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Abstract

Distributed key generation (DKG) has been studied extensively in the cryptographic litera-
ture. However, it has never been examined outside of the synchronous setting, and the known
DKG protocols cannot guarantee safety or liveness over the Internet.

In this work, we present the first realistic DKG protocol for use over the Internet. We
propose a practical system model for the Internet and define an efficient verifiable secret sharing
(VSS) scheme in it. We observe the necessity of Byzantine agreement for asynchronous DKG
and analyze the difficulty of using a randomized protocol for it. Using our VSS scheme and
a leader-based agreement protocol, we then design a provably secure DKG protocol. We also
consider and achieve cryptographic properties such as uniform randomness of the shared secret
and compare static versus adaptive adversary models. Finally, we implement our DKG protocol,
and establish its efficiency and reliability by extensively testing it on the PlanetLab platform.
Counter to a general non-scalability perception about asynchronous systems, our experiments
demonstrate that our asynchronous DKG protocol scales well with the system size and it is
suitable for realizing multiparty computation and threshold cryptography over the Internet.

Keywords: asynchronous communication model. computational setting. distributed key generation.
uniform randomness. implementation

1 Introduction

Numerous online cryptographic applications require a trusted authority to hold a secret. How-
ever, this requirement always leads to the problem of single point of failure and sometimes to
the more undesirable problem of key escrow. Solving these problems is of paramount importance
while designing systems over the Internet where denial-of-service attacks and malicious entities are
widespread. A distributed key generation (DKG) [42] protocol overcomes these problems using a
complete distribution of the trust among a set of servers. In essence, an (n, t)-DKG protocol allows
a set of n nodes to collectively generate a secret with its shares spread over the nodes such that any
subset of size greater than a threshold t can reveal or use the shared secret, while smaller subsets do
not have any knowledge about it. Unlike the original secret sharing schemes [6,46], where a dealer
generates a secret and distributes its shares among the nodes, DKG requires no trusted party.

A DKG protocol is a fundamental building block of both symmetric and asymmetric threshold
cryptography. In symmetric-key cryptography, DKG is used to design distributed key distribution
centres [38]. Here, a group of servers jointly realize the function of a key distribution centre, which
generates and provides encryption keys for secure conferences to clients. In public-key cryptography
(PKC), DKG is essential for dealerless threshold public-key decryption and signature schemes [16]
and for distributed private-key generation in identity-based cryptography (IBC) [7]. In a threshold
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decryption scheme, a private key is distributed among a group such that, given a ciphertext, more
than a threshold number of them have to combine their decrypted shares to find the plaintext
message. On the other hand, in a threshold signature scheme, the signing key is distributed among
a group such that more than a threshold number of them have to combine their partial signatures
to sign a message. In distributed key distribution centres and threshold decryption and signature
schemes, DKG tackles the problem of single point of failure. In IBC, it also mitigates the key escrow
issue, when it is impractical to trust and rely on a single entity, the private-key generator (PKG),
to generate and distribute private keys to IBC clients. A distributed PKG becomes necessary
when IBC is used in practical systems—outside the usual organizational settings—such as key
distribution in ad-hoc networks [32] or pairing-based onion routing [30]. DKG is also an important
primitive in distributed pseudo-random functions [38], which are useful in distributed coin tossing
algorithms [11], random oracles [39] and multiparty computation (MPC) [26].

Although various theoretical aspects of DKG have been thoroughly researched for the last
two decades, the systems aspects have been largely ignored. Existing DKG protocols rely on
assumptions like synchronous communication (bounded communication delay, with known bounds)
or ask for a reliable broadcast channel. As these prerequisites are not readily available over the
Internet, the existing DKG protocols are not suitable for the Internet-based applications and there
is no DKG available or used in practice yet. In this paper, we design and implement a practical
DKG protocol for use over the Internet.

Contributions. In a preliminary version [28] of this paper, we defined the first practical DKG
protocol for use over the Internet. Here, we formally prove its safety and liveness properties
and present a practical mechanism to obtain cryptographically important property of uniform
randomness of the shared secret. We also implement and verify the practicality of our DKG
protocol over the PlanetLab platform.

• As our first contribution, we define a realistic system model over the Internet (Section 2).
We combine the standard Byzantine adversary with crash recovery and network failures in
an asynchronous setting. We also analyze the asynchronous versus partially synchronous
dichotomy for the Internet and justify the choice of treating crashes and network failures
separately.

• We present a VSS scheme (HybridVSS) that works in our system model (Section 4). Observing
the necessity of a protocol for agreement on a set for asynchronous DKG, we define and prove
a practical DKG protocol (HybridDKG) for use over the Internet (Section 5). We use a leader-
based agreement scheme in our DKG, as we observe a few pragmatic issues with the usually
suggested randomized agreement schemes.

• We also consider the uniform randomness of the shared secret in DKG and modify our Hy-
bridDKG protocol to achieve uniform randomness in the random oracle model (Section 5.3).

• Finally, we implement our HybridDKG protocol and test its performance over the PlanetLab
platform (Section 6). To the best of our knowledge, this is the first time that a distributed
cryptographic protocol in the asynchronous setting has been tested with up to 70 nodes
(replicas) spread across multiple continents. We observe that the HybridDKG protocol scales
well in terms of the execution time and the system load, and it can be used to realize threshold
cryptography and MPC over the Internet. We also present some system-level optimizations
for HybridDKG and consider the system’s resilience against denial-of-service (DoS) attacks
and Sybil attacks. Our implementation is available from our web site [2].
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2 Assumptions and System Model

In this section, we discuss the assumptions and the system model for our protocols, giving special
attention to their practicality over the Internet. This generic system model will also be applicable
to many other distributed protocols over the Internet.

2.1 Communication Model

Our DKG protocol should be deployable over the Internet. The expected message-transfer delay
and the expected clock offset there (a few seconds, in general) is significantly smaller than a possible
system utility period which may extend up to a few days. With such an enormous difference, a
failure of the network to deliver a message within a fixed time bound can be treated as a failure
of the sender; this may lead to a retransmission of the message after appropriate timeout signals.
As this is possible without any significant loss in the synchrony of the system, the asynchronous
communication assumption seems to be unnecessarily pessimistic here. It is tempting to treat
the Internet as a synchronous network (bounded message delivery delays and processor speeds)
and develop more efficient protocols using well-known message delivery time bounds and system
run-time assumptions.

Deciding these time bounds correctly is a difficult problem to solve. Further, even if it is possible
to determine tight bounds between the optimistic and pessimistic cases, there is a considerable
difference between the selected time bounds and the usual computation and communication time.
Protocols based on the synchronous assumption invariably use these time bounds in their definitions,
while those based on the asynchronous assumption solely use numbers and types of messages.

A real-world adversary, with knowledge of any time bounds used, can always slow down the
protocols by delaying its messages to the verge of the time bounds. In asynchronous protocols,
although it is assumed that the adversary manages the communication channels and can delay
messages as it wishes, a real-world adversary cannot control communication channels for all the
honest nodes. It is practical to assume that network links between most of the honest nodes
are perfect. Consequently, even if the adversary delays its messages, an asynchronous protocol
completes without any delay when honest nodes communicate promptly. Thus, the asynchrony
assumption may increase message complexity or the latency degree (number of communication
rounds), but in practice does not increase the actual execution time. Observing this, we use the
asynchronous communication assumption for our protocols.

Weak Synchrony Assumption (only for liveness). For liveness (the protocol eventually
terminates), but not safety (the protocol does not fail or produce incorrect results), we need a
(weak) synchrony assumption. Otherwise, we could implement consensus in the asynchronous
model with adversary nodes, which is impossible [21]. We use a weak synchrony assumption by
Castro and Liskov [14] to achieve liveness. Let delay(T ) be the time between the moment T when
a message is sent for the first time and the moment when it is received by its destination. The
sender keeps retransmitting the message until it is received correctly. We assume that delay(T )
does not grow faster than T indefinitely. Assuming that network faults are eventually repaired and
DoS attacks eventually stop, this assumption seems to be valid in practice.

Note that this assumption is also strictly weaker than the partially synchronous communication
assumptions defined by Dwork et al. [18]). In their first partial synchrony assumption message
delivery delays and processor speeds are bounded, but the bounds are not known a priori, while in
their second partial synchrony assumption, the bounds are known, but are only guaranteed to hold
starting some unknown time. In the asymptotic notation, both of these delay notations are Θ(1).
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However, the weak synchrony assumption is o(T ), and therefore, weaker than the partial synchrony
assumptions.

2.2 Byzantine Adversary, Crash-Recoveries and Link Failures

Most of the distributed computing protocols in the literature assume a t-limited Byzantine adversary
and a compromised node remains Byzantine and unused after recovery. We also aim at proactive
security for our DKG, where the t-limited mobile Byzantine adversary can change its choice of
t nodes as time progresses. There, a node compromised during a phase remains unused, after
recovery, for the remainder of that phase as its share is already compromised. Any intra-phase
share modification for a recovered node leads to intra-phase share modification to all the nodes,
which is unacceptable in general.

This does not model failures over the Internet in the best way. Other than malicious attacks
leading to compromise, some nodes (say f of them) may just crash silently without showing ar-
bitrary behaviours or get disconnected from the rest of the network due to network failures or
partitioning. Importantly, secrets at these f nodes are not available to the adversary and mod-
elling them as Byzantine failures not only leads to sub-optimal resilience of n ≥ 3(t+f)+1 instead
of n ≥ 3t+ 2f + 1, but it also increases the bit complexity with added security requirements (t+ f
instead of t). Keeping such nodes inactive, after their recovery, until the start of next phase is not
ideal. This prompts us to use a hybrid model.

Our system adopts the hybrid model of Backes and Cachin [4], but with a modification to
accommodate broken links. From any honest node’s perspective, a crashed node behaves similarly
to a node whose link with it is broken and we model link failures in the form of crashes. For
every broken link between two nodes, we assume that at least one of two nodes is among the list
of currently crashed nodes. A node that is crashed means that some of its links are down, not
necessarily that they all are. Further, all non-Byzantine nodes may crash and recover repeatedly
with a maximum of f crashed nodes at any instant and a recovering honest node recovers from
a well-defined state using, for example, a read-only memory. In addition to these nodes that
crash completely (losing any keys they may have) and subsequently recover from that state, other
non-Byzantine nodes may remain up, but have some of their links down; those links remain down
throughout the protocol (otherwise, they are simply normal asynchronous links), and the nodes may
or may not realize that the links are down. These nodes will not need to recover their keys, since
they have not lost them. As long as the size of the list of crashed nodes, including all completely
crashed nodes, and one of the endpoints of every broken link, does not exceed f at any time, our
protocols will succeed. We also assume that the adversary (eventually) delivers all the messages
between two uncrashed nodes.

Formally, we consider an asynchronous network of n ≥ 3t + 2f + 1 nodes P1, . . . , Pn of which
the adversary may corrupt up to t nodes during its existence and may crash another f nodes at
any time. For f = 0, 3t+ 1 nodes are required as a differentiation between slow honest nodes and
Byzantine nodes is not possible in an asynchronous network, while for t = 0, 2f + 1 nodes are
mandatory to achieve consistency. At least n− t− f nodes, which are not in the crashed state at
the end of a protocol, are termed finally up nodes.

2.3 Cryptographic Assumptions and Setup

Definition 2.1. A function ε(·) : N→ R+ is called negligible if for all c > 0 there exists a κ0 such
that ε(κ) < 1/κc for all κ > κ0.
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In the remainder of the paper, ε(·) denotes a negligible function. Our adversary is computa-
tionally bounded with a security parameter κ and it has to solve the DLog problem [37, Sec. 3.6]
(Definition 2.2) for the security parameter κ to break the security of the protocols. Further, as
discussed in Section 3.3, our t-limited adversary is also static.

Definition 2.2. Let p be a prime whose size is linear in κ. Given a generator g of a multi-
plicative group G of order p and a ∈ Z∗p, the discrete logarithm (DLog) assumption suggests that
Pr[ADLog(g, g

a) = a] = ε(κ) for every polynomial-time adversary ADLog.

We use a PKI infrastructure in the form of a PKI hierarchy with an external certifying authority
or web-of-trust among nodes to achieve authenticated and confidential communication with TLS
links, and message authentication with any digital signature scheme secure against adaptive chosen-
message attacks [25]. Each node also has a unique identifying index. We assume that indices and
public keys for all nodes are publicly available in the form of certificates. It is possible to achieve
similar security guarantees in a symmetric-key setting with long-term keys.

2.4 Complexity Assumptions

In our hybrid model, nodes may crash and recover repeatedly with a maximum of f crashed nodes
at any instant. We still need to bound the crashes as an unbounded number of crashes can cause
the protocol execution time to be unbounded. We restrict the adversary by a function d(·) that
represents the maximum number of crashes that it is allowed to perform during its lifetime and
parametrize d(·) with the security parameter κ. Note that, based on the system requirements, it is
possible to make d(·) constant or parametrize it with n, t or f .

Work done by honest parties can be measured by a protocol statistic X, which is a family of
real-valued non-negative random variables {XA(κ)}, parametrized by adversary A and κ. Each
XA(κ) is a random variable induced by running the system with A. A protocol statistic X is called
uniformly bounded if there exists a fixed polynomial T (κ) such that for all adversaries A, there is
a negligible function εA, such that for all κ ≥ 0, Pr[XA(κ) > T (κ)] ≤ εA(κ). As we consider a
computationally bounded adversary, we aim at polynomially bounded system execution space and
time and bounding protocol complexities by a polynomial in the adversary’s running time.

For crash-recovery situations, Backes and Cachin introduce the notion of d-uniformly bounded
statistics [4, Def. 1]. Here, a bounded protocol statistic X is considered to be d-uniformly bounded
(by T1 and T2) for a function d(κ) if there exist two fixed polynomials T1 and T2 such that for
all adversaries A, there exists a negligible function εA(κ) such that for all κ ≥ 0, Pr[XA(κ) >
d(κ)T1(κ) + T2(κ)] ≤ εA(κ). In order words, the complexity of the protocol is uniformly bounded
if no crash occurs (which is ensured by T2), and the computational overhead caused by each crash
is also uniformly bounded (ensured by T1). Similar to [4], we expect that the bit complexity of a
protocol is d-uniformly bounded for some polynomial d.

3 Background

In this section, we survey the concepts of VSS, homomorphic commitments and DKG.

3.1 Verifiable Secret Sharing

The notion of secret sharing was introduced independently by Shamir [46] and Blakley [6]. Since
then, it has remained an important topic in security research.
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Definition 3.1. (n, t+ δ, t)-Secret Sharing. For integers n, t and δ such that n ≥ t+ δ > t ≥ 0,
an (n, t+δ, t)-secret sharing scheme is a protocol used by a dealer to share a secret s among a set of
n nodes in such a way that any subset of t+ δ or more nodes can compute the secret s, but subsets
of size t or fewer have no information about s.

A secret sharing scheme with δ = 1 is called a threshold secret sharing scheme, and for δ > 1, it
is called a ramp secret sharing scheme. In this work, we concentrate on threshold secret sharing and
denote it as (n, t)-secret sharing instead of (n, t+1, t)-secret sharing. Note that all polynomial-based
threshold secret sharing schemes can easily be converted to ramp secret sharing schemes [47].

In some secret sharing applications, clients may need to verify a consistent dealing to prevent
malicious behaviour by the dealer. A scheme with such a verifiability guarantee is known as
verifiable secret sharing (VSS) scheme [15]. Feldman [19] developed the first non-interactive and
efficient VSS scheme and Pedersen [41] presented a modification to it.

Definition 3.2. An (n, t)-VSS scheme consists of two phases: the sharing (Sh) phase and the
reconstruction (Rec) phase.

Sh phase. A dealer Pd distributes a secret s ∈ K among n nodes, where K is a sufficiently large
key space. At the end of the Sh phase, each honest node Pi holds a share si of the distributed
secret s.

Rec phase. In this phase, each node Pi broadcasts its secret share s′i and a reconstruction function
is applied in order to compute the secret s = Rec(s′1, s

′
2, . . . , s

′
n) or output ⊥ indicating that

Pd is malicious. For honest nodes s′i = si, while for malicious nodes s′i may be different from
si or even absent.

It has two security requirements:

Secrecy (VSS-wS). A t-limited adversary who can compromise t nodes cannot compute s during
the Sh phase.

Correctness (VSS-C). The reconstructed value should be equal to the shared secret s or every
honest node concludes that Pd is malicious by outputting ⊥.

We consider VSS schemes in the computational complexity setting. Here, any malicious be-
haviour by Pd is caught by the honest nodes in the Sh phase itself and the VSS-C property simplifies
to the following: the reconstructed value should be equal to the shared secret s. Further, many
VSS applications avoid participation by all parties during the Rec phase. It is required that shares
from any t + 1 honest nodes (or any 2t + 1 nodes) is sufficient to reconstruct s. Therefore, we
mandate the correctness property that we refer as strong correctness requirement.

Strong Correctness (VSS-SC). The same unique value s is reconstructed regardless of the sub-
set of nodes (of size greater than 2t) chosen by the adversary in the Rec algorithm.

Further, some VSS schemes achieve a stronger secrecy guarantee.

Strong Secrecy (VSS-S). The adversary who can compromise t nodes does not have any more
information about s except what is implied by the public parameters.

Asynchronous VSS. Although the literature for VSS has been vast, VSS in the asynchronous
communication model has not yet received the required attention. Canetti and Rabin [13] developed
the first complete asynchronous VSS scheme with unconditional security. However, this scheme and
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its successors [3,40], due to their Ω(n5) bit complexities, are prohibitively expensive for any realistic
use.

Compromising the unconditional security assumption, Cachin et al. [9] (AVSS), Zhou et al. [50]
(APSS), and more recently Schultz et al. [45] (MPSS) suggested more practical asynchronous VSS
schemes. Of these, the APSS protocol is impractical for any reasonable system size, as it uses a
combinatorial secret sharing scheme by Ito, Saito and Nishizeki [27], which leads to an exponential(
n
t

)
factor in its message complexity. MPSS, on the other hand, is developed for a more mobile

setting where set of the system nodes has to change completely between two consecutive phases to
maintain the secrecy and correctness properties.

AVSS is the most general and practical scheme in the asynchronous communication model
against Byzantine adversaries, but it does not handle crash recoveries. It assimilates a bivariate
polynomial into Bracha’s reliable broadcast [8] and can provide complete flexibility with the sets
used without hampering the security. In asynchronous VSS, any two participants need to verify the
dealer’s commitment with each other to achieve correctness; thus, a protocol with o(n2) message
complexity does not seem to be possible. Therefore, AVSS, with its optimal message complexity,
forms the basis for our HybridVSS and HybridDKG protocols appearing in sections 4 and 5.

3.2 Homomorphic Commitments

A verification mechanism for a consistent dealing is fundamental to VSS. It is achieved using
distributed computing techniques in the unconditional setting. In the computational setting, ho-
momorphic commitments provide an efficient alternative. Let C(α, [r]) ∈ G be a homomorphic
commitment to α ∈ Zp, where r is an optional randomness parameter and G is a (multiplicative)
group. For such a homomorphic commitment, given C1 = C(α1, [r1]) and C2 = C(α2, [r2]), we have
C1 · C2 = C(α1 + α2, [r]).

VSS protocols utilize two forms of commitments. Let g and h be two random generators of G.
Feldman, for his VSS protocol [19], used the DLog commitment scheme of the form C〈g〉(α) = gα with
computational security under the DLog assumption and unconditional share integrity. Pedersen [42]
presented another commitment of the form C〈g,h〉(α, r) = gαhr with unconditional security but
computational integrity under the DLog assumption. In PKC based on computational assumptions,
with adversarial access to the public key, unconditional security of the secret (private key or master
key) is impossible. Further, in VSS schemes based on Pedersen commitments, in order to randomly
select the generator h, an additional round of communication is required during bootstrapping.
Consequently, in our scheme, we use simple and efficient DLog commitments, except during a
special case described in Section 5.3.

It is also possible to prove equality of values committed using Pedersen commitments and
DLog commitments using non-interactive zero-knowledge (NIZK) proofs [20]. Here, given a DLog
commitment C〈g〉(s) = gs and a Pedersen commitment C〈g,h〉 (s, r) = gshr to the same value s for
generators g, h ∈ G and s, r ∈ Zp, a prover proves that she knows s and r such that C〈g〉(s) = gs

and C〈g,h〉(s, r) = gshr. We denote this by

NIZKPK≡Com(s, r, C〈g〉(s), C〈g,h〉(s, r)) = π≡Com (1)

The proof is equivalent to zero-knowledge proofs of knowledge used by Canetti et al. [12] in their
adaptive secure DKG. It is generated as follows:

• Pick v1, v2 ∈R Zp, and let t1 = gv1 and t2 = hv2 .

• Compute hash c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t1, t2), where H≡Com : G6 → Zp is a
random oracle hash function.
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• Let u1 = v1 − c · s and u2 = v2 − c · r.

• Send the proof π≡Com = (c, u1, u2) along with C〈g〉 (s) and C〈g,h〉(s, r).

The verifier checks this proof (given π≡Com, g, h, C〈g〉 (s), C〈g,h〉(s, r)) as follows:

• Let t′1 = gu1C〈g〉(s)c and t′2 = hu2(
C〈g,h〉(s,r)
C〈g〉(s)

)c.

• Accept the proof as valid if c = H≡Com(g, h, C〈g〉(s), C〈g,h〉(s, r), t′1, t′2).

3.3 Distributed Key Generation

Pedersen [42] introduced the concept of distributed key generation (DKG) and developed a DKG
scheme. Here, each node runs a VSS instance and distributed shares are added at the end to
generate a combined shared secret without a dealer. Unlike VSS, DKG requires no trusted party.

Definition 3.3. An (n, t)-DKG scheme consists of two phases: the sharing (Sh) phase and the
reconstruction (Rec) phase.

Sh phase. Every node Pi distributes a secret zi ∈ K among n nodes, where K is a sufficiently large
additive cyclic group. At the end of the Sh phase, each honest node Pi holds a share si of the
distributed secret s, which is a pre-decided linear combination of the shared zi values.

Rec phase. Each node Pi broadcasts its secret share s′i and a reconstruction function is applied
in order to compute the secret s = Rec(s′1, s

′
2, . . . , s

′
n). For honest nodes s′i = si, while for

malicious nodes s′i may be different from si or even absent.

As discussed in the introduction, DKG has numerous application in cryptography. In the paper,
we concentrate on threshold cryptosystems in the DLog setting. In this setting, having a cyclic
group G of prime order p, a DKG protocol generates secret sharing of a secret s ∈ Zp, and publishes
Y = (g, gs) for g ∈R G as the corresponding public key. Gennaro et al. [24, Section 4.1] suggested
the following secrecy and correctness requirements for an (n, t)-DKG protocol in the DLog setting:

Correctness (DKG-C).

1. There is an efficient algorithm that on input shares from 2t + 1 nodes and the public
information produced by the DKG protocol outputs the same unique value s, even if up
to t shares are submitted by malicious nodes.1

2. At the end of Sh phase, all honest nodes have the same value of the public key Y = gs,
where s is the unique secret guaranteed above.

3. s and Y are uniformly distributed in Zn and G, respectively.

Secrecy (DKG-S). No information about the secret s can be learned by the adversary except for
what is implied by Y = gs.

Gennaro et al. [22] found that DKGs based on the Feldman VSS methodology do not guarantee
uniform randomness of the shared secret key or DKG-S. Further, they observed that the use of
digital signatures or other slight modifications do not provide any additional security to the Peder-
sen DKG [42] and presented a simplification using just the original Feldman VSS called the Joint

1Note that this is the stronger version, which they define in the latter part of [24, Section 4.1].
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Feldman DKG (JF-DKG) as the representative scheme. They then defined a new DKG proto-
col combining discrete logarithm and Pedersen commitments [42], which guarantees the uniform
randomness property by increasing the latency (number of communication rounds) of the DKG
protocol by one.

In [23], the same set of authors observed that the Pedersen DKG and JF-DKG produce hard
instances of the DLog problem, which may be sufficient for the security of some threshold cryp-
tographic schemes. Although a reduction in their JF-DKG security proof is not tight, as they
discussed in [24], an elliptic-curve implementation of JF-DKG with appropriately increased key
sizes is still faster than the modification they suggested in [22]. In this weaker version of DKG, the
third correctness property is absent and the secrecy requirement weakens to the following:

Weak Correctness (DKG-wC).

1. There is an efficient algorithm that on input shares from 2t + 1 nodes and the public
information produced by the DKG protocol outputs the same unique value s, even if up
to t shares are submitted by malicious nodes.

2. At the end of Sh phase, all honest nodes have the same value of public key Y = gs,
where s is the unique secret guaranteed above.

Weak Secrecy (DKG-wS). The adversary with t shares and the public key Y = gs cannot
compute the secret s.

Knowing this efficiency and secrecy tradeoff, we define two versions of our DKG constructions:
an efficient DKG with weak correctness and weak secrecy, and a DKG with uniform randomness
of the shared secret and strong secrecy.

It is important to discuss the relationship between the various secrecy and correctness notions
that we present in the above two sections. For secrecy, VSS-wS and VSS-S are equivalent to DKG-
wS and DKG-S respectively. For correctness, VSS-SC is included in both DKG-wS and DKG-S;
the weaker VSS-C is a property common only in the unconditional VSS protocols.

Our protocols and most of the distributed cryptographic protocols in the literature are not
considered secure against an adaptive adversary that may choose its t compromisable nodes as a
protocol is getting executed. As elaborated in [24, Section 4.4], this is only because their (simulation-
based) security proofs do not go through when the adversary can corrupt nodes adaptively. In [19,
Section 9.3], Feldman claimed that his VSS protocol is also secure against adaptive adversaries
even though his simulation-based security proof did not work out. Canetti et al. [12] presented a
distributed protocol methodology that is provably secure against adaptive adversaries using inter-
active zero-knowledge proofs and a proof technique that may rewind the adversary a polynomial
number of times. However, their methodology in general adds at least two more communication
rounds to a protocol, which can severely deteriorate the system performance.

On the other hand, all of the protocols in the literature that are proven secure only against a
static adversary have remained unattacked by an adaptive adversary for the last 25 years. Gaining
some confidence from this fact and giving importance to efficiency, we stick to protocols provably
secure only against a static adversary in our work.

4 VSS for the Hybrid Model—HybridVSS

VSS is the fundamental building block for DKG. Our VSS protocol modifies the AVSS protocol [9]
for our hybrid model. We include recovery messages similar to those from the reliable broad-

9



cast protocol by Backes and Cachin [4]. We achieve a constant-factor reduction in the protocol
complexities using symmetric bivariate polynomials.

4.1 Construction

As usual, our VSS protocol is composed of a sharing protocol (Sh) and a reconstruction protocol
(Rec). In protocol Sh, a dealer Pd upon receiving an input message (Pd, τ, in, share, s), shares the
secret s, where a counter τ and the dealer identity Pd forms a unique session identifier. Node Pi
finishes the Sh protocol by outputting a (Pd, τ, out, shared, C, si) message, where C is the commit-
ment and si is its secret share. Any time after that, upon receiving an input message (Pd, τ, in,
reconstruct), Pi starts the Rec protocol. The Rec protocol terminates for a node Pi by outputting
a message (Pd, τ, out, reconstructed, zi), where zi is Pi’s reconstructed value of the secret s.

Note that, for the simplicity of discussion, we use DLog commitments instead of the Peder-
sen commitments used in the original AVSS protocol and achieve VSS-wS secrecy (as defined in
Section 3.1). It is easily possible to use Pedersen commitments instead and achieve VSS-S secrecy.

Definition 4.1. In session (Pd, τ), protocol VSS in our hybrid model (HybridVSS) having an asyn-
chronous network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary and f -limited
crashes and network failures satisfies the following conditions:

Liveness. If the dealer Pd is honest and finally up in the sharing stage of session (Pd, τ), then all
honest finally up nodes complete protocol Sh.

Agreement. If some honest node completes protocol Sh of session (Pd, τ), then all honest finally
up nodes will eventually complete protocol Sh in session (Pd, τ). If all honest finally up nodes
subsequently start protocol Rec for session (Pd, τ), then all honest finally up nodes will finish
protocol Rec in session (Pd, τ).

Correctness. Once t+ 1 honest nodes complete protocol Sh of session (Pd, τ), then there exists a
fixed value z such that

• if the dealer is honest and has shared secret s in session (Pd, τ), then z = s, and

• if an honest node Pi reconstructs zi in session (Pd, τ), then zi = z.

This is equivalent to the strong correctness (VSS-SC) property defined in Section 3.1.

Secrecy. If an honest dealer has shared secret s in session (Pd, τ) and no honest node has started
the Rec protocol, then, except with negligible probability, the adversary cannot compute the
shared secret s. This is equivalent to the VSS-wS secrecy property defined in Section 3.1.

Efficiency. The bit complexity for any instance of HybridVSS is d-uniformly bounded.

Figure 1 describes the Sh and the Rec phases of HybridVSS. We use pseudo-code notation and
include a special condition upon to define actions based on messages received from other nodes
or system events. C is a matrix of commitment entries and eC and rC are Pi’s associated counters
for echo and ready messages, respectively. In order to facilitate recovery of the crashed nodes, each
node Pi stores all outgoing messages along with their intended recipients in a set B. B` indicates
the subset of B intended for the node P`. Counters cnt and cnt` keep track of the numbers of
overall help requests and help requests sent by each node P` respectively. In the presence of crash-
recoveries and malicious nodes, a node may receive a message identified by Pd, τ and C multiple
times. According to the protocol definition, it processes the message only the first time it receives
it, and ignores subsequent receipts. We use the following predicates in our protocol.
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Sh protocol for node Pi and session (Pd, τ)
upon initialization:

for all C do
AC ← ∅; eC ← 0; rC ← 0
cnt← 0; cnt` ← 0 for all ` ∈ [1, n]

upon a message (Pd, τ, in, share, s): /* only Pd */

choose a symmetric bivariate polynomial φ(x, y) =
∑t
j,`=0 φj`x

jy` ∈R Zp[x, y] and φ00 = s

C ← {Cj`}tj,`=0 where Cj` = gφj` for j, ` ∈ [0, t]
for all j ∈ [1, n] do
aj(y)← φ(j, y); send the message (Pd, τ, send, C, aj) to Pj

upon a message (Pd, τ, send, C, a) from Pd (first time):

if verify-poly(C, i, a) then
for all j ∈ [1, n] do

send the message (Pd, τ, echo, C, a(j)) to Pj

upon a message (Pd, τ, echo, C, α) from Pm (first time):

if verify-point(C, i,m, α) then
AC ← AC ∪ {(m,α)}; eC ← eC + 1
if eC = dn+t+1

2 e and rC < t+ 1 then
Lagrange-interpolate a from AC
for all j ∈ [1, n] do

send the message (Pd, τ, ready, C, a(j)) to Pj

upon a message (Pd, τ, ready, C, α) from Pm (first time):

if verify-point(C, i,m, α) then
AC ← AC ∪ {(m,α)}; rC ← rC + 1
if rC = t+ 1 and eC < dn+t+1

2 e then
Lagrange-interpolate a from AC
for all j ∈ [1, n] do

send the message (Pd, τ, ready, C, a(j)) to Pj
else if rC = n− t− f then
si ← a(0); output (Pd, τ, out, shared, C, si)

upon a message (Pd, τ, in, recover):

send the message (Pd, τ, help) to all the nodes
send all messages in B

upon a message (Pd, τ, help) from P`:

if cnt` ≤ d(κ) and cnt ≤ (t+ 1)d(κ) then
cnt` ← cnt` + 1; cnt← cnt+ 1
send all messages of B`

Rec protocol for node Pi and session (Pd, τ)
upon a message (Pd, τ, in, reconstruct):

c← 0; S ← ∅
for all j ∈ [1, n] do

send the message (Pd, τ, reconstruct-share, si) to Pj

upon a message (Pd, τ, reconstruct-share, σ) from Pm:

if (gσ =
∏t
j=0(Cj0)m

j

) then
S ← S ∪ {(m,σ)}; c← c+ 1
if c = t+ 1 then

interpolate constant term (zi) from S
output (Pd, τ, out, reconstructed, zi)

Figure 1: Protocol HybridVSS
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verify-poly(C, i, a) verifies that the given polynomial a of Pi is consistent with the commitment
C. Here, a(y) =

∑t
`=0 a`y

` is a degree-t polynomial. The predicate is true if and only if

ga` =
∏t
j=0(Cj`)i

j
for all ` ∈ [0, t].

verify-point(C, i,m, α) verifies that the given value α corresponds to the polynomial evaluation

φ(m, i). It is true if and only if gα =
∏t
j,`=0 (Cj`)m

ji` .

Note that the AVSS and our HybridVSS schemes use bivariate polynomials, as they guarantee
that the interpolated polynomials a are of degree t or less. If the univariate polynomials with
the constant term equal to the secret s are instead used by dealers in the send messages and the
univariate polynomials with the constant term equal to their shares si are instead used by nodes in
the echo and ready messages, then degrees of the interpolated polynomials a will be greater than t
with overwhelming probability.

4.2 Analysis

The main theorem for HybridVSS is as follows.

Theorem 4.1. With the DLog assumption, protocol HybridVSS implements asynchronous VSS in
the hybrid model for n ≥ 3t+ 2f + 1.

Proof. We need to show liveness, agreement, correctness, secrecy, and efficiency. We combine proof
strategies from AVSS [9, Sec. 3.3] and reliable broadcast [4, Sec. 3.3] to achieve this. We start by
referring to two lemmas.

Lemma 4.1 (Lemma 1 [4]). Let Pi be a finally up party during session (Pd, τ). Then every distinct
message sent to Pi by another finally up party Pj during session (Pd, τ) will be received by Pi in a
non-crashed state, provided all associated messages are delivered.

Lemma 4.2 (Lemma 2 [9]). Suppose an honest node Pi sends a ready message containing com-
mitment Ci and a distinct honest node Pj sends a ready message containing commitment Cj. Then
Ci = Cj.

Liveness. Here, we prove that if the dealer Pd is honest and finally up during the sharing stage of
session (Pd, τ), then all honest finally up nodes complete protocol Sh.

We assume that the dealer Pd is honest and finally up. According to Lemma 4.1, send messages
of the form (Pd, τ, send, C, ai) sent by Pd to each finally up node Pi will eventually be received and
verified by each such Pi. Each of these honest and finally up nodes (at least n− t− f) will send an
echo message of the form (Pd, τ, echo, C, ai(j)) to each system node Pj . Using Lemma 4.1, every
finally up honest node will thus receive at least n − t − f valid echo messages. A valid echo and
ready message is one that satisfies verify-point. As n − t − f ≥ dn+t+1

2 e for n ≥ 3t + 2f + 1, every
honest finally up node Pj will send ready message (Pd, τ, ready, C, aj(m)) to every system node Pm
as either the received echo messages are greater than required bound (dn+t+1

2 e) or it has already
received t + 1 ready messages. As all ready messages will be eventually received by the finally up
nodes according to Lemma 4.1, each finally up honest node will receive at least n− t− f verifiably
correct ready messages. Consequently, each honest finally up node will complete the protocol Sh by
outputting (Pd, τ, shared) messages.
Agreement. We first show that if some honest node completes protocol Sh of (Pd, τ), then all
honest finally up nodes will eventually complete protocol Sh during session (Pd, τ). An honest
node completes the sharing when it receives n − t − f valid ready messages. At least t + f + 1
of those have been sent by honest nodes. Using the definitions of verify-poly and verify-point, the
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honest node sends only valid ready messages. Further, when sending, an honest node sends ready
messages to all system nodes. Thus, using Lemma 4.2, every honest finally up node receives at least
t+f+1 valid ready messages with the same commitment C and sends a ready message containing C.
Consequently, every honest finally up node receives n−t−f valid ready messages with commitment
C and completes the Sh protocol.

For protocol Rec, we show that if all honest finally up nodes subsequently begin protocol Rec
for session (Pd, τ), then all honest finally up nodes will finish protocol Rec during session (Pd, τ)
by reconstructing s′i. As discussed above, at the end of the sharing step, every honest finally
up node Pi computes the same commitment C. Moreover, Pi has received enough valid echo or
ready messages with commitment C and it computes valid ready messages and a valid share si with
respect to C (si such that (gsi =

∏t
j=0(Cj0)m

j
) holds). Thus, if all honest servers subsequently start

the reconstruction stage, then every server receives enough valid shares to reconstruct some value,
provided the adversary delivers all associated messages.
Correctness (VSS-SC). Suppose an honest dealer has shared a degree-t symmetric bivariate
polynomial φ(x, y) with constant term equal to the shared secret s. As the dealer is honest, an
echo message that an honest node Pi receives from another honest node Pj contains C, φ(j, i). As
the required number of echo messages before interpolating the final univariate polynomial at a
node is equal to dn+t+1

2 e, it is impossible for faulty nodes to make a node accept commitment C′
different from commitment C suggested by the dealer. Subsequently, such an honest node Pi, after
verification with verify-point, interpolates a polynomial a(y) such that a(y) = φ(i, y). Assume an
honest node receives t+ 1 ready messages before obtaining dn+t+1

2 e commitment C echo messages.
Using Lemma 4.2 all these ready messages have the same commitment and with at least of one of
them from an honest node, it is equal to C. The honest node will interpolate the same a(y) as in
the case of the echo messages. Using the agreement property, if a node completes the protocol Sh,
then all honest nodes will eventually finish it. Let S be any set of t+ 1 honest nodes (Pj) that have
finished the sharing. Let sj,d represent the share for node Pj such that sj,d = a(0) = φ(j, 0). Let
λSj be Lagrange interpolation coefficients for the set S and position 0. We have

z =
∑
Pj∈S

λS,0j sj,d =
∑
Pj∈S

λS,0j φ(j, 0) = s

and if the dealer is honest and has shared secret s during session (Pd, τ), then z = s.
To prove the second part, assume that two distinct honest servers Pi and Pj reconstruct values

zi and zj by interpolating two distinct sets Si = {`, s(i)` } and Sj = {`, s(j)` } of t + 1 shares each,
which are valid with respect to the unique commitment C using Lemma 4.2. As the shares in Si
and Sj are verified against commitment C and they are valid, it is easy to see that gzi = C00 = gzj .
As g is a generator for a prime order group, zi = zj .
Secrecy (VSS-wS). To prove the secrecy property, we use the DLog assumption. The adversary’s
view consists of polynomials φ(i, y) for these Byzantine nodes i, and the commitment matrix C and
the generator g provided by the dealer. Assume that there is an adversary algorithm A that can
compute the shared secret s given g, C and t degree-t univariate polynomials consistent with C. We
prove that a challenger B with an oracle access to such an adversary algorithm A can solve any
DLog instance (g, gα).

Given a DLog instance (g, gα), the challenger B generates t degree-t polynomials ri(y) ∈ Zp[y]
and associates them with non-zero indices i. It then computes gri(0) for each index i, sets gr0(0) = gα

and computes C0,k = Ck,0 for k ∈ [0, t] by interpolation. Proceeding similarly, for each 0 < ` ≤ t,
it uses C0,` and gri(`) for each index i and computes C`,k = Ck,` and completes the symmetric
commitment matrix C which is consistent with gα as C0,0 and polynomials ri(y). B can then present
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this matrix C along with polynomials ri to the adversary algorithm A and return the output s = α
as the DLog value for tuple (g, gα). As this is not possible, except with negligible probability, we
have proven that if an honest dealer has shared secret s during session (Pd, τ) and no honest node
has started the Rec protocol, then the adversary cannot compute the secret s except with negligible
probability.

Note that, using Pedersen commitments instead of DLog commitments, we can easily achieve
and prove the VSS-S property that the adversary has no information about the shared secret s.
Efficiency. We first discuss complexities when there are no crashes. An execution without any
crashes has O(n2) message complexity and O(κn4) bit complexity where the size of the message is
dominated by the commitment matrix C having t(t+ 1)/2 = O(n2) entries.

Using a collision-resistant hash function, Cachin et al. [9, Sec. 3.4] suggest a way to reduce the
bit complexity to O(κn3). In this approach, commitments are generated using the exponentiated

form of polynomial evaluations (A
(i)
j = gφ(i,j)). Let A(j) = 〈A(j)

0 , A
(j)
1 , . . . , A

(j)
n 〉. In this case, the

bit complexity gets reduced by a linear factor using the A(0) vector and a vector h = 〈h1, . . . , hn〉,
where H is collision-resistant hash function and hj = H(A(j)).

Now, assume there are crashes and there are subsequent recoveries. As defined earlier, d(κ)
bounds the number of possible crashes in the system. In addition, each of the Byzantine nodes may
produce unlimited false help messages, out of which first d(κ) will be answered by honest nodes.
Therefore, each honest node will in total answer up to (t + 1)d(κ) help messages. The recovery
mechanism requires O(n2) messages from the recovering node and O(n) messages from each helper
node. Therefore, the total message and bit complexity of HybridVSS are O(tdn2) and O(κtdn3)
respectively and we obtain a uniform polynomial bound on the bit complexity.

5 DKG for the Hybrid Model—HybridDKG

HybridVSS requires a dealer (Pd) to select a secret and to initiate a sharing. DKG, going one step
further, generates a secret in a completely distributed fashion, such that none of the system nodes
knows the secret, while any t+1 nodes can combine their shares to determine it. Although it seems
that a DKG is just a system with n nodes running their VSSs in parallel and summing all the
received shares together at the end, it is not that simple in an asynchronous setting. Agreeing on
t+ 1 or more VSS instances such that all of them will finish for all the honest nodes (the agreement
on a set problem [5]), and the difficulty of differentiating between a slow node and a faulty node
in the asynchronous setting are the primary sources of the added complexity.

In our hybrid system model, with no timing assumption, the node cannot wait for more than
n− t−f VSSs to finish. The adversary can certainly make agreeing on a subset of size t+ 1 among
those nodes impossible, by appropriately delaying its messages. Cachin et al. [9] solve a similar
agreement problem in their proactive refresh protocol using a multi-valued validated Byzantine
agreement (MVBA) protocol. Known (expected) constant-round MVBA protocols [10] require
threshold signature and threshold coin-tossing primitives [11]. The algorithms suggested for both
of these primitives in [11] require either a dealer or a DKG. As we aim to avoid the former (dealer)
in this work and the latter (DKG) is our aim itself, we cannot use their MVBA protocol.

In more technical terms, randomization in the form of distributed coin tossing or equivalent
randomization functionality is mandatory for an expected constant-round Byzantine agreement
such as MVBA [10]; that thwarts the attack possible with an adversary knowing the pre-defined
node selection order by making completely random selections. However, an efficient algorithm for
dealerless distributed coin tossing without a DKG is difficult to achieve. Canetti and Rabin [13] de-
fine a dealerless distributed coin tossing protocol without DKG; however, their protocol requires n2
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VSSs for each coin toss and is consequently inefficient. Therefore, we refrain from using randomized
agreement.

We follow a much simpler approach with the same bit complexity as MVBA protocols. We use
a leader-initiated reliable broadcast system with a faulty-leader change facility, inspired by Castro
and Liskov’s view-change protocol [14]. We choose this (optimistic phase + pessimistic phase)
approach, as we expect the Byzantine failures to be infrequent in practice. The probability that
the current leader of the system is not behaving correctly is small and it is not worth spending
more time and bandwidth by broadcasting proposals by all the nodes during every MVBA. With
this background, we now define and analyze HybridDKG.

5.1 Construction

In HybridDKG, for session τ and leader L, each node Pd selects a secret value sd and shares it among
the group using protocol Sh of HybridVSS for session (Pd, τ). Each node finishes the HybridDKG
protocol by outputting a (L, τ,DKG-completed, C, si) message, where si and C are its share and the
commitment respectively and L is the finally agreed upon leader.

Definition 5.1. In session τ , protocol HybridDKG in our hybrid model having an asynchronous
network of n ≥ 3t + 2f + 1 nodes with a t-limited Byzantine adversary and f -limited crashes and
network failures satisfies the following conditions:

Liveness. All honest finally up nodes complete protocol HybridDKG in session τ , except with neg-
ligible probability.

Agreement. If an honest node completes protocol HybridDKG in session τ , then, except with neg-
ligible probability, all honest finally up nodes will eventually complete protocol HybridDKG in
session τ .

Correctness. Once an honest node completes the HybridDKG protocol for session τ , then there
exists a fixed value s such that, if an honest node Pi reconstructs zi in session τ , then zi = s.
This is equivalent to the weak correctness (DKG-wC) property defined in Section 3.3.

Secrecy. If no honest node has started the Rec protocol, then, except with negligible probability,
the adversary cannot compute the shared secret s. This is equivalent to the DKG-wS secrecy
property defined in Section 3.3.

Efficiency. The bit complexity for any instance of HybridDKG is d-uniformly bounded.

We first describe the optimistic phase of our HybridDKG protocol. For each session τ , one among
n nodes works as a leader. The leader L, once it finishes the VSS proposal by t + 1 nodes with
(Pd, τ, out, shared, Cd, si,d), broadcasts the n − t − f ready messages (set R̂) it received for each of

those t+1 finished VSSs (set Q̂). Nodes include signatures with ready messages to enable the leader
to provide a validity proof for its proposal. In this extended HybridVSS protocol, shared messages
look like (Pd, τ, out, shared, Cd, si,d,Rd), where a set Rd includes n− t− f signed ready messages for
session (Pd, τ). Once this broadcast completes, each node knows t + 1 VSS instances to wait for.
Once a node Pi finishes those, it sums the shares si,d to obtain its final share si.

If the leader is faulty or slow and does not proceed with the protocol or sends arbitrary messages,
the protocol enters into a pessimistic phase. Here, other nodes use a leader-change mechanism to
change their leader with a pre-defined cyclic permutation and provide liveness without damaging
system safety. Without loss of generality, we assume that the permutation is a linear sorted order
of node indices. Every unsatisfied node sends a signed leader-change (lead-ch) request to all the
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Optimistic phase for node Pi: session (τ) and leader L
upon initialization:

eL,Q ← 0 and rL,Q ← 0 for every Q; Q ← ∅; Q̂ ← ∅
M← R̂ ← n− t− f signed lead-ch messages for leader L
cnt← 0; cnt` ← 0 for all ` ∈ [1, n];
lcL ← 0 for each leader L; lcflag ← false
Lnext ← L+ n− 1
for all d ∈ [1, n] do

initialize extended-HybridVSS Sh protocol (Pd, τ)

upon (Pd, τ, out, shared, Cd, si,d,Rd) (first time):

Q̂ ← {Pd}; R̂ ← {Rd}
if |Q̂| = t+ 1 and Q = ∅ then

if Pi = L then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
delay ← delay(T ); start timer(delay)

upon a message (L, τ, send,Q,R/M) from L (first time):

if verify-signature(Q,R/M) and (Q = ∅ or Q = Q) then
send the message (L, τ, echo,Q)sign to each Pj

upon a message (L, τ, echo,Q)sign from Pm (first time):

eL,Q ← eL,Q + 1
if eL,Q = dn+t+1

2 e and rL,Q < t+ 1 then

Q ← Q; M← dn+t+1
2 e signed echo messages for Q

send the message (L, τ, ready,Q)sign to each Pj

upon a message (L, τ, ready,Q)sign from Pm(first time):

rL,Q ← rL,Q + 1
if rL,Q = t+ 1 and eL,Q < dn+t+1

2 e then

Q ← Q; M← t+ 1 signed ready messages for Q
send the message (L, τ, ready,Q)sign to each Pj

else if rL,Q = n− t− f then
stop timer, if any
wait for shared output-messages for each Pd ∈ Q
si ←

∑
Pd∈Q si,d; ∀p,q : Cp,q ←

∏
Pd∈Q(Cd)p,q

output (L, τ,DKG-completed, C, si)
upon timeout:

if lcflag = false then
if Q = ∅ then
lcflag ← true; send msg (τ, lead-ch,L+ 1, Q̂, R̂)sign to each Pj

else
lcflag ← true; send msg (τ, lead-ch,L+ 1,Q,M)sign to each Pj

upon (L, τ, in, recover):

send the message (L, τ, help) to all the nodes;
send all messages in BL,τ

upon a message (L, τ, help) from P`:

if cnt` ≤ d(κ) and cnt ≤ (t+ 1)d(κ) then
cnt` ← cnt` + 1; cnt← cnt+ 1
send all messages of B`(L,τ)

Figure 2: HybridDKG protocol (Optimistic phase)
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Leader-change for node Pi: session (τ) and leader L
upon a msg (τ, lead-ch,L,Q,R/M)sign from Pj(first time):

if L > L and verify-signature(Q,R/M) then
lcL ← lcL + 1
Lnext ← min (Lnext,L)
if R/M = R then

Q̂ ← Q; R̂ ← R
else
Q ← Q; M←M

if (
∑
lcL = t+ f + 1 and lcflag = false) then

if Q = ∅ then
send the msg (τ, lead-ch,Lnext, Q̂, R̂) to each Pj

else
send the msg (τ, lead-ch,Lnext,Q,M) to each Pj

else if (lcL = n− t− f) then

M← R̂ ← n− t− f signed lead-ch messages for L
L ← L; Lnext ← L− 1
lcL ← 0; lcflag = false
if Pi = L then

if Q = ∅ then
send the message (L, τ, send, Q̂, R̂) to each Pj

else
send the message (L, τ, send,Q,M) to each Pj

else
delay ← delay(T )
start timer(delay)

Figure 3: HybridDKG protocol (Pessimistic phase)

nodes for the next leader L+ 1 if it receives an invalid message from the existing leader L or if its
timer timed out. Timeouts are based on the function delay(T ) described in Section 2.1. When a
node collects t + 1 lead-ch messages for leaders L + δ for small positive integers δ, it is confirmed
that at least one honest node is unsatisfied and it sends a lead-ch message to all the nodes for the
smallest leader among those requested, if it has not done that yet. Once a node receives n− t− f
lead-ch requests for a leader L > L, it accepts L as the new leader and enters into the optimistic
phase.

The new leader enters into the optimistic phase by sending a send message for set Q if it is non-
empty or else for set Q̂. Set Q̂ contains the indices of nodes whose VSS instances have completed
at one more nodes, while set Q is a set of nodes broadcast by the current or a previous leader
such that an honest node might have completed that broadcast. In case of leader change, set Q
avoids two honest nodes finishing with two different VSSs sets with two different leaders. Once a
node receives dn+t+1

2 e echo messages or t + 1 ready messages, Q̂ is assigned to Q as some or all
honest nodes might complete the broadcast even if others time out. Q ensures that the new leader
broadcasts the same set Q̂ and all honest nodes delivers the same set in the agreement. Set M
attached to Q contains dn+t+1

2 e signed echo messages or t+ 1 signed ready messages for Q. Along

with condition (|Q̂| = t + 1 and Q = ∅), set M avoids wrong broadcast sets from the dishonest
nodes. While sending its proposal, L also includes lead-ch signatures received from n− t− f nodes
to prove its validity to the nodes who have not received enough lead-ch messages. As in HybridVSS,
the set B contains all outgoing messages at a node along with their intended recipients and B`
represents the subset of messages destined for node P`. Counters cnt and cnt` keep track of the
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numbers of overall help requests and help requests sent by each node P` respectively. Figures 2
and 3 present the optimistic and the pessimistic phases of the HybridDKG protocol. Protocol Rec
for HybridDKG remains exactly the same as HybridVSS Rec protocol from Fig. 1.

5.2 Analysis

The main theorem for our HybridDKG is as follows.

Theorem 5.1. With the DLog assumption, protocol HybridDKG provides an asynchronous dis-
tributed key generation mechanism in the hybrid model for n ≥ 3t+ 2f + 1.

Proof. We need to show the liveness, agreement, correctness, secrecy, and efficiency of our Hybrid-
DKG protocol.
Liveness. In HybridVSS, if the dealer is honest and finally up, then all honest finally up nodes
complete the sharing initiated by it. With n − t − f honest finally up nodes in the system, each
honest finally up node will eventually complete t + 1 HybridVSS sharings, as required. Each such
node will start a timer upon completing these t+1 HybridVSS instances. If the leader is honest and
uncrashed, it also completes t + 1 HybridVSS instances, and broadcasts its proposal; based on the
liveness property of reliable broadcast [4], each honest finally up node delivers the same verifiable
proposal. Honest finally up nodes stop their timers when they complete this reliable broadcast.
To finish, according to the HybridVSS agreement properties, all honest finally up nodes complete
protocol Sh for nodes in this proposal.

If the leader is compromised, crashed or does not finish its broadcast before a timeout at an
honest node, then a signed lead-ch request is broadcast by that honest node (pessimistic phase).
After receiving n− t−f lead-ch requests, the new leader takes over, each honest node starts a timer
for the proposal from the new leader, and the protocol reenters the optimistic phase. As the number
of crashes is polynomially bounded and the network eventually gets repaired resulting in message
delays becoming eventually bounded by delay(T ), an honest finally up leader will eventually reliably
broadcast a proposal and protocol HybridDKG will complete.

The requirement of n − t − f lead-ch requests for a leader replacement makes sure that nodes
do not complete the leader change too soon. An honest node sends a signed lead-ch message for
the smallest leader (among the received set) if it receives t+ f + 1 lead-ch messages, even if it has
not observed any fault, as this indicates that at least one honest node has observed some fault and
the node does not want to start the leader change too late.
Agreement. An honest node completes a HybridDKG execution when it completes a reliable
broadcast of the current leader’s sharing proposal, finishes HybridVSS sharing by t + 1 nodes in
that proposal, and computes its final share as a summation of the shares obtained from these
t + 1 sharings. According to the agreement property of the reliable broadcast, if one honest node
completes the protocol, then all honest finally up nodes will eventually complete the protocol.
Further, when only some (but not all) nodes complete the reliable broadcast before a leader change,
sets Q and M ensure that all nodes complete a reliable broadcast for the same Q after the leader
change. According to the agreement property of the HybridVSS, once an honest node completes
a set of t + 1 sharings, then all honest finally up nodes will eventually complete all of these t + 1
sharings. Consequently, once an honest node completes HybridDKG then all honest finally up nodes
will eventually complete the HybridDKG protocol.
Correctness (DKG-wC). According to the above discussed agreement property, once an honest
node completes the HybridDKG for session (τ), then all (n − t − f) honest finally up nodes will
eventually complete the HybridDKG protocol. According to the correctness property of the reliable
broadcast protocol, each of these nodes will decide the same set of t + 1 sharings. Further, when
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only some (but not all) nodes complete the reliable broadcast before a leader change, sets Q andM
make sure that all nodes complete a reliable broadcast for the same Q after the leader change. For
each of the completed sharings, if run individually, each node Pi will reconstruct the same shared
secret zi,d where Pd is the dealer for the sharing. Let zi =

∑
Pd∈Q zi,d. As nodes add their shares for

the completed t+ 1 sharings as the HybridDKG execution finishes and as Lagrange-interpolation is
homomorphic over addition, on reconstruction after the HybridDKG protocol each node will output
the same zi = s.
Secrecy (DKG-wS). In HybridDKG sharings by t + 1 nodes are used, where at least one of
those shared secrets was proposed by an honest party. In a reliable broadcast, two honest nodes
always finish the protocol with the same message; therefore, the same t+ 1 sharings are completed
by all the honest nodes. For a HybridVSS execution, if the dealer Pd is honest then until the
reconstruction protocol starts, the adversary cannot compute the shared secret sd. Therefore, at
the end of HybridDKG protocol, the adversary does not know at least one of the t+1 shared secrets.
As the system’s secret s =

∑
Pd∈Q sd, the adversary cannot compute the shared secret s.

Efficiency. The message and bit complexities of HybridVSS are O(tdn2) and O(κtdn3) respec-
tively. In the HybridDKG protocol with the asynchronous communication assumption, the system
may complete all n VSS executions, even though the required execution count is just t+1; thus, the
message and bit complexities of the possible n HybridVSS Sh protocols in HybridDKG are O(tdn3)
and O(κtdn4) respectively. If the HybridDKG protocol completes without entering into the pes-
simistic phase, then the system only needs one reliable broadcast of message of size O(κn), message
complexity O(tdn2) and bit complexity O(κtdn3). As a result, the optimal message and bit com-
plexities for the HybridDKG protocol are O(tdn3) and O(κtdn4) respectively.

In the pessimistic case, the total number of leader changes is bounded by O(d). Each leader
change operation involves O(tdn2) messages and O(κtdn3) communication bits. For each faulty
leader, O(tdn2) messages and O(κtdn3) bits are communicated during its administration. There-
fore, in the worst case, O(td2n2) messages and O(κtd2n3) bits are communicated before the Hy-
bridDKG completes and worst case message and bit complexities of the HybridDKG protocol are
O(tdn2(n+ d)) and O(κtdn3(n+ d)) respectively. Note that considering just a t-limited Byzantine
adversary (and not also crashes and link failures), the above complexities become O(n3) and O(κn4)
respectively. These are same as the complexities of the share refresh protocol for AVSS [9].

5.3 Uniform Randomness of the Shared Secret

The shared secret in the above HybridDKG may not be uniformly random; this is a direct effect of
using only the discrete logarithm commitments (see [24, Section 3] for details). In many cases, we
do not need a uniformly random secret key; the security of these cases relies on the assumption
that the adversary cannot compute the secret. However, a uniformly random shared secret may be
required in some protocols. In that case, we use Pedersen commitments, but we do not employ the
methodology defined by Gennaro et al. [24], which increases the latency in the system. We observe
instead that with the random oracle assumption, the communicationally demanding technique by
Gennaro et al. can be replaced with the much simpler NIZK proofs described in Equation 1 in
Section 3.2.

We denote HybridDKG schemes using DLog commitments and Pedersen commitments as HybridDKGDLog

and HybridDKGPed respectively. For node Pi, the corresponding HybridDKG-Sh and HybridDKG-Rec
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schemes are defined as follows.(
C(s,s

′)
〈g,h〉 , [C

(s)
〈g〉,NIZKPK≡Com], si, s

′
i

)
= HybridDKG-ShPed(n, t, f, t′, g, h, αi, α

′
i)(

C(s)〈g〉, si
)

= HybridDKG-ShDLog(n, t, f, t̃, g, αi)

s = HybridDKG-RecPed(t, C(s,s
′)

〈g,h〉 , si, s
′
i)

s = HybridDKG-RecDLog(t, C
(s)
〈g〉, si)

Here, t′ is the number of VSS instances to be chosen (t < t′ ≤ 2t + 1), αi, α
′
i ∈ Zp are re-

spectively a secret and randomness shared by Pi, and C(s)〈g〉 = [gs, gφ(1), · · · , gφ(n)] and C(s,s
′)

〈g,h〉 =

[gshs
′
, gφ(1)hφ

′(1), · · · , gφ(n)hφ′(n)] are respectively the discrete logarithm and Pedersen commit-
ment vectors for φ, φ′ ∈ Zp[x] of degree t with φ(0) = s and φ′(0) = s′. The optional NIZKPK≡Com

is a vector of zero-knowledge proofs of knowledge that the corresponding entries of C(s)〈g〉 and C(s,s
′)

〈g,h〉
commit to the same values. This vector is useful in applications such as distributed PKG for
IBC [29], where Pedersen commitments have to be replaced by DLog commitments.

To achieve uniform randomness of the secret, each node adds a DLog commitment of its share
and the corresponding NIZKPK≡Com in its DKG-completed message at the end of the HybridDKGPed

protocol, and sends this DKG-completed message without the share to every other node. HybridDKGPed

achieves the same liveness and agreement guarantees as those of HybridDKG, while for correctness
and secrecy it respectively achieves the DKG-C and DKG-S properties instead of their weaker ver-
sions in HybridDKGDLog. Maintaining the system-oriented flow of the article, we postpone the cryp-
tographic analysis of HybridDKGPed with uniform randomness of the shared secret to Appendix A.

6 DKG Implementation over PlanetLab

We have implemented our HybridDKG protocol from Section 5 and analyzed its performance over
the PlanetLab platform [43]. In this section, we discuss our implementation and experiments along
with other system aspects of DKG. We observed HybridDKG to be practical for use over the Internet,
which is also further illustrated by applications such as [29,48].

We first briefly describe our design and implementation of HybridDKG. We then analyze the
results from our experiments over PlanetLab and discuss resilience against denial-of-service (DoS)
attacks and Sybil attacks. Finally, we propose some system-level optimizations for the HybridDKG
protocol based on our analysis. These optimizations improve the performance of the protocols,
without hampering its liveness or safety, when a leader behaves honestly and delays in the system
remain within reasonable limits.

6.1 Software Design and Implementation

We design our DKG nodes as state machines (using the state machine replication approach [33,44]),
where nodes move from one state to another based on the messages received. These messages
are categorized into three types: operator messages, network messages and timer messages. The
operator messages define interactions between nodes and their operators and are of two types: in
and out. In an in message, an operator provides some input to the protocol, while an out message
presents the protocol results to the operator. The network messages realize the protocol flow
between nodes. Almost all messages in the HybridVSS and HybridDKG pseudocode in Figures 1,
2 and 3 are of this type. Finally, the timer messages implement the weak synchrony assumption
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described in Section 2.1 in the form of start timer, stop timer and timeout. Our node will be in one
of the following seven states:

leader unconfirmed, under recovery, functional, agreement started, agreement completed,
leader change started, and dkg completed.

leader unconfirmed is a starting phase, which indicates that a node does not have a sufficient number
of lead-ch signatures to confirm a new leader. We also differentiate between agreement completed
and dkg completed as a node may complete the broadcast by the leader before it completes the
associated VSS instances. The rest of the states (under recovery, functional, agreement started,
dkg completed, leader change started) have their apparent meanings.

A primary application for our protocols is to construct distributed PKGs [29, 48]. Therefore,
we consider a HybridDKG implementation over pairing-friendly elliptic curves. We develop our
object-oriented C++ implementation over the PBC library [35] for the underlying elliptic-curve and
finite-field operations, and a PKI infrastructure with the DSA signatures based on GnuTLS [36] for
confidentiality and message authentication. However, our DKG code is generic and can easily be
modified to work with any other C/C++ number theoretic library. When using a different library,
a C++ interface layer will have to be developed over that library, which will provide a cyclic group
interface in the form of a C++ class as required for our polynomials, commitments and shares.

Our implementation [2] replicates our HybridVSS and HybridDKG pseudocode and therefore has
an event- (or message-) driven architecture. The similarity between the code and the pseudocode
is intentional; it helped identify several errors in the code and omissions in the pseudocode. DKG
nodes are multithreaded and the code is structured as a set of event handlers. This set contains
a handler for each operator and network message, and a handler for each timer. Each handler
corresponds to an input action and there are also methods that correspond to the internal actions
in the system. The event handling loop works as follows: nodes wait in a select call for a network
message to arrive, for an operator instruction or for a timer deadline to be reached and then they
call the appropriate handler. The handler performs computations similar to the corresponding
action in the pseudocode and then it invokes any methods corresponding to internal actions whose
preconditions have become true. In most of the cases, it results in sending a message to an operator
or over the network. Each message has a 3-byte generic header, which contains a tag that identifies
the message type (1 byte) and the total size of the rest of the message (2 bytes). The structure of
the message bodies varies from message type to message type.

6.2 Performance Analysis

Experimental Setup and Testing. In order to examine its realistic performance, we test our
DKG implementation on the PlanetLab platform.

A typical PlanetLab machine configuration is 4× 2.4 GHz cores with 4 GB RAM and 500 GB
hard disk [1]. In terms of network capacity, the average bandwidth between PlanetLab nodes is
64 Mbps [34]. For our experiments, we chose the required number of PlanetLab nodes randomly
from nodes having near-average configuration and bandwidth, and a reasonable liveness history.
In terms of the geographical distribution, although our selections were biased towards nodes in
Europe and America, we had a significant number (around 20 percent) of nodes chosen from the
other continents. Taking advantage of the uniform operating system distribution and configuration
over all PlanetLab nodes, we compiled and statically linked our code on a single node and replicated
the executable over the rest. Note that we did not consider the loads of machines while selecting
our nodes; those loads were unpredictable and varied a lot during our experiments. In order to

21



Table 1: Median values of DKG completion time and CPU time per node for various system sizes.

n t f Time (seconds) CPU Seconds/Node

10 1 3 3.43 ± 0.91 0.64 ± 0.08
20 2 6 6.71 ± 1.18 3.11 ± 0.77
30 3 10 17.16 ± 2.25 9.62 ± 1.03
40 4 13 40.98 ± 1.65 25.67 ± 0.74
50 5 17 90.69 ± 13.87 53.14 ± 5.77
60 6 20 188.32 ± 31.09 85.15 ± 4.66
70 7 24 325.31 ± 45.67 173.85 ± 28.85

determine an average performance, we ran the experiments at least ten times for each parameter
set.

We test the DKG implementation for systems of up to 70 nodes and present median comple-
tion times and median CPU usage in Table 1 along with 95% two-sided confidence intervals. Our
experiments are terminating and conducted via the method of independent replications. A single
replication consists of n − t − f or more individual observations each corresponding to the time
required for a participating peer in the quorum to complete the DKG protocol; there are 10 repli-
cations for each n value. Using independent replications, an unbiased sample point estimator for
variance is calculated and used to obtain our two-sided confidence intervals using the t-distribution.
Our DKG experiments are set up so that correctness is guaranteed so long as at most 30% of the
peers may crash and 10% of the peers may be Byzantine. While we can tolerate any fraction of
Byzantine peers less than 1/3, we use these numbers since in many practical scenarios we expect
the fraction of Byzantine faults to be less than 10% and modest compared to the fraction of crash
failures.

During our tests, we studied the following aspects: possible sizes of the system, the average
completion time of the protocol and the applicability of the weak synchrony assumption from
Section 2.1 that we make for HybridDKG. Our HybridDKG protocol handles Byzantine attacks and
the performance of the implementation against these malicious attacks should have been verified
during the testing. However, in our HybridDKG analyses in Section 5.2, we observe that a t-limited
Byzantine adversary cannot launch any attack other than delaying the network messages; this is
a direct effect of working in the computational security setting. The verification mechanism in
our HybridDKG and HybridVSS protocols can easily catch any modification to network messages,
commitments or shares and messages that fail verification are dropped by the honest nodes without
any further processing. As a result, we do not include any special Byzantine adversary code in our
tests. Note that we still need to follow the security threshold t for the shared polynomials as
otherwise the adversary can break the secrecy of the protocol.

Evaluation. We make the following observations based on our experiments over the PlanetLab
platform:

• We test the performance of our DKG implementation for systems of up to 70 nodes and
measure the average HybridDKG completion time (see Table 1). We observe an approximately
cubic growth in the average completion time. Even with the cubic complexity, we observe
that DKGs for reasonably large distributed systems (n ≤ 70) are practical for the Internet.
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Figure 4: Quartile plot of DKG Completion Times for system sizes ranging from 10 to 70 nodes.
Note the log-log scale.

• In Fig. 4, we compare minimum and maximum completion times for a set of experiments.
The large gaps between those values demonstrate the robustness of the DKG system against
the Internet’s asynchronous nature and varied resource levels of the PlanetLab nodes that we
chose.

• To check the applicability of the weak synchrony assumption [14] that we use in Hybrid-
DKG, we also tested the system with multiple crashed leaders. In such scenarios, the DKG
protocol successfully completed after a few leader changes. However, we observe that the av-
erage completion time of a system critically varies with the choice of delay(T ) function. For
delay(T ) = T , the leader change takes significantly more time than that required to reliably
broadcast the chosen instances. As a result, when a leader is crashed, most of the other nodes
end up waiting for long periods even though the next possible leader is available. Further,
this waiting period grows significantly in the case of multiple crashes.

We observed that delay(T ) = T/δ for δ = 2 or 3 is a better choice in terms of a compromise
between allowing an honest leader enough time to complete its broadcast and reducing the
waiting period between leader changes. However, an appropriate delay(T ) function may
change as the system parameters vary and we suggest that delay(T ) should only be finalized
for a system after some rigorous testing.

• Further, we compared the (CPU) execution time for nodes against the time they spend on
network transmission or waiting for other nodes. We observe that the the protocol execution
time per node is significantly smaller than their completion periods (Table 1). This proves
that the completion time periods are larger not because of the required computation; they
are high rather due to network delays and will drop significantly if a more reliable network
with better bandwidth (e.g., an internal network in an organization or a cloud computing
environment) is provided.

DoS and Sybil Attacks. The distributed nature of HybridDKG provides an inherent protection
against DoS attacks, and the inclusion of the network-failure and crashed-node assumptions makes
DoS attacks less feasible. Although leaders might become primary targets, we mitigate this issue
with an efficient leader-changing mechanism. Further, as all valid communication is done over TLS
links, nodes can easily reject messages arriving from non-system entities. Sybil attacks [17] are not
a major concern, as ad-hoc additions of nodes is not a feature of our system. Nodes are added using

23



 2

 5

 10

 20

 50

 100

 200

 500

 1000

 2000

 10  20  30  40  50  60
C

o
m

p
le

ti
o
n
 t

im
e 

(s
)

System Size (number of nodes)

commitment vectors
commitment matrices

Figure 5: Completion time vs system size (log-log plot) for commitment matrices and commitment
vectors

the group modification agreement protocol [28, Sec. 6], which involves administrative interaction
at each node.

6.3 System-Level Optimizations

The completion time values of our HybridDKG implementation that we observe in Fig. 4 are practical
for applications such as PB-OR [30,31], where DKG phase sizes are in days. However, these values
may not be ideal for many other practical systems such as our robust communication protocols
for DHTs [48, 49]. During our experiments we observed that some system-level optimizations
can significantly reduce the completion time values and make HybridDKG practical enough for
these applications. We next discuss these optimizations. Note that these optimizations make
HybridDKG more practical in the normal course of operation, when a leader behaves honestly and
its messages flow without any significant delay. They may not be the best options in the worst-
case scenarios having multiple leader-change operations. However, they never hamper the safety
or liveness properties of the protocol.

shared Messages. With the PKI infrastructure in place, digital signatures are readily available in
our system. Our HybridVSS scheme does not make use of these signatures. In the HybridDKG
protocol, it is important for the leader to be one of first nodes to complete any HybridVSS
instance. That helps the leader to send its DKG send message before the timer timeouts at
fast nodes.

To help the leader, we add a new shared network message that a node having 2t + f + 1
signed VSS ready messages for a completed HybridVSS instance sends to a leader. The leader
can then include this HybridVSS instance in its DKG send without completion of the VSS
instance at its own machine. Note that 2t + f + 1 signed ready messages confirms that the
corresponding HybridVSS instance will complete at all honest finally up nodes.

Commitment Matrices versus Commitment Vectors.
In theory, linear-size commitment vectors which use collision-resistant hash functions, as
introduced in [9] for AVSS, provide linear speedup over quadratic-size commitment matrices.
However, measuring precisely, the commitment size is (t+1)2 for matrices and (approximately)
2(3t + 2f + 1) for vectors. Even if f = 0, the required elements and computations for the
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matrix commitments are less than those for the vector commitments for t < 6. For f > 0,
this upper limit will only increase.

Our experiments confirm this computation. We observed that the commitment matrices,
although asymptotically inefficient, are more efficient in systems of the sizes we measured
(see Fig. 5). We suggest the usage of commitment matrices instead of commitment vectors
for systems of reasonable size.

Running only 2t+ f + 1 VSS Instances. We observed that the VSS instances are more re-
source consuming than the agreement required at the end. Generally, we only need t+ 1 VSS
instances to succeed. Assuming t+ f VSS instances might fail during a DKG, it is sufficient
to start HybridVSS instances at just 2t + f + 1 nodes instead of at all n nodes. Nodes that
do not start a VSS initially may utilize the weak synchrony assumption to determine when
to start a VSS instance if required.

7 Conclusion and Future Work

While working towards a realistic DKG architecture, we first investigated the differences between
the partially synchronous and asynchronous communication models and observed that only the
asynchronous communication model realistically fits the existing Internet. We also incorporated
crash-recoveries and network failures in the system model along with the traditional Byzantine
adversary.

We defined a VSS scheme (HybridVSS) that works in our hybrid communication model. We then
observed the requirement of a Byzantine agreement while implementing DKG in the asynchronous
communication setting and presented a leader-based system to achieve that in our HybridDKG
protocol. We also implemented our DKG protocol and tested its practicality and efficiency over
the PlanetLab platform. Our results are certainly encouraging toward the use of the HybridDKG
protocol for multiparty computation over the Internet.

In future, we plan to make our HybridDKG protocol secure against adaptive adversaries by in-
troducing the rewinding adversary similar to the one in [12]. Further, we use the random oracle
assumption to achieve uniform randomness of the shared secret in HybridDKG. It would be inter-
esting to obtain uniform randomness without random oracles using some distributed commitment
techniques or the common reference string model.
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A Analysis of HybridDKGPed with Uniform Randomness of the
Shared Secret

Here, we analyze the HybridDKGPed protocol that achieves uniform randomness of the shared secret.
The liveness and agreement proofs are the same as those of HybridDKGDLogin Section 5.2.
Correctness (DKG-C). For correctness, we need to prove the following three properties.

1. There is an efficient algorithm that on input shares from 2t + 1 nodes and the public infor-
mation produced by the HybridDKG protocol, output the same unique value s, even if up to
t shares are submitted by malicious nodes.

2. At the end of Sh phase of HybridDKGPed, all honest nodes have the same value of public key
Y = gs, where s the unique secret guaranteed above.

3. s and Y are uniformly distributed in Zp and G respectively.

The first two properties are the same as those in protocol HybridDKGDLog in Section 5 and we only
need to prove the third property.

Here, s =
∑

Pi∈Q αi. As long as there is one value αi in this sum that is chosen at random and
independently from the other values in the sum, the uniform distribution of s is guaranteed. All
αi values are only available in the form of Pedersen commitments until set Q is finalized. From
Theorem 4.4 of [42], in VSS using Pedersen commitments, the view of the t-limited adversary is
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independent of the shared secret. Therefore, with at least one VSS from the honest nodes in the
t+ 1 chosen VSSs, s is uniformly distributed and so is Y = gs.
Secrecy (DKG-S). We need to prove that no information about s can be learned by the adversary
except for what is implied by Y = gs.

More formally, we prove that for every PPT adversary A that has up to t nodes, there exists
a PPT simulator S that on input Y ∈ G produces an output distribution which is polynomially
indistinguishable from A’s view of a run of the HybridDKG protocol that ends with Y as its public
key. Our proof is based on the proof of secrecy in [24, Section 4.3].

In Fig. 6, we describe the simulator S for our HybridDKG protocol. An informal description is
as follows. S runs a HybridDKG instance on behalf of all honest nodes. For most of the protocol
(until message DKG-completed is to be sent), it follows the protocol HybridDKG as instructed. For
DKG-completed messages, it changes the public key shares Yi = gsi to “hit” the desired public key
Y . S knows all gsj and gs

′
j values for all Pj ∈ B, as it chooses φ(j)(x, y) for good nodes and has

received enough shares from bad nodes to reconstruct the bivariate polynomials shared by them.
For i ∈ [t+ 1, n], S sets gs

∗
i as interpolation (in the exponent) of (0, Y ) and (j, gsj ) for j ∈ [1, t]. It

creates the corresponding NIZKPK≡Com using the random oracle hash table.
We show that the view of the adversary A that interacts with S on input Y is the same as the

view of A that interacts with the honest nodes in a regular run of the protocol that outputs the
given Y as the public key.

Algorithm for Simulator S
Let B be the set of parties controlled by the adversary, and G be the set of honest parties (run by the
simulator). Without loss of generality, B = [P1, Pt′ ] and G = [Pt′+1, Pn], where t′ ≤ t. Let Y ∈ G be
the input public key and H≡Com : G6 → Zp is a random oracle hash table for NIZKPK≡Com.

1. Perform all steps on behalf of the uncorrupted parties Pt′+1, . . . , Pn exactly as in the HybridDKG
protocol until the DKG-completed message. Once a node is ready to send the DKG-completed
message, the following holds:

• Set Q is well defined with at least one honest node in it.

• The adversary’s view consists of polynomials φ(j)(x, y) for j ∈ B, the share polynomials

a
(i)
j y = φ(i)(j, y) for Pi ∈ Q, Pj ∈ B, and commitments Ci for Pi ∈ Q.

• S knows all polynomials φ(i)(x, y) for Pi ∈ Q as it knows n− t′ shares for each of those.

2. Perform the following computations for each i ∈ [t+ 1, n] before starting Step 6:

(a) Compute s′j for Pj ∈ [1, n] and sj for Pj ∈ B. Interpolate (in the exponent) (0, Y ) and

(j, gsj ) for j ∈ [1, t] to compute C〈g〉(s∗i ) = gs
∗
i .

(b) Compute the corresponding NIZKPK≡Com by generating random challenge ci ∈R Zp
and responses ui,1, ui,2 ∈R Zp, computing the commitments ti,1 = (gs

∗
i )cigui,1 and

ti,2 =
C〈g,h〉(si,ri)
C〈g〉(s∗i )

ci
hui,2 and include entry 〈(g, h, C〈g〉(s∗i ), C〈g,h〉(si, ri), ti,1, ti,2), ci〉 in the

hash table H≡Com so that π≡Comn = (ci, ui,1, ui,2).

3. In the end, s =
∑
Pi∈Q αi such that Y = gs.

Figure 6: Simulator for HybridDKG with the uniform randomness property

In a regular run of protocol HybridDKG, A sees the following probability distribution of data
produced by the honest nodes:

• Values φi(j, y), φ′i(j, y) for i ∈ G, j ∈ B, uniformly chosen in Zp
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• Values Ci and gsi for Pi ∈ G, that correspond to randomly chosen polynomials.

As we are interested in runs of HybridDKG that end with Y as the public key, we note that the
above distribution of values is induced by the choice (of the good parties) of polynomials φi(x, y),
φ′i(x, y) for Pi ∈ Q, uniformly distributed in the family of degree-t polynomials over Zp such
that

∏
Pi∈Q g

φi(0,0) = Y . Without loss of generality, assume Pn ∈ G belongs to Q. The above

distribution is characterized by the choice of polynomials φi(x, y), φ∗i (x, y) for Pi ∈ (G ∩Q)−{Pn}
as random independent degree-t bivariate polynomials over Zp and of φn(x, y) as a uniformly chosen
polynomial from the family of degree-t bivariate polynomials over Zp that satisfy the constraint
φn(0, 0) = s−

∑
Pi∈Q\{n} φi(0, 0).

We show that the distribution of outputs of the simulator S is identical to the above distribution.
Note that the above distribution depends on the set Q. Since all actions of the simulator until Q
is (eventually) delivered to all nodes are identical to the actions of honest parties interacting with
A in a real run of the protocol, we are assured that the set Q defined in this simulation is identical
to its value in the real protocol.

We now describe the output distribution of S in terms of degree-t bivariate polynomials φ∗i
corresponding to the choices of the simulator. For Pi ∈ (Q − B − {Pn}), set φ∗i to φi and φ′∗i to
φ′i. Define φ∗n such that the values φ∗n(0, 0) = logg(

Y∏
j∈(Q−B−{Pn}) g

α∗
j
) and φ∗n(j, y) = φn(j, y) for

j ∈ [1, t]. Finally, define φ′∗n(x, y) such that φ∗n(x, y)+ Λφ′∗n(x, y) = φn(x, y) + Λφ′n(x, y), where
Λ = logg(h). It can be seen by this definition that the univariate polynomial evaluations of these
polynomials evaluated at the indices for Pj ∈ B coincide with the values φi(j, y) which are seen by
the corrupted parties in the protocol. Note that the above DLog values φ∗n(0, 0) and φ′n

∗(0, 0) are
unknown to the simulator. Also, the commitments of these polynomials agree with Ci published
by the simulated honest parties in the protocol as well as with the exponentials gs

∗
i for Pi ∈ G

published by the simulator at the end on behalf of the honest parties. Thus, these values pass the
verifications in the real protocol.

It remains to be shown that polynomials φ∗i and φ′∗i belong to the right distribution. Indeed, for
Q−G−{Pn} this is immediate since they are defined identically to φi which are chosen according to
the uniform distribution. For φ∗n we see that this polynomial evaluates in points j = [1, t] to random
values (φn(j, y)) while at 0 it evaluates logg(g

α∗n) as required to hit Y . Finally, φ′∗n is defined as
φ′∗n(x, y) = Λ−1(φn(x, y)−φ∗n(x, y) +φ′n(x, y)) and since φ′∗n(x, y) is random and independent then
so is φ′∗n(x, y).
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