1,H2(X1, X2))] ≤ (

qA
2v

)2

Solving it for n yields (note that qA = qP ):

n ≥ 2v − 2 log(qA) + log(ε)− 1

�

Note that, for the practically relevant case where reduction P is efficient and ε not negligible, there
exists an upper bound on log qP and a lower bound on log ε (with respect to v). Thus, the derived bound
can be rewritten as n ≥ 2v − O(log v) which matches the bound specified in equation (3) for Theorem 2
for the case l = 2 and k = 1.

B Additional Definitions for Collision Resistance, Target Collision Re-
sistance and Pre-Image Resistance

In this section we give missing definitions from Sections 2 and 3 for the cases collision resistance, target
collision resistance and pre-image resistance.

B.1 Predicate Noting Found Collisions, Target Collisions or Pre-Images

Here we present the corresponding definitions to Definition 5 for collision resistance, target collision resis-
tance, and pre-image resistance. We define predicates denoting that in the course of the execution of a
certain experiment, a collision, a target collision or a pre-image was found.

Definition 10 The predicate colHi(AH1,...,Hl) (with 1 ≤ i ≤ l) is defined for the random experiment
AH1,...,Hl and holds if A finds a collision for Hi; that is, in the course of the computation of AH1,...,Hl two
oracle calls to Hi are made with messages (M,M ′) for which Hi(M) = Hi(M

′) and M 6= M ′. Formally:

colHi(AH1,...,Hl) ⇐⇒ ∃M,M ′ ∈ qryHi(AH1,...,Hl) : M 6= M ′ ∧Hi(M) = Hi(M
′)

For H ⊆ {H1, ...,Hl} we define the predicate colH(AH1,...,Hl) to hold if collisions are found for all hash
functions in H:

colH(AH1,...,Hl) ⇐⇒ ∀H ∈ H : colH(AH1,...,Hl)

and for 1 ≤ n ≤ l we define the predicate coln(AH1,...,Hl) to hold if a collision is found for n of the l hash
oracles:

coln(AH1,...,Hl) ⇐⇒ ∃H ⊆ {H1, ...,Hl}, |H| ≥ n : colH(AH1,...,Hl)
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For target collision resistance we define the predicate family tcr(AH1,...,Hl) analogously to the one for
second pre-image resistance in Definition 5. They hold if algorithm A breaks the two round TCR-protocol
as defined in Definition 3 for the specified hash functions.

Definition 11 The predicate tcrHi(AH1,...,Hl) (with 1 ≤ i ≤ l) is defined for the random experiment
AH1,...,Hl and holds if A finds a target collision for Hi; that is, in the course of the computation of AH1,...,Hl,
adversary A commits to target message M before getting access to the hash function’s key and then performs
an oracle call to Hi with messages M ′ for which Hi(M) = Hi(M

′) and M 6= M ′. Formally:

tcrHi(AH1,...,Hl) ⇐⇒
∃M,M ′ :A commits to M ∧M ′ ∈ qryHi(AH1,...,Hl)∧

M 6= M ′ ∧Hi(M) = Hi(M
′)

For H ⊆ {H1, ...,Hl} we define the predicate tcrHX1,...,Xl
(AH1,...,Hl) to hold if collisions are found for all

hash functions in H:

tcrH(AH1,...,Hl) ⇐⇒ ∀H ∈ H : tcrH(AH1,...,Hl)

and for 1 ≤ n ≤ l we define the predicate tcrn(AH1,...,Hl) to hold if a collision is found for n of the l hash
oracles:

tcrn(AH1,...,Hl) ⇐⇒ ∃H ⊆ {H1, ...,Hl}, |H| ≥ n : tcrH(AH1,...,Hl)

Finally, the definition for pre-image resistance, which is also closely related to the definition for the
second pre-image resistant case (Definition 5). Note, that we speak of target images I instead of target
messages X.

Definition 12 The predicate owHi(Ii)(AH1,...,Hl) is defined for the random experiment AH1,...,Hl and target
image Ii and holds if A finds any pre-image for Ii for function Hi; that is, in the course of the computation
of AH1,...,Hl an oracle call to Hi is made with messages (Xow) for which Hi(Xow) = Ii. Formally:

owHi(Ii)(AH1,...,Hl) ⇐⇒ ∃Xow ∈ qryHi(AH1,...,Hl) : Hi(Xow) = Ii

For subset H ⊆ {H1, ...,Hl} and target images I1, ..., Il we define the predicate owHI1,...,Il(A
H1,...,Hl) to hold

if pre-images are found for all hash functions in H (for corresponding target images Ii):

owHI1,...,Il(A
H1,...,Hl) ⇐⇒ ∀Hi ∈ H : owHi(Ii)(AH1,...,Hl)

For 1 ≤ n ≤ l we define the predicate own,I1,...,Il(AH1,...,Hl) to hold if a pre-image is found for n of the l
hash oracles:

own,I1,...,Il(A
H1,...,Hl) ⇐⇒ ∃H ⊆ {H1, ...,Hl}, |H| ≥ n : owHI1,...,Il(A

H1,...,Hl)

B.2 Randomized Combiner for Collision Resistance, Target Collision Resistance, and
Pre-Image Resistance

Here we give the definition of robust combiners for collision resistance (also see [17]), target collision
resistance, and pre-image resistance (cf. Definition 6).
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Definition 13 Let the situation be as in Definition 6.
Oracle Bcol ρ-breaks CH1,...,Hl (for CR) if it outputs a collision for CH1,...,Hl(R, ·) for a ρ-fraction of

the possible choices of randomness R ∈ R and ⊥ otherwise.
Oracle Btcr ρ-breaks CH1,...,Hl (for TCR) if it successfully completes the TCR protocol for CH1,...,Hl(R, ·)

for a ρ-fraction of the possible choices of randomness R ∈ R. If it is not able to find a target collision for
the previously specified message it outputs ⊥ in the second step.

Oracle Bow ρ-breaks CH1,...,Hl (for OW) if it outputs a pre-image to input image CH1,...,Hl(R,M) (with
M ← {0, 1}m) for a ρ-fraction of the randomness R ∈ R. If no pre-image is found it outputs ⊥.

A randomized (k, l) combiner for hash functions H1, . . . ,Hl is called

ρ-robust for CR if for some non-negligible 0 < ε ≤ 1 and any choice of functions H1, ...,Hl and for any
breaking oracle Bcol that ρ-breaks CH1,...,Hl, the random experiment PB

col,H1,...,Hl finds collisions for
l − k + 1 input hash functions with probability:

Pr[coll−k+1(PB
col,H1,...,Hl)] ≥ ε (16)

ρ-robust for TCR if for some non-negligible 0 < ε ≤ 1 and any choice of functions H1, ...,Hl and
for any breaking oracle Btcr that ρ-breaks CH1,...,Hl, the random experiment PB

tcr,H1,...,Hl breaks the
TCR-protocol for l − k + 1 input hash functions with probability:

Pr[tcrl−k+1(PB
tcr,H1,...,Hl)] ≥ ε (17)

ρ-robust for OW if for some non-negligible 0 < ε ≤ 1 and any choice of functions H1, ...,Hl and
for any breaking oracle Bow that ρ-breaks CH1,...,Hl, the random experiment PB

ow,H1,...,Hl on input
(C(M1), ..., C(Ml)) with Mi ← {0, 1}m (for i = 1, ..., l) finds pre-images for l − k + 1 input hash
functions with probability:

Pr[owl−k+1(PB
ow,H1,...,Hl)] ≥ ε (18)

The combiner is called robust for CR (TCR, OW) if it is efficient and ρ-robust for every non negligible ρ(v).

Note that for pre-image resistance we can define the success probability over the choice of randomness
(in contrast of the definition for second pre-image resistance) as we sample the images not directly from the
codomain but from the domain and then use the hash function to map them to an image (cf. Definition 4).

B.3 Safe Target Collisions and Pre-Images

Here we give the definition of safe target collisions and pre-images corresponding to Definition 8 (safe
second pre-images) on page 8.

The notion for safe target collisions is exactly the same as for second pre-images. As the only difference
between the two schemes is who chooses the first part of the collision (cf. Definition 3) we call a message
Mtcr safe with respect to message M (this time chosen by the adversary) and oracles CH and H if it does
not yield a trivial target collision for some target message X ∈ {0, 1}w and oracle H.

Definition 14 (Safe Target Collisions) The predicate safeTcrC
H

H,X(M,Mtcr) holds if and only if (M,Mtcr)
is a safe second pre-image for hash function H and target message X.

A safe pre-image denotes a pre-image for some image on the combiner which does not yield trivial
pre-images on the (input) hash functions.
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Definition 15 (Safe Pre-Image) Let H : {0, 1}w → {0, 1}v be a hash function and C : {0, 1}m →
{0, 1}n some oPPTM. Let IH-target ∈ {0, 1}v∩H({0, 1}w) be a target image for hash function H, IC-target ∈
{0, 1}n ∩ C({0, 1}m) a target image for combiner C, and Mow ∈ {0, 1}m. We say that Mow is a safe
pre-image for H (with respect to CH , IH-target and IC-target ∈) if

1. CH(Mow) = IC-target

2. the evaluation of CH(·) on input Mow does not involve a call to H(X) with H(X) = IH-target):

∀X ∈ qryH(CH(M)) ∪ qryH(CH(Mspr)) : X = Xtarget ∨H(X) 6= H(Xtarget)

We define the predicate safeOwCH

H,I(M,Mspr) iff (Mow) is a safe pre-image for hash function H and
target image I.

For k ∈ N we denote with safeOwCH1,...,Hl

k,I1,...,Il
(Mow) that (Mow) is a safe pre-image for target images

I1, .., Il for k out of C’s l oracles Hi (i = 1, ..., l). Here Ii is the target image for function Hi (i = 1, ..., l).

C Missing Proofs

C.1 Proof of Lemma 1

Before we prove Lemma 1 we need some additional notation: For hash functions H1, . . . ,Hl we may simply
write H l. We use the same abbreviation for messages and write X l for the messages X1, . . . , Xl. With
sprk,Xl(CH

l
(·), Y, Y ′) we denote the event that k second pre-images for target messages X1, . . . , Xl are

found during the evaluation of CH
l
(Y ) and CH

l
(Y ′) (compare Definition 5).

Let us now repeat the Lemma and present the proof:

Lemma 1. Let C : {0, 1}m → {0, 1}n be any oracle machine with qC oracle gates per hash function
Hi : {0, 1}w → {0, 1}v (with i = 1, .., l). Let X1, ..., Xl ∈ {0, 1}w be target messages for functions H1, ...,Hl.
For messages M,Mspr sampled as M ← {0, 1}m and Mspr ← (CH1,...,Hl)−1(M) we have:

Pr[safeSpr
CH1,...,Hl (·)
k,X1,...,Xl

(M,Mspr)] ≥ 1− ql−k+1
C ·

(
l

l − k + 1

)
· 2n−(v+1)(l−k+1) (19)

Proof (of Lemma 1). Let Y ← {0, 1}m and Y ′ ← {0, 1}m be random variables uniformly distributed
over {0, 1}m. Then, the distribution of M,Mspr is equivalent to the distribution of Y, Y ′ conditioned on
CH1,...,Hl(Y ) = CH1,...,Hl(Y ′). Hence we have:

Pr[safeSprC
Hl

k,Xl(M,Mspr)] = Pr[safeSprC
Hl

k,Xl(Y, Y
′)|CHl

(Y ) = CH
l
(Y ′)]

This probability is (using the definition of the predicate safeSpr) simply that of the predicate’s second
condition (there are no trivial second pre-images for l − k + 1 out of the l target messages X1, ..., Xl on

hash functions H1, ...,Hl during the evaluation of CH
l
(·) with inputs Y and Y ′) again conditioned on

CH
l
(Y ) = CH

l
(Y ′).

Pr[safeSprC
Hl

k,Xl(Y, Y
′)|CHl

(Y ) = CH
l
(Y ′)]

= Pr[CH
l
(Y ) = CH

l
(Y ′) ∧ ¬sprl−k+1,Xl(CH

l
(·), Y, Y ′)|CHl

(Y ) = CH
l
(Y ′)]

= Pr[¬sprl−k+1,Xl(CH
l
(·), Y, Y ′)|CHl

(Y ) = CH
l
(Y ′)]
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This can be restated as:

Pr[¬sprl−k+1,Xl(CH
l
(·), Y, Y ′)|CHl

(Y ) = CH
l
(Y ′)]

=
Pr[¬sprl−k+1,Xl(CH

l
(·), Y, Y ′) ∧ CHl

(Y ) = CH
l
(Y ′)]

Pr[CHl(Y ) = CHl(Y ′)]

≥
Pr[CH

l
(Y ) = CH

l
(Y ′)]− (1− Pr[¬sprl−k+1,Xl(CH

l
(·), Y, Y ′)])

Pr[CHl(Y ) = CHl(Y ′)]

=
Pr[CH

l
(Y ) = CH

l
(Y ′)]− Pr[sprl−k+1,Xl(CH

l
(·), Y, Y ′)]

Pr[CHl(Y ) = CHl(Y ′)]

= 1−
Pr[sprl−k+1,Xl(CH

l
(·), Y, Y ′)]

Pr[CHl(Y ) = CHl(Y ′)]
≥ ε ∈ [0, 1] (20)

Here we used Pr[A ∧ B] = Pr[A] − Pr[¬B] + Pr[¬(A ∨ B)] in step 2. Now for 0 ≤ ε ≤ 1, equation (20)
holds if and only if:

1− ε ≥
Pr[sprl−k+1,Xl(CH

l
(·), Y, Y ′)]

Pr[CHl(Y ) = CHl(Y ′)]
(⇐⇒ )

(1− ε) · Pr[CHl
(Y ) = CH

l
(Y ′)] ≥ Pr[sprl−k+1,Xl(CH

l
(·), Y, Y ′)] (21)

As Pr[CH
l
(Y ) = CH

l
(Y ′)] ≥ 2−n and from Proposition 3 we know that:

Pr[sprl−k+1,Xl(CH
l
(Y ))] ≤

(
l

l − k + 1

)(qC
2v

)l−k+1

As we are now evaluating CH
l
(·) not only for message Y but also for message Y ′ we can bound the

probability on the right hand side of equation (21) with:

Pr[sprl−k+1,Xl(CH
l
(·), Y, Y ′)] ≤

(
l

l − k + 1

)( qC
2v−1

)l−k+1

Now we know that the following two inequalities hold:

(1− ε) · Pr[CHl
(Y ) = CH

l
(Y ′)] ≥ (1− ε)2−n(

l

l − k + 1

)( qC
2v−1

)l−k+1
≥ Pr[sprl−k+1,Xl(CH

l
(·), Y, Y ′)]

Thus if

(1− ε)2−n ≥
(

l

l − k + 1

)( qC
2v−1

)l−k+1

and equivalently

ε ≤ 1− ql−k+1
C ·

(
l

l − k + 1

)
· 2n−(v+1)(l−k+1) (22)

then equation (21) holds.
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We proved that for 0 ≤ ε ≤ 1

Pr[safeSpr
CH1,...,Hl (·)
k,X1,...,Xl

(M,Mspr)] ≥ ε

holds, if

ε ≤ 1− ql−k+1
C ·

(
l

l − k + 1

)
· 2n−(v+1)(l−k+1)

This directly implies the proposition and we can conclude our proof. �

C.2 Proof of Lemma 2

Lemma 2. Let (C,P) be as in Proposition 1 with

v > log qHP + log l + 2 (23)

Also let for any set of target messages X1, ..., Xl ∈ {0, 1}w

Pr[sprl−k+1,X1,...,Xl
(PB

X1,...,Xl ,H1,...,Hl(X1, ..., Xl))] ≥ 0.5 . (24)

Then H1, ...,Hl can be compressed below l2wv bits.

For an outline of the proof see page 14 in Section 3.5.

Proof (of Lemma 2). Let Xτ be the combined target message, defined as:

Xτ = (X1, ..., Xl) ∈
l times︷ ︸︸ ︷

{0, 1}w × ...× {0, 1}w

Let the oracle BX1,...,Xl be initialized with the target messages.

Let us start by defining the compression function com. For compressing H1, ...,Hl we run PB
Xl
,Hl

(Xτ )
and distinguish between two cases. If P does not produce the necessary second pre-images then com simply
outputs each of the entire function tables prepended with a 0 to distinguish this case. If by H̃i we denote
the function table of hash function Hi then we can define this case as:

com(H̃1||...||H̃l) = 0||H̃1||...||H̃l if ¬sprl−k+1,Xl(PB
Xl
,Hl

(X1, ..., Xl))

If, on the other hand, P succeeds in finding all necessary l − k + 1 second pre-images, then we know
that for some hash function Hs for which P succeeded in finding a second pre-image Xs

spr the Hs query
that resulted in the second pre-image did not come from the breaking oracle but from P directly.

As com can distinguish between the calls to the hash oracles from P and BXl
, com can identify Hs.

The compression algorithm com will output a 1 appended with the index of hash function Hs appended
with the index (relative to the maximum number of calls to Hs by P ) of the second pre-image Xs

spr

appended with a compressed version of the function table for Hs appended with the full function tables for

all other hash functions. For this case, let A1, A2, ..., Aσ denote all the Hs queries done by PB
Xl
,Hl

plus the
H queries made by B (in the order they occur, up to query Xs

spr, the one that finds the second pre-image,
and without repetitions; thus Aσ = Xs

spr). Each H query by P increases the sequence A1, A2, ... by at

most one, while a query to B by P can increase the sequence by arbitrarily many values. Let H̃−s denote
the reduced function table of Hs with the rows A1, ..., Aσ and Xs (the sth component of Xτ ) removed. We
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know that query Aσ is requested by P . Let this be the ith query to Hs by P . Also let H̃ l−s be the function
tables of hash functions Hi with i ∈ {1, ..., l}\s. Algorithm com is now defined as:

com(H̃1||...|H̃l) ={
0||H̃1||...||H̃l if ¬sprl−k+1,Xl(PB

Xl
,Hl

(X1, ..., Xl))

1||〈s〉logl
||〈i〉logqP

||Hs(A1)||...||Hs(Aσ)||H̃−s ||H̃ l−s otherwise

Before we describe the decompression algorithm dec, let us examine com’s compression rate. If

¬sprl−k+1,Xl(PB
Xl
,Hl

(X1, ..., Xl))

then |com(H)| = l2wv+ 1. Since Pr[sprl−k+1,Xl(PB
Xl
,Hl

(X1, ..., Xl))] is bounded from below by 0.5, this
happens with probability at most

p := Pr[¬sprl−k+1,Xl(PB
Xl
,Hl

(X1, ..., Xl))] ≤ 0.5

In the other case (when the necessary second pre-images are generated) the compressed function table has
length 1 + (2w − 1)v + log qHP + (l − 1)2wv + log l. Thus we can give the expected overall length as:

E[|com(H)|] ≤ p(l2wv + 1)+

(1− p)(1 + (2w − 1)v + log qHP + (l − 1)2wv + log l)

= 1 + l2wv − (1− p)(v − log qHP − log l) (25)

We will now define the decompression algorithm dec. On input T , dec(T ) parses T as b||T ′ and if
b = 0 outputs T ′, which in this case is exactly the concatenation of all function tables H̃1||...||H̃l. If b = 1,
dec goes on parsing T ′ as

〈s〉log l||〈i〉log qP ||Hs(A1)||...||Hs(Aσ)||H̃−s ||H̃ l−s

It now simulates PB
Xl
,Hl

(X1, ..., Xl) up to the point where P makes its ith query Xs
spr = Aσ to oracle Hs.

We know that Hs(Xs) = Hs(X
s
spr) = Hs(Aσ) so we now have all the missing values (and indices) in H̃−s

needed to reconstruct the full function table Hs together with all the other function tables.

com does compress H on average

The final step will now be to show that the achieved compression rate is in fact less than l2wv bits. The
upper bound on the expected compression rate from equation (25) is less than l2wv if and only if:

1 + l2wv − (1− p)(v − log qHP − log l) < l2wv (⇐⇒ )

(1− p)(v − log qHP − log l) > 1

(and thus if)

0.5(v − log qHP − log l) > 1 (26)

Since the requirement given by equation (23) is v > log qHP + log l + 2, the last inequality (26) holds. This
completes the proof. �
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D Main Result for Target Collision Resistance and Pre-Image Resis-
tance

D.1 Adaptation for Target Collision Resistance

Let us describe what is necessary to adapt the proof (of Theorem 2) to the case of target collision resistance.
For this let us quickly recapitulate what we have done for second preimages. The proof idea was to take
uniformly random functions H1, . . . ,Hl as hash functions and define a breaking oracle which outputs only
safe second preimages; that is, the second pre-images found by B do not help the reduction PB,H1,...,Hl

too much in finding all necessary second pre-images for the hash functions. We have then shown that
the defined breaking oracle ρ-breaks (for SPR) every (k, l)-combiner with a certain probability and finally
that: if PB,.H1,...,Hl is still able to find all l − k + 1 second pre-images then we can use those to compress
the combined function table of H1, . . . ,Hl below l2wv bits; but due to proposition 2 this is not possible
and we have hence found a contradiction.

To adapt the argument to work for target collision resistance there is only little we have to change:
namely the breaking oracle and the final compression based proof where the oracle is used. In Definition
14 we give the definition for a safe target collision. In the SPR case the first part of the collision is specified
from the outside (according to some distribution). We have captured this notion by giving the breaking
oracle an input message for which it should come up with a second pre-image. In the case of target collision
resistance the adversary may specify the first part of the collision. What changes is that now the breaking
oracle is called in two steps. In the first step the breaking oracle is called with some randomness R ∈ R
and it outputs a target message for which it will in the second step tries to find a collision. If you recall
the definition of the breaking oracle for the SPR case, then the oracle was completely defined by some
random function φ : {0, 1}∗ → {0, 1}m. We define the TCR oracle in exactly the same way: For the first
step (choosing the first part of the collision) the oracle returns φ(R). The second part (finding a target
collision for φ(R), i.e. a message M such that CH(φ(R)) = CM ) the oracle does exactly the same as the
breaking oracle for SPR. As in the SPR case the breaking oracle has to be initialized with target message
X ∈ {0, 1}w (from the hash functions domain) for which it should make sure that no trivial target collision
occurs.

The next part of the argument, that the defined breaking oracle breaks every (k, l)-combiner with high
probability, does not need to be adapted. The second and final change is in the proof of Lemma 2 where
the reduction is used to compress the function table of hash functions H1, . . . ,Hl. Here we gave both the
compression and decompression algorithm access to a shared message Xτ ∈ {0, 1}w. For the TCR case
we can omit this message as the reduction PB,H1,...,Hl has to output the first part of the collision and this
will be the same for com and dec if they call P with the same random coins, which they have to do in
any case. Note that it is sufficient for com and dec to initialize the breaking oracle B with the target
messages after it is generated by P as B needs the target messages for its second round only.

D.2 Adaptation for Pre-Image Resistance

For the case of pre-image resistance we have to adapt slightly more. First notice that the breaking oracle
is given randomness and a message in the SPR case, whereas now the breaking oracle gets randomness and
an image. As before the breaking oracle B outputs only safe pre-images. In a next step we have to adapt
Lemma 1. This is also straight forward. The main differences are, that we now consider a target image IC
for the combiner and only a single message Mow ← (CH1,...,Hl)−1(IC). In the proof we then sample only a

single Y ← {0, 1}m. Exchanging safeSpr
CH1,...,Hl (·)
k,X1,...,Xl

(M,Mspr) for safeOw
CH1,...,Hl (·)
k,I1,...,Il

(Mow) (where the Ii

are the target images for the various hash functions) and CH
l
(Y ) = CH

l
(Y ′) for CH

l
(Y ) = IC yields the

required result.
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The next part of the argument, that the defined breaking oracle breaks every (k, l)-combiner with high
probability, does not need to be adapted. The final change then is to give algorithms com and dec not a
target images but also target messages which induces the images (hash value of message). We now need
that if P finds pre-images which are different from the target messages. As there are, on average, 2w−v

pre-images for each image (as the functions were chosen randomly) this can be assumed without loosing
too much probability.
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