
Zero-Knowledge Proofs with Low Amortized Communication from

Lattice Assumptions

Ivan Damg̊ard∗

Aarhus University
Adriana López-Alt

New York University

June 26, 2012

Abstract

We construct zero-knowledge proofs of plaintext knowledge (PoPK) and correct multiplica-
tion (PoPC) for the Regev encryption scheme with low amortized communication complexity.
Previous constructions of both PoPK and PoPC had communication cost linear in the size of
the public key (roughly quadratic in the lattice dimension, ignoring logarithmic factors). Fur-
thermore, previous constructions of PoPK suffered from one of the following weaknesses: either
the message and randomness space were restricted, or there was a super-polynomial gap between
the size of the message and randomness that an honest prover chose and the size of which an
accepting verifier would be convinced. The latter weakness was also present in the existent
PoPC protocols.

In contrast, O(n) proofs (for lattice dimension n) in our PoPK and PoPC protocols have
communication cost linear in the public key. Thus, we improve the amortized communication
cost of each proof by a factor linear in the lattice dimension. Furthermore, we allow the message
space to be Zp and the randomness distribution to be the discrete Gaussian, both of which are
natural choices for the Regev encryption scheme. Finally, in our schemes there is no gap between
the size of the message and randomness that an honest prover chooses and the size of which an
accepting verifier is convinced.

Our constructions use the “MPC-in-the-head” technique of Ishai et al. (STOC 2007).
At the heart of our constructions is a protocol for proving that a value is bounded by some
publicly known bound. This uses Lagrange’s Theorem that states that any positive integer can
be expressed as the sum of four squares (an idea previously used by Boudot (EUROCRYPT
2000)), as well as techniques from Cramer and Damg̊ard (CRYPTO 2009).

∗The first author acknowledges support from the Danish National Research Foundation and The National Science
Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive Com-
putation, within which part of this work was performed; and also from the CFEM research center (supported by the
Danish Strategic Research Council) within which part of this work was performed.

1 Introduction

The problem of secure multiparty computation (MPC) [GMW87, BGW88, CCD88, Yao82] is central
in the field of modern cryptography. In this problem, N parties P1, . . . ,PN holding private inputs
x1, . . . , xN , respectively, wish to compute a function f(x1, . . . , xN) on their inputs without revealing
any information apart from the output of the evaluation (in particular, they wish to keep their
inputs secret from the other parties). Solutions to this problem abound in the literature. Many of
these solutions use the circuit rerandomization technique of Beaver [Bea91] (see e.g. [HM01, KK07,
BH08, HNP08, DO10, BTHN10, BDOZ11, DPSZ11], among many others). Circuit rerandomization
requires players to hold (additive) secret sharings of many random triples (a, b, c) such that c = a ·b
in some finite field. Traditionally, these triples are created using zero-knowledge proofs.

Bendlin et al. [BDOZ11] use zero-knowledge proofs of plaintext knowledge (PoPK) and correct
multiplication (PoCM) for this purpose. To see how this is done, consider the 2-party setting as
an example. To obtain an additive secret sharing of random values a, b, players P1 and P2 can
each choose random values u1, v1 and u2, v2, respectively, and define a = u1 + u2 and b = v1 + v2.
Obtaining an additive secret sharing of c = a · b is more involved. First, notice that c = a · b =
(u1 + u2) · (v1 + v2) = u1v1 + u1v2 + u2v1 + u2v2. If P1 and P2 could obtain an additive sharing of
each product uivj = yij + zij then they could obtain a sharing for c by simply adding each of these
shares: c = (y11 + y12 + y21 + y22)+ (z11 + z12 + z21 + z22). Thus, the problem reduces to having P1

and P2 obtain an additive sharing of the product of their inputs m1 and m2, respectively (in this
case ui and vj).

This can be done with the following protocol. P1 encrypts his input under his public key pk
and obtains a ciphertext c1 = Encpk(m1; r1), which he sends to P2. Upon receiving c1, P2 computes
a ciphertext cx = Encpk(x; rx) of a random plaintext x and computes c2 = m2 · c1 + cx, sends it to
P1, and outputs −x as his share. If the encryption scheme has certain homomorphic properties,
then c2 = Encpk(m1m2 + x). P1 decrypts c2 and outputs m1m2 + x as his share, thus obtaining an
additive sharing of m1m2.

However, when players are malicious, P2 needs to ensure that c1 is a valid ciphertext and P1

needs to ensure that P2 performed the multiplication step correctly. This can be done by having P1

and P2 provide zero-knowledge proofs that they performed their respective operations correctly: P1

sends a proof of plaintext knowledge, proving that there exist m1, r1 such that c1 = Encpk(m1; r1),
and P2 sends a proof of correct multiplication, proving that there exist m2, x, rx such that c2 =
m2 · c1 + Encpk(x; rx).

Unfortunately, these zero-knowledge proofs can incur a large communication cost, which in-
creases the overall communication complexity of the MPC protocol in which they are used. A key
observation is that even though many triples need to be created, they can be created simultane-
ously. This leads to the question of whether we can lower the amortized communication complexity
of each proof, thus lowering the total communcation cost of all proofs. In this work, we answer this
question affirmatively when the encryption scheme used is the Regev encryption scheme [Reg05],
whose security is based on the hardness of the Learning with Errors (LWE) problem.

Related Work. Bendlin et al. [BDOZ11], Bendlin and Damg̊ard [BD10], and Asharov et al. [AJW11,
AJLA+12] give constructions of proofs of plaintext knowledge. The work of [BDOZ11] shows proofs
of plaintext knowledge for any “semi-homomorphic” encryption scheme, an example of which is the
Regev scheme. When applied to this scheme, the communication cost of each proof is linear in the

1

size of the public key (roughly quadratic in the lattice dimension, ignoring logarithmic factors).
The works of [BD10] and [AJW11, AJLA+12] show proofs of plaintext knowledge specifically for
the Regev scheme, but here again, the communication cost of each proof is linear in the size of the
public key. Similarly, [BDOZ11] shows proofs of correct multiplication which, when applied to the
Regev encryption scheme, have communication complexity linear in the public key size per proof.

Unfortunately, the protocol of [BD10] only works for message space {0, 1} and randomness in
{0, 1}m. Furthermore, the proofs of [BDOZ11] and [AJW11, AJLA+12] suffer from the following
weakness. To guarantee zero-knowledge, an honest prover must choose the message and randomness
from a sufficiently small range. But in order to guarantee soundness against a cheating prover, we
can only guarantee that if the verifier accepts then the message and randomness come from a much
larger interval. Thus, there is a gap between the size of the witness of an honest prover and the size
of which an accepting verifier will be convinced. Such a gap, which turns out to be super-polynomial
in the security parameter, is undesirable.

Our Results and Techniques. We improve upon these results by showing proofs of plaintext
knowledge and correct multiplication where the cost of O(n) proofs, where n is the lattice dimension,
is linear in the public key size. Thus, we improve the amortized cost of each proof by a linear factor
in the lattice dimension. Furthermore, our protocol does not suffer from the weakness of [BDOZ11]
and [AJW11, AJLA+12]; there is no gap between the size of the witness of an honest prover and
the size of which an accepting verifier is convinced. The message space in our schemes can be Zp

and the probability distribution for the randomness can be the discrete Gaussian.1

Our proof system uses the “MPC-in-the-head” technique of Ishai et al. [IKOS07], who show
how to construct zero-knowlege proofs from MPC protocols. The basic idea is as follows. For an
NP relation R(x,w) with statement x and witness w, the prover runs an MPC protocol for the
function fx(w) = R(x,w) “in his head” and commits to the view of each of the players. The verifier
then outputs a subset T of the players as challenge, and the prover opens the commitments to the
views of the players in T . If the views are consistent, the verifier accepts.

This is the same technique that was used in [BD10] yet we improve upon it. First, we also show
how to obtain proofs of correct multiplication. But more importantly, we expand the proofs to
allow the message space to be Zp (rather than bits), and allow the randomness distribution to be
the discrete Gaussian (rather than bit-vectors). To achieve this, we show a protocol that allows a
dealer to prove that the secret that he secret-shared among N players is bounded by some publicly
known bound B. The intuition behind this proof is as follows. Let [s] denote the sharing of secret
s. The dealer distributes a sharing of B, [B], and the players compute sharings [B− s] and [B+ s]
by locally adding their corresponding shares. We know that −B < s < B if and only if both B − s
and B + s are positive, so the problem of proving that s is bounded by B reduces to proving that
a secret s′ that has been secret shared among N players is positive.

For this, we use Lagrange’s Theorem that states that any positive integer can be written as
the sum of four squares (see, e.g. [FR06]), and moreover, that these four squares can be computed
efficiently [RS86, Lip03] (a similar technique was used by Boudot [Bou00]). The dealer computes
u, v, w, y such that s′ = u2 + v2 + w2 + y2, and distributes sharings [u], [v], [w], [y]. The players
can then locally compute shares [u2 + v2 + w2 + y2 − s′] = [0], and verify that these final shares

1Technically, we’ll need the Regev scheme to have perfect correctness, so the randomness distribution will be a
“truncated” discrete Gaussian that is statistically close to the discrete Gaussian, where values output according to
the distribution are guaranteed to be small (as opposed to small with high probability).

2

reconstruct to 0.
However, we must ensure that the values u, v, w, y are all smaller than

√
q/8. Otherwise we

can have overflow modulo q when we square and add the four squares, which would mean that we
can no longer guarantee that the sum of the four squares is positive. For this, we use techniques
from Cramer and Damg̊ard [CD09]. The same techniques were used in [BDOZ11], yet the key
difference is that we use them to bound the numbers to be squared (and thus the bound can be
loose), whereas in [BDOZ11] they were used to bound the secrets themselves (thus leading to the
gap discussed above). The use of this technique requires our modulus q to be super-polynomial
in the security parameter λ (as was also the case in [BD10, BDOZ11, AJW11, AJLA+12]). See
Section 3 for more details.

Other Applications. Recently, Brakerski et al. showed that a variant of the Regev scheme is
fully homomorphic [BV11, BGV12]. The zero-knowledge PoPKs shown in this work can be used
to prove that a ciphertext encrypted under this Regev-based FHE scheme is well-formed.

Presentation. In Section 2, we review some background needed for our constructions. This
includes the IKOS construction (Section 2.2), packed secret sharing (Section 2.3), and a protocol
for verifying the consistency of secret shares (Section 2.4). In Section 3, we show a protocol
that allows parties to verify that a secret that is shared among them is numerically small. In
Section 4 and Section 5 we show our protocols for proofs of plaintext knowledge and proofs of correct
multiplication, respectively. To maintain a clear presentation, we defer all proofs to Appendix A.

2 Preliminaries

2.1 Notation

The natural security parameter in this work is λ. We let Zq = {−q/2, . . . , q/2} and use a mod q to
denote the mapping of a into the interval (−q/2, q/2]. We use [n] to denote the set {1, . . . , n} ⊂ Z.

We use boldface lower-case letters to represent vectors, such as u = (u1, . . . , un) ∈ Zn
q . Through-

out what follows, vectors will be assumed to be column vectors, unless stated otherwise. We use
subscripts to denote coordinates on a vector, e.g. ui is the ith coordinate of vector u. This is to
differentiate between coordinates of a vector and elements in a sequence. For the latter case, we
use superscripts: m(i) is the ith element of sequence m(1), . . . ,m(k). We will also sometimes use the
notation (ui)i∈[n] to denote the vector (u1, . . . , un). We use boldface upper-case letters to represent
matrices, such as A ∈ Zn×m

q . For a matrix A, we use Ai to represent its ith row vector, a(i) to

represent its ith column vector, and a(i)
j to represent the element in the ith row and jth column. If

A ∈ Zn×m
q is a matrix and R ⊆ [n], C ⊆ [m] are sets, we write AR and AC to denote the matrix A

restricted to the rows with indices in R, and the matrix A restricted to the columns with indices
in C, respectively. We let AC

R = (AR)C = (AC)R. For a vector x = (x1, . . . , xn) and a scalar a, we
let ax = (ax1, . . . , axn).

For a distribution χ, we denote x← χ to be the experiment of choosing x according to χ. If S is
a set, then we use x← S to denote the experiment of choosing x from the uniform distribution on
S. For a randomized function f , we write f(x ; r) to denote the unique output of f on input x with
random coins r. Denote T = R/Z as the group of all reals in [0, 1) with addition modulo 1. For
α ∈ R+,Ψα is defined to be the distribution on T of a normal variable with mean 0 and standard

3

deviation α/
√

2π, reduced modulo 1. For any probability distribution φ over T and integer q ∈ Z+,
its discretization φ̄ is the discrete distribution over Zq of the random variable bq · Xφe mod q,
where Xφ ← φ.

We use lower case π to denote MPC protocols, such as πf , and use upper case Π to denote
zero-knowledge proof protocols, such as ΠR. We use greek letters to represent shares from a secret
sharing. For example, α = (α(1), α(2), . . . , α(N)) denotes the shares α(i) of each of the N share
holders.

2.2 Overview of IKOS Construction

Let R(x,w) be a NP-relation. Consider the following N -player functionality f . The public state-
ment x is known to all players P1, . . . ,PN . The functionality takes the entire input w from a special
player I called the “input client”, and outputs R(x,w) to all N players. Ishai et al. [IKOS07] show
how to construct a zero-knowledge proof protocol for NP-relation R from a MPC protocol πf for
the functionality f described above. We give a high-level idea of the construction. The prover runs
the MPC protocol πf “in his head” and commits to the views V1, . . . , VN of the N players. The
verifier then chooses a subset T ⊂ [N], and the prover opens his commitments to views {Vi}i∈T .
The verifier accepts iff the commitment openings are successful, the revealed views are consistent,
and the output in each view is 1.

We show the formal statement of the result in Theorem 2.4, but first recall the security properties
that the underlying MPC protocol will need to satisfy in the construction. The following definitions
are taken almost verbatim from [IKOS07].

Definition 2.1 (Correctness). We say that a protocol π realizes functionality f with perfect cor-
rectness if for all inputs (x,w), the probability that the output of some player is different from the
output of f is 0, where the probability is taken over the random inputs r1, . . . , rN .

Definition 2.2 ((Statistical) t-Privacy). Let t ∈ [N]. We say a protocol π realizes functionality
f with statistical t-privacy if there exists a PPT simulator Sim such that for all inputs (x,w) and
all sets of corrupted players T ⊂ [N] with |T | ≤ t, the joint view (View(Pi))i∈T of players in T is
distributed stastistically close to Sim(T, x,RT (x,w)).

Definition 2.3 (t-Robustness). Let t ∈ [N]. We say a protocol π realizes functionality f with
perfect t-robustness if it is perfectly correct in the presence of a semi-honest adversary, and for any
computationally unbounded malicious adversary corrupting I and a set T of at most t players, for
all inputs x, it holds that if there does not exist w such that f(x,w) = 1, then the probability that
an uncorrupted player Pi /∈ T outputs 1 is 0.

Theorem 2.4 ([IKOS07]). Let f be the N -player functionality with input client I described above.
Suppose that πf is a protocol that realizes f with perfect t-robustness (in the malicious model) and
statistical t-privacy (in the semi-honest model), where t = Ω(λ), and N = ct for some constant
c > 1. Given πf and an unconditionally-binding commitment scheme, it is possible to construct
a computational honest-verifier zero-knowledge proof protocol ΠR,I,t for the NP-relation R, with
negligible (in λ) soundness error.

One of the nice properties about the [IKOS07] construction is that we get broadcast for free
because the Prover can simply send the broadcasted messages directly to the Verifier. Therefore,
the communication cost of broadcasting a message is simply the size of the message. We also

4

get coin-flipping among the players for free because the (honest) Verifier can simply provide the
random value. Therefore, the communication cost of coin-flipping for a value is simply the size
of the value. We will use these two facts in our constructions. Also, as observed by [BD10], if
we use a commitment scheme that allows us to commit to strings with only a constant additive
length increase such as those implicit in [PVW08], then the zero-knowledge proof protocol ΠR,I,t
(asymptotically) conserves the communication complexity of the underlying MPC protocol πf .

Finally, using general zero-knowledge techniques, it is possible to convert the honest-verifier
zero-knowledge proof protocol ΠR,I,t obtained from Theorem 2.4 into a full zero-knowledge pro-
tocol, while (asymptotically) preserving the communication complexity of the protocol. One such
technique is described in [IKOS07].

2.3 Packed Secret Sharing

We will use the packed secret sharing technique of Franklin and Yung [FY92]. Similar to Shamir
secret sharing over Zq [Sha79], packed secret sharing allows a dealer to share a vector of k values
x = (x1, x2, . . . , xk) using a single random polynomial of degree at most d. To guarantee security
against at most t corrupted players, we must have d ≥ t + k − 1. The idea is to chose a random
polynomial P (·) of degree at most d, subject to the condition P (−j+1) = xj for j ∈ [k]. The share
of player i is, as usual, the value αi = P (i).

We use [x]d to denote a packed secret-sharing α = (α1, . . . , αN) ∈ ZN
q for N players of the block

x using a polynomial of degree at most d. We call [x]d a d-sharing of x. We say x is correctly
shared if every honest player Pi is holding a share αi of x, such that there exists a degree at most
d polynomial P (·) with P (i) = αi for i ∈ N , and P (−j + 1) = xj for j ∈ [k]. Any (perhaps
incomplete) set of shares is called d-consistent if these shares lie on a polynomial of degree at most
d.

Let Z ∈ Zm×k
q be a matrix of secrets. Suppose we have d-sharings of the rows of Z: [Z1]d, . . . , [Zm]d ∈

Z1×N
q . We define Ψ ∈ Zm×N

q , called a d-share matrix of Z, to be a matrix

Ψ =

 [Z1]d
...

[Zm]d

 ∈ Zm×N
q

Note that the shares held by Pi are precisely the entries in the ith column vector of Ψ, denoted by
ψ(i).

For any function f : Zm×1
q → Zm′×1

q , we abuse notation and write

f(Ψ) = f

 [Z1]d
...

[Zm]d

 =

 [Y1]d′
...

[Ym′]d′

 ,
to signify that each player Pi locally applies f to his shares of all [Zj]d’s to obtain his share of
each [Yj]d′ . In other words, if Ψ is the d-share matrix of Z then each player locally computes
f(ψ(i)) = φ(i), where Φ = [φ(1), . . . ,φ(N)] ∈ Zm′×N

q is the d′-share matrix of Y containing the Yj ’s
as rows.

5

It is easy to see that if f(x) is a linear function and we define fi to be f with its output restricted
to the ith coordinate (i.e. f(x) = (f1(x), . . . , fm′(x))>), then

f

 [Z1]d
...

[Zm]d

 =

[
f1(z(1)) , . . . , f1(z(k))

]
d

...[
fm′(z(1)) , . . . , fm′(z(k))

]
d

Note that if f is a linear function, then the sharings obtained as a result of applying f are also

d-sharings. In particular, if each player Pi multiplies his share vector ψ(i) by a matrix M ∈ Zm′×m
q ,

the player obtains a (m′ × 1)-vector representing his corresponding shares of:

MΨ =

[
M1z(1) , . . . , M1z(k)

]
d

...[
Mm′z(1) , . . . , Mm′z(k)

]
d

 =

[(

M1z(j)
)
j∈[k]

]
d

...[(
Mm′z(j)

)
j∈[k]

]
d

 =

 [(MZ)1]d
...

[(MZ)m′]d

 ,
where (MZ)i is the ith row of the matrix MZ.

Parameters. We discuss requirements on the parameters of the scheme. We let N = c1t for
c1 > 2, satisfying the requirements of the IKOS construction. In order to guarantee privacy
of the secret shares, we must have d ≥ t + k − 1. We will sometimes use (d/2)-shares, so we
assume d/2 ≥ t + k − 1. Furthermore, we must have enough honest players so that their shares
alone can determine a polynomial of degree d (in case corrupt players do not send their shares for
reconstruction). We therefore need N − t ≥ d ≥ d/2 ≥ t + k − 1. For our choice of N this yields
k ≤ (c1 − 2)t+ 1. Thus, we assume k = Θ(t). Also, in order to have enough evaluation points, we
must have q > k +N . Henceforth, we will use this choice of parameters.

2.4 Verifying Consistency of Shares

We now describe a protocol that can be used by N parties to check that their shares are d-
consistent. Security is guaranteed if at most t < N/2 parties are corrupted. Players check N − 2t
sets of shares at a time. More formally, let Z ∈ Z(N−2t)×k

q be a matrix of secrets, and suppose
d-shares [Z1]d, . . . [ZN−2t]d of the rows of Z are distributed among the N players. The players want
to verify that each sharing is d-consistent without revealing their individual shares. Beerliová-
Trub́ıniová and Hirt [BH08] describe a protocol in which the N parties can perform this check
when they hold N sharings (as opposed to N −2t, as described here) and sharing [Zi]d was created
by player Pi. Bendlin and Damg̊ard [BD10] extend this protocol to the case when all the shares were
prepared by a (possibly corrupt) input client I. We describe the protocol of [BD10] in Figure 1.
In the protocol, all players receive as common input a hyper-invertible matrix M ∈ ZN×(N−t)

q for
q > 2N . Informally, a hyper-invertible matrix is a matrix such that every square submatrix of M
is invertible. Beerliová-Trub́ıniová and Hirt [BH08] show how such matrices can be constructed.

Lemma 2.5. The protocol πCheck described in Figure 1 allows N players, at most t of which are
corrupted, to verify with zero error probability that (N −2t) pack-sharings, each of k = Θ(t) secrets
in Zq, are d-consistent (for d ≥ t+k−1). It is t-private in the presence of a semi-honest advesary,
t-robust in the presence of a malicious adversary, and has communication complexity N(N+t) log q.

6

Protocol πCheck between parties (P1, . . . ,PN) to verify d-consistency of shares.

Common input: hyper-invertible matrix M ∈ ZN×(N−t)
q

Input to Pi: corresponding shares of [Z1]d, . . . , [Z(N−2t)]d.

1. Input client I chooses and d-shares random vectors in Z1×k
q . Let [ZN−2t+1]d, . . . [ZN−t]d be

the resulting shares. Augment matrix Z with rows ZN−2t+1, . . . ,ZN−t to obtain matrix Z′ ∈
Z(N−t)×k

q . Let Ψ ∈ Z(N−t)×N
q be the d-share matrix of Z′.

2. Players locally compute:

Φ = MΨ =

 [(MZ′)1]d
...

[(MZ′)N]d

 ∈ ZN×N
q

3. The players reconstruct the resulting shares, each towards a different player: player Pi receives
Φi. Each player verifies that the shares he receives are d-consistent and broadcasts “ABORT” if
he finds a fault, and otherwise broadcasts “OK”.

4. If all players broadcast “OK” then the players conclude that the initial shares were d-consistent.

Figure 1: Protocol πCheck to verify consistency of shares

2.5 Regev Encryption Scheme

Before presenting the Regev encryption scheme [Reg05], we first introduce the hardness assumption
on which its security is based. For positive integers n = n(λ) and q = q(λ) ≥ 2, a vector s ∈ Zn

q ,
and a probability distribution χ on Zq, let As,χ be the distribution obtained by choosing a ← Zn

q

and x← χ, and outputting (a, 〈a, s〉+ x) ∈ Zn
q × Zq.

Learning with Errors (LWEn,q,χ and dLWEn,q,χ). The Learning with Errors problem LWEn,q,χ

is defined as follows. Given m = poly(n) samples chosen according to As,χ for uniformly cho-
sen s ∈ Zn

q , output s with noticeable probability. The Decisional Learning with Errors problem
dLWEn,q,χ is to distinguish (with non-negligible advantage) m = poly(n) samples chosen according
to As,χ for uniformly chosen s ∈ Zn

q , from m samples chosen uniformly at random from Zn
q × Zq.

In other words, if dLWEn,q,χ is hard then As,χ is pseudorandom. We will use χ = Ψ̄α and in this
case, we write LWEn,q,α to mean LWEn,q,Ψ̄α

.

Discrete Gaussian Distribution. We present an elementary fact that shows that the discrete
Gaussian distribution with standard deviation r outputs an element x with with ||x|| ≤ r

√
n with

high probability.

Lemma 2.6 (see [MR07], Theorem 4.4). Let n ∈ N. For any real number r > ω(
√

log n), we have
Prx←DZn,r

[||x|| > r
√
n] ≤ 2−n+1.

Using Lemma 2.6 together with the fact that for all x ∈ Rn, ||x||∞ ≥ ||x||/
√
n we arrive at the

following bound.

Lemma 2.7. Let n ∈ N. For any real number r > ω(
√

log n), we have
Prx←DZn,r

[||x||∞ > r] ≤ 2−n+1.

7

This allows us to define a truncated Gaussian distribution that always outputs (with probability
1) elements with `∞ norm less than r. Simply define the truncated Gaussian DZn,r over Zn with
standard deviation r to sample a vector according to the discrete Gaussian DZn,r and repeat the
sampling if the vector has `∞ norm greater than r. We will use the truncated discrete Gaussian
in our schemes to ensure that samples are bounded by r in each coordinate (and can thus ensure
perfect correctness), but state security in terms of the discrete Gaussian. Since the distributions are
statistically close, all results stated using the discrete Gaussian also hold when using the truncated
distribution.

We present a generalized version of the Regev encryption scheme [Reg05] (with the modifications
of [GPV08]), using the truncated discrete Gaussian (as above). The scheme is parametrized by
integers n = n(λ),m = m(λ) > n, q = q(λ), r = r(λ), and p = p(λ) < q. The message space is
M = Zp, the ciphertext space is C = (Zn

q ,Zq). All operations are performed over Zq.

• KeyGen(1n): Output sk = s, pk = (A,b), where s ← Zn
q , A ← Zn×m

q , x ← χm , b =
A>s + x ∈ Zm

q .
• Encpk(m): Output (u, c), where r← DZm,r , u = Ar ∈ Zn×1

q , c = b>r +m · bq/pc ∈ Zq.
• Decsk(u, c): Output m = b(c− s>u) · p/qe.

Theorem 2.8 ([Reg05, GPV08]). Let q ≥ 5prm,α ≤ 1/(p · r
√
m · ω(

√
log λ)), χ = Ψ̄α,m ≥

2(n + 1) log q + ω(log λ). With this choice of parameters, the Regev encryption scheme is correct
and IND-CPA-secure, assuming LWEn,q,χ is hard.

Parameters and Worst-case Guarantees. Our construction requires the modulus q to be
super-polynomial in the security parameter λ. More specifically, we require

√
q/8 > 2ω(log λ) ·

m ·max(p/2, r). We can use any choice of parameters that satisfies this constraint and keeps the
cryptosystem secure.

One option is to let the dimension of the lattice be our security parameter, ie. n = λ and set
our modulus q to be exponential in the lattice dimension n. Peikert [Pei09] showed that for such a
large q, LWEn,q,α is as hard as GapSVP eO(n/α)

if q is a product of primes, each of polynomial size.
The works of [BD10, BDOZ11] use this choice of parameters.

Another possible choice is to let n = λ1/ε for some ε ∈ (0, 1) (e.g. n = λ2), p, r,m = poly(λ)
and let q = 2nε

be subexponential in the lattice dimension n. In this case, we can rely on Regev’s
quantum reduction [Reg05] to GapSVP eO(n/α)

or Peikert’s classical reduction [Pei09] to GapSVPζ,γ

where γ(n) ≥ n/(α
√

log n), ζ(n) ≥ γ(n) and q ≥ ζ ·ω(
√

log n/n). The work of [AJW11, AJLA+12]
uses this choice of parameters.

3 Verifying that Secrets are Numerically Small

At the heart of our constructions of proofs of plaintext knowledge and correct multiplication, we will
use a protocol that allows a dealer (in our case the input client I) to prove to the players that the
secret that he secret-shared among them is bounded by some publicly known bound B. Formally,
let R ∈ Zm×k

q be a matrix of secrets. And suppose that a dealer has distributed d-sharings of the
rows of R : [R1]d, . . . , [Rm]d between N players. We show a protocol πVerSm that allows the dealer
to prove to each player Pi, without revealing R, that all secrets in R are smaller than B � q/2.

8

We first have the dealer compute and distribute a sharing [b]d of b = (B, . . . , B) ∈ Zk
q . Players

can then compute [b]d
...

[b]d

−
 [R1]d

...
[Rm]d

 =

 [b−R1]d
...

[b−Rm]d

 and

 [b]d
...

[b]d

 +

 [R1]d
...

[Rm]d

 =

 [b + R1]d
...

[b + Rm]d

Proving that each secret is bounded by B (and thus lies between −B and B) reduces to proving

that all the secrets that are pack-shared by each [b−Ri]d and [b + Ri]d for i ∈ [m], are positive.
We thus show a subroutine, described in Figure 3 that allows a dealer to prove that secrets that
are pack-shared among players are positive. To do this, we follow an idea of Boudot [Bou00]
and use Lagrange’s Four-Square Theorem, which states that every positive number can be written
as the sum of four squares (see e.g. [FR06]). Moreover, these four squares can be efficiently
computed [RS86, Lip03]. Suppose the dealer has pack-shared a secret vector z ∈ Z1×k

q . For
each coordinate zj for j ∈ [k], the dealer finds the four numbers uj , vj , wj , yj such that zj =
u2

j+v
2
j +w

2
j +y

2
j . We let ũ, ṽ, w̃, ỹ be the vectors with uj , vj , wj , yj as the jth coordinate, respectively.

The dealer (d/2)-shares each of these vectors [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2. Similarly, we let u,v,w,y
be the vectors with u2

j , v
2
j , w

2
j , y

2
j as the jth coordinate, respectively. Players can locally compute

sharings [u]d, [v]d, [w]d, [y]d by squaring their corresponding shares of [ũ]d/2, [ṽ]d/2, [w̃]d/2, [ỹi]d/2.
Each player then computes,

[z]d − [u]d − [v]d − [w]d − [y]d = [z− u− v −w − y]d = [0]d

and together they check that the result is indeed a pack-sharing of the vector 0 ∈ Zk.
However, suppose that a cheating dealer chooses |uj | >

√
q/2. Then |u2

j | > q and we have
wrap-around modulo q, which means that the cheating dealer could convince the players that a
secret zj is positive, without this being true. To ensure this does not happen, we have the dealer
prove that each of uj , vj , wj , yj is bounded by some bound B′, which although larger than B, is
certainly much smaller than

√
q/2 (in fact, we will need B′ <

√
q/8 so that we don’t have overflow

when adding the four squares).
Our protocol for verifying that numbers are bounded by B′ uses techniques from Cramer and

Damg̊ard [CD09]. Players check τ shares at a time, where τ should be thought of as the “local
security parameter” for the protocol πVerBnd. The players compute a linear combination of their
shares (with some noise added) and reconstruct the result, such that if the secrets resulting from
this reconstruction are “not too big” then the original secrets (i.e. the entries in R) are also small.
To ensure that the reconstructed result does not reveal R, we let the added noise be in an interval
that is a factor of 2τ larger than the entries in R. To guarantee that πVerBnd has statistical (in λ)
t-privacy, we set τ = ω(log λ). The final bound that we are able to prove is B′ = 22τ+1mB. We
will thus need to ensure that

√
q/8 > 22τ+1mB.

We give full descriptions of the protocol πVerSm in Figure 2, of the subroutine to verify that
secrets are positive in Figure 3, and the subroutine to verify that numbers are bounded by B′ in
Figure 4.

We set N = Θ(t) as is required for the IKOS construction and for privacy (see Section 2.3),
and analyze the communication complexity of the πVerSm protocol. Each share has size at most
log q. Each execution of πVerBnd has communication cost O(τN log q): sharing the Xi’s has com-
munication cost (2τ − 1)N log q, the coin-flipping of e has communication cost τ since we’ll use

9

Protocol πVerSm between parties (P1, . . . ,PN) and input client I.

Common input: bound B
Input to I: R ∈ Zm×k

q .
Input to Pi: Corresponding shares of [R1]d, . . . , [Rm]d.

1. I prepares a d-sharing of b = (B, . . . , B) ∈ Zk
q): [b]d. I gives each player its corresponding shares.

2. Players run the subroutine πVerPos (see Figure 3) with [b]d
...

[b]d

−
 [R1]d

...
[Rm]d

 =

 [b−R1]d
...

[b−Rm]d

 and

 [b]d
...

[b]d

 +

 [R1]d
...

[Rm]d

 =

 [b + R1]d
...

[b + Rm]d

Figure 2: Protocol πVerSm to verify that secrets are numerically small

Subroutine πVerPos between parties (P1, . . . ,PN) and input client I, to verify that secrets
are positive.

Input to I: Z ∈ Zm×k
q .

Input to Pi: Corresponding shares of [Z1]d, . . . , [Zm]d.

1. For each entry z(j)
i of Z (for i ∈ [m], j ∈ [k]), the dealer finds the four numbers uij , vij , wij , yij such

that z(j)
i = u2

ij + v2
ij +w2

ij + y2
ij . Define Ũ, Ṽ,W̃, Ỹ to be the matrices with uij , vij , wij , yij as the

(i, j)th entry, respectively. Similarly, define U,V,W,Y to be the matrices with u2
ij , v

2
ij , w

2
ij , y

2
ij

as the (i, j)th entry, respectively.
2. I computes and distributes (d/2)-sharings of the rows of Ũ, Ṽ,W̃, Ỹ:

[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m].

3. Players run protocol πCheck from Section 2.4 with the shares [Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for
i ∈ [m] (a total of 4m/(N − t) times) to verify that these shares are d/2-consistent.

4. I and the players run the subroutine πVerBnd (see Figure 4) with the shares
[Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2, for i ∈ [m] (a total of 4m/τ times), to verify that each of the
uij , vij , wij , yij is bounded by B′ <

√
q/8.

5. For each row i ∈ [m], players locally compute d-sharings [Ui]d, [Vi]d, [Wi]d, [Yi]d by squaring
their corresponding shares of [Ũi]d/2, [Ṽi]d/2, [W̃i]d/2, [Ỹi]d/2.

6. For each row i ∈ [m], players locally compute

[Zi]d − [Ui]d − [Vi]d − [Wi]d − [Yi]d = [Zi −Ui −Vi −Wi −Yi]d

and check that the result is a pack-sharing of the vector 0 ∈ Z1×k.

Figure 3: Subroutine πVerPos to verify that secrets are positive

this MPC protocol inside the IKOS construction, and reconstructing MeZ′ + X has communi-
cation cost (2τ − 1)N log q. The subroutine πVerPos (Figure 3) has communication complexity
O(mN log q): sharing of the rows of U,V,W,Y has cost 4mN log q, the total cost of running
πCheck is (N(N + t) log q) · 4m/(N − 2t) = O(mN log q), the total cost of running πVerBnd is
O(τN log q) · 4m/τ = O(mN log q), and the final reconstruction has cost mN log q. Finally, the
communication complexity of protocol πVerSm is O(mN log q): sharing b has communication cost

10

Subroutine πVerBnd between parties (P1, . . . ,PN) and input client I, to verify that numbers
are bounded by B′ = 22τ+1mB.

Common input: bound B
Input to I: Z′ ∈ Zτ×k

q .
Input to Pi: Corresponding shares of [Z′1]d, . . . , [Z

′
τ]d (that are known to be d-consistent).

1. I chooses X ← [−2τmB, 2τmB](2τ−1)×k, and prepares d-sharings of the rows of
X : [X1]d, . . . , [X2τ−1]d. I gives each player its corresponding shares.

2. Players P1, . . . ,PN coin-flip for a random vector e ∈ {0, 1}τ×1.
3. Define matrix Me to be the (2τ − 1)× τ matrix with its (i, j)-th entry defined by m(j)

e,i = ei−j+1

for 1 ≤ i− j + 1 ≤ λ. Each player locally computes [(MeZ′)1]d′

...[
(MeZ′)2τ−1

]
d′

 +

 [X1]d′

...
[X2τ−1]d′

 =

 [(MeZ′ + X)1]d′

...[
(MeZ′ + X)2τ−1

]
d′

4. Players reconstruct MeZ′+X row by row and check that all its entries are bounded by 22τ+1mB.

Figure 4: Subroutine πVerBnd to verify that numbers are bounded by B′ = 22τ+1mB <
√
q/8

N log q, and we run the subroutine πVerPos twice.

Lemma 3.1. Let n,m, r, q,N, t, k be as in Theorem 2.8 and Section 2.3, and let B be some publicly-
known bound. If τ = ω(log λ) and

√
q/8 > 22τ+1mB then the protocol πVerSm described in Figure 2

allows N players to verify, with negligible error probability in λ, that all entries in a secret matrix
R ∈ Zm×k

q are bounded by B. It has statistical t-privacy in the presence of a semi-honest adver-
sary, perfect t-robustness in the presence of a malicious adversary, and communication complexity
O(mN log q).

4 Proofs of Plaintext Knowledge

We wish to show a zero-knowledge proof protocol that allows a prover to prove that he knows
the plaintexts of k different ciphertexts, each encrypted under the same public key. We show how
to do this for the Regev encryption scheme described in Section 2.5. More formally, we show a
zero-knowlege proof protocol for the following relation:

RPoPK = { (x,w) | x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k))),

w = ((m(1), r(1)), . . . , (m(k), r(k))) s.t.

∀ j ∈ [k] : (u(j), c(j)) = Enc(A,b)(m
(j); r(j))

and |m(j)| ≤ p/2 , ||r(j)||∞ < r }

We create protocol ΠPoPK for relationRPoPK using the “MPC-in-the-head” technique of [IKOS07]
described in Section 2.2. We let fPoPK be the N -party functionality that takes the entire input
w from I and outputs RPoPK(x,w) to all N players. In Figure 5, we show our construction of a
t-robust and t-private N -party protocol, πPoPK, realizing functionality fPoPK. The idea is to have
I pack secret-share the messages, as well as pack secret-share each coordinate of the randomness

11

vectors. The players then locally run the encryption algorithm on their shares, reconstruct the
resulting shares, and check that the reconstructed secrets are indeed the claimed ciphertexts. The
input client I also needs to prove that the messages and randomness come from the correct spaces.
For example, he would need to show that the magnitude of each message is less than p/2 (since the
message space is Zp), and that each coordinate of each randomness vector is at most r (since we
are using the truncated Gaussian distribution described in Section 2.5). For this, we will use the
protocol πVerSm described in Section 3.

We set t = Θ(k) and N = Θ(t) as is required for the IKOS construction and for privacy (see
Section 2.3), and analyze the communication complexity of our protocol πPoPK (see Figure 5). Since
each share has size log q, step 1 has communication cost (m + 1)N log q = O(mk log q). We run
πCheck m+ 1/(N − 2t) = O(m/k) times, so step 2 has communication cost N(N + t) log q(m/k) =
O(mk log q) The reconstruction in step 3 has cost 2nN log q and running protocol πVerSm has cost
2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Our techniques are similar to those of Bendlin and Damg̊ard [BD10]. However, our protocol
πVerSm for proving that a secret is small (see Section 3) allows us to prove soundness for message
space Zp and randomness sampled from the discrete Gaussian, whereas the construction of [BD10]
only worked for bit messages and bit-vector randomness. Finally, our use of packed secret sharing
allows us to achieve a better amortized communication complexity. The protocol of [BD10] has
complexity O(nm log q) per proof, whereas we achieve an amortized complexity of O(m log q) per
proof.

Lemma 4.1. Let n,m, r, p, q,N, t, k be as in Lemma 3.1 with B = max(p/2, r). The protocol
πPoPK described in Figure 5 realizes fPoPK with statistical t-privacy in the presence of a semi-honest
adversary and perfect t-robustness in the presence of a malicious adversary, and has communication
complexity O(mk log q).

Putting together Lemma 4.1 with Theorem 2.4 yields the following theorem.

Theorem 4.2. Let n,m, r, p, q be as in Lemma 3.1 with B = max(p/2, r). Given an unconditionally-
binding commitment scheme, it is possible to construct a computational zero-knowledge proof proto-
col ΠPoPK for relation RPoPK with negligible (in λ) soundness error and amortized communication
complexity O(m log q) per proof.

5 Proofs of Correct Multiplication

In this section we show proofs for correct multiplication for the Regev encryption scheme. In our
protocol, the prover performs k proofs at a time, all under the same public key. More formally, we
give a zero-knowledge proof protocol for the following relation:

RPoCM = { (x,w) | x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k))),

w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k))) s.t.

∀j ∈ [k] : (v(j), e(j)) = m(j)(u(j), c(j)) + Enc(A,b)(x
(j); r(j))

and |m(j)| ≤ p/2 , |x(j)| ≤ p/2 , ||r(j)||∞ < r }

As in Section 4, we create protocol ΠPoCM for relation RPoCM using the “MPC-in-the-head”
technique of [IKOS07], described in Section 2.2. We let fPoCM be the N -party functionality that

12

Protocol πPoPK between parties (P1, . . . ,PN) and input client I.

Common input: p, q,R, x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k)))
Input to I: w = ((m(1), r(1)), . . . , (m(k), r(k)))

1. Input client I prepares and distributes among the N players, d-shares over Zq of the mes-
sages and randomness vectors, with d = k + t − 1. The ith coordinates of all randomness
vectors are pack-shared to produce a single set of shares ρi. More formally: define ma-
trices R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Zm×k

q , m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p , U =

[u(1) ; u(2) ; . . . ; u(k)] ∈ Zn×k
q , and c = (c(1) ; . . . ; c(k)) ∈ Z1×k

q . I prepares and dis-
tributes d-shares [m]d, [R1]d, . . . , [Rm]d.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify that their shares
are d-consistent.

3. Players “emulate” encryption by running the encryption algorithm on their local shares. More
formally:

• For ` ∈ [n], players locally compute
[(

A`r(j)
)
j∈k

]
d
, and check that the result is a pack-

sharing of U`.

• Similarly, players locally compute[(
br(j)

)
j∈k

]
d

+
⌊
q

p

⌋
[m]d =

[(
br(j) +

⌊
q

p

⌋
m(j)

)
j∈k

]
d

Players check that the result is a pack-sharing of c.

• Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2 and ||r(j)||∞ < r for all j ∈ [k].

Figure 5: MPC protocol πPoPK that realizes fPoPK

takes the entire input w from I and outputs RPoCM(x,w) to all N players. In Figure 6, we
show our construction of a t-robust and t-private N -party protocol, πPoCM, realizing functionality
fPoCM. Again, the idea is to have I pack secret-share the messages, as well as pack secret-share
each coordinate of the randomness vectors. The players then locally emulate the encryption of the
random message and perform the multiplication, then reconstruct the resulting shares, and check
that the reconstructed secrets are indeed the claimed ciphertexts. As before, the input client I also
needs to prove that the messages and randomness come from the correct spaces. We again use the
protocol πVerSm described in Section 3 for this purpose.

We set t = θ(k) and N = θ(t) as is required for the IKOS construction and for privacy (see
Section 2.3), and analyze the communication complexity of πPoCM described in Figure 6. Since
each share has size log q, step 1 has communication cost 2(m + 1)N log q = O(mk log q). We run
πCheck m+ 1/(N − 2t) = O(m/k) times, so step 2 has communication cost N(N + t) log q(m/k) =
O(mk log q). The reconstruction in step 3 has cost 2nN log q and running protocol πVerSm has cost
2mN log q so the total cost of step 3 and of πPoPK is O(mk log q).

Lemma 5.1. Let n,m, r, p, q,N, t, k be as in Lemma 3.1 with B = max(p/2, r). The protocol
πPoCM described in Figure 6 realizes fPoCM with statistical t-privacy in the presence of a semi-honest
adversary and perfect t-robustness in the presence of a malicious adversary, and has communication
complexity O(mk log q).

13

ProtocolπPoCM between parties (P1, . . . ,PN) and input client I.

Common input: p, q,R, x = ((A,b), (u(1), c(1),v(1), e(1)), . . . , (u(k), c(k),v(k), e(k)))
Input to I: w = ((m(1), r(1), x(1)), . . . , (m(k), r(k), x(k)))

1. Input client I prepares and distributes among the N players, d-shares over Zq of the mes-
sages and randomness vectors, with d = k + t − 1. The ith coordinates of all random-
ness vectors are packed shared to produce a single set of shares.. More formally: define
matrices R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Zm×k

q , m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p ,x =

[x(1) ; . . . ; x(k)] ∈ Z1×k
q ,U = [u(1) ; u(2) ; . . . ; u(k)] ∈ Zn×k

q , c = (c(1), . . . , c(k)) ∈ Z1×k
q ,

V = [v(1) ; v(2) ; . . . ; v(k)] ∈ Zn×k
q , and e = (e(1) ; . . . ; e(k)) ∈ Z1×k

q . I prepares and
distributes (d/2)-share [m]d and d-shares [x]d, [R1]d, . . . , [Rm]d. I also prepares and broadcasts
(d/2)-shares[c]d/2, [U1]d/2, . . . , [Un]d/2.

2. Players run protocol πCheck from Section 2.4 (possibly several times) to verify that shares
[x]d, [R1]d, . . . , [Rm]d are d-consistent, and share [m]d is (d/2)-consistent. They also check lo-
cally that c,U1, . . . ,Um are correctly shared.

3. Players “emulate” correct computation of each (v(i), c(i)). More formally:

• For ` ∈ [n], players locally compute
[(

A`r(j)
)
j∈k

]
d
. They also locally compute[(

br(j) +
⌊

q
p

⌋
x(j)

)
j∈k

]
d

.

• For ` ∈ [n], players locally compute

[m]d/2 [U`]d/2 +
[(

A`r(j)
)

j∈k

]
d

=
[(
u

(j)
` m(j) + A`r(j)

)
j∈k

]
d

Players check that the result is a pack-sharing of V`.

• Players locally compute

[m]d/2 [c]d/2 +

[(
br(j) +

⌊
q

p

⌋
x(j)

)
j∈k

]
d

=

[(
c(j)m(j) + br(j) +

⌊
q

p

⌋
x(j)

)
j∈k

]
d

Players check that the result is a pack-sharing of e..

• Players use πVerSm from Section 3 to check that |m(j)| ≤ p/2, |x(j)| ≤ p/2 and ||r(j)||∞ < r
for all j ∈ [k].

Figure 6: MPC protocol πPoCM that realizes fPoCM

Putting Lemma 5.1 together with Theorem 2.4 yields the following theorem.

Theorem 5.2. Let n,m, r, p, q be as in Lemma 3.1 with B = max(p/2, r). Given an unconditionally-
binding commitment scheme, it is possible to construct a computational zero-knowledge proof proto-
col ΠPoCM for relation RPoCM with negligible (in λ) soundness error and amortized communication
complexity O(m log q) per proof.

14

References

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, compu-
tation and interaction via threshold fhe. In David Pointcheval and Thomas Johansson,
editors, EUROCRYPT, volume 7237 of LNCS, pages 483–501. Springer, 2012.

[AJW11] Gilad Asharov, Abhishek Jain, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold fhe. Cryptology ePrint
Archive: Report 2011/613, 2011.

[BD10] Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-knowledge proofs
for lattice-based cryptosystems. In Daniele Micciancio, editor, TCC, volume 5978 of
LNCS, pages 201–218. Springer, 2010.

[BDOZ11] Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of LNCS, pages 169–188. Springer, 2011.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, CRYPTO, volume 576 of LNCS, pages 420–432. Springer, 1991.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS, pages 309–
325. ACM, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10, 1988.

[BH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear com-
munication complexity. In Ran Canetti, editor, TCC, volume 4948 of LNCS, pages
213–230. Springer, 2008.

[Bou00] Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In Bart
Preneel, editor, EUROCRYPT, volume 1807 of LNCS, pages 431–444. Springer, 2000.

[BTHN10] Zuzana Beerliová-Trub́ıniová, Martin Hirt, and Jesper Buus Nielsen. On the theoretical
gap between synchronous and asynchronous mpc protocols. In Andréa W. Richa and
Rachid Guerraoui, editors, PODC, pages 211–218. ACM, 2010.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In Rafail Ostrovsky, editor, FOCS, pages 97–106. IEEE, 2011.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In STOC, pages 11–19, 1988.

[CD09] Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-knowledge
protocols. In Shai Halevi, editor, CRYPTO, volume 5677 of LNCS, pages 177–191.
Springer, 2009.

15

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest majority:
From passive to active security at low cost. In Tal Rabin, editor, CRYPTO, volume
6223 of LNCS, pages 558–576. Springer, 2010.

[DPSZ11] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. IACR Cryptology ePrint Archive,
2011:535, 2011.

[FR06] Benjamin Fine and Gerhard Rosenberger. Number Theory: An Introduction via the
Distribution of Primes. Birkhäuser, 2006.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computa-
tion (extended abstract). In STOC, pages 699–710. ACM, 1992.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229,
1987.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206.
ACM, 2008.

[HM01] Martin Hirt and Ueli M. Maurer. Robustness for free in unconditional multi-party
computation. In Joe Kilian, editor, CRYPTO, volume 2139 of LNCS, pages 101–118.
Springer, 2001.

[HNP08] Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-party
computation with quadratic communication. In Luca Aceto, Ivan Damg̊ard, Leslie Ann
Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, edi-
tors, ICALP (2), volume 5126 of Lecture Notes in Computer Science, pages 473–485.
Springer, 2008.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, STOC,
pages 21–30. ACM, 2007.

[KK07] Jonathan Katz and Chiu-Yuen Koo. Round-efficient secure computation in point-to-
point networks. In Moni Naor, editor, EUROCRYPT, volume 4515 of LNCS, pages
311–328. Springer, 2007.

[Lip03] Helger Lipmaa. On diophantine complexity and statistical zero-knowledge argu-
ments. In Chi-Sung Laih, editor, ASIACRYPT, volume 2894 of LNCS, pages 398–415.
Springer, 2003.

[MR07] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, STOC, pages 333–342. ACM,
2009.

16

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO, volume 5157
of LNCS, pages 554–571. Springer, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 84–93. ACM, 2005.

[RS86] Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory.
Communications on Pure and Applied Mathematics, 39(S1):S239–S259, 1986.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
FOCS, pages 160–164, 1982.

A Proofs

Proof of Lemma 2.5: We first show πCheck is t-robust in the presence of a malicious adversary. If
all players broadcast “OK”, then in particular any (N − t) honest players broadcast “OK”, which
means that the (N − t) sharings that these players verified are indeed d-consistent. Let H ⊂ [N]
be a set of (N − t) honest players. If players in H broadcast “OK” then we know the rows of
ΦH are d-consistent. By the hyperinvertibility of M, Ψ can be written as a linear function of
ΦH (Ψ = M−1

H ΦH), which means that if the honest players in H all broadcast “OK” then all the
original sharings in Ψ were d-consistent.

We now argue that πCheck is t-private in the presence of a semi-honest adversary. Because
the adversary is semi-honest, we are guaranteed that the t sharings created in Step 1 are indeed
random and d-consistent. Let C ⊂ [N] be any set of t players, and let T = {N − 2t+ 1, . . . , N − t}
and T = [N]\T , so that the rows of ΨT were the random sharings created by I in Step 1. The
hyperinvertibility of M guarantees that for a fixed set of input shares to be verified (those in ΨT),
there is a bijection between ΦC and ΨT :

ΦC = MCΨ = MT
CΨT + MT

CΨT

ΨT = (MT
C)−1(ΦC −MT

CΨT)

Thus, the joint view of any t players is random and independent of the input shares.
We now discuss the communication complexity of the πCheck protocol (Figure 1). Each share is

of size log q. In Step 1, tN are sent between players, and in Step 3, N2 shares are sent. Therefore,
the communication complexity of πCheck is N(N + t) log q.

Proof of Lemma 4.1: We prove that the protocol πPoPK shown in Figure 5 is t-private in the
presence of a semi-honest adversary and t-robust.

t-Privacy: Let T ⊂ [N]. We describe the simulator Sim(T, x,RT (x,w)). Because we assume a
semi-honest adversary, we assume R(x,w) = 1, and simply write Sim(T, x). We describe the
simulator in Figure 7.
Lemma 2.5 and Lemma 3.1 guarantee that the outputs of the simulators of πCheck and πVerSm

are statistically close to the view of the cheating parties in a real execution of the protocol.

17

Simulator Sim(T, x) for πPoPK

1. Parses x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k))). Define matrices U = [u(1) ; u(2) ; . . . ; u(k)] ∈
Zn×k

q , and c = (c(1) ; . . . ; c(k)) ∈ Z1×k
q .

2. Chooses random shares µ(j) ← Zq,ρ
(j) ← Zm

q for all j ∈ T as the shares for the corrupted parties.
3. Simulates encryption on these shares to obtain “shares” α(j) ∈ Zm

q , β
(j) ∈ Zq of the ciphertexts:

α
(j)
` = A`ρ

(j) , β(j) = bρ(j) +
⌊
q

p

⌋
µ(j)

4. For ` ∈ [m], let P` be a degree d ≥ t + k − 1 polynomial that is consistent with secrets U` and
share α(j)

` corresponding to player Pj for all j ∈ T . Similarly, let P be a degree d ≥ t + k − 1
polynomial that is consistent ith secrets c and share β(j) corresponding to player Pj for all j ∈ T .

5. For i /∈ T , let α(i)
` = P`(i) and β(i) = P`(i).

6. Runs the simulators for πCheck and πVerSm.
7. Outputs the output of the simulators for πCheck and πVerSm, as well as all the shares α(j)

` , β(j) for
` ∈ [m], ∈ [N].

Figure 7: Simulator Sim(T, x) for πPoPK

Thus, we need only worry about the shares output by the simulator. But by properties of pack
secret-sharing, these clearly have the same distribution as those output in a real execution
(random subject to lying on a d-degree polynomial corresponding to secret U` (resp. c)).

t-Robustness: Perfect completeness of πCheck and πVerSm (together with the fact that we are
using the truncated Gaussian so the randomness of a valid encryption is guaranteed to be
bounded by r), as well as the properties of packed secret-sharing described in Section 2.3
guarantee perfect completeness of πPoPK. Now suppose an honest player outputs 1. t-
robustness of πCheck guarantees that all shares distributed by I in Step 1 are d-consistent.
At reconstruction, players also implicitly verify that all shares in the construction of U` and c
are d-consistent. Furthermore, recall that we chose N − t > d so that the shares of the honest
players uniquely determine a degree-d polynomial, and thus, uniquely determine the shares of
the corrupt players. These must be the ones obtained by running the protocol honestly. Thus,
there exist R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Zm×k

q , m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p , namely,

those corresponding to the shares received by the players in Step 1, such that A`r(j) = u
(j)
`

and br(j) + bq/pc ·m(j) = c(j) for all ` ∈ [m], j ∈ [k]. Furthermore, t-robustness of πVerSm

guarantees that |m(j)| ≤ p/2 , ||r(j)||∞ < r for all j ∈ [k]. Thus, if an honest player
outputs 1, each encryption in the statement is a valid Regev encryption.

Proof of Lemma 5.1: We prove that the protocol πPoCM shown in Figure 6 is t-private in the
presence of a semi-honest adversary and t-robust, for t < N/2.

t-Privacy: Let T ⊂ [N]. We describe the simulator Sim(T, x,RT (x,w)). Because we assume a
semi-honest adversary, we assume R(x,w) = 1, and simply write Sim(T, x). We describe the
simulator in Figure 8.

18

Simulator Sim(T, x) for πPoCM

1. Parses x = ((A,b), (u(1), c(1)), . . . , (u(k), c(k)), (v(1), e(1)), . . . , (v(k), e(k))). Define matrices U =
[u(1) ; u(2) ; . . . ; u(k)] ∈ Zn×k

q , and c = (c(1) ; . . . ; c(k)) ∈ Z1×k
q ,V = [v(1) ; v(2) ; . . . ; v(k)] ∈

Zn×k
q , and e = (e(1) ; . . . ; e(k)) ∈ Z1×k

q .
2. Chooses random shares χ(j), µ(j) ← Zq,ρ

(j) ← Zm
q for all j ∈ T as the shares for the corrupted

parties. Furthermore, honestly creates d/2-sharings of c: γ = [c]d/2 and the rows of U: υ1 =
[U1]d/2, . . . ,υm = [Um]d/2.

3. Simulates multiplication on these shares to obtain “shares” α(j) ∈ Zm
q , β

(j) ∈ Zq of the resulting
ciphertext:

α
(j)
` = A`ρ

(j) + µ(j)υ
(j)
` , β(j) = bρ(j) +

⌊
q

p

⌋
χ(j) + µ(j)γ(j)

4. For ` ∈ [m], let P` be a degree d ≥ t + k − 1 polynomial that is consistent with secrets V` and
share α(j)

` corresponding to player Pj . Similarly, let P be a degree d ≥ t+ k − 1 polynomial that
is consistent ith secrets e and share β(j) corresponding to player Pj for all j ∈ T .

5. For i /∈ T , let α(i)
` = P`(i) and β(i) = P`(i).

6. Runs the simulators for πCheck and πVerSm.
7. Outputs the output of the simulators for πCheck and πVerSm, as well as all the shares α(j)

` , β(j) for
` ∈ [m], ∈ [N].

Figure 8: Simulator Sim(T, x) for πPoCM

Lemma 2.5 and Lemma 3.1 guarantee that the outputs of the simulators of πCheck and πVerSm

are statistically close to the view of the cheating parties in a real execution of the protocol.
Thus, we need only worry about the shares output by the simulator. But by properties of pack
secret-sharing, these clearly have the same distribution as those output in a real execution
(random subject to lying on a d-degree polynomial corresponding to secret V` (resp. e)).

t-Robustness: Perfect completeness of πCheck and πVerSm (together with the fact that we are
using the truncated Gaussian so the randomness of a valid encryption is guaranteed to be
bounded by r), as well as the properties of packed secret-sharing described in Section 2.3
guarantee perfect completeness of πPoCM. Now suppose an honest player outputs 1. t-
robustness of πCheck guarantees that all shares distributed by I in Step 1 are d-consistent.
At reconstruction, players also implicitly verify that all shares in the construction of V` and e
are d-consistent. Furthermore, recall that we chose N − t > d so that the shares of the honest
players uniquely determine a degree-d polynomial, and thus, uniquely determine the shares
of the corrupt players. These must be the ones obtained by running the protocol honestly.
Thus, there exist x = [x(1) ; . . . ; x(k)] ∈ Z1×k

q ,R = [r(1) ; r(2) ; . . . ; r(k)] ∈ Zm×k
q ,

m = [m(1) ; . . . ; m(k)] ∈ Z1×k
p , namely, those corresponding to the shares received by the

players in Step 1, such that A`r(j) +u(j)
` m(j) = v

(j)
` and br(j) +bq/pc ·x(j) +c(j)m(j) = e(j) for

all ` ∈ [m], j ∈ [k]. Furthermore, t-robustness of πVerSm guarantees that |x(j)| ≤ p/2 , |m(j)| ≤
p/2 , ||r(j)||∞ < r for all j ∈ [k]. Thus, if an honest player outputs 1, each encryption was
the result of a correct multiplication.

19

Proof of Lemma 3.1: To prove Lemma 3.1 we show that the subroutine πVerPos (Figure 3) is
statistically t-private in the presence of a semi-honest adversary and t-robust. t-privacy and t-
robustness of πVerSm follows directly from this fact. To prove these properties for πVerPos, we first
prove them for πVerBnd (Figure 4).

Claim A.1. The subroutine πVerBnd described in Figure 4 is statistically t-private in the presence
of a semi-honest adversary and t-robust, for t < N/2.

Proof. We show statistically t-privacy in the presence of a semi-honest adversary and t-robustness,
for t < N/2.

t-Privacy: Let T ⊂ [N]. We describe the simulator Sim(T, x,RT (x,w)). Because we assume a
semi-honest adversary, we assume R(x,w) = 1, and simply write Sim(T, x). We describe the
simulator in Figure 9.

Simulator Sim(T, x) for πVerBnd

1. Let ζ(j)
1 , . . . , ζ

(j)
τ be the input to player Pj .

2. Chooses e← {0, 1}τ .
3. Chooses T← [−2τmB, 2τmB](2τ−1)×k, and computes [T1]d, . . . , [T2τ−1]d. Let ψ(j)

i be the share
of [Ti]d corresponding to player Pj .

4. For i ∈ [τ] and j ∈ T , computes share χ(j)
i = ψ

(j)
i −Meζ

(j)
i as Pj ’s “share” of Xi.

5. Outputs all the shares [T1]d, . . . , [T2τ−1]d and χ(j)
i for i ∈ [τ] and j ∈ T .

Figure 9: Simulator Sim(T, x) for πVerBnd

The distribution of e is uniformly random in both the simulation and a real execution. Also,
it is clear that ψ(j)

i = Meζ
(j)
i + χ

(j)
i for all i ∈ [τ] and j ∈ T . Thus, we need only show that

T is statistically close to MeZ + X. In the simulation, each entry of T is a random number
bounded by 2τmB. In a real execution, each entry of MeZ is bounded by mB. Furthermore,
each entry of X is a random number bounded by 2τmB, which is a super-polynomially larger
interval since τ = ω(log λ). Thus, the distributions of T and MeZ+X are statistically close.

t-Robustness: Perfect completeness follows from the fact that if each entry in Z is bounded by
B, then each entry in MeZ is bounded by mB and since each entry in X is bounded by
2τmB, then each entry in MeZ + X is bounded by (2τ + 1)mB. Now suppose an honest
player outputs 1. t-robustness of πCheck guarantees that all shares are d-consistent. At
reconstruction, players also implicitly verify that all shares in the reconstruction of MeZ+X
are d-consistent. Let T be the reconstructed value. Recall that we chose N−t > d so that the
shares of the honest players uniquely determine a degree-d polynomial, and thus, uniquely
determine the shares of the corrupt players. These must be the ones obtained by running
the protocol honestly. Thus, there exists Z ∈ Zm×k

q such that T = MeZ + X, namely, those
corresponding to the shares held by the players.
Now, suppose an honest player accepted for two different challenges, e 6= e′, and let T,T′ be
the values reconstructed at the end for each of the challenges. Then T−T′ = (Me−Me′)Z.
Let h be the largest index such that eh 6= e′h, and look at the square τ × τ matrix that results
from only taking rows h− τ + 1 to τ (included) of (Me −Me′). This is an upper triangular

20

matrix with non-zero diagonal entries and we can therefore solve for Z from the bottom up.
At each level ` of the recursion however, the value in question is a sum (or difference) of `
values, so knowing that each value is bounded by (2τ + 1)mB means that values at the last
level of the recursion, the top row of Z, can be as large as 2τ · (2τ +1)mB < 22τ+1mB. Thus,
this is the bound we can guarantee.

Claim A.2. The subroutine πVerPos described in Figure 3 is statistically t-private in the presence
of a semi-honest adversary and t-robust, for t < N/2.

Proof. We show statistically t-privacy in the presence of a semi-honest adversary and t-robustness,
for t < N/2.

t-Privacy: Let T ⊂ [N]. We describe the simulator Sim(T, x,RT (x,w)). Because we assume a
semi-honest adversary, we assume R(x,w) = 1, and simply write Sim(T, x). We describe the
simulator in Figure 10.

Simulator Sim(T, x) for πVerPos

1. Let ζ(j)
1 , . . . , ζ

(j)
m be the input to player Pj .

2. For i ∈ [m] chooses random shares υ(j)
i , ϕ

(j)
i , ω

(j)
i , ψ

(j)
i ← Zq for all j ∈ T as the shares for the

corrupted parties of Ũi, Ṽi,W̃i, Ỹi, respectively.
3. Simulates the protocol on these shares to obtain “shares” α(j)

i ∈ Zq of 0 ∈ Zk
q .

α
(j)
i = ζ

(j)
i −

(
υ

(j)
i

)2

−
(
ϕ

(j)
i

)2

−
(
ω

(j)
i

)2

−
(
ψ

(j)
i

)2

4. For i ∈ [m], let Pi be a degree d ≥ t+ k− 1 polynomial that is consistent with secrets 0 ∈ Zk
q and

share α(j)
i corresponding to player Pj for all j ∈ T .

5. For j /∈ T , let α(j)
i = Pi(j).

6. Runs the simulators for πCheck and πVerBnd.
7. Outputs the output of the simulators for πCheck and πVerBnd, as well as all the shares α(j)

i for
i ∈ [m], ∈ [N].

Figure 10: Simulator Sim(T, x) for πVerPos

Lemma 2.5 and Claim A.1 guarantee that the outputs of the simulators of πCheck and πVerBnd

are statistically close to the view of the cheating parties in a real execution of the protocol.
Thus, we need only worry about the shares output by the simulator. But by properties of pack
secret-sharing, these clearly have the same distribution as those output in a real execution
(random subject to lying on a d-degree polynomial corresponding to secret 0).

t-Robustness: Perfect completeness of πVerBnd, as well as Lagrange’s theorem (see e.g. [FR06])
and the properties of packed secret-sharing described in Section 2.3 guarantee perfect com-
pleteness of πVerPos. Now suppose an honest player outputs 1. t-robustness of πCheck guar-
antees that all shares distributed by I in Step 2 are d/2-consistent, and t-robustness of
πVerBnd guarantess that each of the entries in Ũ, Ṽ,W̃, Ỹ is bounded by B′ <

√
q/8 so we

21

are guaranteed that each entry in U,V,W,Y is bounded by q/8, and therefore adding the
4 squares does not result in overflow modulo q. At reconstruction, players also implicitly
verify that all shares in the construction of 0 are d-consistent. Furthermore, recall that we
chose N − t > d so that the shares of the honest players uniquely determine a degree-d poly-
nomial, and thus, uniquely determine the shares of the corrupt players. These must be the
ones obtained by running the protocol honestly. Thus, for all i ∈ [m], j ∈ [k], there exist
uij , vij , wij , yij , namely, those corresponding to the shares received by the players in Step 2,
such that zij = u2

ij + v2
ij + w2

ij + y2
ij < q/2 and therefore zij > 0.

22

	Introduction
	Preliminaries
	Notation
	Overview of IKOS Construction
	Packed Secret Sharing
	Verifying Consistency of Shares
	Regev Encryption Scheme

	Verifying that Secrets are Numerically Small
	Proofs of Plaintext Knowledge
	Proofs of Correct Multiplication
	Proofs

