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Abstract

Recently there has been a huge emphasis on constructing cryptographic protocols that main-
tain their security guarantees even in the presence of side channel attacks. Such attacks exploit
the physical characteristics of a cryptographic device to learn useful information about the inter-
nal state of the device. Designing protocols that deliver meaningful security even in the presence
of such leakage attacks is a challenging task.

The recent work of Garg, Jain, and Sahai formulates a meaningful notion of zero-knowledge
in presence of leakage; and provides a construction which satisfies a weaker variant of this notion
called (1 + ε)-leakage-resilient-zero-knowledge, for every constant ε > 0. In this weaker variant,
roughly speaking, if the verifier learns ` bits of leakage during the interaction, then the simulator
is allowed to access (1 + ε) · ` bits of leakage. The round complexity of their protocol is dnε e.

In this work, we present the first construction of leakage-resilient zero-knowledge satisfying
the ideal requirement of ε = 0. While our focus is on a feasibility result for ε = 0, our construction
also enjoys a constant number of rounds. At the heart of our construction is a new “public-coin
preamble” which allows the simulator to recover arbitrary information from a (cheating) verifier
in a “straight line.” We use non-black-box simulation techniques to accomplish this goal.

1 Introduction

The concept of zero-knowledge interactive proofs, originating in the seminal work of Goldwasser,
Micali, and Rackoff [GMR85], is a fundamental concept in theoretical cryptography. Informally
speaking, a zero-knowledge proof allows a prover P to prove an assertion x to a verifier V such
that V learns “nothing more” beyond the validity of x. The proof is an interactive and randomized
process. To formulate “nothing more,” the definition of zero-knowledge requires that for every
malicious V ∗ attempting to lean more from the proof, there exists a polynomial time simulator S
which on input only x, simulates a “real looking” interaction for V ∗.

In formulating the zero-knowledge requirement, it is assumed that the prover P is able to keep
its internal state — the witness and the random coins — perfectly hidden from the verifier V ∗. It
has been observed, however, that this assumption may not hold in many settings where an adversary
has the ability to perform side channel attacks. These attacks enable the adversary to learn useful
information about the internal state of a cryptographic device (see e.g., [Koc96, AK97, QS01, OST06]
and the references therein). In presence of such attacks, standard cryptographic primitives often
fail to deliver any meaningful notion of security. As a matter of fact, even formulating a meaningful
security notion under such attacks—as is the case with leakage-resilient zero-knowledge—can be a
challenging task.

To deliver meaningful security in the presence side channel attacks, many recent works consider
stronger adversarial models in which the device implementing the honest algorithm leaks information
about its internal state to the adversary. The goal of these works is then to construct cryptographic
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primitives that are “resilient” to such leakage. Leakage resilient constructions for many basic cryp-
tographic tasks are now known [DP08, AGV09, Pie09, DKL09, ADW09a, ADW09b, NS09, KP10,
BKKV10, DHLAW10b, DHLAW10a, LW10, FRR+10, LRW11, BSW11, Ajt11].

Leakage-resilient zero-knowledge. Very recently Garg, Jain, and Sahai [GJS11] initiated an
investigation of leakage-resilient zero-knowledge (LRZK). Their notion considers a cheating verifier
V ∗ who can learn an arbitrary amount of leakage on the internal state of the honest prover, including
the witness. This is formulated by allowing V ∗ to make leakage queries F1, F2, . . . throughout the
execution of the protocol. Then the definition of LRZK, roughly speaking, captures the intuition
that no such V ∗ learns anything beyond the validity of the assertion and the leakage.

The actual formulation of this intuition is slightly more involved. Observe that during the
simulation, S will need to answer leakage queries of V ∗, which may contain information about the
witness to V ∗. Simulator S cannot answer such queries without having access to the witness. The
definition of [GJS11] therefore provides S with access to a leakage oracle which holds a witness to x.
The oracle, Lnw(·), is parameterized by the witness w and n = |x|; on input a function F expressed
as a boolean circuit, it returns F (w). To ensure that S can answer leakage requests of V ∗, the
simulator is also allowed to query Lnw on leakage functions of its choice. Of course, providing S with
uncontrolled access to the witness will render the notion meaningless.1 Therefore, to ensure that
the notion delivers meaningful security, the LRZK definition requires the following restriction on
the length of bits that S can read from Lnw. Suppose that SL

n
w outputs a simulated view υ for V ∗.

Denote by `S(υ) the number of bits S reads from Lnw in generating this particular view υ. Denote
by `V ∗(υ) the total length of the leakage answers that S provides to V ∗ (which are already included
in υ, and can be different from answers received by S). Then, it is required that:

`S(υ) ≤ `V ∗(υ). (1)

More precisely, in [GJS11], a slightly more general notion of (1 + ε)-LRZK is defined in which the
above condition is relaxed to:

`S(υ) ≤ (1 + ε) · `V ∗(υ),

where ε > 0 is a constant. In addition, [GJS11] also present a protocol of dnε e rounds, which achieves
(1 + ε)-LRZK for every a-priori fixed constant ε > 0. Since ε > 0, the resulting notion is weaker than
the one required by equation 1. Nevertheless, [GJS11] show that despite this relaxation, (1 + ε)-
LRZK still delivers meaningful security. By applying this notion in the context of cryptography
based on hardware-tokens, [GJS11] were able to weaken the requirements of tamper-proofness on
the hardware tokens.

Our main result. Although a protocol with ε > 0 is still useful certain contexts, it is significantly
weaker than the ideal requirement of ε = 0—both qualitatively and philosophically. Qualitatively, a
constant ε > 0 allows the simulator to learn strictly more information about the internal secret than
the actual leakage allows! Qualitatively, it means that a protocol proven to be (1+ε)-LRZK “secure”
may actually expose additional parts of the internal secret than the actual leakage. Furthermore,
even in situations where (1 + ε)-LRZK is sufficient, protocol of [GJS11] requires a large round
complexity, which continues to increase as we lower the value of ε.

Philosophically, an ε > 0 essentially defies the very nature of simulation-based security. In
particular, as argued above, since it allows S to learn strictly more than what the verifier does, it is
not “zero” knowledge, but only an “ε-approximation” of it, and closer in spirit to super-polynomial

1S can simply access the entire witness, and then simulate.

2



time simulation [Pas03, PS04, Pra05]. Furthermore, this is not merely a philosophical issue—(1+ε)-
LRZK can be particularly problematic in protocol composition [Can00, Can01]. For example, using
such a simulator in place of a cheating party may result in learning more “outputs” than allowed.

In this work, we present the first construction of an LRZK protocol satisfying ε = 0. Although
our main goal is to obtain a feasibility result, our protocol also enjoys a constant number of rounds.
Our protocol uses standard cryptographic tools. However, it requires some of them – particularly,
oblivious transfer – to have an invertible sampling property [DN00, IKOS10]. To the best of our
knowledge, instantiations satisfying this property are known only based on the decisional Diffie-
Hellman assumption (ddh) [DH76]. We leave constructing an LRZK proof system based on general
assumption as an interesting open question.

Theorem 1 (Main Result). Suppose that the decision Diffie-Hellman assumption holds. Then, there
exists a constant-round leakage-resilient zero-knowledge proof system for all languages in NP.

We remark that the low round-complexity is usually a desirable protocol feature [GK96, Bar01,
Ros00, PRS02, Ros04]. In the context of side channel attacks, however, it can be a particularly
attractive one to have. This is because a protocol with high round complexity may require the
device to maintain state for more rounds, and therefore may give an adversary more opportunities
to launch side-channel attacks.

1.1 An Overview of Our Approach

Let us start by recalling the main difficulty in constructing an LRZK protocol. Recall that a zero-
knowledge simulator S “cheats” in the execution of the protocol so that it can produce a convincing
view. When dealing with leakage, not only the simulator needs to continue executing the protocol,
but it also needs to “explain its actions” so far by maintaining a state consistent with an honest
prover.

To be able to simultaneously perform these two actions, the GJS simulator does the following.
It combines the following two different but well-known methods of “cheating.” The first method,
due to Goldreich-Kahan [GK96], requires the verifier to commit its challenge ch; the second method,
due to Feige-Shamir [FS89], requires the prover to use equivocal2 commitments. The GJS simulator
uses these methods together. It uses ch to perform its main simulation (by using [GK96] strategy),
and uses the trapdoor of equivocal commitments, denoted t1, to “explain its actions” so far. We
call (t1, ch) the double trapdoor.

The GJS simulator “rewinds” the verifier to obtain the two trapdoors before it actually enters the
main proof stage. By using a precise rewinding strategy [MP06], GJS achieves (1+ε)-LRZK. However,
since rewinding strategy is crucial to their simulation, this approach by itself seems insufficient for
achieving LRZK.

A fundamentally different simulation strategy, in which the simulator uses the program of the
malicious verifier V ∗, was presented in Barak’s work [Bar01]. This method does not need to “rewind”
the verifier to produce its output. Our first idea there is to somehow use Barak’s simulation strategy
along with the use of equivocal commitments as in [FS89]. Unfortunately, this does not work since
the trapdoor t1 for equivocation has to be somehow recovered and only then any other simulation
strategy (such as knowing the challenge ch) can be used.

We therefore modify this approach so that we can use Barak’s method to recover arbitrary
information from the verifier during the simulation. For the purpose of this discussion, let us assume
that Barak’s technique provides a way for P and V to interactively generate a statement σ for some

2These are commitments which, given appropriate trapdoor information, can be opened to both 0 or 1.
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NP-relation Rsim so that no cheating prover P ∗ can prove σ ∈ Lsim, but a simulator S holding the
program of the cheating verifier V ∗ will always have a witness ω such that Rsim(σ, ω) = 1. At this
point, let us just assume that the verifier does not ask leakage queries.

Then, we need to design a two party protocol for the following task. The first party P holds a
private input ω, the second party V holds an arbitrary private message m, the common input to
both parties is σ. The protocol allows P to learn m if and only if Rsim(σ, ω) = 1, nothing otherwise;
V learns nothing. This is similar in spirit to the conditional disclosure primitive of [GIKM00], except
that here the condition is an arbitrary NP-relation Rsim(σ, ω) = 1. Constructing such protocols for
NP-conditions has not been studied, since they follow from work on secure two-party computation
[Yao82, GMW87, MR91]. Clearly, we cannot directly use secure two-party computation since their
security-guarantee is often simulation-based—which is essentially what our protocol is trying to
achieve in the first place.

Our next observation is that we do not really require the strong simulation-based guarantee. We
only need to construct a conditional disclosure protocol for a very specificNP-relation. We construct
such a protocol based on Yao’s garbled circuit technique. We show that if we use properly chosen
OT protocols (constructed in [AIR01, NP01]) — then we get a conditional disclosure protocol. In
addition, the protocol ensures that the messages of P are pseudorandom (more precisely, invertible
samplable [DN00, IKOS10]). As a result, the protocol maintains its security claims even in the
presence of leakage. This is a two-round protocol, and a crucial ingredient in achieving leakage
resilience.

Armed with this new tool, simulation now seems straightforward: use the conditional disclosure
protocol to recover both (t1, ch) and then use the GJS-simulator. While this idea works, there is a
difficulty in proving the soundness of this protocol. Recall that in Barak’s protocol, one must find
collisions in the hash function h to prove that no cheating P ∗ can succeed in learning a witness to
statement σ. Typically, this is achieved by applying “rewinding techniques” to extract knowledge
P ∗. However, ensuring this typical requires the simulator to demonstrate “knowledge”—which is
difficult to “explain” later when leakage queries are asked by the cheating prover.

To resolve this difficulty, we need to ensure that extraction can be performed from a party
without requiring it to maintain knowledge.3 We ensure this by using a variant of the commitment
protocol of Barak and Lindell [BL04]. We use this protocol to extract useful information directly
from Barak’s preamble [Bar01], without requiring the honest party to maintain knowledge explicitly.

Recall that we work in the model of [GJS11]. In this model the verifier is allowed to ask arbitrary
leakage queries F1, F2, . . . on prover’s state. The state of the prover at any given round only consists
of its witness and the randomness up to that round. In particular, the randomness of future rounds
is determined only at the beginning of those round. Observe that all ingredients described by us
so far actually require the prover to send only random strings. Therefore, it is easy to asnswer the
leakage queries up to this point in the simulation. By the time simulator enters the main body, it
recovers (t1, ch) and use them to answer leakage queries as in [GJS11].

1.2 Related Work

Relevant to our work are the works on zero-knowledge proofs in other more complex attack models
such as man-in-middle attacks [DDN91], concurrent attacks [DNS98], resettable attacks [CGGM00,
BGGL01], and so on. Also relevant to our work are different variants of non-black-box simula-
tion used in the literature [Bar01, Bar02, Pas04, PR05, DGS09] as well as efficient and universal
arguments [Kil92, Mic94, BG02, IKO07].

3Indeed, there is a difference between the two, see discussion in [BL04].
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The explicit study of leakage-resilient cryptography was started by Dziembowski and Pietrzak
[DP08]. Related study on protecting devices appears in the works of Ishai, Prabhakaran, Sahai,
and Wagner [ISW03, IPSW06]. After these works a long line of research has focussed on construct-
ing primitives resilient to leakage including public-key encryption and signatures [AGV09, Pie09,
DKL09, ADW09a, ADW09b, NS09, KP10, BKKV10, DHLAW10b, DHLAW10a, LRW11, BSW11,
LW10], devices [FRR+10, Ajt11], and very recently interactive protocols [GJS11, BCH12].

Also relevant to our work are the works on adaptive security [CFGN96] and invertible sampling
[DN00, IKOS10]. Adaptively secure protocols and leakage-resilience in interactive protocols were
shown to be tightly connected in the work of Bitansky, Canetti, and Halevi [BCH12].

2 Notation and Definitions

Notation. For a randomized algorithm A we write A(x; r) the process of evaluating A on input
x with random coins r. We write A(x) the process of sampling a uniform r and then evaluating
A(x; r). We define A(x, y; r) and A(x, y) analogously. The set of natural numbers is represented
by N. Unless specified otherwise, n ∈ N represents a security parameter available as an implicit
input when necessary. All inputs are assumed to be of length at most polynomial in n. We as-
sume familiarity with standard concepts such as interactive Turing machines (itm), computational
indistinguishability, commitment schemes, NP-languages, witness relations and so on (see [Gol04]).

For two randomized itms A and B, we denote by [A(x, y)↔ B(x, z)] the interactive computation
between A and B, with A’s inputs (x, y) and B’s inputs (x, z), and uniform randomness; and
[A(x, y; rA) ↔ B(x, z; rB)] when we wish to specify randomness. We denote by viewB[A(x, y) ↔
B(x, z)] and outB[A(x, y)↔ B(x, z)] the view and output of B in this computation; viewA,outA
are defined analogously. Finally, trans[A(x, y) ↔ B(x, z)] denotes the public transcript of the
interaction [A(x, y)↔ B(x, z)].

For two probability distributions D1 and D2, we write D1
c≡ D2 to mean that D1 and D2 are

computationally indistinguishable.

Definition 1 (Interactive Proofs). A pair of probabilistic polynomial time interactive Turing ma-
chines 〈P, V 〉 is called an interactive proof system for a language L ∈ NP with witness relation R
if the following two conditions with respect to some negligible function negl(·):

• Completeness: for every x ∈ L, and every witness w such that R(x,w) = 1,

Pr [outV [P (x,w)↔ V (x)] = 1] ≥ 1− negl(|x|).

• Soundness: for every x /∈ L, every interactive Turing machine P ∗, and every y ∈ {0, 1}∗,

Pr [outV [P ∗(x, y)↔ V (x)] = 1] ≤ negl(|x|).

If the soundness condition holds only against polynomial time machines P ∗, 〈P, V 〉 is called an
argument system. We will only need/construct argument systems in this work.

Leakage attack. Machine P and V are modeled as randomized itm which interact in rounds. It
is assumed that the the random coins used by a party in any particular round are determined only
at the beginning of that round. Denote by state a variable initialized to prover’s private input
w. At the end beginning of each round i, P flips coins ri to be used for that round, and updates
state := state ‖ ri. A leakage query on prover’s state in round i corresponds to verifier sending a
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function Fi (represented as a polynomial-sized circuit), to which the prover responds with Fi(state).
The verifier is allowed to any number of arbitrary leakage queries throughout the interaction. A
malicious verifier who obtains leakage under this setting is said to be launching a leakage attack.

To formulate zero-knowledge under a leakage attack, we consider a ppt machine S called the sim-
ulator, which receives access to an oracle Lnw(·). Lnw(·) is called the leakage oracle, and parametrized
by the witness w and the security parameter n. A query to the leakage oracle consists of an ef-
ficiently computable function F , to which the oracle responds with F (w). The leakage-resilient
zero-knowledge is defined by requiring that the output of S be computationally indistinguishable
from the real view; in addition the length of all bits read by S from Lnw in producing a particular
view υ is at most the length of leakage answers contained in the υ.

For x ∈ L, w such that R(x,w) = 1, z ∈ {0, 1}∗, and randomness r ∈ {0, 1}∗ defining the output
υ = SL

n
w(·)(x, z; r), we let the function `S(υ, r) denote the number of bits that S receives from Lnw(·)

in generating view υ with randomness r. Further, we let the function `V ∗(υ) denote the total length
of leakage answers that V ∗ receives in the output υ. By convention, randomness r will be included
in the notation only when we need to be explicit about it.

Definition 2 (Leakage-resilient Zero-knowledge). We say that an interactive proof system 〈P, V 〉
for a language L ∈ NP with a witness relation R, is leakage-resilient zero-knowledge if for every
probabilistic polynomial time machine V ∗ launching a leakage attack on P , there exists a probabilistic
polynomial time machine S such that the following two conditions hold:

1. For every x ∈ L, every w such that R(x,w) = 1, and every z ∈ {0, 1}∗, distributions
viewV ∗ [P (x,w)↔ V ∗(x, z)] and SL

n
w(·)(x, z) are computationally indistinguishable.

2. For every x ∈ L, every w such that R(x,w) = 1, every z ∈ {0, 1}∗, and every sufficiently long
r ∈ {0, 1}∗ defining the output υ = SL

n
w(·)(x, z; r), it holds that `S(υ, r) ≤ `V ∗(υ).

The definition of standard zero-knowledge is obtained by removing condition 2, and enforcing
that no leakage queries are allowed to any machine.

3 Cryptographic Tools

We start by recalling some standard cryptographic tools and two-party protocols. Looking ahead,
we will require that our protocols satisfy the following important property. For a specific party
(chosen depending upon the protocol), all messages sent by this party be pseudorandom strings. In
some cases where this is not possible, it will be sufficient if the messages are pseudorandom elements
of group (e.g., a prime-order subgroup of Z∗p for a (safe) prime p of length n).4 We will provide
necessary details when appropriate.

Statistically-binding commitments. We use Naor’s scheme [Nao89], based on a pseudorandom
generator (prg). Recall that in this scheme, first the receiver sends a random string τ of length 3n;
to commit to bit b, the sender selects a uniform seed s of length n and sends y such that if b = 0
then y = prg(s), otherwise y = τ ⊕ prg(s). This scheme is statistically binding; in addition, sender’s
message is pseudorandom. A string can be committed by committing bitwise, and it suffices to use
same τ for all the bits. We write sbcomτ (m; s) to represent sender’s string, when receiver’s first
message is τ .

4This will be sufficient since public sampling from such a group admits invertible sampling [DN00, IKOS10].
However, it is more convenient to directly work with the assumption that algorithms can receive random elements in
such a group as part of their random tape.
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Statistically-hiding commitments. We use a statistically hiding commitment scheme as well.
We require the receiver of this scheme to be public coin. Such schemes are known, including a two-
round string commitment scheme, based on collision-resistant hash functions (crhf) [NY89, HM96,
DPP97]. We write shcomρ(m; s) to denote sender’s commitment string, when receiver’s first message
is ρ. Without loss of generality, |ρ| = n.

Zero-knowledge proofs. We use a statistical zero-knowledge argument-of-knowledge (szkaok)
protocol for proving NP-statements. We require the verifier of this protocol to be public coin. Such
protocols are known to exist; including a constant-round protocol based on crhf [Bar01, BG02, PR05],
and a ω(1)-round protocol based on statistically-hiding commitments [GMW91, Blu87].

We choose the constant-round protocol of Pass and Rosen, denoted Πpr, as our candidate szkaok.
Let Spr denote the corresponding simulator for Πpr. We remark that Spr is a “straight-line” simu-
lator, with strict polynomial running time.

3.1 Oblivious Transfer

We will use a two-round oblivious transfer protocol OT := 〈Sot, Rot〉. For the choice bit b of the
receiver, we denote by {Rot(1n, b)}n∈N the message sent by Rot on input (1n, b).

Let p, q be primes such that p = 2q+ 1 and |p| = n. Then, we require the OT protocol to satisfy

the following requirement. There exists a randomized ppt algorithm Rpubot such that for every n ∈ N,
every b ∈ {0, 1}, and every safe prime p = 2q + 1, the following two conditions hold:

1. Rot(1n, 0)
c≡ Rpubot(1n, p)

2. The output of Rpubot(1n, p) consists of components {αi}poly(n)i=1 such that every αi is a uniform
and independent element in an order q subgroup of Z∗p.

We can formulate the second requirement by simply requiring the output to contain independent
and random bits. The difficulty is that we do not know any OT protocol that would satisfy such a
requirement. We therefore choose the above formulation. Note that without loss of generality, we
can assume that uniform and independent elements can be provided as part of the random tape.5

We will call algorithm Rpubot the “fake” receiver algorithm.

Concrete instantiation: The existence ofRpubot is extremely crucial for our construction. Unfortu-
nately, no OT protocol satisfying this requirement are known to exist based on general assumptions.
However, two round OT protocols of [NP01, AIR01] based on the ddh assumption, do satisfy both
of our requirements. For concreteness, we fix the Naor-Pinkas oblivious transfer (protocol 4.1 in

[NP01]) as our choice, and denote it by OTnp. Algorithm Rpubot in this protocol consists of send-
ing random and independent elements in order q subgroup of Z∗p. When multiple secrets must be
exchanged we simply repeat this protocol in parallel.

Security of OT. In terms of security, the protocols in [NP01, AIR01] are secure against malicious
adversaries. However, they do not satisfy the usual simulation based (i.e., “ideal/real”) security.
Instead, they satisfy the following (informally stated) security notions:

1. Indistinguishability for receiver: it ensures that {Rot(1n, 0)}n∈N
c≡ {Rot(1n, 1)}n∈N, where

{Rot(1n, b)}n∈N denotes the message sent by honest receiver on input (1n, b).

5This assumption is easily removed by requiring an invertible sampling algorithm for Rpub

ot, which are known to
exist. Also, the two-round requirement is not essential and can be relaxed.
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2. Statistical secrecy for sender: it ensures either {Sot(1n,m0,m1, q)}n∈N
s≡ {Sot(1n,m0,m

′)}n∈N
or {Sot(1n,m0,m1, q)}n∈N

s≡ {Sot(1n,m′,m1)}n∈N, where m′ is an arbitrary message and
Sot(1n,m0,m1, q) denotes the message sent by the honest sender on input (1n,m0,m1) when
receiver’s message is q.

This type of security notion is sufficient for our purpose. A formal description, following [HK12], is
given in appendix A.1.

3.2 Extractable Commitments

We will need a perfectly-binding commitment scheme which satisfies the following two properties.
First, if a cheating committer C∗ successfully completes the protocol, then there exists an extractor
algorithm E which outputs the value committed by C∗ during the commit stage. Second, there
exists a public-coin algorithm Cpub such that no cheating receiver can tell if it is interacting with
Cpub or the honest committing algorithm C. Algorithm Cpub is essentially the “fake” committing
algorithm for C (much like the fake receiver Rpot define above). Let us first define these properties.

Commit-with-extract. We will actually need a slightly property than mere extraction, called
commit-with-extract [BL04, Lin01]. Informally, commit-with-extract requires that for every cheating
C∗, there exists an extractor E which first simulates the view of the cheating committer in an
execution with honest receiver; further, if the view is accepting then it also outputs the value
committed to in this view. Our specific use requires that the quality of simulation be statistical.

Definition 3 (Commit-with-extract [BL04]). Let n ∈ N be the security parameter. A perfectly-
binding commitment scheme Πcom := 〈C,R〉 is a commit-with-extract scheme if the following holds:
there exists a strict ppt commitment-extractor E such that for every ppt committer C∗, for every
m ∈ {0, 1}n, every (advice) z ∈ {0, 1}∗ and every r ∈ {0, 1}∗, upon input (C∗,m, z, r), machine E
outputs a pair, denoted (E1(C

∗,m, z, r), E2(C
∗,m, z, r)), such that the following conditions hold:

1. E1(C
∗,m, z, r)

s≡ viewC∗ [C
∗(m, z; r)↔ R()]

2. Pr [E2(C
∗,m, z, r)] = value(E1(C

∗,m, z, r)) ≥ 1− negl(n)

where value(·) is a deterministic function which outputs either the unique value committed to in the
view E1(C

∗,m, z, r), or ⊥ if no such value exists.

We say that a perfectly binding commitment scheme Πcom admits public decommitment if there
exists a deterministic polynomial time algorithm Dcom which on input the public transcript of
interaction m̂, and the decommitment information d, outputs the unique value m committed in m̂.
If there is no such value, the algorithm outputs ⊥. For perfectly binding commitment schemes, the
function value is well defined on the public transcripts as well. Therefore, we can write Dcom(d, m̂) =
value(m̂).

We now specify our “fake” public-coin sender requirement. Since we are working with ddh based
construction, we will use a safe prime p = 2q + 1 of length n, (as used in Rpubot).

Let n ∈ N be the security parameter. We say that a perfectly binding commitment scheme
Πcom := 〈C,R〉 has a fake public-coin sender if there exists an algorithm Cpub such that for every
malicious ppt R∗, every m ∈ {0, 1}n, every safe prime p of length n, every advice z ∈ {0, 1}∗, the
following two conditions hold:

1. viewR∗ [C(m)↔ R∗(z)]
c≡ viewR∗ [Cpub(p)↔ R∗(z)]
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2. The output of Cpub(p) consists of components {αi}poly(n)i=1 such that for every i: αi is a uniform
and independent element either in {0, 1} or in an order q subgroup of Z∗p.

Concrete instantiation. Unfortunately, no commitment protocol satisfying these requirements
is known. The central reason behind this is that the fake public-coin sender Cpub requirement
interferes with the commit-with-extract requirement. In [BL04], Barak and Lindell constructed a
commitment protocol with the goal of strict polynomial time extraction. We observe that somewhat
surprisingly, with some very minor changes, this protocol actually satisfies all our requirements. In
particular, this commitment scheme is a commit-with-extract scheme, has a fake public-coin sender,
and admits public decommitment. However, as with the OT protocol, this change requires us to use
ElGamal [Gam84] and hence ddh (instead of a general trapdoor permutation). For completeness,
we present the protocol of [BL04] and explain the required modifications in appendix A.2.

Important notation. For concreteness, fix Πcom := 〈C,R〉 to be a specific commitment protocol
satisfying all three conditions above, and let Dcom denote it’s public decommitment algorithm. Let
Lcom := {(m, m̂) : ∃d s.t. Dcom(m̂, d) = m}. That is, Lcom is anNP-language containing statements
(m, m̂) such that m̂ is a commitment-transcript for value m. Let Rcom be the corresponding NP-
relation so that Rcom((m, m̂), d) = 1 if Dcom(m̂, d) = m and 0 otherwise.

3.3 Barak’s Preamble

In this section, we will recall Barak’s non-black-box simulation method. In addition, we will make a
slight change to this protocol which requires us to reprove some of the claims. We start by recalling
Barak’s relation for the complexity class NTIME(nlog log(n)).

Barak’s relation. Let n ∈ N be the security parameter, and {Hn}n be a family of crhf, h :
{0, 1}∗ → {0, 1}n. Since we are using Naor’s commitment scheme, we will have an extra string
τ for the commitment scheme sbcom. Barak’s relation, Rb takes as input an instance of the

form 〈h, τ, c, r〉 ∈ {0, 1}n × {0, 1}3n × {0, 1}3n
2

× {0, 1}n+n
2

and a witness of the form 〈M,y, s〉 ∈
{0, 1}∗ × {0, 1}∗ × {0, 1}poly(n).

Relation: Rb(〈h, τ, c, r〉, 〈M,y, s〉) = 1 if and only if:
1. |y| ≤ |r| − n.
2. c = sbcomτ (h(M); s).
3. M(c, y) = r within nlog logn steps.

Let LB be the language corresponding to RB. We use this more complex version involving y,
since it will allow us to successfully simulate even in the presence of leakage queries, which a cheating
verifier obtains during the protocol execution.6

Universal arguments and statement generation. Universal arguments (uarg) are four-round
public-coin interactive argument systems [Kil92, Mic94, BG02], which can be used to prove state-
ments in LB. Let 〈Pua, Vua〉 be such a system. We will denote the four rounds of this uarg by
〈α, β, γ, δ〉. Consider the following protocol between a party PB and a party Vb.

6This relation is identical to the one used for constructing bounded concurrent zero-knowledge in constant rounds
in [Bar01].
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Protocol GenStat: Let {Hn}n be a family of crhf functions.
1. Vb sends h← Hn and τ ← {0, 1}3n

2. Pb sends c← {0, 1}3n
2

3. Vb sends r ← {0, 1}n+n
2

.

Note that that length of r is n2 + n which allows y to be of length at most n2. Length of c is
3n2 since it is supposed to be a commitment to n bits. We have the following lemma:7

Composed protocol 〈P⊗, V ⊗〉. We define this for convenience. The composed protocol is simply
the GenStat protocol followed by an universal argument that the transcript σ := 〈h, τ, c, r〉 is in
Rb. More precisely, strategy P⊗ := PB � Pua is the composed prover, and V ⊗ := VB � Vua is the
composed verifier, where A�B denotes the process of running itm A first, and then continuing itm
B from then onwards.8 The following lemma states that the composed verifier V ⊗ almost always
rejects in an interaction with any ppt prover (i.e., it always rejects that σ ∈ Lb).

Lemma 1 ([Bar01]). Suppose that {Hn}n is a family of crhf functions. There exists a negligible
function negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗, every r ∈ {0, 1}∗, and every
sufficiently large n,

Pr
[
outV ⊗ [P ∗(z; r)↔ V ⊗()]

]
≤ negl(n)

where the probability is taken over the randomness of V ⊗.

The “encrypted” version. In Barak’s protocol, an “encrypted” version of the above protocol is
used in which the honest prover sends commitments to its uarg-messages (instead of the messages
themselves). This is possible to do since the verifier is public coin.

We will use our commit-with-extract scheme Πcom := 〈C,R〉 for this purpose.9 Recall that for
Πcom, there exists a fake public-coin sender algorithm Cpub whose execution is indistinguishable from
that of C. During the commitment phase, our prover algorithm will follow instructions of Cpub; the
verifier will continue to use the normal receiver strategy R.

“Encrypted” preamble. 〈P̂b, V̂b〉: Let {Hn}n be a family of crhf functions.
1. P̂b and V̂b run the GenStat protocol.

Let 〈h, τ, c, r〉 denote the resulting statement.
2. P̂b and V̂b execute uarg for the statement 〈h, τ, c, r〉.

(a) V̂b sends α, obtained from Vua.
(b) P̂b runs Cpub, and V̂b runs R;

Let β̂ be the commitment transcript.
(c) V̂b sends γ, obtained from Vua.
(d) P̂b runs Cpub, and V̂b runs R;

Let δ̂ be the commitment transcript.

7The version of Barak’s relation that we use is actually a somewhat simplified form of the relation given in [BG02],
which results only in a reduction to hash functions that are crhf against circuits of size nlogn. By using the more
complex version of [BG02], we get a reduction to standard crhf, without affecting any of our claims.

8A and B do not share states and run with their own independent inputs.
9Recall that Πcom is perfectly-binding commitment scheme which satisfies the commit-with-extract notion. In

addition, the protocol has a public decommitment algorithm Dcom, an associated NP-relation Rcom, and NP-language
Lcom, and a fake public-coin sender algorithm. See section 3.2.
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The full transcript of the preamble is 〈h, τ, c, r, α, β̂, γ, δ̂〉.
Since the prover messages are committed, we cannot make a claim along the lines of lemma 1.

Therefore, we define the following NP-relation Rsim and claim that it is a “hard” relation. This
relation simply tests that there exist valid decommitments (d1, d2) for strings β̂, δ̂ so that the tran-
script is accepted by the uarg verifier.

Relation: Rsim(〈h, τ, c, r, α, β̂, γ, δ̂〉, 〈β, d1, δ, d2〉) = 1 if and only if:
1. Rcom(〈β, β̂〉, d1) = 1.
2. Rcom(〈δ, δ̂〉, d2) = 1.
3. Vua(h, τ, c, r, α, β, γ, δ) = 1.

The language corresponding to relation Rsim is denoted by Lsim. Also note that P̂b sends either
random strings of uniform elements in a prime order group of Z∗p. We have the following lemma.

Lemma 2. Suppose that {Hn}n is a family of crhf functions. There exists a negligible function
negl such that for every ppt strategy P ∗, every z ∈ {0, 1}∗, every r ∈ {0, 1}∗, and every sufficiently
large n,

Pr
[
σ ← trans[P ∗(z; r)↔ V̂b()];σ ∈ Lsim

]
≤ negl(n)

where the probability is taken over the randomness of V̂b.

Proof. The proof follows almost immediately from the (statistical) commit-with-extract property.
Suppose that there exists a machine P ∗ contradicting the lemma. Then, we construct a machine
P ∗∗ to contradict lemma 1.

Consider the following machine P ∗∗ which incorporates P ∗. Machine P ∗∗ interacts with an
external composed verifier V ⊗, forwarding its message to the internal machine P ∗ up to the point
where P ∗ is about to commit its first uarg message. At this point, P ∗∗ records the state st1 of P ∗,
feeds it to the extractor E = (E1, E2) of the commitment scheme. Let the output of the extractor
be a simulated state st′1 for P ∗ (which corresponds to the prover-state at the end of step 2(b) of
the protocol). In addition, E also outputs a value β. If β 6= ⊥, P ∗∗ sends β to V ⊗ and receives a
message γ. It feeds γ to internal P ∗ (who is now running from the simulated state st′1), and repeats
the same extraction procedure for the last step, to obtain simulated state st′2 and value δ. If δ 6= ⊥,
this message is sent to V ⊗.

From the statistical simulation property, it follows that the distribution of the final state st′2 of

P ∗ is statistically close to its view in a real-execution with an honest V̂b. As a result, if σ̃ denotes
the transcript of interaction (contained in the state st′2), Pr[σ̃ ∈ Lsim] is close to the probability in
the lemma. Further, by the correctness of extraction, the extracted values β, δ are indeed correct
openings except with negligible probability. It therefore follows that P ∗ convinces V ⊗ with noticeable
probability. This contradicts lemma 1.

Remark. We wish to remark that the above proof relies crucially on the statistical simulation
guarantee of E1 (in simulating the view of the committer, see definition 3). This is because the
statement σ /∈ Lsim is not efficiently verifiable, and therefore mere computational indistinguishability
will not lead to any contradiction.

4 Conditional Disclosure via Garbled Circuits

Yao’s garbled circuit method [Yao86] allows two parties to compute any arbitrary function f of their
inputs in a “secure” manner. Without loss of generality, let f : {0, 1}n × {0, 1}n → {0, 1}n.
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The method. The garbled circuit method specifies two polynomial time algorithms (Garble,Eval).
Algorithm Garble is randomized; on input 1n and the description of a circuit (that computes) f ,
it outputs a triplet (C, key0, key1). C, which consists of a set of tables containing encrypted values,
is called the garbled circuit ; and key0 = {(k00,i, k10,i)}ni=1 and key1 = {(k01,i), k11,i}ni=1 are called the
keys. Let a = a1, . . . , an and b = b1, . . . , bn be binary strings. Algorithm Eval, on input (C,Ka,Kb)
outputs a value v ∈ {0, 1}n such that if Ka = {kai0,i} and Kb = {kbi1,i} then v = f(a, b).

For an NP-relation R, and σ ∈ {0, 1}∗, let fσ,R be the following function.

Function fσ,R(ω,m):

If R(σ, ω) = 1, output m; otherwise output 0|m|.

That is, fσ,R discloses m if and only if ω is a valid witness for the statement σ. We will use
the garbled circuit method for such functions fσ,R. Jumping ahead, we will use fσ,Rsim

for the
NP-relation Rsim described in section 3.3.

Conditional disclosure via garbled-circuits. In the two party setting, one party prepares the
garbled circuit C and sends the keys Kb corresponding to her input b to the other party. An OT
protocol is used by the first party to receive keys Ka for her input a, so that it can execute the
evaluation algorithm. This allows the receiver of the garbled circuit (and OT) to learn f(a, b) but
“nothing more”. In addition, receiver’s input remains secure due to OT-security for receiver.

Looking forward, we will require our protocol so that it will admit a “fake” receiver algorithm.
Therefore, we will use the Naor-Pinkas OT protocol, denoted OTnp (see section 3.1). For a technical
reason, our protocol starts by first executing steps of OTnp, and then executes the garbled circuit
step. Note that the first step involves n parallel executions of OT, one for each input bit. The
resulting two-round conditional disclosure protocol, Πcd, is as follows.

Protocol Πcd for computing fσ,R(ω,m): The protocol consists of two parties, a receiver Rcd and
a sender Scd. Rcd’s private input is bit string ω = ω1, . . . , ωn, and Scd’s private input is bit
string m = m1, . . . ,mn. The common input to the parties is the description of the function
fσ,R as a circuit (equivalently, just σ).

1. Rcd computes v = (v1, . . . , vn), where vi is the first message of OTnp using the input ωi
and fresh randomness for i ∈ [n]. It then sends v.

2. Scd prepares a garbled circuit for the function fσ,R: (Cσ,R, key0, key1) ← Garble(fσ,R).
Next, Scd prepares v′ = (v′1, . . . , v

′
n) where v′i is the second message of OTnp computed

using (k00,i, k
1
0,i) as sender’s input and vi as receiver’s first message. Here the keys (k00,i, k

1
0,i)

are the ith component of key0. Finally, let Km denote the keys taken from key1 corre-
sponding to m. Scd sends (Cσ,R, v′,Km).

Recall that OTnp is a two-round protocol, it provides statistical secrecy for the sender, and has a
fake public-coin receiver. Also recall that OTnp does not satisfy the the standard simulation-based
security. As a result, we cannot directly use known results about the security of Yao’s protocol.
Nevertheless, we can make weaker indistinguishability-style claims which suffice for our purpose.
First notice that the OT-security for receiver, intuitively guarantees indistinguishability for the
input of Rcd. For the sender, we can prove the following claim.

Lemma 3 (Security for sender). Let L ∈ NP with witness relation R and σ ∈ {0, 1}∗. For the
security parameter n, let Scd(1

n, fσ,R,m, q) represent the response of the honest sender (of protocol
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Πcd), with input (fσ,R,m) when receiver’s first message is q. Then, for every pair of distinct mes-
sages (m,m′), every q ∈ {0, 1}∗ (from a possibly malicious ppt receiver), and every σ /∈ L, it holds

that Scd(1
n, fσ,R,m, q)

c≡ Scd(
n, fσ,R,m

′, q).

Proof. First, observe that when σ /∈ L, fσ,R is a constant function which always outputs an
all-zero string irrespective of inputs. Let (ω,m) and (ω′,m′) be two distinct set of inputs such
that fσ,R(ω,m) = fσ,R(ω′,m′). For such pairs of inputs, it follows from the security of Yao’s
construction that the following two distributions are computationally indistinguishable (see, e.g.,
[LP09] for details):

(C,Kω,Km)
c≡ (C,Kω′ ,Km′) (2)

We show that if the lemma is not true, then there exists a ppt adversary contradicting (2).
Suppose that the lemma is not true. This means, that there exists a ppt adversary R∗cd, a

security parameter n, a statement σn /∈ L, a first message qn, and a pair of messages (m,m′)
such that adversary’s advantage in distinguishing Scd(1

n, fσn,R,m, qn) from Scd(1
n, fσn,R,m

′, qn) is
noticeable. Fix such a value of n,m,m′, σn, qn out of infinitely many.

Recall that qn is the first message of OTnp. There exists at most one valid input to the honest
receiver algorithm of OTnp which results in qn as its first message. Let this input be denoted by ω∗n.10

Without loss of generality, R∗cd is deterministic, and therefore qn is always fixed for this particular
value of n and σn. Therefore, ω∗n is also fixed for this n, and can be provided non-uniformly to a
distinguishing machine.

We now construct an adversary R∗gc for the garbled-circuit algorithm to violate (2). R∗gc incor-
porates R∗cd, and receives ω∗n as its non-uniform advice. It then starts an internal execution of Πcd

with R∗cd receiving qn as the first message. When this happens, AR∗gc sends ω∗n to an outside party.
The outside party constructs a garbled circuit Cσn,R for fσn,R, and keys Kω∗n and Kch for inputs ω∗n
and ch (which will be either to set to m or m′). The triplet (Cσn,R,Kω∗n ,Kch) is given to R∗gc.

At this point, R∗gc constructs key
′
0 so that if keys were taken from key0 for the input ω∗n, they

will result in the vector Kω∗n ; this is done by using keys from the vector Kω∗n and filling in randomly

generated keys in appropriate locations of key
′
0. To complete the internal simulation, R∗gc now

prepares the second message v2 of OTnp by using pairs of inputs from key
′
0 and qn as receiver’s first

message. It then gives (Cσn,R, v2,Kch) to R∗cd, and outputs whatever R∗cd outputs.
Since OTnp guarantees statistical secrecy for the sender, the view of R∗cd in the internal simulation

is statistically close to it’s view in the real execution of Πcd with sender’s input being ch. Observe
that the view of R∗gc either consists of (Cσn,R,Kω∗n ,Km) or (Cσn,R,Kω∗n ,Km′) depending upon whether
ch = m or ch = m′. It follow that the distinguishing advantage of R∗gc in violating (2) is negligibly
close to that of R∗cd in distinguishing the distributions in the lemma.

5 A Constant Round Protocol

In this section we will present our constant round protocol. The protocol will use the dual simulation
idea, introduced in [GJS11], as an important tool. To simplify the exposition and the proofs, we
isolate a part of the protocol from [GJS11], and present it as a separate building block.11

10If some, or all, bits of ω∗n are not uniquely defined, then the undefined bits are set to 0.
11The only difference is that the challenge-response slots in the [GJS11] protocol have been removed. As a result,

many other parameters of their protocol become irrelevant, and also do not appear in this protocol. This does not
affect the soundness of the protocol.
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Shortened GJS protocol 〈Pgjs, Vgjs〉. The common input is an n vertex graph G in the form
of an adjacency matrix, and prover’s auxiliary input is a Hamiltonian cycle H in G. The protocol
proceeds in following three steps.

1. Commitment stage:
(a) Pgjs sends a random string ρ.

(b) Vgjs sends t̂1 = shcomρ(t1; s1) and ĉh = shcomρ(ch; s2),

where t1 ← {0, 1}3n
4

, ch ∈ {0, 1}n, and s1, s2 ← {0, 1}poly(n).
2. Coin flipping stage:

(a) Pgjs sends a random string t2.
(b) Vgjs opens t̂1 by sending (t1, s1).

Let t = t1 ⊕ t2.
3. Blum Hamiltonicity protocol:

(a) Let t = t1, . . . , tn3 so that |ti| = 3n for i ∈ [n3].
Prover chooses n random permutations π1, . . . , πn and sets Gi = πi(G)
for each i ∈ [n]. It then commits to each bit bj in Gi using sbcomti×j .

(b) Verifier opens to ĉh by sending (ch, s2).
(c) Let ch = ch1, . . . , chn. For every i ∈ [n], if chi = 0 then prover opens

each edge in Gi and reveals πi; else, it opens edges of the cycle in Gi.

The following lemma has been shown in [GJS11].

Lemma 4 ([GJS11]). Protocol 〈Pgjs, Vgjs〉 is a sound interactive argument system for all of NP.

5.1 Our Protocol

We are now ready to present our protocol 〈P, V 〉. The protocol starts with an execution of the
“encrypted” preamble protocol (see section 3.3); this is followed by the first i.e., commitment, stage
of the GJS protocol. Before completing the GJS protocol, verifier executes the garbled-circuit
protocol Πcd for fσ,Rsim

and a specific m (described shortly), and proves using an szkaok that this
step was performed honestly. This will enable the simulator to extract useful information in m.
Finally, the rest of the GJS protocol is executed to complete the proof. The full description of the
protocol is given below.

It is easy to see that our protocol has constant rounds. The completeness of the protocol follows
directly from the completeness of 〈Pgjs, Vgjs〉. In next two sections, we prove the soundness and
zero-knowledge of this protocol. Note that the the prover is actually “public coin” up until the final
step. The proof of theorem 1 follows from the proof of soundness (section 5.2) and leakage-resilient
zero-knowledge (section 5.3).

5.2 Proving Soundness

We prove the soundness of our protocol by reducing it to the soundness of GJS protocol (see lemma
4, section 5.1). To do so, we proceed in three steps. First, from lemma 2, it should hold that if a
cheating prover P ∗ succeeds with noticeable probability, then it must do so even if the transcript
σ of the preamble is not in Lsim. In the next step, we construct new machine P ∗1 from P ∗ which
interacts with a modified verifier V1. The verifier V1 uses the statistical simulator of szkaok (in the
garbled circuit-step) instead of using the prover. P ∗ should convince V1 with noticeable probability
as well. Finally, V1 replaces the value m in the garbled circuit by 0|m|, as its next step. We argue
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Protocol 〈P, V 〉. The common input consists of 1n, and an n vertex graph G in the form of its
adjacency matrix. Prover’s private input is a Hamiltonian cycle H in G.

1. “Encrypted” preamble: P ⇒ V

P and V run Barak’s encrypted preamble. P runs the public-coin strategy P̂b, and V runs
strategy V̂b. Let the transcript be σ := 〈h, τ, c, r, α, β̂, γ, δ̂〉.

2. Commitment step: V ⇒ P

P and V run the first, i.e. commitment, step of 〈Pgjs, Vgjs〉.
(a) P sends a random string ρ

(b) V sends t̂1 = shcomρ(t1; s1) and ĉh = shcomρ(ch; s2), where t1 ← {0, 1}3n
4

,

ch← {0, 1}n, and s1, s2 ← {0, 1}poly(n); let m := (t1, s1, ch, s2).

3. Garbled-circuit step: V ⇒ P

P and V run the two-round garbled circuit protocol, Πcd, for the function fσ,Rsim
. V acts

as the sender with private input m.

(a) P runs the fake receiver, v1 ← Rpubot(1n, p) for a random safe prime p; sends v1.

(b) V sends (C, v2,Km)← Scd(fσ,R,m, v1; s3), using fresh coins s3.

4. Proof of correctness: V ⇒ P

V proves to P using public-coin szkaok Πpr the knowledge of s3 and m = (t1, s1, ch, s2) so
that:

(a) t̂1 = shcomρ(t1; s1),

(b) ĉh = shcomρ(ch; s2),

(c) Scd(fσ,R,m, v1; s3) = (C, v2,Km).

5. Final step: P ⇒ V

P and V complete all remaining five rounds of 〈Pgjs, Vgjs〉. P uses H as the witness.
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that doing so also maintains noticeable probability of success for P ∗1 . This is since when σ /∈ Lsim,
changing m to 0|m| maintains indistinguishability from lemma 3. At this point, V1 is essentially
“decoupled” and can receive GJS-messages from an external GJS-verifier. The full proof appears
below.

Lemma 5. Protocol 〈P, V 〉 is sound.

Proof. We will show that if our protocol is not sound, then the GJS protocol is also not sound,
contradicting lemma 4.

Suppose that there exists a ppt machine P ∗ which violates the soundness of our protocol for
infinitely many n. Fix one such security parameter n and a non-Hamiltonian graph Gn, such that
P ∗ succeeds in convincing an honest V with probability εn ≥ 1/p(n) for some polynomial p(n).

Consider the state of prover P ∗ at the conclusion of the preamble. Suppose that the transcript
of the preamble is σ. Let P ∗σ denote this residual prover strategy. Let V1 denote the residual honest
verifier strategy.12 We have the following (via a standard averaging argument, see appendix B).

Claim 1. There exist at least an εn/4 fraction of prefix strings σ such that: (a) σ /∈ Lsim, and (b)
P ∗σ successfully proves Gn to V1 with probability at least εn/2.

Fix one such prefix σ /∈ Lsim and the corresponding prover strategy P ∗σ . Now we consider the
following verifier V2. Verifier V2 is identical to V1 except that it uses the simulator Spr of the szkaok
protocol Πpr. We note that since Spr is a non-black-box simulator, it requires the program of the
machine whose view it must simulate. Therefore, V2 also receives the program of P ∗σ as its input.
Observe that this is sufficient for successfully executing algorithm V2.

Let ε′ ≥ εn/2 be the success probability of P ∗σ in convincing V1. From the statistical simula-
tion property of szkaok, it holds that distributions trans[P ∗σ (x, z) ↔ V1()] and trans[P ∗(x, z) ↔
V1(P

∗)] are statistically close. Therefore, we have that P ∗σ convinces V2 with probability ε′′ ≥
ε′ − negl(n) ≥ εn/4.

We now proceed to the final step and consider the following verifier V3. Verifier V3 is identical
to V2 except that instead of using m = (t1, s1, ch, s2) it uses m′ = 0|m| to send the second message
of the garbled-circuit step. Let ε′′′ be the probability that P ∗σ successfully convinces V3.

Let us now compare the two executions of P ∗σ with V2 and V3. In both executions, the first

message received by P ∗σ is u := (t̂, ĉh), and distributed identically. Let λ2(u) denote the probability
that P ∗σ successfully convinces V2 after receiving u; define λ3(u) analogously in case of V3. Then,
denoting by Pr[u] the probability that u is sent, we have:

ε′′ =
∑
u

Pr[u] · λ2(u) and ε′′′ =
∑
u

Pr[u] · λ3(u)

Since σ /∈ L, from lemma 3 we have that λ2(u) and λ3(u) are negligibly close; in particular
λ3(u) ≥ λ2(u) − negl(n). Let G be the set of messages u such that λ2(u) ≥ ε′′/2. This means that
for every u ∈ G, λ3(u) ≥ ε′′/2− negl(n) ≥ εn/16. Therefore,

ε′′′ ≥
∑
u∈G

Pr[u] · λ3(u) + 0 ≥ εn
16

∑
u∈G

Pr[u]

Using a standard averaging argument (along the lines of claim 1), we can show that Pr[u ∈ G] ≥
ε′′/2 ≥ εn/8. Therefore ε′′′ ≥ ε2n/128. It is now straightforward to construct a prover P ∗gjs for
breaking the soundness of GJS protocol.

12Observe that the randomness of V in the preamble is not needed any other step. Therefore, such a residual honest
verifier is well defined: it simply executes all steps of V from step 2 onwards with fresh randomness.
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The machine P ∗gjs incorporates the prover P ∗ that violates the soundness of our protocol. It
then interacts with P ∗ honest to conclude the encrypted preamble of (our) protocol 〈P, V 〉. This
results in statement σ; at this point, it freezes the state of P ∗, to obtain the strategy P ∗σ . Now P ∗gjs
starts an interaction between this residual prover P ∗σ and a new machine V ′3 .

The machine V ′3 is identical to V3 except that it routes all messages corresponding to the GJS
protocol to an external honest verifier Vgjs. To successfully convince Vgjs that Gn is a Hamiltonian
graph, P ∗gjs starts an internal interaction between P ∗σ and V ′3 on common input Gn. When a verifier-
message of the GJS protocol is required, the machine asks for this message from the external Vgjs.
Likewise, when a prover message of the GJS protocol is produced, it is sent to the external Vgjs.
P ∗gjs halts when the entire internal execution halts.

It is easy to see that the interaction of P ∗gjs with Vgjs is identical to that of P ∗σ with V3. Therefore,

P ∗gjs has convincing probability εn
4 ×

ε2n
128 = O(ε3n). This contradicts lemma 4 if εn is not negligible.

5.3 Proving leakage-resilient zero-knowledge

We use Barak’s non-black-box simulation idea along with GJS simulation. We now quickly highlight
the main ideas in the simulation. Let V ∗ be an arbitrary ppt verifier whose program is given as an
input to the simulator S. There are for main ideas:

1. First, the simulation uses V ∗’s code to execute the preamble in such a way, that at the end
of the preamble, σ ∈ Lsim. In addition, the simulator will also have a witness ω so that
Rsim(σ, ω) = 1. The properties of the components used in the preamble (in particular the
use of fake sampling algorithms that are public coin) guarantee that simulator’s actions in
the preamble are indistinguishable from a real execution with an honest prover. In addition,
it is easy to answer leakage queries since the messages exchanged so far represent the entire
random-tape of the prover at this point. This allows the simulator to answer leakage queries
by simply appending these messages to the state, and sending an appropriate query to the
leakage oracle.

2. Next, the simulator will use ω in the garbled circuit step to obtain keys Kω. Once again, since
the first message of OTnp provides indistinguishability for receiver’s input, this step does not
affect the simulation. Further, since P is public coin in this step as well, the simulator can
continue to answer leakage queries as before.

3. Having obtained Kω along with C,Km in the garbled circuit step, the simulator can evaluate
the C and learn fσ,Rsim

(ω,m) to learn m. By the soundness of szkaok of the next step, it is

guaranteed that m contains valid openings (t1, s1, ch, s2) for t̂1 and ĉh.

4. Finally, observe that (t1, ch) is precisely the information needed by the GJS simulation method
to successfully simulate the last step, while answering leakage queries properly. Briefly, ch is
the challenge for Blum’s protocol, and a first message can be created by the simulator to
successfully answer V ∗’s challenge in the last message. At the same time, since t1 is known
prior to the coin-flipping stage of the GJS protocol (see section 5), the simulator will have the
ability to equivocate in Naor’s commitment scheme, allowing it to successfully answer leakage
queries.

An important point to note is that if V ∗ asks more than n2 bits of leakage after receiving c and
before sending r (see GenStat), the simulator will not be able to ensure that σ ∈ Lsim. However,
if this happens, the simulator can simply ask for the entire witness H from the leakage oracle since
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the length of leakage is more than the witness size. The simulator can then continue to run like the
honest prover and output a view.

Let LnH(·) denote the leakage oracle parameterized by a Hamiltonian cycle H, and the security
parameter n. Our non-black-box simulator S will have access to LnH(·), to answer leakage queries.
A leakage query is a function F (H, tape) (represented as a circuit), which takes as input the witness
H and prover’s random tape tape, and outputs the leakage bits. The description of the simulator
follows.13

The simulator S. Let V ∗ be a ppt cheating verifier. The simulator receives as input the security
parameter 1n, an n vertex Hamiltonian graph G, and the description of V ∗. The simulator starts by
fixing V ∗’s inputs and random tape, to completely fix its program. It then starts interacting with
V ∗ as described below. The simulator aborts if V ∗ aborts (e.g., by sending invalid messages). Let
tape be a string initially empty.

1. “Encrypted” preamble:

(a) Suppose that V ∗ sends it’s first message (h, τ). If V ∗ makes a leakage query F (·, ·), S
sends F (·, tape) to LnH , and feeds the resulting answer to V ∗. Let V ∗∗ denote the current
state of the verifier.

(b) S computes c = sbcomτ (h(V ∗∗); s) for a random s ← {0, 1}poly(n), and feeds c to the
verifier. It then appends c to tape := tape ‖ c.
Leakage query: If V ∗ sends a leakage function F whose output is more than n2 bits, S asks
for the witness H from LnH and answers the query as F (H, tape). Otherwise, the query
is answered as before; let y be the answered returned by LnH , so that |y| ≤ n2 ≤ |r| − n.

(c) If V ∗ responds, let r be the string obtained as its next message.

If S holds the cycle H, it will continue its action as an honest prover. Otherwise, S holds the
“fake” witness 〈V ∗∗, y, s〉 for 〈h, τ, c, r〉, to satisfy Barak’s relation Rb. In the later case, it
proceeds as follows.

(d) When V ∗ sends the next message α, S uses Pua with the witness 〈V ∗∗, y, s〉, to obtain a
string β.

(e) S commits β to V ∗ using the committing algorithm C. Let β̂ be the transcript.

(f) When V ∗ sends the next message γ, S computes the next uarg message δ.

(g) S commits δ to V ∗ using the committing algorithm C. Let δ̂ be the transcript.

Leakage queries: At the end of each round, S appends its messages to tape, and answers (any)
leakage function F by sending F (·, tape) to LnH and returning the answer.

Fake witness: Let σ := 〈h, τ, c, r, α, β̂, γ, δ̂〉. At this point, S holds witness ω := 〈β, d1, δ, d2〉
such that Rsim(σ, ω) = 1.

2. Commitment step: S executes the commitment step with V ∗ honestly: S sends a random
string ρ, and receives a pair (t̂1, ĉh). Leakage queries are answered as in the previous step.

3. Garbled-circuit step: S uses the receiver algorithm Rcd of the garbled-circuit protocol; the
input to Rcd is the (fake) witness ω, and let v1 be its output. S feeds v1 to V ∗. Let (C, v2,Km)
be the response of V ∗. Leakage queries are answered as in the previous step.

13We will need to describe the actions of S in all steps, including messages in the GenStat protocol, and the GJS
protocol. We recommend a quick look on sections 3.3 and 5.
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4. Proof of correctness: S plays this step honestly, and receives a proof of knowledge of
inputs m = (t1, s1, ch, s2) and s3 so that t̂1 = shcomρ(t1; s1), ĉh = shcomρ(ch; s2), and
Scd(fσ,Rsim

,m, v1; s3) = (C, v2,Km). Leakage queries are answered as in the previous step.
If the proof is accepting, S obtains keys Kω from the OT messages (v1, v2), and evaluates the

garbled circuit to learn fσ,Rsim
(ω,m) = m. If m does not contain valid openings to (t̂1, ĉh), S

outputs a special symbol fail1.

5. Final step: S now proceeds identically to the GJS-simulator using the trapdoors (t1, ch) to
simulate (and answer leakage queries).14 For completeness, we recall these steps here:

(a) Coin flipping: S must choose string t2 in a way so that it can equivocate. Let the input
t1 = t′0, . . . , t

′
3k3−1. Then for every i ∈ {0, . . . , 3k3− 1}, S sets t′′i = t′i⊕ prg(s0i )⊕ prg(s1i )

for randomly chosen seeds (s0i , s
1
i ). It then sends t2 which is a concatenation of all t′′i. If

V ∗ responds with a valid opening (t∗1, s
∗
1) of t̂1 such that t∗1 6= t1, S aborts and outputs

(fail2, t
∗
1, s
∗
1). Otherwise, it sets t = t1⊕ t2. Note that ti = prg(s0i )⊕ prg(s1i ), and allows

for equivocation.15 Leakage queries are handled as before.

(b) Blum’s protocol: S prepares the first message by using ch = ch1, . . . , chn as the challenge
of the verifier. For i ∈ [n], if chi = 0 it commits to a random Gi = πi(G); otherwise it

commits to a random n-cycle graph Gi. If V ∗ sends a valid opening (ch∗, s∗2) of ĉh such
that ch∗ 6= ch, S outputs (fail2, ch

∗, s∗). Otherwise it answers with correct openings
depending on the challenge.

Leakage queries. To handle leakage queries, a special deterministic function R(H, tape) (de-
scribed in [GJS11]) is first defined. This function uses the randomness used by Blum’s sim-
ulator, and constructs randomness r′ such that Blum’s prover with witness H and random-
ness r′ will result in the exact same transcript as output by Blum’s simulator (in the final
step). Description of R includes the relevant equivocation trapdoors (s0i , s

1
i ) for Naor’s com-

mitment for this purpose; R outputs tape := tape ‖ r′. Note that the simulator never
runs R by itself. Upon receiving a leakage query F , S sends the query F ′ to LnH , so that
F ′(H) = F (H,R(H, tape)). See [GJS11] (section 3.3.1, page 16, full version) for a complete
description of this function.

This completes the description of the simulator. S outputs whatever is the final view of V ∗. The
bound on the number of leakage bits is seen to hold trivially. We now proceed to show the indistin-
guishability of simulation.

Indistinguishability of simulation. To prove that the view output by S is computationally
indistinguishable from the real view, we first design the following hybrid machines, M0, . . . ,M8. M0

receives the cycle H as input, whereas M8 does not.

M0: This hybrid receives witness H and the program of V ∗ as input, and interacts with V ∗ just like
the honest prover P . Leakage queries are answered directly based on the witness and prover’s
random tape.

M1: This hybrid differs from M0 only in preparation of the commitment c: it commits to h(V ∗∗)

instead of sending a random string in {0, 1}3n
2

; here V ∗∗ is the state of V ∗ before receiving c.

14We only need simulation steps from commitment phase, which is straight-line given (t1, ch).
15To commit, S sends prg(s0i ) as its commitment which can be opened to 0 by sending s0i , and 1 by sending s1i .
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Leakage queries are answered as in M0, assuming that c is the public randomness of P in this
round.

M2: This hybrid differs from M1 only in the execution of “encrypted” uarg. While M1 uses
algorithm Cpub, M2 acts as described in steps 1(d) through 1(g) of S. That is, M2 uses
〈V ∗∗, y, s〉 to compute messages β, δ of the uarg prover, and then commits to them using the
honest committing algorithm C. To answer leakage queries, M2 considers messages sent by
algorithm C as if they were prover’s public coins in these steps; it then answers the queries as
before.

M2 also records witness ω := 〈β, d1, δ, d2〉 for transcript σ := 〈h, τ, c, r, α, β̂, γ, δ̂〉; here d1 and
d2 are strings that decommit β̂ to β and δ̂ to δ respectively.

M3: This hybrid is identical to M2 in all but the garbled-circuit step. M3 uses witness ω as the
input to the honest receiver algorithm Rcd to compute the message v1 (which in turn is the
first message of OTnp). Leakage queries are answered as in previous step.

M4: This hybrid is same as M3, except that at the end of step 4, if szkaok is accepting, it evaluates
the circuit C to learn a message m. If m does not contain valid openings to both (t̂1, ĉh), M4

aborts and outputs a special symbol fail1. Leakage queries are answered as in M3.

M5: This hybrid is same as M4, except that in coin flipping stage M5 sends a string t2 such that
the final string t = t1⊕ t2 allows for equivocation for each of its component strings (for Naor’s
commitment sbcom, see step 5(a) of S). Leakage queries are handled as before.

M6: This hybrid differs from M5 only in how it reacts to V ∗’s opening of (t̂1, ĉh). If V ∗ responds
with a valid opening (t∗1, s

∗
1) of t̂1 (in the coin flipping stage) such that t∗1 6= t1, M6 aborts with

output (fail2, t
∗
1, s
∗
1). It does the same thing if V ∗ sends with a valid opening (ch∗, s∗2) of ĉh

(in Blum’s protocol) such that ch∗ 6= ch. Leakage queries are handled as before.

M7: This hybrid differs fromM6 only in Blum’s protocol. Instead of usingH, it uses the simulator of
Blum’s protocol (with the challenge ch) to successfully complete this step. Leakage queries are
handled as follows. M7 uses a special deterministic functionR(H, tape) (described in [GJS11])
which uses the randomness used by Blum’s simulator and constructs randomness r′ such that
Blum’s prover with witness H and randomness r′ will result in the exact same transcript
as output by Blum’s simulator (in final step). Description of R includes the equivocation
trapdoor of Naor’s commitment for this purpose; R outputs tape := tape ‖ r′. To answer
leakage query F , M7 sends F (·, tape) to LnH .

M8: This hybrid is same as M7 except that it handles leakage queries slightly differently. Upon
receiving F , it constructs leakage query F ′ satisfying F ′(x, tape) = F (x,R(x, tape)); and
sends F ′(·, tape) to LnH . Note that M8 does not require access to H at all, and is identical to
our simulator S.

Lemma 6. Protocol 〈P, V 〉 is a leakage-resilient zero-knowledge protocol.

Proof. To prove the lemma, we only need to show that for every V ∗ and every valid (G,H), the
output of S is computationally indistinguishable from the view of V ∗ in an interaction with the real
prover P (G,H). To do this, we show that the output of hybrid M0 is indistinguishable from that
of M8, using the following (straightforward) series of arguments:
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1. M0 and M1 only differ in how c is constructed. It follows from the pseudorandomness of
outputs of sbcomτ that the output of M0 is indistinguishable from that of M1. Observe that if
V ∗’s leakage was more than n2 bits, S receives H, and continues like M1. In this situation, the
lemma already follows. We therefore assume that the answer y returned LnH (if any), is such
that |y| ≤ n2 ≤ |r| − n. In addition, since the leakage queries F are polynomial-size circuits
defined over c, the indistinguishability holds even in presence of such leakage. This argument
about leakage queries will remain unchanged until hybrid M7.

2. The fact that Cpub is a fake public-coin sender for C implies that the output of M1 is com-
putationally indistinguishable from that of M2. This is because interactions with Cpub are
indistinguishable from interactions with C (see section 3.2). Observe that string ω is indeed a
valid witness for σ.

3. Indistinguishability of the outputs of M3 and M2 follows from the indistinguishability of the
message Rot(1n, b) from Rpubot(1n, p) (see section 3.1). If not, then we can first define n
intermediate hybrids, fix one execution i ∈ [n] of OT to receive the OT-message from outside,

and contradict the hypothesis that Rot(1n, b)
c≡ Rpubot(1n, p), which is a contradiction.

4. The soundness of szkaok ensures that except with negligible probability, hybrid M4 does not
output fail1. Therefore, output distributions of M3 and M4 are statistically close.

5. From the pseudorandomness of prg it follows that the outputs of M5 and M4 are computa-
tionally indistinguishable. If not, then there exists a distinguisher D for prg. Briefly, define
M4 : i for i = 0, . . . , n3 so that M4:0 = M4,M4:n3 = M5, and M4:i changes only one component
of t2 as described in the simulator (instead of them all at the same time). Then, for any fixed
i, D on input a challenge a internally runs M4:i and sets bits of t2 so that ti = prg(s1)⊕ a for
a random s1. It sends prg(s1) to commit to 0, and a to commit to 1. It is easy to see that D’s
advantage is polynomially related to the distinguishing advantage between M4 and M5.

6. Outputs of M5 and M6 are indistinguishable since M6 outputs a message containing fail2
with negligible probability. If not, then computational binding of shcom is broken: the output
contains a different opening of either t̂1 or ĉh, in addition to the one already known to the
simulator.

7. Note that the output of M7 contains the view υ output by Blum’s simulator, which is in-
distinguishable from the real view in M6. In addition, since R outputs uniform randomness
conditioned on the view being υ, it holds that the leakage queries are also answered (and
distributed) correctly. Therefore, outputs of M6 and M7 are also indistinguishable. Finally,
observe that outputs of M7 and M8 are identically distributed.

This completes the proof.
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A Standard Definitions and Protocols

A.1 Security of Oblivious Transfer

Definition 4 (Oblivious Transfer [HK12]). Let `(·) be a polynomial and n ∈ N the security pa-
rameter. A two-message, two-party protocol 〈Sot, Rot〉 is said to be a statistically secure oblivious
transfer protocol for bit-strings of length `(n) such that both the sender Sot and the receiver Rot
are ppt interactive Turing machines receiving 1n as common input; in addition, Sot gets as input
two strings (m0,m1) ∈ {0, 1}`(n) × {0, 1}`(n) and Rot gets as input a choice bit b ∈ {0, 1}. We
require that the following conditions are satisfied:

• Functionality: If the sender and the receiver follow the protocol then for every n ∈ N, every
(m0,m1) ∈ {0, 1}`(n) × {0, 1}`(n), and every b ∈ {0, 1}, the receiver outputs mb.

• Receiver security: Denote by {Rot(1n, b)}n∈N denotes the message sent by honest receiver on
input (1n, b). Then, the ensembles {Rot(1n, 0)}n∈N and {Rot(1n, 1)}n∈N are computationally

indistinguishable; {Rot(1n, 0)}n∈N
c≡{Rot(1n, 1)}n∈N

• Sender security: Denote by Sot(1n,m0,m1, q) the response of the honest sender with input
(1n,m0,m1) when the receiver’s first message is q. Then, there exists a negligible function

negl(·) such that for every three messages m0,m1,m
′ ∈ {0, 1}`(n)×{0, 1}`(n), and every message

q ∈ {0, 1}∗ (from a possibly cheating, not necessarily polynomial time, receiver), and every
sufficiently large n ∈ N, it holds that either

∆(Sot(1n,m0,m1, q), Sot(1n,m0,m
′)) ≤ negl(n)

or
∆(Sot(1n,m0,m1, q), Sot(1n,m′,m1)) ≤ negl(n)

where ∆(X,Y ) denotes the statistical distance between distributions X and Y .

A.2 Extractable Commitment

We start by recalling the protocol of [BL04], and then explain our (minor) changes. The protocol
assumes the existence of trapdoor one-way permutations.

Protocol 〈C′,R′〉. Security parameter is n. Committer’s private input is a bit b; receiver has no
private input. The steps of the protocol are as follows:

1. (a) C′ samples a trapdoor one-way permutation (f, f−1) and sends f to R′. C′ also sends a
random string τ for sbcom.

(b) C′ proves to R′ using a standard zero-knowledge proof that f is a permutation.

2. R′ commits to r1 by sending x1 ← sbcomτ (r1; s).

3. C′ sends a random string r2.

4. R′ sends r1, and proves to C′ that there exists s such that x1 = sbcom(r1; s) using a straight
line szkaok protocol such as Πpr. C′ aborts if the proof fails.
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5. C′ sends b̃ = b⊕ hcb(f−1(r1 ⊕ r2)), where hcb is the hard core bit function.

It is easy to see that the protocol is perfectly-binding and computationally-hiding. To open, the
committer sends a string d such that f(d) = r1⊕ r2. By repeating this protocol in parallel for every
bit to be committed, and using only a single szkaok for them in step 3, we get a string a commitment
scheme.

We now recall the extraction procedure given in [BL04], to satisfy the commit-with-extract
property. The extraction procedure outputs a pair (υ, b), where υ is the (simulated) view of a
cheating committer (or sender). It holds w.h.p. that if υ is accepting then b is the bit committed in
υ, otherwise b = ⊥. The extraction procedure E′ starts by interacting with a cheating committer,
say C′′, and sends messages according to algorithm R′ up to step 3. In step 4, it selects a string d
and sets r1 = f(d) ⊕ r2; to successfully complete this step, it uses the simulator Spr of szkaok. C′′

either responds with a bit b̃ or aborts, to complete the (simulated) view υ; E′ outputs (υ, b) where
b = hcb(d) ⊕ b̃ if C′′ does not abort, and ⊥ otherwise. The correctness of this extractor is easy to
verify, see [BL04] for details.

Modifications. We now describe the required changes to make this protocol suitable for our
usage. We need to make the following changes:

– The use of step 1(b) is problematic since it will not allow a fake public-coin receiver algorithm.
Therefore we would like to use a trapdoor permutation which can be easily verified to be a
permutation. In addition, description of f should just be a truly random string/element. Exis-
tence of such trapdoor permutations suffices. Unfortunately we do not know any candidates.16

– We therefore replace the entire step 1 as follows: C′ sends the public-key of ElGamal system,
and keeps the secret key as the trapdoor. While this will not be a permutation, it will still
satisfy our goals. Note that ElGamal has verifiable public keys. We work with safe primes
p = 2q + 1 and in an order q subgroup Gq of Z∗p.

– In step 3, the string r1 ⊕ r2 is used to sample two random elements in Gq which define the
encryption of a random element, say r. The secret-key is used to recover this element and
then commit to b using r (e.g., using hcb function). These changes are already sufficient to
ensure that there is a fake public-coin committer for this protocol.

– The only remaining property is statistical simulation. Since r1 is committed using a perfectly
binding commitment scheme, it ends up in only a computationally indistinguishable view υ
for the sender. To get statistical simulation, we replace this sbcom, by shcom. The committer
will now send ρ (for shcom) instead of τ (for sbcom) in the first step to implement this change.

It is easy to verify that these changes do not violate either the perfect binding, or computational-
hiding of the protocol. In addition, the simulation and extraction of the committed value proceeds
as before. We denote this resulting scheme by Πcom; = {C,R}. The scheme also has public decom-
mitment, which consists of the C simply sending the (unique) secret-key of the ElGamal public-key.

Finally, note that the fake public-sender Cpub consists of simply sending either random strings
or the public-key which is two random elements in Gq.

16We cannot use factor-based constructions, since N = pq is distinguishable from things that can be sampled using
public coins; likewise no trapdoor permutation based on discrete log either are known.
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B Missing Proofs

Proof of lemma 1. Let Pr[σ] denote the probability that the prefix σ occurs in interaction of
honest V with P ∗, and Pr[P ∗σ ] denote the success probability of P ∗σ . Let G be the set of σ such that
Pr[P ∗σ ] is at least εn/2. Then,

εn =
∑
σ

Pr[σ] · Pr [P ∗σ ] (3)

=
∑

σ∈Lsim

Pr[σ] · Pr [P ∗σ ] +
∑

σ∈G∧σ/∈Lsim

Pr[σ] · Pr [P ∗σ ] +
∑

σ/∈G∧σ/∈Lsim

Pr[σ] · Pr [P ∗σ ] (4)

≤ negl(n) · 1 + Pr [σ ∈ G ∧ σ /∈ Lsim] · 1 +
εn
2
· 1 (5)

Therefore Pr [σ ∈ G ∧ σ /∈ Lsim] ≥ εn/2− negl(n) ≥ εn/4, as desired.
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