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Abstract. The Boneh-Gentry-Waters (BGW) [4] scheme is one of the most efficient broadcast encryp-
tion scheme regarding the overhead size. This performance relies on the use of a pairing. Hence this
protocol can benefit from public key improvements. The ciphertext is of constant size, whatever the
proportion of revoked users is. The main lasting constraint is the computation time at receiver end
as it depends on the number of revoked users. In this paper we describe two modifications to improve
the BGW bandwidth and time complexity. First we rewrite the protocol and its security proof with an
asymmetric pairing over the Barreto-Naehrig (BN) curves instead of a symmetric one over supersin-
gular curves. This modification leads to a practical gain of 60% in speed and 84% in bandwidth. The
second tweaks allows to reduce the computation time from O(n − r) to min(O(r), O(n − r)) for the
worst case (and better for the average case). We give performance measures of our implementation for
a 128-bit security level of the modified protocol on a smartphone.
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1 Introduction

A broadcast encryption scheme is a protocol allowing a broadcaster to send messages to a large set U of
users or receivers, n = #U . The set evolves at each session in a dynamic way such that the broadcaster may
choose any subset S of privileged users or members from U . R is the set of revoked users (non-members),
r = #R. A broadcast protocol is secure under (t, n)-collusion if for all subset R ⊂ U with r 6 t, the revoked
users from R are not able to decipher. Fully collusion-secure protocols are mostly appreciated. The classical
application of broadcast encryption protocols are pay-TV systems, broadcast of content and over the air
re-keying mechanisms (OTAR) in radio systems. The content or payload is encrypted under a private key.
Then the private key is encrypted in a manner described by the chosen protocol. An overhead is added to
the encrypted data. It contains the encrypted session key such that only the members can decipher it. In
most broadcast protocols, a description of the members (or equivalently of the revoked users) is also added
to the overhead. The system constraints are

– the bandwidth consumption, related to the overhead size ω,
– the sender computation time τs, public key (resp. secret key) memory PKs (resp. SKs),
– the users (receivers) computation time τu, public key (resp. secret key) memory PKu (resp. SKu).

The naive solution assigns a different private key to each user. The overhead contains the session key en-
crypted with each private key corresponding to each member. The bandwidth is linear in the number of
members. Many schemes have been suggested to provide an efficient broadcast. Lots of them are combina-
torial tree-based schemes using the subset cover framework [12]. However the overhead size is the minimal
number of primary blocks used to cover the set. In particular, for the worst case of r = n

2 , i.e. half the users
are revoked ones, the others are members, the overhead size is the same as in the naive solution. Boneh,
Gentry and Waters introduced in [4] two versions (denoted BGW1 and BGW2 in the following) of a pairing



based protocol which solved this problem. The overhead size is in O(1) for BGW1 and in O(
√
n) in BGW2,

for n users in the system. This came at a time complexity expanse, as given in the table 1. Indeed, this
protocol uses asymmetric cryptography. Delerablée, Paillier and Pointcheval described another scheme in [7],
reducing the time complexity. However the implementation is more complex, as it requires to handle formal
sums of points. To our knowledge, there is very few commercial products using pairings (some for IBE,
see [16]), and none for broadcast. Despite there are several software and hardware pairing implementations
with precise benchmarks, to our knowledge, there are not yet an entire broadcast protocol based on pairings
implemented and presented with precise timings.

Reference ω τr PKr SKr
Complete Subtree [12] O(r log(n

r
)) O(log logn) - O(log(n))

Subset difference [12] O(r) O(log(n)) - O(log2(n))

BGW1 [4] O(1) O(n− r) O(n) O(1)

BGW2 [4] O(
√
n) O(

√
n) O(

√
n) O(1)

DPP1 [7] O(1) O(r2) O(n) O(1)

DPP2 [7] O(r) O(r) O(1) O(1)

this paper, Sec. 2.1 O(1) min(O(r), O(n− r)) O(n) O(1)

this paper, Sec. 2.2 O(
√
n) min(O( r√

n
), O(n−r√

n
)) O(

√
n) O(1)

Table 1. Complexities of well known broadcast encryption schemes

Our contributions. A practical instantiation was not explained in [4]. A straightforward implementation of
the protocol uses a symmetric pairing e : G × G → GT . This results in quite large size for the bandwidth
elements. Each element (in G) is of size half an RSA modulus size. For a 128-bit security level, this means
1536 bits per element instead of 128 in a combinatorial tree based protocol. We propose to design BGW
with an appropriate asymmetric pairing e : G1×G2 → GT . In this way, the elements in G1 have a size close
to the optimal case in public key cryptography, i.e. 256 bits for the example above, rather than half a RSA
modulus size. We adapt the protocol and set in the right groups G1 or G2 the different elements (public
and private keys, bandwidth elements), knowing that the elements in G1 have the smallest size, those of G2

have quite medium size (at most half an RSA modulus) and those of GT are close to an RSA modulus size.
The resulting bandwidth consumption is divided by 6 at a 128-bit security level. We adapt accordingly the
security proof.

The protocol security relies on the difficulty of a non-standard problem, the `-BDHE (`-Bilinear Diffie-
Hellman Exponent problem). About one year after the publication in 2005 of BGW, Cheon proposed attacks
in [5, 6] against the family of Diffie-Hellman related problems used in the public key based protocols, including
the `-BDHE. More recently at the PKC 2012 conference, an implementation of such an attack was presented
at a security level of 80 bits [14]. We analyse the impact of Cheon’s attacks on the size of the three groups
G1, G2 and GT . We propose a resistant elliptic curve.

The BGW scheme relies on public key tools. Hence the computation time is quite slower than in a
symmetric key based protocol, especially for decryption. We provide an efficient trade-off between mem-
ory and precomputation. Finally our practical implementation on a smartphone shows that with all our
improvements, this BGW broadcast encryption scheme can be efficiently used for commercial applications.

This paper is organized as follows: in Sec. 2 we describe how BGW can benefit from the use of an
asymmetric pairing and adapt the security proof. In Sec. 3, we detail our choice of a pairing-friendly elliptic
curve and consider modifications due to Cheon’s attacks. In Sec. 4, we describe how to use well chosen
pre-computation to reduce dramatically the computation cost. Finally, in Sec. 5 we give our results of a
complete implementation of the protocol on a smartphone.
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2 BGW with an asymmetric pairing

Boneh, Gentry and Waters [4] describe a scheme with a minimal overhead. The scheme use a pairing e :
G1 ×G2 → GT . The pairing definition and properties can be found in [3, Ch. IX]. We will use the additive
notation for both G1 and G2 and the multiplicative notation for GT . In the original paper, the scheme is
described with a symmetric pairing: G1 = G2 that is, we can swap the inputs e(P,Q) = e(Q,P ). In practice,
the third group GT is a finite field extension of the form (Fpk)∗, of size k log p an RSA modulus. To use a
symmetric pairing, supersingular elliptic curves shall be used, which is inefficient. G1 and G2 have the same
size, an explicit isomorphism exists between these two groups and their size is half the size of GT (in large
characteristic). For a justification, see Sec. 3. We propose to adapt the scheme to an asymmetric pairing
in order to have a group G1 with smaller coefficients. We reorganise the elements and set in G1 those on
which the bandwidth depends. Let n be the total number of users and r the number of revoked users. To
remove confusion with the finite field characteristic (used later) commonly denoted p, we will denote by m
the groups order.

2.1 First version of the scheme

We start by re-writing the special case where the ciphertexts and private keys are of constant size. The n
users are considered globally. The number of revoked users is r hence n− r users must be able to decipher.

Setup (n) Let G1 and G2 be two groups of prime order m with an asymmetric pairing e from G1 ×G2 into
GT . Let P a random generator for G1 and Q for G2. Let α a random element in Zm. Compute Pi = αiP ∈ G1

for i = 1, 2, . . . , n, n + 2, . . . , 2n. Compute Qi = αiQ ∈ G2 for i = 1, 2, . . . , n. Pick a random γ ← Zm and
set V = γP ∈ G1. The broadcaster public key is

PKs = (P, P1, . . . , Pn, Pn+2, . . . , P2n, V,Q,Q1) ∈ G2n+1
1 ×G2

2 .

Each user i receives an added public keyQi. The additional public key (Q1, . . . , Qn) ∈ Gn2 is dispatched among
all users. The complete public key PK is in G2n+1

1 ×Gn+1
2 . The secret key for user i is SKu,i = Di = γPi ∈ G1;

its public key is PKu,i =
(
Qi, (Pi)16i62n, i 6=n+1

)
. Let S = U \R the subset of authorized users, #S = n− r.

Encrypt (S,PKs) Pick a random k ← Zm and set K = e(Pn+1, Q)k = e(Pn, Q1)
k ∈ GT . Set

Hdr =
(
kQ, k

(
V +

∑
j∈S

Pn+1−j

))
∈ G2 ×G1

and output (Hdr,K).

Decrypt (i,S,Hdr, Di,PKu,i) Let Hdr = (C0, C1). The i-th user computes

K =
e(C1, Qi)

e
(
Di +

∑
j∈S
j 6=i

Pn+1−j+i, C0

)
The verification uses the relation e([i]P, [j]Q) = e(P,Q)ij = e([j]P, [i]Q). We have chosen to set C1 in G1

to save bandwidth, as the elements in G1 have coefficients a least twice as small as those in G2. It would
be great to set C0 in G1 as for C1. Unfortunately in this case the user would have to compute the sum over
all authorized users in G2 which is more time consuming than in G1. The storage size needed for a user i
would be increased too. Our chosen trade-off will appear more natural through the generalized version of
the scheme.
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2.2 General scheme

To reduce the public key size, the n users are organized into A groups of B users with AB > n. In [4] the
authors suggest to choose B = b

√
nc and A = d nB e. We can also divide users into groups according to their

country, subscription or other criterion due to the system (Pay-TV, OTAR). A user i is referenced by its
group number (say a) and its range in that group (say b). Hence i = {a, b} with 1 6 a 6 A and 1 6 b 6 B.
The Hdr will contain A public elements (instead of a unique C1), each one dedicated to a determined group
of users. Here we see relevant to set all these elements in G1. There is still the C0 element that we need to
set in G2 in order to keep in G1 the user public and private keys and a part of the decryption.

Setup B(n) Let G1,G2,GT , P,Q as above. Let α a random element in Zm. Compute Pi = αiP ∈ G1

for i = 1, 2, . . . , B,B + 2, . . . , 2B; this is the common public key. In each group of users, the user i =
{a, b} receives the set of (Pi) and an additional public key Qb = αbQ ∈ G2. Then pick uniformly at
random γ1, γ2, . . . , γA ← Zm and set V1 = γ1P, . . . , VA = γAP ∈ G1. The centralized public key is PKs =
(P, P1, P2, . . . , PB , PB+2, . . . , P2B , V1, . . . , VA, Q,Q1) ∈ G2B+A

1 × G2
2. The secret key for the user number b

in the group a is SKu,{a,b} = Da,b = γaPb ∈ G1. Its public key is PKu,{a,b} =
(
Qb, (Pi)16i62B, i6=B+1

)
. The

user doesn’t need the others Q` hence to save memory on his constrained device (e.g. smartphone, set-up
box) we don’t add them. Note that this scheme is relevant even for unbalanced group sizes. For large groups,
the time computation will increase, but the bandwidth consumption will be the same : one group element
(in G1) per group of users, whatever the size of the group is.

Encrypt (S,PKs) For each group a of users, denote by Sa the set of authorized users in this group. Pick a
random k in Zm and set K = e(PB+1, Q)k = e(PB , Q1)

k ∈ GT . Set Hdr (∈ G2 ×GA1 ) =(
kQ, k

(
V1 +

∑
j∈S1

PB+1−j
)
, k
(
V2 +

∑
j∈S2

PB+1−j
)
, . . . , k

(
VA +

∑
j∈SA

PB+1−j
))

Decrypt
(
i = {a, b},Sa,Hdr, SKu,{a,b},PKu,{a,b}

)
Let denote Hdr = (C0, C1, . . . , CA) and recall that a user

i is number b in the group a. The user i = {a, b} computes

K =
e(Ca, Qb)

e
(
Da,b +

∑
j∈Sa
j 6=b

PB+1−j+b, C0

) .
The verification uses the same bilinearity property as previously:

e([i]P, [j]Q) = e(P,Q)ij = e([j]P, [i]Q) .

Table 2 gives the protocol complexity with an asymmetric pairing, BGW1 denotes the one instance
version, BGW2 denotes the parallel instance version. ω is the bandwidth consumption, PKs denotes the
sender’s memory for the public key, τs the time computation and respectively PKu, τu denote the receiver’s
ones. ra is the number of revoked users in the group a. Note that they are at most B users in a group a.

Schema ω PKs τs PKr τr
BGW1 G2 ×G1 G2n+1

1 ×Gn+1
2 (n− r)AddG1 G2n−1

1 ×G2 (n− r)AddG1

BGW2 G2 ×GA1 G2B+A
1 ×GB+1

2 (n− r)AddG1 G2B−1
1 ×G2 (B − ra)AddG1

Table 2. Theoretical complexity for BGW protocol, asymmetric pairing
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2.3 Security proof

In [4, §3.3], the authors prove the semantic security of the general system. We faced some trouble when
adapting the security proof to an asymmetric pairing in the setting above. We need to add a copy in G2 of
the inputs elements in G1 to the problem. This difficulty rises in the challenge phase. To generate a consistent
input for the adversary, the challenger must have a copy in G2 of the inputs in G1. This is transparent with
a symmetric pairing (in which case an isomorphism from G1 into G2 is available). This is also quite easy
if an isomorphism from G2 into G1 is available. More precisely, let G1,G2,GT three cyclic groups of prime
order together with an asymmetric pairing e : G1 ×G2 → GT . Let P a generator for G1 and Q for G2. Let
Q

′
a random element in G2. In the challenge phase, the challenger must compute a corresponding P

′ ∈ G1

such that logP (P
′
) = logQ(Q

′
) without knowing logQ(Q

′
). In other words, in this construction there is some

k ∈ Zm such that Q
′
= [k]Q and we have to find a corresponding P

′ ∈ G1 such that P
′
= [k]P with the

same k ∈ Zm, without knowing k. Therefore we need an isomorphism φ which maps the generator Q ∈ G2

downto P ∈ G1. Hence φ(Q
′
) = P

′
. In this way we can end the security proof as in the original paper. Such

a map usually does not exists for ordinary pairing-friendly elliptic curves. For supersingular curves, there is
the distortion map from G1 to G2 which provides a symmetric pairing. For ordinary elliptic curves, the trace
map [3, IX.7.4] is degenerated, as G2 is commonly built as the trace-zero subgroup. With the notations from
[10], the security proof must be written assuming that the pairing is of Type 3 : G1 6= G2 and there is no
efficiently computable homomorphism between G1 and G2. Hence the adversary needs to receive P

′
, that is

why it must appears in the challenger inputs.
Let start with an asymmetric variant of `-BDHE problem:

Definition 1 (l-BDHEasym). Let G1,G2,GT three cyclic groups of prime order together with an asym-
metric pairing e : G1 × G2 → GT . Given (P, P1, . . . , P`, P`+2, . . . , P2`) ∈ G2`

1 , (Q,Q1, . . . , Q`) ∈ G`+1
2 such

that Pi = [αi]P , Qi = [αi]Q, and (P
′
, Q

′
) ∈ G1 ×G2 such that logP P

′
= logQQ

′
, compute

e(P`+1, Q
′
) which is the same as e(P

′
, Q`+1) .

Definition 2 (Decisional l-BDHEasym). Let G1,G2,GT three cyclic groups of prime order together
with an asymmetric pairing e : G1×G2 → GT . Let yP,Q,α,` = (P1, P2, . . . , P`, P`+2, . . . , P2`, Q1, Q2, . . . , Q`).
An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the decision `-BDHEasym in GT if∣∣∣Pr[B(P,Q, P ′

, Q
′
,yP,Q,α,`, e(P`+1, Q

′
)
)
= 0

]
− Pr

[
B
(
P,Q, P

′
, Q

′
,yP,Q,α,`, T

)
= 0

]∣∣∣ > ε where the probability is

over the random choice of generators P ∈ G1, Q ∈ G2, of random point P
′ ∈ G1, the random choice of

α ∈ Zm, the random choice of T ∈ GT and the random bits consumed by B. The distribution on the left is
denoted by PBDHEasym and the distribution on the right by RBDHEasym.

The decision (t, ε, `)-BDHEasym assumption holds in GT if no t-time algorithm has advantage at least ε in
solving the decision `-BDHE problem in GT .

According to the definitions in [13], BGW and the variants presented here are asymmetric broadcast
encryption with a static set of users (the joint is made at setup only) and stateless users (the public and
private keys do not evolve from a session to another). A selective security for key indistinguishability is
proven (the target set is chosen before the setup phase).

Suppose there exists a t-time adversary, A, who receives an instance of the protocol. The adversary is
able to distinguish between a valid and a random session key with advantage AdvBrA,B > ε for a system
parametrized with a given B. One build an algorithm, B, that has advantage ε in solving the decision
B−BDHEasym problem in GT .

Algorithm B takes as input a random decision B−BDHEasym challenge (P,Q, P
′
, Q

′
,yP,Q,α,B , Z) where

yP,Q,α,B = (P1, P2, . . . , PB , PB+2, . . . , P2B , Q1, Q2, . . . , QB) and Z is either e(PB+1, Q
′
) or a random element

in GT . The aim of B is to decide if Z is valid or random. For doing that, B simulates a session of the broadcast
protocol and submits it to A. Then B uses A’s answer to decide if Z is valid or random. Algorithm B proceeds
as follows.

Init. Algorithm B runs A and receives the set S = ∪16a6ASa of users that A wishes to be challenged on.
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Setup. B needs to generate a public key PK and private keys Di for users i 6∈ S. We can use the same
idea as in the original proof. Algorithm B chooses uniformly at random ua ∈ Zm for 1 6 a 6 A. The users
are divided into A groups of at most B users. A user i is number b in a precise group a. For a = 1, . . . , A,
algorithm B sets Va = [ua]P −

∑
j∈Sa PB+1−j . It gives A the public key

PK = (P1, . . . , PB , PB+2, . . . , P2B , Q1, . . . , QB , V1, . . . , VA)

which is in G2B−1
1 ×GB2 ×GA1 .

Boneh, Gentry and Waters note in their paper [4] that since P, α and the ua values are chosen uniformly
at random, the public key

PKoriginal = (P, P1, . . . , PB , PB+2, . . . , P2B , V1, . . . , VA) ∈ G2B+A
1

has an identical distribution to that in the actual construction. Here it is necessary to give (Q1, . . . , QB) ∈ GB2
too. If we assume that P is a generator chosen at random in G1 and Q (which generates G2) is also chosen
at random and independent from P , we can consider that all these elements are uniformly distributed at
random.

Next the adversary needs all private keys that are not in the target set S. For each user i = {a, b} 6∈ S,
algorithm B computes the corresponding private key

Da,b = [ua]Pb −
∑
j∈Sa

PB+1−j+b .

The same equality holds as in the original proof

Da,b = [ua][α
b]P − [αb]

∑
j∈Sa

PB+1−j = [αb]Va .

The authors in [4] note that the unknown value PB+1 is not involved in the sum, as i is a revoked user
(i = {a, b} with b 6∈ Sa).

Challenge. To generate the challenge, B computes Hdr as

(Q
′
, [u1]P

′
, . . . , [uA]P

′
) .

B then randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in GT . It gives
(Hdr,K0,K1) as the challenge to A.

We use the same justification as in the above cited paper. The algorithm knows both Q
′
and P

′
such

that logP (P
′
) = logQ(Q

′
) hence can compute a valid Hdr. When the input to B is a B-BDHEasym tuple,

Z = e(PB+1, Q
′
) and (Hdr,K0,K1) is a valid challenge to A as in a real attack. Let k such that P

′
=

[k]P . P
′
and Q

′
are bound together in the sense that P

′
= [k]P and Q

′
= [k]Q with the same k ∈ Zm.

[ua]P
′
= [k][ua]P = [k]

(
[ua]P −

∑
j∈Sa PB+1−j +

∑
j∈Sa PB+1−j

)
= [k]

(
Va +

∑
j∈Sa PB+1−j

)
. We can see

in this form that (Q
′
, [u1]P

′
, . . . , [uA]P

′
) is a valid encryption of the key e(PB+1, Q)k. Then e(PB+1, Q)k =

e(PB+1, Q
′
) = Z = Kb. Hence (Hdr,K0,K1) is a valid challenge to A. On the other and, when the input to

B is a random tuple, Z is a random element from GT , and K0,K1 are random elements from GT .

Guess This last step is the same as in the paper [4]. The adversary A outputs a guess b
′
of b. If b =

b
′
the algorithm B outputs 0, i.e. it guesses that Z = e(PB+1, Q

′
). Otherwise, it outputs 1, i.e. Z is a

random element in GT . If (P,Q, P
′
, Q

′
,yP,Q,α,B , Z) is sampled from RBDHEasym then Pr

[
B(P,Q, P ′

, Q
′
,

yP,Q,α,B , Z) = 0
]
= 1/2. If (P,Q, P

′
, Q

′
,yP,Q,α,B , Z) is sampled from PBDHEasym then∣∣∣Pr [B(P,Q, P ′

, Q
′
,yP,Q,α,B , Z) = 0

]
− 1/2

∣∣∣ = AvdBrA,B > ε .

It follows that B has advantage at least ε in solving B-BDHEasym problem in GT . This conclude the security
proof.
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2.4 Diffie-Hellman problem and variants

The security relies on the `-Bilinear Diffie-Hellman Exponent assumption which is a weaker problem than
the Diffie-Hellman one. The difficulty of this problem was first studied in [5]. See also improvements in [11, 6]
and the implementation in [14].

Theorem 1 ([11, Theorem 1’]). Let P be an element of prime order m in an abelian group G. Suppose
that d is a positive divisor of m − 1. If P, [α]P, [αd]P are given, α can be computed within O(

√
m/d +

√
d)

group operations using space for O(max(
√
m/d,

√
d)) groups elements.

Theorem 2 ([11, Theorem 2’]). Let P be an element of prime order m in an abelian group G. Suppose
that d is a positive divisor of m + 1 and [αi]P are given for 1 6 i 6 2d. Then α can be computed within
O(
√
m/d+ d) group operations using space for O(max(

√
m/d,

√
d)) groups elements.

The main idea for the first theorem is to find a divisor d ofm−1 in the range 2 6 d 6 B or B+2 6 d 6 2B
to reduce the complexity from O(

√
m) to O(

√
m/d+

√
d). A decomposition of the classical Baby Step Giant

Step (BSGS) algorithm in two phases reduces the complexity of BSGS from O(
√
m) to two BSGS running,

the first in O(
√
m/d) and the second in O(

√
d). We have to take into account this attack to choose properly

a convenient elliptic curve when setting the system parameters.

1. We can enlarge the parameters in order to prevent the system from these attacks and match the previously
chosen security level. Assuming that B � m, we consider that the attack is in at most O(

√
m/2B).

For a 128-bit security level, instead of a prime order group G1 of size logm = 256, we have to set
logm = 256+ log(2B). If the system is designed for 106 users and B ≈ 103, enlarging logm with at least
12 bits is enough and quite cheap if it does not affect considerably the size of GT .

2. If enlarging m with a few bits will enlarge the size of GT of a few hundred bits, we may prefer to choose
directly a safe prime order m, such that m− 1 and m+ 1 are not divisible by factors smaller than 2B.
Of course either m− 1 or m+ 1 will be a multiple of 4 but we loose only 2 bits.

3 Choice of the pairing-friendly elliptic curve

The two instantiations are the Weil pairing and the Tate pairing over elliptic curves (defined over finite
fields). They can be quite efficiently computed with the algorithm due to Miller. Definitions and properties
of Weil and Tate pairings can be found in the survey [3, Ch. IX]. Let p be a large prime and E(Fp) an elliptic
curve defined by a reduced Weierstraß equation y2 = x3 + ax+ b. Remember that G1 and G2 are subgroups
of prime order m of the elliptic curve and GT is the multiplicative group of an extension field Fpk . The main
difficulty is to find suitable elliptic curves for pairings. An almost exhaustive study of known pairing-friendly
elliptic curves can be found in [9]. If the protocol relies exclusively on the Diffie-Hellman problem, to achieve
the same complexity in the three groups G1, G2 and GT we must choose carefully the size of the groups
as following. Up to now, only generic attacks such as Pohlig-Hellman exists for solving the Diffie-Hellman
problem in an elliptic curve3. If the protocol relies exclusively on the Diffie-Hellman problem, for a N -bit
security level, prime order groups G1,G2 of size logm = 2N bits are convenient. The group GT ' F∗pk is
exposed to the less difficult index calculus attack. Hence the size k log p of GT is greater than those of G1

and G2. An RSA modulus size is commonly considered to be safe. The following key-size int Tab. 3 are
recommended by the ECRYPT II research group [8, Tab. 7.2].

We have chosen a 128-bit security level. A supersingular curve (over a prime field in large characteristic)
has an embedding degree k at most 2 resulting in log p = 1624, logm = 256 + δ and ρ = log p/ logm ≈ 6.
The notation +δ means that enlarging m by a few bits will not impact on log p, hence on the size of Fpk . The
well-known Barreto-Naehrig curves (BN, [2]) fit almost exactly the recommended sizes of G1 and GT , taken
into account Cheon’s attack. Indeed, for these curves, k = 12 and logm = log p. Hence with k log p = 3264

3 ordinary, over a prime field in large characteristic, of trace 6≡ 0 mod p and 6= 1
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Security (bits) RSA Discrete Logarithm Elliptic curvefield subfield
80 1248 1248 160 160
112 2432 2432 224 224
128 3248 3248 256 256
160 5312 5312 320 320
192 7936 7936 384 384
256 15424 15424 512 512

Table 3. Ecrypt II key-size recommendations

and logm = log p = 272, the parameters are strong enough against the `-BDHE problem for a 128-bit
security level and a BGW protocol with at most 2B users per group and log(2B) = 16.

If we prefer to follow NIST recommendations, the k = 12 embedding degree is exactly what we need :
logm = 256 and as ρ = log p/ logm = 1.0, k log p = 3072 as expected. In particular, for a 128 bit security
level, using an asymmetric pairing decreases the size of the element in the group G1 by a factor of 6. To
prevent from Cheon’s attacks, we can increase the size of m by 12 bits but it result in increasing the size of
Fpk by 144 bits. To avoid this, we must generate a strong BN curve, without any integer d dividing m and
less than 212. We heard about this attack after launching the prototype development. Hence the benchmarks
were computed for this curve.
x = - 0x400000000000031C (defines p, m and t)
p = 0x24000000000006FE700000000082705C800000043937699E80000D20DA314BD9
m = 0x24000000000006FE700000000082705C200000043937604A80000D20D9F74979
t = 0x600000000000095400000000003A0261
b = 0x17
The elliptic curve defined over the prime field Fp with parameter equation a = 0 and b above has prime order
m and trace t. The three numbers x, m− 1 and m+ 1 are smooth.
x = 22 ∗ 52 ∗ 43 ∗ 139 ∗ 757 ∗ 10192497083,
m− 1 = 23 ∗ 3 ∗ 52 ∗ 23 ∗ 43 ∗ 71 ∗ 139 ∗ 757 ∗ 338172217 ∗ 10192497083

∗1065629744969022147085838680434831409024186859,
m+ 1 = 2 ∗ 7 ∗ 11 ∗ 31 ∗ 67 ∗ 179 ∗ 1297 ∗ 839731 ∗ 15999517 ∗ 282551569

∗35836294153183 ∗ 251224184937629 ∗ 6415963443272843.

Assuming that there are around 210 users per group,log(2B) 6 12 and the security for this curve is 116
bits instead of 128. Then we heard about Cheon’s attack and tried to find a "strong" curve. Because of the
parameter structure, the curve order m is such that 12 divides m− 1 and 2 divides m+ 1. We ran a search
over almost prime x to find an m such that no divisor less than 212 divides either m − 1 or m + 1 (except
12 for m− 1 and ones less than 16 for m+ 1). We found a few appropriate curves, for example
x = 0x4000000000087F7F = 248861 ∗ 18531172093771
p = 0x2400000000131EDE500003CEEC974A28964D2C8BEE1F7C511355420E690A2713
m = 0x2400000000131EDE500003CEEC974A28364D2C8BEE05FDD41355405D1C6EA10D
m− 1 = x∗12 ∗ 757798571 ∗ 431644596110779526675237 ∗ 899539747440060915487289
m+ 1 = 2 ∗ 480707 ∗ 420180967 ∗ 107234028019 ∗ 1416027609325038349

∗265454606642679936569002939766381
t = 0x6000000000197E7D000001B14C9B8607
b = 0xC
For this curve, 12 | m− 1 and the next divisor is 248861; 2 | m+ 1 and the next divisor is 480707. Because
of the 12, we loose 4 bits. A bypass would be to index the users from 13 instead of 1. Our implementation
doesn’t depends on a particular p or m hence changing their value will not infer on the timings if their size
remains the same.
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The possible choice are presented in Tab. 4. The notation +δ means that enlarging m by a few bits will
not impact on log p, hence on the size of Fpk .

Recommendations Curve k k log p log p ρ = log p/ logm logm

Ecrypt II Supersingular 2 3248 1624 not fixed, ≈ 6 here 256 + δ
Barreto-Naehrig 12 3264 272 1.0 272

NIST Supersingular 2 3072 1536 not fixed, ≈ 6 here 256 + δ
Strong BN 12 3072 256 1.0 256

Table 4. Parameters size depending on the embedding degree

Improving pairing computation is not the scope of this paper, that is why we will not discuss on a precise
choice of pairing over Tate, ate or twisted-ate ones. We are more interested in filling the gap between protocol
descriptions and practical implementation of them. So we use the quite generic and well known Tate pairing.
Another variant can be chosen without any change in the protocol settings. Our timings are not very fast
but competitive, see Tab. 5. Our implementation is generic and this is very useful in this context: we can
choose a strong order m, taken into account Cheon’s attack, without needing to rewrite some parts of the
pairing implementation.

Curve k logm log p Miller’s Loop Exponentiation Pairing
Supersingular 2 256 1536 29.88 ms 25.99 ms 55.87 ms

Barreto-Naehrig 12 256 256 14.51 ms 5.18 ms 19.69 ms

Table 5. Our Implementation of pairing computation on a AMD64 3Ghz (Ubuntu 10.10)

4 Reducing Time Complexity

The public keys are points on an elliptic curve hence addition is as cheap as subtraction. If the number of
revoked users is small (r � n/2), the initial computation in O(n− r) is quite slow. We can instead consider
that the value Σn,i =

∑
16j 6=i6n Pn+1−j+i is precomputed for each user i. Then

S = Σn,i −
∑
j∈R

Pn+1−j+i

with R the set of revoked users. Now the complexity is O(min(r, n − r)) (where O is the cost of a point
addition, EllAdd). We can do better with a precomputed tree.

4.1 Binary public key tree precomputation

In this section we describe how to decrease the computation time from O(min(r, n − r)) using only twice
memory. The tweak consists in two modifications.

1. Modify the public key into a binary public key tree T twice long obtained by
– sorting all users in a binary tree whose leaves are the users;
– precomputing for each node the sum of each public key of the nodes below.
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2. For each encryption and decryption, choose the optimal including/excluding tree to compute the sum.
For example, for each decryption, use Alg. 1 if r < n/2 or its variant if r > n/2 to compute the value of
the sum S.

Let consider a user i in a system of at most n users. This user needs the elements Pn+1−j+i, 1 6 j 6= i 6 n
of the public key P1, . . . , Pn, Pn+2, . . . , P2n that is, n− 1 elements in G1. He needs also Qi ∈ G2 (which does
not need to appear in the tree). Each user computes a different (translated by i) tree. We assume that
the nodes are labelled in the same way for each user. The difference from a user to another is only the
initialization of the leaf values.

Example 1 (Precomputing the tree). Suppose that n = 16. The user i = 9 computes the tree represented
in Fig. 1. The leaves are the Pn+1−j+9 with 1 6 j 6= i 6 n. We represent two lines : the users and the
n + 1 − j + 9 index. For each node in the tree, the user computes the sum of the two children. The value
Pn+1 = P17 is missing, the user puts O instead on the corresponding leaf. The user 9 does not need the
values P1, . . . , P9 and P26, . . . , P32. The value stored at node 31 is the sum of all public keys from P10 to P25,
except P17 (replaced by O). The value stored at node 25 is the sum of the public keys P22 to P25.
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Fig. 1. Public keys and precomputation with n = 16, for user i = 9

Algorithm 1 Improved computation of S when r < n/2

Input: The user ID i, the set of privileged users S, the precomputed public tree T (for user i)
Output: The sum of points on the elliptic curve S =

∑
j∈S,j 6=i Pn+1−j+i

1: Let T
′
be the binary tree whose nodes are those of T .

2: for each node of T
′
, from the leafs do the root do

3: if it is the leaf of an authorized user or if there exists a green node below then
4: color the node in green
5: else
6: color the node in red
7: end if
8: end for
9: S ← Troot
10: for each red node with a green parent do
11: subtract the related public value from S
12: end for
13: return S
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Example 2 (Computing S quickly with the tree). Consider the same set of n = 16 users, indexed from 1 to
16. Assume that at the current session, the users 1, 13 and 14 are revoked (r = 3 < n/2 = 8). They are in
red on Fig. 1. For user 9, using algorithm 1, the sum S is computed by summing the following elements of
T :

S = T31 − T1 − T23

Note that a subtraction is as cheap as an addition on an elliptic curve. The resulting cost is only 2 ElAdd,
while it would have been 13 on the original scheme.

When r > n/2, we can do the same reasoning but instead of covering the revoked users and subtracting
the corresponding public keys from Σn,i, we cover the members and add the corresponding public keys,
starting with O. In [4] the authors propose to store the previous sum S from a session to the next, subtract
the new revoked users and add the no-longer revoked ones. This is efficient only if the proportion of newly
revoked and re-authorized users is very small.

4.2 Complexity analysis

31

29

25

17

1 2

18

3 4

26

19

5 6

20

7 8

30

27

21

9 10

22

11 12

28

23

13 14

24

15 16

Random distribution

31

29

25

17

1 2

18

3 4

26

19

5 6

20

7 8

30

27

21

9 10

22

11 12

28

23

13 14

24

15 16

Ordered distribution

Example 3 (Computing S quickly in a tree). Consider a set of n = 16 users, indexed from 1 to 16 as illustrated
in two above figures (revoked users are black). For user ’2’ compute the key session by subtracting the value
in node ’1,3,4,8,9,12,24’ thus the cost is 6 EllAdd. Note that in the figure on the right (sorted tree) the cost
is only 3 EllAdd (subtract node ’30’ and ’6’, add node ’9’). Cost would have been 8 in the original scheme.

Algorithm 1 has something common with the Subset Cover computation. However here there is no need to
store extra secrets elements, as the difference of the subset is done by a simple elliptic point subtraction. It
is obvious that the number of operations is always lower than the number r of revoked users in Alg. 1 and
lower than the number of members n− r in its variant (r > n/2). It can be equal in the worst case: in this
case S is just a difference (r operations) or just a sum (n− r operations).

The average case is hard to analyse [1] as it strongly depends on the distribution of revoked users in the
tree. When r or (n− r) is small, with a uniform distribution, the complexity will be close to it. In practice
the users are sorted by behaviour so that nodes that are close are mostly to be revoked together. In a real
world application the behaviour is the subscription date or product. However some random revocations (rare
events) appear with compromising, expirations, etc.

5 Implementation on a smartphone

For any implementation a trade-off between specificity (using a sparse modulus for quick reduction, using very
specific curves) and performances has to be done. We chose to develop a very generic library in C language
which can use any modulus and any type of pairing-friendly elliptic curve in Weiertraß representation over a
prime finite field (i.e. in large characteristic). The BN curves and supersingular curves have been implemented.
The library LibCryptoLCH [15] is a proprietary industrial library using a modular approach as in OpenSSL.
It implements arithmetic over Fp using Montgomery multiplication, elliptic curve computation over Fp and
Fp2 using the modified Jacobian coordinates. The pairing computation is specific for each Fpk field. The
construction of the extension field Fpk and its arithmetic is quite automatised by using macros in C.

11



We now present some computational results of our improved implementation for 128-bit security level.
Our proof of concept consists in a standard PC to represent the sender, and a smartphone to represent the
receiver. The smartphone can be personalized with any secret key of the system. Thus the given results are
the same as would be in a real system with a million smartphones. The smartphone is a dual core 1.2 Ghz
Samsung Galaxy II with Android OS. The PC is a 3Ghz Intel(R) Core(TM)2 Duo CPU with 2.9 Gio RAM.
The last improvements described in Sec. 4 where unfortunately not yet implemented. The broadcaster runs
the system initialization, the key attribution to a new user and the session key encryption. First, we simulate
the decryption time for an authorized user on the PC to estimate the growing cost of decryption with respect
to the total number of users n, see Tab. 6.

Smartphones with Android platform use the Java programming language. Thanks to the Java Native
Interface, we can load the library in C language, run the decryption on the smartphone and measure its
timing. For doing that, we call the currentTimeMillis() function of the system class. Results are presented
in Tab. 6 and Tab. 8. We measure the worst case r = n/2 of BGW2 so the improvements described in Sec.
4 are not visible. The users are divided in A parallelized groups of B users with B = d

√
ne.

Number of Setup User Encryption Decryption Decryption
users n init. r = n/2 (simulation) (smartphone)
50000 22.15 s 0.03 s 3.58 s 1.10 s 1.44 s
100000 40.45 s 0.03 s 7.03 s 1.13 s 1.79 s
200000 1 m 16 s 0.03 s 14.72 s 1.14 s 2.08 s
500000 3 m 07 s 0.05 s 32.97 s 1.16 s 2.65 s
1000000 6 m 09 s 0.07 s 1 m 04 s 1.18 s 3.33 s
3000000 18 m 24 s 0.12 s 3 m 07 s 1.23 s 4.96 s
5000000 30 m 42 s 0.16 s 5 m 11 s 1.27 s 6.09 s

Table 6. Computation time obtained on a 3 Ghz PC (encryption) and a smartphone Samsung Galaxy SII 1.20 Ghz
Android (decryption)

The decryption time depends on the total number of users and on the ratio of revoked users. The Tab.
7 and Tab. 8 show the increasing encryption and decryption times when r decreases from 87.5% to 0%.

hhhhhhhhhhhhhhNumber n of users
Members 12.5% 25% 50% 100%

50000 2.46 s 2.62 s 3.58 s 7.17 s
100000 3.11 s 4.10 s 7.03 s 13.84 s
200000 3.74 s 7.27 s 14.72 s 26.28 s
500000 9.65 s 16.46 s 32.97 s 1 m 03 s
1000000 16.99 s 33.46 s 1 m 04 s 2 m 06 s
3000000 49.67 s 1 m 36 s 3 m 07 s 6 m 11 s
5000000 1 m 20 s 2 m 37 s 5 m 11 s 10 m 18 s

Table 7. Encryption time with respect to the authorized user percentage obtained on the 3Ghz PC

An acceptable decryption time on the smartphone must be less than 2 seconds from our point of view.
Here this correspond to less than 200 000 users according to Tab. 8. For larger n, we need to reduce this time.
The pairing computation is not very time consuming. The sum

∑
j∈Sa,j 6=b PB+1−j+b is the most important

part of the computation time. With a first trick: addition over Sa when n− r � n and subtraction over Ra
(the revoked users of group a) when r � n, the worst case of r = n/2 become the upper bound. This means
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still at most 3.33s when r = n/2. With a precomputed tree, the average case will have faster encryption and
decryption times than those presented in Tab. 8.

hhhhhhhhhhhhhhNumber n of users
Members 12.5% 25% 50% 100%

50000 1.18 s 1.20 s 1.44 s 1.93 s
100000 1.28 s 1.46 s 1.79 s 2.46 s
200000 1.36 s 1.60 s 2.08 s 3.03 s
500000 1.55 s 1.91 s 2.65 s 4.15 s
1000000 1.75 s 2.25 s 3.33 s 5.46 s
3000000 2.23 s 3.15 s 4.96 s 8.63 s
5000000 2.65 s 3.78 s 6.09 s 10.84 s

Table 8. Decryption time with respect to the authorized user percentage obtained on the smartphone

We manage to develop a functional prototype based on improved state-of-the-art broadcast protocol
with a relative effectiveness. This provides consistent simulation time. In a real system, a dedicated Android
implementation of the finite field arithmetic, the elliptic curve arithmetic and the pairing computation will
certainly improve by a factor 2 or 3 our results, leading to less than 2 seconds to decipher, even for 5 000
000 users in the worth case of r = n/2.

6 Conclusion

We presented an improved version of BGW suitable for use with a pairing on one of the fastest pairing-friendly
elliptic curves. Our presentation can be easily adapted to other well-suited pairing friendly elliptic curves.
We considered the attacks on the underlying non-standard problem. We also provided time computation on
a prototype, the broadcaster hosted on a standard PC and each receiver hosted on a Samsung Galaxy II
smartphone with Android operating system. For large groups of users (more than 200000), the decryption
time is up to 2 seconds which can be too slow. Hence we proposed improvements based on a time-memory
trade-off. Because of the use of an asymmetric pairing, the public key size remains reasonable, hence doubling
this size is feasible in order to reduce under 2 seconds the decryption time. We then explained and justified
all our choices to use in practice in a real Pay-TV or OTAR system the BGW protocol.
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