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Abstract

Motivated by the recent widespread emergence of location-based services (LBS) over
mobile devices, we explore efficient protocols for proximity-testing. Such protocols allow
a group of friends to discover if they are all close to each other in some physical location,
without revealing their individual locations to each other. We focus on hand-held devices and
aim at protocols with very small communication complexity and a small number of rounds.

The proximity-testing problem can be reduced to the private equality testing (PET)
problem, in which parties find out whether or not they hold the same input (drawn from a
low-entropy distribution) without revealing any other information about their inputs to each
other. While previous works analyze the 2-party PET special case (and its LBS application),
in this work we consider highly-efficient schemes for the multiparty case with no honest
majority. We provide schemes for both a direct-communication setting and a setting with a
honest-but-curious mediating server that does not learn the users’ inputs. Our most efficient
scheme takes 2 rounds, where in each round each user sends only a couple of ElGamal
ciphertexts.

1 Introduction

The ubiquity of mobile devices has led to the rise of Location-Based Services (LBS), services
that depend on one’s current location [Axe05]. An interesting location-based service is proximity
testing, in which users determine if they are in proximity to one another. This has multiple
applications. For instance, assume you and your friends visit a mall, identified by a GROUPON R©-
like company who sends you a group-coupon for, say, one of the mall’s restaurants. While several
products and applications based on proximity have recently appeared (such as magnetU R©, etc.),
a great deal of concern arises from privacy issues [LSHG08, GG03, ZGH07, KGMP07, ŠTŠ+09].
A recent work by Narayanan, Thiagarajan, Lakhani, Hamburg, and Boneh [NTL+11] provides a
private scheme for proximity testing by reducing the problem to private equality testing (PET)
in which each of the users A and B holds a private input out of a finite set D of possible
inputs (XA and XB respectively), and the aim is to jointly perform a private computation of

the predicate XA
?
= XB, without revealing the private inputs. Reducing proximity-testing to

PET allows us to focus on the latter and extend the known result to the multiparty case.
The PET task is a special (and more simple) case of the private set intersection problem

(which is, in turn, a special case of secure multiparty computation (MPC)), in which each user
holds a set of private inputs, and the protocol outputs all the elements shared between the
users (in some variants, the protocol only outputs the size of the intersection). A PET scheme

1



can always be realized using a private set-intersection scheme if each user’s set includes only
his private input Xi. Since we focus on the special case of PET rather than the general set-
intersection, we are able to achieve secure protocols with improved efficiency, specifically, less
communication rounds.

Our Contributions. In this work we provide efficient, constant round protocols for n-party
PET, secure against a coalition of up to n− 1 malicious adversaries.

We begin by extending the 2-party schemes of Narayanan et al. [NTL+11] and Lipmaa [Lip03]
to an arbitrary number of users, obtaining a 2-round n-party PET scheme that uses a mediating
server, as well as a 2-round n-party PET scheme that does not rely on a mediating server.

We also consider security against arbitrary computationally-bounded adversaries. While it is
relatively simple to design a scheme resistant to semi-honest adversaries, this is not the case with
malicious adversaries. In addition to privacy issues, malicious adversaries sometimes jeopardize
the soundness of the protocol. We show schemes that are secure against a malicious adversary
(with abort). To the best of our knowledge, the schemes we present here are the first n-party
PETs proven secure against malicious adversaries with no honest majority.1 General purpose
MPC for malicious majority also considers the notion of fairness [IOS12]. In this work we do
not consider fairness: first, we allow aborts; further, only one party is supposed to learn the
protocol’s output (while other parties learn nothing).

Another contribution we describe in this paper regards the efficiency of 2-party proximity
testing realized using PET. We follow a method introduced by Narayanan et al. [NTL+11]
and later used by Tonicelli et al. [TDdMA11], which performs a quantization of one’s locations
(say, GPS position) into centers of hexagonal cells, and then runs several PET instances using
the quantized locations (see discussion in [NTL+11]). By making more efficient choices of the
quantization we are able to reduce the amount of PET instances performed during a single
proximity testing. This improves both the computation and communication complexity by 13%
to 44%, depending on the underlying scheme. Since proximity-testing applications are widely
used in mobile devices, any decrease in the number of operations and the required bandwidth
is important.

Overview of Techniques. Our first n-party PET scheme (based on [NTL+11]) assumes an
honest-but-curious server, with the additional requirement that the server does not learn the
users’ inputs. Each party sends its input to the server, masked with a random one-time pad
(OTP), known to all users except the server. Using the linearity of OTP, and using randomness
shared with some of the users, the server is able to compute a message which is fixed if all the
parties share the same private input, and uniformly distributed otherwise. The main insight is
that if all private inputs are the same, then their sum is exactly n times the value of a single
input. The server can add up the (masked) inputs, deduct n times Alice’s (masked) input, and
multiply the result with a random number. That way, the result is fixed (as a function of the
mask) if all users had the same input, and random otherwise.

Our second scheme (based on ideas from [Lip03, FNP04, NTL+11]) does not require a trusted
server. The users replace the role of the server by “summing” the inputs themselves. In order
to keep the inputs private yet still be able to manipulate them, we replace the OTP with homo-
morphic encryptions. We also add a layer of secret sharing [BGW88] to prevent intermediate
results from leaking information. Each private input is masked with a random share, however

1Excluding general-purpose MPC schemes.
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the sum of all the random shares is 0 (or other value known to the parties), and thus does not
affect the sum of the inputs. This scheme so far can only deal with semi-honest adversaries.

In order to obtain privacy against a malicious-adversary, it is common to use zero-knowledge
proof-of-knowledge (ZKPoK) in which a prover convinces a verifier that he knows some secret,
without leaking any information about the secret. When considering the multiparty case, the
parties either conduct a 2-party ZKPoK sequentially, so the number of rounds becomes linear
in the number of parties, or they perform multiple instances of a 2-party ZKPoK in parallel,
which requires proving its security for parallel composition. To this end we use a variant which
allows a single prover to perform a ZKPoK scheme with n verifiers, namely, a 1-Prover n-Verifier
ZKPoK scheme. On top of being zero-knowledge, the prover must convince an honest verifier
that he knows some secret, even if the rest of the verifiers collude with the prover to fool
the honest verifier. This task can be performed in a constant number of rounds; in addition,
our variant also reduces the communication—the prover broadcasts a single message to all the
verifiers rather than engaging in n instances of the same protocol. We show how to construct a
1-Prover n-Verifier ZKPoK from any 2-party ZKPoK (a Σ-protocol) and a trapdoor commitment
scheme. For concreteness, our PET scheme uses a 1-Prover n-Verifier ZKPoK for discrete log
based on a Σ-Protocol by Schnorr [Sch91] and a trapdoor-commitment based on Pedersen’s
commitment [Ped92].

Our alternative PET scheme utilizes a different underlying primitive, namely, a password-
authenticated key-exchange (PAKE) [KOY01, KOY09]. Specifically, we show how to realize
a 2-round PET secure against malicious adversaries, using oracle access to a PAKE subrou-
tine. Thus, with the existence of constant-round UC-secure PAKE schemes such as [CHK+05,
ACCP08, HL11] we obtain a constant-round private PET. The idea is to use the PAKE in order
to establish an encryption key, separately between each pair of users. If two users use the same
password as an input to the PAKE protocol, they will end up sharing the same session key
(otherwise their session keys will mismatch). The parties then use the keys to send random
shares to each other, such that the sum of the shares is, say, 0. All these shares are then sent to
Alice, who adds them up—the sum will be 0 if every pair of users used matching session keys
(otherwise, the sum will be random).

Related Work. 2-party PET was inspired by Yao’s socialist millionaire’s problem [Yao82],
and examined for “real-life” problems by Fagin, Naor and Winkler [FNW96]. The work of
Boudot, Schoenmakers and Traoré [BST01] gives a rigorous security proof for this problem in
the random oracle model. The work of Naor and Pinkas [NP99] draws a connection between
PET and Oblivious Transfer (OT). This connection is extended by Lipmaa [Lip03], providing
private OT protocols based on homomorphic encryption, and showing how to realize an efficient
(2-party) PET scheme using the same methods. Lipmaa also provides a security proof for PET
in the semi-honest model. Tonicelli, Machado David and de Morais Alves [TDdMA11] present
an efficient UC-secure scheme for a 2-party PET.

Damg̊ard, Fitzi, Kiltz, Nielsen and Toft [DFK+06] present an unconditionally secure scheme
(in the secret sharing model) for multiparty PET with O(1) rounds (this translates to 7 rounds
in the plain model), however their result requires an honest majority. Nishide and Ohta [NO07]
extend this result and achieve a 5-round scheme (in the plain model), again, assuming honest
majority.
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2 Preliminaries

Let us begin by describing several notations and cryptographic primitives we use throughout. We
let κ be the security parameter, and assume that any function, set size or running time implicitly
depends on this parameter (especially when we write neg to describe a negligible function in κ,
i.e., neg < 1/poly(κ) for large enough κ). We say that two ensembles of distributions {Xκ}κ∈N,

{Yκ}κ∈N are computationally indistinguishable and write {Xκ}
c≡ {Yκ} if for any probabilistic

polynomial-time (PPT) algorithm C, for large enough κ,

|Pr[C(1κ, Xκ) = 1]− Pr[C(1κ, Yκ) = 1]| < neg.

Semantically Secure Public-Key Encryption Schemes. A public-key encryption scheme
consists of three PPT algorithms (GEN, ENC, DEC) such that GEN(1κ) = (pk, sk) generates
a pair of a public and secret key, ENC(m) = c encrypts a message m and DEC(c′) = m′

decrypts a ciphertext c′.
An encryption scheme is said to be semantically secure, if for any PPT adversary Adv, and

any two messages m0,m1 of equal length chosen by the adversary,

Pr[Adv(1κ, pk, ENCpk(mb)) = b] <
1

2
+ neg,

over the coin tosses of the algorithms and the uniform choice of b ∈ {0, 1}, where pk is the
public key generated by GEN(1κ). See [Gol04] for the analog definition for semantically secure
private-key encryptions systems.

Homomorphic Encryption. Informally, an encryption scheme ENC : (m, r, k)→ ENCk(m, r)
that takes message m, randomness r and key k is additively homomorphic if

ENCk(m1, r1) · ENCk(m2, r2) = ENCk(m1 +m2, r1 ◦ r2)

for some deterministic binary operation ◦. See e.g. [OS07] for a formal definition. We focus
on an homomorphic variant of the ElGamal scheme [Elg85], which consists of a cyclic group
G of order q in which the Decisional Diffie-Hellman (DDH) problem is difficult [Bon98], and a
generator g ∈ G. A random number x ∈ Z∗q is chosen as the private key, and the public key
is (g, h) = (g, gx). To encrypt a message m with the above public key, one randomly picks r ∈ Zq
and computes ENC(g,h)(m, r) = (gr, hr ·hm). The decryption of a ciphertext c = (a, b) is given
by DECx(c) = b/ax = hm. It is easy to verify that this variant is additively homomorphic. Note
that the decryption outputs hm rather than m, however, for a low-entropy D, m can be found
by searching the entire domain. The semantic security of the ElGamal scheme follows from the
hardness of DDH in G.

Another homomorphic encryption system is the Paillier Encryption system [Pai99], whose
security relies on the decisional composite residuosity assumption. Although our schemes are
specified using the ElGamal system, they can be easily modified using variants of the Paillier
encryption, or using any other semantically-secure additively homomorphic encryption.

Chosen-Plaintext Unforgeable (private-key) Encryption Schemes.
Let (GEN,ENC,DEC) be a private-key encryption scheme. We say that an encryption scheme
is chosen-plaintext unforgeable [KY01] if, for any x, an adversary cannot forge a valid encryption
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of x with non-negligible probability, even with oracle access to encryptions of any x′ 6= x,
Formally, we say that an encryption scheme is ε-chosen-plaintext unforgeable, if, for sk generated
by GEN(1κ) and for any PPT adversary Adv,

Pr[AdvENCsk(·)(1κ) = (x, y) s.t. DECsk(y) = x] ≤ ε,

over the coin tosses of all the algorithms. Note that Adv cannot query the oracle on x.

3 Model and Privacy Notions

We now define the ideal functionality of an asymmetric Private Equality Testing (PET) scheme.
An n-party asymmetric-PET scheme is a distributed protocol between a specific party A (which
we call Alice at times for convenience) and another n − 1 parties, denoted B1, B2, . . . , Bn−1.
Each one of the users holds a private input XA, XB1 , XB2 , . . . , XBn−1 , respectively. Sometimes,
for ease of notation, we denote the private inputs as X̄ = (XA, X1, X2, . . ., Xn−1). At the end
of the computation, Alice obtains the value

Fideal(XA, X1, . . . , Xn−1) =

{
1 if XA = X1 = · · · = Xn−1

0 otherwise

and the rest of the parties obtain ⊥. That is, the protocol is asymmetric: Alice learns whether
or not all the private inputs are equal, while the other parties learn nothing. From this point
and on we refer to asymmetric-PET simply as PET.

We say that some realization π of a PET scheme is complete if it answers correctly for all
positive instances, Pr[π(X̄) = Fideal(X̄) = 1] = 1. Similarly, we say that a scheme is ε-sound if
for any distribution over X̄, the protocol answers affirmatively with probability at most ε for all
negative instances, maxX̄ Pr[π(X̄) = 1∧Fideal(X̄) = 0] ≤ ε, over the randomness of the parties.

Adversaries. In this work we consider both semi-honest (also known as honest-but-curious)
and malicious adversaries, using standard notions (see for instance [Gol04]). While in the semi-
honest adversary model parties are assumed to follow the protocol, in the malicious adversary
model the corrupted parties might deviate from the protocol as desired, as well as intercept
and block messages from other users (excluding broadcast messages). The corruption model is
static.

The trusted server is always honest (even in the malicious-adversary model) and never col-
ludes with other parties. However, differently from the standard notion of trusted server we
assume that the server is curious (passive adversary) and require that it cannot learn the honest
users’ inputs.

Privacy. The privacy model we consider here is a stand alone security against a coalition of up
to n− 1 adversaries (using simulation-based definition). Informally, for any distribution on X̄,
we would like the private inputs X̄ to remain hidden, regardless of the adversary’s actions. For
instance, even if n − 1 parties collude together, they should have no advantage in finding the
input of the nth player, other than just guessing it (given the PET’s output and the a-priory
probability of that location). Before we formalize our notion of privacy, we distinguish two
types of attacks: on-line and off-line [GLNS93]. In an on-line attack, the adversary actively
participates in a PET scheme, while in an off-line attack, the adversary tries to extract data
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from a PET instance’s transcript, possibly by checking for inconsistencies between a given PET
transcript and each one of the values in the (low-entropy) dictionary D. Throughout this paper
we assume |D| is polynomial in the security parameter.

We formalize the notion of privacy using standard notion of simulatability in the real/ideal
paradigm. Namely, we require that for any PPT adversary Adv running π with any set of
honest parties, there exists a PPT simulator Sim such that for any private inputs, Sim’s output
and Adv’s view are computationally indistinguishable, yet Sim only has access to the ideal
functionality Fideal,2 (rewindable) black-box access to Adv, and the trusted setup parameters of
the protocol.

Assume P1, . . . , Pm are the honest parties m ≤ n, where each Pi has a unique role rolei ∈
{A,B1, . . . , Bn} and a private input XPi . Denote by V iewX̄(Adv⇔ π) the view of the adversary
running π with P1, . . . , Pm, with inputs X̄. The view contains all the messages and randomness
of the corrupt parties. Denote by OutputX̄(SimAdv ⇔ Fideal) the output of a simulator which
has rewindable black-box access to Adv, running Fideal with the honest parties, with inputs X̄.
Note that both the adversary and the simulator are given the inputs of the corrupt parties
XPm+1 , . . . , XPn , but are oblivious to the inputs of the honest parties XP1 , . . . , XPm .

Definition 1. We say that an Equality Testing protocol π is private if for any set of m ≤ n
honest parties P1, . . . , Pm acting as role1, . . . , rolem, with unique rolei ∈ {A,B1, . . . , Bn−1}, and
for any PPT Adv, there exists a PPT simulator Sim such that for any set of inputs X̄

V iewX̄(Adv⇔ π)
c≡ OutputX̄(SimAdv ⇔ Fideal) if A is corrupt, and

V iewX̄(Adv⇔ π)
c≡ OutputX̄(SimAdv) otherwise.

Recall that all of our definitions use an implicit security parameter κ. Specifically, the above
distributions are in fact the ensembles {V iewX̄(Adv⇔ π)}κ etc., and all the PPT machines run
in polynomial time in κ.

In order to achieve a private PET, some assumptions are necessary. The following claim
suggests that a minimal requirement for the honest parties is to resist impersonation attacks.

Claim 1. Assuming messages can be blocked (by the adversary), a private PET scheme allows
each user to identify the sender of a received message.

To see this, assume a private PET with m ≥ 2 honest parties in which an honest party,
(wlog) P1, cannot identify the origin of a received message. Let Adv run the PET scheme
with P1, acting as the other n− 1 users (blocking the messages of the other honest users). Since
P1 cannot validate the origin of his received messages, he proceeds using Adv’s messages as the
legitimate messages. Then, Adv is able to guess XP1 via a trivial guessing attack: he picks a
value x ∈ D and runs the PET scheme, setting all the inputs to x. If the PET scheme returns 1,
Adv outputs x; otherwise Adv outputs a uniform guess from D−{x}. This attack succeeds with
probability at least 2/|D| (assuming a uniform distribution on D), regardless of the inputs of
the other honest parties, which contradicts the privacy of the scheme.

From this point and on, we assume the users communicate using an authenticated channel.

2Note that due to the asymmetric nature of the protocol, Sim has access to Fideal only when it simulates A.
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The f-Hybrid Model. Assume f is some arbitrary subroutine used as part of the protocol π.
In order to focus on the analysis of π yet “hide” the details of f ’s implementation, we use
the f -hybrid model. In this model we assume the function f : (x1, . . . , xn) → (y1, . . . , yn) is
implemented via an ideal trusted party who gets the input xi from user i and outputs yi to the
same user. Let V iewf andOutputf denote the same distribution as above, in the f -hybrid model.
The notion of privacy (Definition 1) can be extended to the f -hybrid model in a straightforward
way.

The f -hybrid model is interesting due to the following fact. If some realization g of f is UC-
secure [Can01], then proving the security of π in the f -hybrid model implies that an equivalent
protocol that uses g to implement the functionality f is secure as well.

Lemma 2 (Universal Composability [Can01]). Let g be an n-party protocol that (UC-)securely
realizes an ideal functionality f , and let π be an n-party protocol in the f -hybrid model. Let πg

be the protocol obtained from π by replacing each call of f with the subroutine g.
If π securely realizes some ideal functionality F in the f -hybrid model, then πg securely

realizes F from scratch.

We stress that we do not prove our schemes to be UC-secure, however we will use UC-secure
subprotocols as part of our schemes.

4 n-Party Private Equality Testing with A Trusted Server

We now provide a private equality testing protocol for an arbitrary number of users, via a trusted
server. Note that although the server is ‘trusted’, we require that it learns nothing out of the
messages it processes. The main idea is that user A performs a generalization of the 2-party
scheme [NTL+11] with each one of the users (B1 to Bn−1), however, replies are sent to the server
S, which incorporates them all into a single reply that is sent to A. This simple extension is
interesting as a first step towards obtaining a private scheme without a trusted server.

For this scheme we assume a secure channel between each party and the (semi-)trusted
server. Also, we assume p is a large prime known to all parties, such that 1/p is negligible in
the security parameter κ. All the parameters of the protocol should be considered as numbers
in Zp. The scheme is given in Protocol 1.

Protocol 1 A private n-party PET with a trusted server S
(trusted) setup : Let p be a prime number, known to all parties (p depends on the security parameter). All
the values below are over Zp.
Let kA be a key known to all the users, excluding the server. In addition, for every i ∈ {1, . . . , n − 1}, A and
Bi share kA,i. Each Bi shares randomness rS,i with the server. Each user has a secure private channel with the
server.

1. Alice sends mA = XA + kA to the server.

2. Each Bi sends mi = rS,i(Xi + kA) + kA,i to the server.

3. The server computes res =
∑
i(rS,imA −mi), and sends res to party A.

4. Alice’s output is the boolean predicate res
?
=

∑
i−kA,i.

Proposition 3. The trusted server scheme (Protocol 1) is complete and 1/p-sound.
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Proof. If all parties possess the same input, ∀i XA = Xi ≡ x, we get

res =
∑
i

rS,i[(x+ kA)− (x+ kA)]− kA,i =
∑
i

−kA,i,

and the scheme is complete. On the other hand, if party Bj has a different input than XA, then

res =
∑
i 6=j

rS,i(XA −Xi) + rS,j(XA −Xj)−
∑
i

kA,i.

The probability that res equals
∑

i−kA,i is given by

Pr
rS,1...rS,n−1

[∑
i 6=j

rS,i(XA −Xi) = −rS,j(XA −Xj)
]

=

Pr
rS,1...rS,n−1

[
rS,j =

∑
i 6=j

rS,i(XA −Xi)(Xj −XA)−1
]

=
1

p
.

Privacy. Using the above, we see that the protocol is private: the Bis receive no information
at all, while the value obtained by party A is uniformly distributed in the case that some party
Bj has input Xj 6= XA, and fixed otherwise.

Theorem 4. Protocol 1 is private against a semi-honest server and any coalition of semi-honest
adversaries (excluding the server).

Proof. Constructing a simulator for the (only non-trivial3) case where user A is corrupt (and
possibly, several of the Bis), is as follows. The simulator runs Adv to obtain the messages sent
by the corrupt parties to the server. In order to simulate the server’s reply, the simulator uses
the inputs XPm+1 , . . . , XPn , known to him by definition, and queries Fideal. If the output is 1,
the simulator outputs

∑
i−kAi ; otherwise, it outputs a random value. It is easy to verify that

for any given input X̄, the simulator’s output is distributed in the same way as a transcript
Protocol 1.

Malicious Adversaries. The simulator described above extends to the case of malicious
adversaries. As above, we consider only the non-trivial case in which A is corrupt. Note that
the simulator is given the trusted setup parameters, specifically, it learns kA and kA,i, rS,i for
any corrupt Bi. The value mA sent by A can always be interpreted as X ′A + kA for some X ′A.
Similarly, each message mi uniquely defines a value X ′i = (mi − kA,i)/rS,i − kA, which can be
extracted from each corrupt party’s message to the server. The simulator then queries Fideal
and continues as above.

However, in the malicious adversary model, one should keep in mind that the soundness
of a protocol may be compromised. Assume the worst case scenario in which all the Bis are
corrupted. In order to force res = −

∑
kA,i, it must be that

∑
i(mi − kA,i) = mA

∑
i rS,i. If

the malicious adversary can choose the randomness rS,i then he can use
∑

i rS,i = 0 which
allows him to control the value of the servers reply by choosing the values of mi. However,

3In the other cases, the view is only the outgoing messages of the corrupt parties, which is trivial to simulate
with black-box access to the adversary.
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if the randomness is out of the adversary’s control (that is, chosen by a trusted third party),
the probability that res = −

∑
kA,i equals the probability of guessing the value of mA, i.e., the

probability to guess XA.

Theorem 5. In the malicious adversary model (with semi-honest server), the trusted server
scheme (Protocol 1) is private, complete and (ε + neg)-sound, where ε is the probability of
guessing XA.

We stress that in contrast to the above, the scheme is not private against a coalition that
includes the server. When the server colludes with any of the Bis, the key kA is revealed to the
server which can learn XA from A’s message. In a similar way, if the server colludes with A,
they can learn the inputs of each one of the Bis. Another drawback of the above protocol is the
fact that each run requires fresh pre-shared keys and randomness, which reduces the efficiency.4

In the following sections we present schemes that overcome these issues. The following schemes
do not assume the existence of a trusted server, and are secure against any such malicious server
that might be involved when implementing the schemes. [Yet, the above scheme is more efficient
if we assume a semi-trusted parties, which is reasonable in some practical scenarios.]

5 Homomorphic PET Schemes

We now show multiparty PET schemes that do not use a trusted server. Generalizing a 2-party
PET scheme into the multiparty case is not straightforward: if Alice performs a 2-party PET
separately with each one of the Bis, she can learn which of the Bis are located next to her, and
which are not, thus this trivial extension is not private.

Informally, in order to achieve privacy in the multiparty case, each user5 i performs a secret
sharing of a random value si, which is used to mask the 2-party PET result between the user
and Alice. The users sum all the shares they have received from all the other users and obtain a
secret sharing of

∑
i si. Then, the users send all the shares to Alice, who can reconstruct

∑
i si.

Since the value of any individual si remains secret, Alice has no use of the separate 2-party
PET results, and she must “sum” them up in order to deduct the sum of the secret shares.
This prevents Alice from learning any information about the users separately, and guarantees
privacy.

We assume secure channels between any two users, and let G be a cyclic group with prime
order q, in which DDH is hard. We let g be a fixed generator of G. The scheme is described
in Protocol 2. Note that the protocol requires only 2 rounds of communication, where a single
round means simultaneous mutual communication between all the parties.

Completeness and Soundness. Each Bi sends Alice the value ŝi along with an ElGamal
encryption of the encoding of ri(Xi −XA) masked with si,

(ai, bi) = (grirA+ti , hri(XA−Xi)+si+(rirA+ti)).

4This issue was discussed in previous works, and several solutions were suggested, such as the PRF construction
used by [NTL+11].

5We slightly abuse the notations here, so that i, j ∈ {A,B1, . . . , Bn−1}. We further abuse the notations and
refer to a general user (except Alice) as Bi.
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Protocol 2 A private n-party homomorphic PET against semi-honest coalitions

1. Each party i = A,B1, . . . , Bn−1, randomly picks si ∈ Zq and computes an (n,n)-secret-sharing of
si, obtaining siA, siB1

, . . . , siBn−1
such that

∑
j sij = si. The share sij is sent to user j over a

secure channel.

2. Alice randomly picks (a private key) x ∈ Z∗q , and publishes her public key (g, h) = (g, gx). Alice

encodes her input as hXA and broadcasts (or sends to each party over the secure channel) an
ElGamal encryption of her encoded input, that is, she sends (grA , hXA+rA) with a random rA ∈ Zq.

3. Each party i = B1, . . . , Bn−1 receives the message (aA, bA) and performs the following. The user
randomly picks two numbers ri, ti and computes ai = ariA · gti and bi = briA · hti−riXi+si .

4. Each user (including Alice) computes the sum of all the shares he has (including his own, sii),
ŝi =

∑
j sji, and sends Alice the message mi = (ai, bi, ŝi) over the secure channel.

5. Alice receives a message (u1, u2, u3)i from each of the other parties. She decrypts each message
using her private key so that for every user i she gets resi = (u2)i/(u1)i

x
= hri(XA−Xi)+si . Alice

also computes σ =
∑
i(u3)i + ŝA.

6. Alice’s output is the boolean predicate hσ
?
= hsA

∏
i resi.

By decoding and multiplying all these messages in Step 6, Alice obtains the sum of the differences,
h
∑
i6=A[ri(XA−Xi)+si], which equals h0+

∑
i 6=A si if all the users have the same input. Note that

σ =
∑
i

ŝi =
∑
i

∑
j

sij =
∑
i

si,

thus
hσ = hsA

∏
i 6=A

resi = hsAh
∑
i6=A si .

On the other hand, if there exists a user j such that XA 6= Xj , then the value resj is a
random power of h, which is independent of σ. The probability that Alice outputs 1 in this case
is O(1/q), which is negligible.

We note that Step 5 can be performed in a more efficient way by decrypting the product of
all the values (u2)i, instead of decrypting each one individually.

Privacy. We show now that Protocol 2 is private in the semi-honest model. The case of an
honest Alice is trivial, due to the semantic security of the encryption system. For the other case,
we assume that there are 2 ≤ m ≤ n honest players, without loss of generality, B1, B2, . . . , Bm.
Note that the adversary cannot learn the secret shares {sij}i,j∈{B1,...,Bm}. It is a well known
fact that the shares sij of the value si are (n−1)-wise independent. Also, the values ŝi (Step 4)
are merely an (n, n)-secret sharing of

∑
i si which are (n−1)-wise independent as well.All that

the adversary learns is the value of the sum
∑

i si. Moreover, note that if si is unknown, the
message (u1, u2, u3)i is an encryption of a random number, and thus random.

Theorem 6. Protocol 2 is private against a semi-honest adversary.

Proof. If Alice is honest then the information the other parties see is nothing but an ElGamal
encryption of Alice’s input (encrypted with Alice’s public key) and random shares. By the
semantic security of the ElGamal scheme, their view is indistinguishable from an encryption of
a random value (along with random shares), and it is clear that such a view is simulatable.
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For the case where Alice is corrupt, for every PPT adversary Adv, we construct a PPT
simulator Sim in the following way. The simulator runs Adv for the corrupt parties, and simulates
the activity of the honest B1 to Bm according to the protocol until Step 3 (randomly picking
the secret values si and performing secret sharing, etc.).

In order to simulate the messages mi of the honest parties, the simulator queries Fideal, with
all the corrupt users’ inputs set to XA (obtained as part of the input X̄). If Fideal = 0 then for
each honest user’s message mi, Sim outputs an ElGamal encryption of a random value ri, along
with ŝi according to the protocol, that is, the message mi = (gti , hti+ri , ŝi), with a random ti.
If Fideal = 1 then for each honest mi, Sim outputs an ElGamal encryption of the secret share
si, that is, it outputs the message mi = (gti , hsi+ti , ŝi). The rest of the transcript follows the
protocol.

Let us analyze the distribution of the adversary’s view running the protocol with the honest
parties. Assume there are m ≥ 2 honest parties. Consider the values ri(XA −Xi) + si which
are sent (encrypted) by the honest parties. The secret sharing guarantees us that these values
are (m − 1)-independent. Although their joint distribution is not uniform, it is easy to verify
that the sum of the values ri(XA −Xi) + si is

∑
i si when all the honest parties have the same

input as A, and uniform otherwise. Note that this proves the theorem, since the corresponding
(plaintext) values of the simulator are distributed exactly the same.

We note that in the case where m = 1 the secret sharing has no meaning (s1 is known to
the adversary due to knowing

∑
i si and

∑
i 6=B1

si), however, this case is still secure due to the
privacy of the 2-party scheme in [Lip03].

5.1 Private Homomorphic PET Against Malicious Adversaries

The above proof does not hold when the adversary is malicious, mainly due to the following two
issues. First, a malicious A can send different messages to different parties (e.g., different values
of XA with different Bis); yet, this can easily be resolved if A uses a broadcast channel. The
other issue is that a malicious A might ignore the input XA, and the simulator might not be able
to know the value XA actually used. Moreover, instead of choosing a secret key x and publishing
a public-key pair (g, gx), the adversary might publish and use a public key for which he does
not know the secret key, so there is no hope for the simulator to learn XA from A’s encrypted
message (Step 2).

A standard technique to overcome this issue is to use a zero-knowledge proof of knowledge
(ZKPoK) scheme, in which party A proves she knows the secret key x corresponding to the
public key (g, gx), yet without revealing any information about x to the other parties. This also
allows the simulator to extract the secret x, which in turn lets it extract the value XA from A’s
message.

Party A is required to convince all the Bis that she knows the secret x, which requires
performing the ZKPoK scheme n−1 times, separately with each Bi. If this is done sequentially,
the round complexity increases from constant to linear in n. On the other hand, if n−1 instances
are to be performed in parallel, the ZKPoK must be secure under parallel composition. While
the round complexity remains the same for such composition, the communication complexity
multiplies by n− 1. Although there is no hope to obtain sub-linear communication for parallel
composition, the fact that A plays the same role in all the instances allows us to “compose”
the separate instances so that all the Bis collaborate to act as a “single” verifier. This way, A
performs a single ZKPoK instance over a broadcast channel, and we save a factor of n−1 in A’s
outgoing communication. Such a composed scheme is denoted a 1-Prover n-Verifier ZKPoK.
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Definition 2 (1PnV-ZKPoK protocol6). Let R be some binary relation and let κ() be a function
from bitstrings to the interval [0..1]. An interactive protocol between a single prover P = P (x,w)
and n verifiers V1(x), . . . , Vn(x) is called a 1-Prover n-Verifier Zero-Knowledge Proof of Knowl-
edge (1PnV-ZKPoK) protocol for a relation R with knowledge error κ, if for any (x,w) ∈ R the
following holds:

1. (Completeness) The honest Prover on input (x,w) ∈ R interacting with honest verifiers,
causes all the verifiers to accept with probability 1.

2. (Zero-knowledge) For any PPT verifiers V ′1 , . . . , V
′
n there exists a PPT simulator that has

rewindable black-box access to V ′1 , . . . , V
′
n and produces a transcript T that is indistinguish-

able from a transcript of V ′1 , . . . , V
′
n with the real prover P .

3. (Extended extractability) There exists a PPT extractor Ext such that the following holds.
For any prover P ′ and any verifiers V ′1 , . . . , V

′
j−1, V

′
j+1, . . . , V

′
n (that might collude with P ′)

for some 1 ≤ j ≤ n, let ε(x) be the probability (the honest) Vj accepts x. There exists a
constant c such that whenever ε(x) > κ(x), Ext outputs a correct w in expected time at
most

|x|c

ε(x)− κ(x)
.

Note that while the zero-knowledge property is standard, when considering the proof-of-
knowledge (extractability) property, the prover is allowed to collude with several of the verifiers,
in order to fool an honest verifier. An extractor in this case is given black-box access to all the
corrupt parties, possibly, including other verifiers.

In Appendix A we show how to construct a 1PnV-ZKPoK from a Σ-Protocol and a (perfectly-
hiding) trapdoor commitment. Specifically, we show the following:

Proposition 7. There exists a 5-move 1PnV-ZKPoK scheme for the discrete logarithm relation
with negligible knowledge error.

With Proposition 7 we construct a PET protocol that is private against malicious adversaries,
by changing Protocol 2 in the following way. After publishing her public keys, party A performs
a 1P(n-1)V-ZKPoK scheme for discrete log with all of the Bis. Each of the Bis acts as a verifier,
and continues with Protocol 2 only if A succeeds in the ZKPoK (likewise, A aborts if any check
defined in the scheme fails).7 The complete scheme is given in Protocol 3. The scheme takes
9 moves, however moves 1–2 and 6–8 can be done at the same time, which leads to 6 rounds of
mutual communication.

Theorem 8. Protocol 3 is private against any coalition of malicious adversaries.

Proof. We prove the privacy of Protocol 3 by constructing a simulator. Note that the only
difference from Protocol 2 is the 1PnV-ZKPoK part of the scheme, and we now explain how to
change the simulator of Protocol 2 accordingly.

First consider the simple case in which A is honest. The simulator randomly chooses inputs
XP1 , . . . , XPm for the honest parties, and simulates their part according to the protocol. In
particular, Sim chooses a secret key x, and performs the 1PnV-ZKPoK as the prover (which is
possible since Sim knows x). It is clear that the generated transcript of the 1PnV-ZKPoK is

6We consider only PPT parties, thus this is, in fact, a ZK argument.
7We can assume that if any party aborts, this fact is broadcasted and the other parties abort as well.
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Protocol 3 n-party PET with Homomorphic Encryption and ZKPoK

(trusted) setup : A group G of prime order q (which depends on n and the security parameter κ), a
generator g. For two numbers a, b ∈ Zq, define a ◦ b to be the concatenation of the least blog q/nc signif-
icant bits of a with the least blog q/nc significant bits of b. Dashed arrows mean private communication,
while solid arrows mean broadcast.

A Party i ∈ {B1, . . . , Bn−1}

Choose secret key x ∈ Zq
Compute public key h = gx

(g, h) = (g, gx)

Choose trap← Zq
Let pk = gtrap

pk

Choose chi, ri ← Zq
Let commi = gchipkri

commi

Choose t← Zq
Compute a = gt

a

chi, ri

For every i verify that
commi = gchipkri

Verify that commj =
gchjpkrj for all j 6= i

Set ch = ch1 ◦ · · · ◦ chn

Set z = x · ch+ t (mod q)

trap, z

Verify that gz = hcha, and
trap is valid (pk = gtrap)

D
is
cr
et
e
L
og

1P
n
V
-Z
K
P
oK

Choose rA ∈ Zq
Choose n values sAj s.t.∑
j sAj = sA

Choose n values sij s.t.∑
j sij = si

(aA, bA) = (grA , hXA+rA)

each user j sends share sjj′ to j′

Choose ri, ti ∈ Zq
ai = ariAg

ti

bi = bA
rihti−riXi+si

for j′ ∈ {A,B1, . . . , Bn−1}
let ŝj′ ≡

∑
j sjj′

(ai, bi, ŝi)

resi = bi/a
x
i

σ = ŝA +
∑
i ŝi

Output hσ
?
= hsA

∏
i resi
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distributed the same. The rest of the transcript is distributed correctly, as argued above, due
to the semantic security of the ElGamal encryption.

In the case where A is corrupt, the simulator performs as follows. First, it extracts the value
of x used by A via the extended extractability property of the 1PnV-ZKPoK, (if the extraction
fails, Sim outputs an aborting transcript). With the knowledge of the private key x, Sim decrypts
the message (aA, bA) sent on the 7th move, and obtains hXA . Next, the simulator exhaustively
checks any value in D. If for some value d ∈ D, hd = hXA , the simulator uses d as the “guessed”
input of party A. Otherwise, the simulator sets d = ⊥. This step is polynomial in the size of
the dictionary. Next the simulator queries Fideal using d as the input of each of the corrupt
parties.8 The rest of the simulation is exactly as in the proof of Protocol 2: the (plaintext of
the) messages sent by the m honest users are (m − 1)-independent, and their sum is random
unless d = Xi for all the honest parties. Hence, if Fideal = 0, the simulator replies on the 9th
move for every honest i with (ai, bi) being encryptions of random values, and if Fideal = 1, Sim
lets (ai, bi) be the encryption of the value si.

6 Realizing PET via PAKE

In this section we construct a PET scheme based on a password-authenticated key-exchange
(PAKE) primitive (see for instance [GL06, KOY01, CHK+05] and references therein). PAKE is
performed between two users, A and B, where each user i ∈ {A,B} possesses a password pwi
drawn from a low-entropy dictionary D. The distributed computation PAKE(pwA, pwB) outputs
a key ki for each user i, such that ki is uniformly distributed and kA = kB if pwA = pwB.

On its surface, there seems to be some connection between PET and PAKE protocols, or any
other password-authenticated primitives: users want to compute some functionality F whose
output depends on whether or not the users share the same password. An adversary that holds a
different password should not be able to learn F ’s outcome, and moreover, should learn nothing
about the passwords of the users. On the other hand, there are several differences: PAKE seems
to be a much stronger primitive, as the users begin with nothing but a (small-entropy) password
and end up with a random session key, while in PET they might pre-share some set of keys, and
end up with (only) a binary output.

Surprisingly, while a secure PAKE can be performed using a single communication round
in the CRS model [BPR00, KV11], a secure PET requires at least 2 rounds to avoid off-line
dictionary attacks. Indeed, if we assume a single-round 2-party PET, after receiving a message
from B, it is possible for user A to simulate the PET scheme for any possible value inXA ∈ D, off-
line, using the received message. The simulated-PET will output 1 only for the input XA = XB,
leaking its value to Alice. One reason for this discrepancy is that when the users do not share
the same password, they end up with different keys when the PAKE protocol terminates, yet
they are not aware of this fact. In order to learn whether their keys match or not (which they
trivially learn during PET), an additional round is required.9

We show that an n-party PET scheme can be realized using a chosen-plaintext unforgeable
semantically-secure encryption scheme along with a secure 2-party PAKE, using one’s private
input as one’s password. Our construction is defined in a hybrid model, assuming a secure
two-party PAKE as a sub-protocol. Specifically, Let 2PAKED,N : (pw1, pw2) → (k1, k2) be the

8We extend the definition of Fideal to return 0 if any of its inputs is ⊥.
9See also [CHK+05] for a discussion about mutual authentication in PAKE.
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ideal functionality that accepts two passwords and outputs two numbers k1, k2 ∈ ZN such that
k1, k2 are uniformly chosen and k1 = k2 if pw1 = pw2 and pw1, pw2 ∈ D.

The main idea is to use 2PAKED,N in order to form secure channels between each pair of
users, using their private input Xi as the 2PAKED,N password. Unless the users share the
same input, they would use different keys to encrypt and decrypt messages, and “randomize”
the transmitted messages. The scheme works as follows. Each user performs an (n, n)-secret
sharing of the value 0 and sends the shares to the rest of the n − 1 users, encrypted with a
chosen-plaintext unforgeable semantically-secure encryption, using the PAKE generated key.
Next, each user adds all the shares he has received, so the users still jointly hold a secret-sharing
of 0. Finally, all the parties send Alice their accumulated shares.

In the case that all users hold the same password (and thus use matching encryption keys),
Alice reconstructs the value 0 and learns that all the parties have the same private input.
Otherwise, shares sent over channels with mis-matching keys are decrypted to a random value.
This prevents Alice from reconstructing the value 0, and she learns that at least one party has
a different private input. The scheme is described in Protocol 4.

Protocol 4 A realization of an n-party PET via 2PAKED,N

(trusted) setup : Assume ZN is some fixed finite field, where N depends on κ. Assume a symmetric-key
semantically secure 1/N -chosen-plaintext unforgeable encryption scheme (GEN,ENC,DEC), and oracle access
to 2PAKED,N .

1. Each user i ∈ (A,B1, B2, . . . , Bn−1) runs 2PAKED,N with any other user j 6= i, using his private input Xi
as his PAKE password. Let 2PAKED,N (Xi, Xj) = (skij , skji).

2. Each user i ∈ (A,B1, B2, . . . , Bn−1), randomly picks n values sij ∈ ZN such that
∑
j sij = 0 and sends

ENCskij (sij) to user j ∈ (A,B1, B2, . . . , Bn−1).

3. User i, upon receiving the message mj from user j, computes s̃ji = DECskij (mj). Next, each user i 6= A
sends the value ENCskiA(sii +

∑
j 6=i s̃ji) to Alice.

4. Alice decrypts the message from user i using the key skAi, to obtain ˜̃si. Alice computes res = sAA +∑
i 6=A(˜̃si + s̃iA), the sum of all the shares she has received (including her own).

5. Alice’s output is the value of the boolean predicate res
?
= 0.

Theorem 9. In the 2PAKED,N -hybrid model, Protocol 4 is private against any coalition of
malicious adversaries.

Proof. For the case where A is honest, we note that all the information that the adversary
receives is (at most) n− 1 shares of an (n, n)-secret sharing scheme, thus even if the adversary
is capable of correctly decrypting the received messages, his view is uniformly distributed.

Otherwise, let B1, . . . , Bm be honest. First we assume that there exists at least two honest
parties Bi, Bj such that Xi 6= Xj . It follows that any honest user is incapable of decrypting all
the messages he receives during Step 2, and hence the sum obtained in Step 3 in unexpected.
Moreover, since the encryption scheme is 1/N -chosen-plaintext unforgeable, the decrypted value
is uniformly distributed, and so is the view of the adversary (even if he succeeds in guessing all
X1, . . . , Xm). Next assume that all the honest parties share the same private input X1 = · · · =
Xm. In this case as well, unless the adversary successfully guesses this private input and runs
the PAKE scheme to obtain matching keys with all the honest parties, all that the adversary
sees is random shares.

Constructing a simulator is now straightforward, and we give here only a sketch. The
simulator runs Adv and learns, for each corrupt party i, the passwords pwij used as input
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for 2PAKED,N . If the same password is used with all the honest parties, pwiB1 = · · · = pwiBm ,
then the simulator sets Xi as this password, and otherwise it sets Xi = ⊥. Next, the simulator
queries Fideal using the private inputs Xi obtained in the previous step. If Fideal = 1 then the
private inputs of the honest parties are the same as Adv’s inputs, and the simulator outputs
a transcript following the protocol and simulating all the honest parties with the same private
input as Adv. Otherwise, the simulator picks random Xi values for the honest parties (more
accurately, he can choose any set of inputs such that not all of them are equal) and completes
the protocol using Adv and simulating each honest party’s behavior with the random inputs.
Using the fact that the adversary learns nothing about the keys used for encryption and the
semantic security of the encryption scheme, the privacy follows.

By Lemma 2, the existence of an efficient, constant round, UC-secure 2-party PAKE [CHK+05,
ACCP08, HL11, KV11] implies the privacy of an equivalent protocol in the standard (non-hybrid)
model:

Corollary 10. Protocol 4 is private against any coalition of malicious adversaries (in the stan-
dard model).

We are left to show that the scheme is sound when considering a malicious adversary.

Theorem 11. Protocol 4 is (ε + neg)-sound in the malicious adversary model, where ε is the
probability of guessing the password of party A.

Proof. Assume the worst-case scenario in which all the Bis are corrupted. In order to cause Alice
to output 1, they must send (2 sets of) messages to Alice such that the sum of their messages is
a fixed10 value c. However, for at least one of the secure channels between an adversarial Bi and
Alice, the keys mismatch (except with small probability ε where the adversary successfully
guesses the private input XA). In the case where the key Alice uses is unknown, the adversary
succeeds in generating a valid encryption of some value controlled by him with only negligible
probability, due to the 1/N -unforgeability of the encryption system. Thus, any message sent
to Alice using a mismatching key is decrypted into a random value (or otherwise violates the
1/N -unforgeability of the encryption scheme). The shares Alice receives sum up to c with only
negligible probability, which completes the proof.

Due to rushing, the adversary can wait until he learns Alice’s message before sending a
message to Alice. However, the adversary is required to send Alice two messages (one in Step 2
and the other in Step 3), while receiving from Alice only one message. Therefore no matter what
the adversary does, in order to cheat successfully he must send Alice at least one message that
decrypts to some given value, while other messages previously received by the adversary decrypt
to different values with high probability. The adversary cannot create a successful cheating reply,
even given previous received messages, due to the unforgeability of the encryption scheme.

7 Optimizing the Efficiency of 2-party Proximity Testing

As recently presented by Narayanan et al. [NTL+11], proximity testing can be realized via
equality testing of quantized locations. To this end, the entire area is partitioned, using a fixed

10We can assume that we strengthen the adversary so that he knows this fixed value.
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grid, into several regions, and the party’s location is quantized to a center of such a region (or
its index number, etc.). This same method is applicable to the multi-party case as well.

Using a grid, however, presents an inherent problem, where two parties might be arbitrarily
close to each other, yet belong to different regions. A suggested remedy [ŠTŠ+09, NTL+11] is
to overlay grids atop each other. The solution of Narayanan et al. uses three hexagonal grids,
which is the minimal necessary to avoid the above problem. Combining such quantization with
PET yields a proximity testing scheme with constants δ, γ such that if the parties are distanced
at most δ from each other, the scheme outputs 1, and if they are at distance at least γδ, the
output is guaranteed to be 0. For the hexagonal triple-grid, γ = 4/

√
3, and δ is controlled by

the hexagon’s size. See [NTL+11] for full details and the exact definition of the parameters γ, δ.
One of the main goals considered by Narayanan et al. is efficiency, and indeed their schemes

are highly efficient: in their synchronous scheme Alice performs only three modular exponen-
tiations, and Bob only two, and in their trusted-server (asynchronous) scheme the parties per-
form several additions and one modular multiplication each.11 In addition, their schemes are
bandwidth-economical: only a single message is sent by each party. Our multiparty extensions
are also very efficient: Protocol 2 requires five exponentiations from Alice and two from Bob, but
also O(n) multiplications; Protocol 1 requires just one multiplication and several additions from
each of the users, while the server is required to perform O(n) multiplications and additions. In
the homomorphic schemes, each message contains 2 elements of the group (or field), and thus
takes 2 log |G| bits, while in the trusted-server scheme each message takes only log |G| bits.12

This efficiency makes the protocol extremely suitable for mobile devices. Unfortunately,
using three fixed grids triples the amount of operations needed, as the protocol runs a PET
instance separately for each grid.

7.1 Improved Efficiency for 2-Party Proximity Testing

We suggest an improvement for the 2-party case, which decreases both the communication
complexity and the number of operations. Assume that t fixed grids are used. Our approach is
that rather than repeating the scheme t times, Alice performs the scheme using a single grid—the
one in which she is closest to the center.

For the synchronous scheme, Alice just sends the number of the grid she uses along with her
message, and Bob continues the scheme using the specific grid chosen by Alice. The communi-
cation complexity decreases from t · (4 log |G|) bits in the original scheme to 4 log |G|+log t. The
amount of operations also decreases by a factor of t (e.g., for the scheme in [NTL+11] we reduce
the number of modular exponentiations from 15 to 5). Further, to keep the specific grid in use
hidden from Bob (since it leaks some information on Alice’s location), we do the following: first
we make sure that cells of different grids have different numbers. Bob performs the scheme with
all possible t grids (duplicating Alice’s message n times), and sends all the replies back to Alice.
Alice picks the reply according to the grid she uses using 1-out-of-n Oblivious Transfer, and
completes the scheme.

For the trusted server model, we can reduce the number of operations as well. Bob still
performs the scheme with all possible t grids, however, the server uses only one grid chosen by
Alice. The parties can agree on a permutation π on {1, 2, . . . , t} so that the ith entry sent to
the server matches the π(i)-th grid. This keeps the server oblivious to the specific grid in use.

11Omitting constant operations and encryption/decryption needed for transmitting data over a secure channel.
12The traffic also includes a single public key message and constant overhead for a secure communication. We

neglect this overhead as well.
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For the scheme of [NTL+11] with t = 3 hexagonal grids, the above reduces the total traffic from
3·(3 log |G|) bits to 5 log(|G|) + 2 bits, assuming a field of size |G|, and neglecting overhead as
before. The amount of modular multiplications performed by A and B decreases from 6 to 5.

The change in the quantization also changes the constants δ, γ: for the triple-hexagonal grid,
δ becomes 1/

√
12 times the side of the hexagon, and γ =

√
28.

8 Conclusions

We have presented several PET schemes, based on various primitives and assumptions, and
proved their privacy in the malicious adversary model. Some schemes are implemented via
ElGamal encryption, however, equivalent schemes can be realized using any semantically-secure
homomorphic encryption.

See Table 1 for a summary of our results. The presented schemes are highly efficient, requiring
only 2-rounds of communication and a total communication complexity of O(n log |G|) bits, with
small constants. This makes these schemes suitable for various applications on limited-resource
devices, such as smart-phones.

Since our scheme is asymmetric we do not consider fairness. In the presence of n−1 dishonest
parties, such a task would require stronger primitives, see for instance [GIM+10].

Protocol Adversary Soundness ε Rounds

Server-based Malicious Pr[Guess XA] 2
(Protocol 1) (negligible if semi-honest)

Homomorphic Enc. Semi-Honest negligible 2
(Protocol 2)

Homomorphic Enc. Malicious — 6
+ZKPoK (Protocol 3)

PAKE-based Malicious Pr[Guess XA] 3
(Protocol 4) (negligible if semi-honest)

Table 1: Summary of our protocols and their properties.
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Appendix

A 1-Prover n-Verifier Zero-Knowledge Proof of Knowledge

In this section we show a construction of a 1PnV-ZKPoK protocol from a Σ-Protocol and a
trapdoor commitment. The construction is an extension of the 2-party case (see, for instance,
[Dam00, HL10]).

A.1 Preliminaries

Σ-Protocol Let R denote a binary relation, and let P1, P2, and ZK-Ver denote PPT algorithms.
A protocol between a prover P := P (x,w) and a verifier V := V (x) is called a Σ-Protocol with
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challenge space C if the following holds:

1. (3-move form) The protocol is of the following form:
(i) P sets (a, state)← P1(x,w), sends ‘a’ to V and keeps ‘state’ secret.
(ii) V sends a random challenge ch← C to P .
(iii) P computes z ← P2(x,w, state, ch) and sends z to V ; the latter accepts if ZK-Ver(x, a, ch, z) =
Accept or otherwise rejects.

2. (Completeness) If (x,w) ∈ R then an honest P always causes an honest V to accept.

∀(x,w) ∈ R, Pr
[
(a, state)← P1(x,w); ch← C; z ← P2(x,w, state, ch);

ZK-Ver(x, a, ch, z) = Accept
]

= 1.

3. (Special honest-verifier zero-knowledge) There is a PPT simulator which, on input (x, ch),
outputs a tuple (a, ch, z) and the distribution of its output is indistinguishable from the
distribution of the transcript of P and V .

4. (Special soundness) Let (a, ch, z) and (a, ch′, z′) be two conversations with ch 6= ch′, that
are accepting for some given x. There exists a PPT simulator (extractor) that on input x
and those two conversations, computes w such that (x,w) ∈ R.

Trapdoor commitments A perfectly-hiding trapdoor commitment scheme on a message
space M is a tuple of probabilistic polynomial-time algorithms (Commit, Verify, Setup, TrapCom,
TrapDecom) such that the following holds.

1. (Completeness) For any m ∈M ,

Pr
[
(pk, trap)← Setup(1κ);

(comm, decom)← Commit(m, pk) : Verify(comm, decom,m, pk) = Accept
]

= 1.

2. (Perfect Hiding) for everym,m′ ∈M , and for any pk generated by Setup, for (commm, decomm)←
Commit(m, pk) and (commm′ , decomm′) ← Commit(m′, pk), the commitments are identi-
cally distributed,

commm ≡ commm′ .

3. (Binding) For every probabilistic polynomial time adversary Adv,

Pr

[
(pk, trap)← Setup(1κ); (comm, decomm1 , decomm2 ,m1,m2)← Adv(pk) :

Verify(comm, decomm1 , pk,m1) = Accept ∧

Verify(comm, decomm2 , pk,m2) = Accept ∧ m1 6= m2

]
< neg.

4. (Trapdoor Property) The knowledge of the trapdoor allows generating commitment comm,
distributed in a similar way to a standard commitment, which can be opened as any
m ∈ M . Formally, for any (pk, trap) ← Setup(1k) and comm ← TrapCom(pk, trap) it
holds that
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(a) for every m ∈M , and (commm, decomm)← Commit(m, pk),

comm ≡ commm.

(b) for every m ∈M and decom← TrapDecom(comm,m, pk, trap)

Pr[Verify(comm, decom,m, pk) = Accept] = 1

We require that (pk, trap) is easy to verify as a valid output of Setup; assume that for a
pair (pk′, trap′) /∈ Setup(1κ) for some κ, it holds that ⊥ ← TrapCom(pk′, trap′). In that
case we say that (pk′, trap′) is invalid.

See [Fis01] for various constructions of trapdoor commitment schemes.

A.2 Construction

Proposition 12. Let (P1, P2,ZK-Ver) be a Σ-Protocol with challenge space C for a relation R,
and (Commit,Verify, Setup,TrapCom,TrapDecom) be a trapdoor commitment scheme on a mes-
sage space M such that Mn is isomorphic to C ′ ⊆ C and M : Mn → C ′ be an isomorphism.
The scheme given in Figure 1 is a 1PnV-ZKPoK protocol for R with knowledge error 1/|M |.

All communication is over a broadcast channel.

P (x,w) Verifier Vi(x), i ∈ {1, . . . , n}

(pk, trap)← Setup(1κ)

pk

Randomly pick chi ← C
(commi, decomi)← Commit(chi, pk)

commi

(a, state)← P1(x,w)
a

chi, decomi

Abort unless for all i,
Verify(commi, decomi, chi, pk) =
Accept

Abort unless for all j 6= i,
Verify(commj , decomj , chj , pk) =
Accept

ch = M(ch1, . . . , chn)

Set z ← P2(x,w, state, ch)

trap, z

Accept if ZK-Ver(x, a, ch, z), and
(pk, trap) is valid

Figure 1: 1PnV-ZKPoK from a Σ-Protocol and a trapdoor commitment scheme.

22



Proof. The completeness trivially follows from the completeness of the Σ-Protocol and of the
trapdoor commitment scheme.

Zero-knowledge: For any set of verifiers V ′1 , . . . , V
′
n the simulator works as follows. The sim-

ulator runs the scheme until it learns the challenges chi at the 4th move. Then, the simulator
runs the simulator of the ZKPoK Σ-Protocol guaranteed by the special honest-verifier zero-
knowledge property of the Σ-Protocol on input (x, ch) to obtain (a, ch, z). The simulator then
rewinds the verifiers to the 3rd move, and sends a. Due to the binding property of the com-
mitment scheme, the verifiers open the same challenges chi as they did on the first run (except
with negligible probability), and the simulator completes the scheme as expected. Note that by
forcing the verifiers to commit to chi before seeing a, their challenge is independent of a, and
the honest-verifiers zero-knowledge property implies the composed scheme is zero-knowledge.

Extended extractability : Assume that for some 1 ≤ j ≤ n, Vj is honest. For any prover P ′

and verifiers V ′1 , . . . , V
′
j−1, V

′
j+1, . . . , V

′
n, assume that Vj accepts x with probability ε(x). We show

that there exists a constant c and a PPT extractor Ext that outputs a correct w in expected
time |x|c/(ε(x)− 1/|M |).

First we note that if an extractor Ext obtains two accepting transcripts, then it can ex-
tract w with polynomial time using the extractor guaranteed by the special soundness of the
Σ-Protocol. This property implies the extended extractability property, in a similar way as
the 2-party case (see, for instance [Dam00, Dam10, HL10]). The main difference is that the
extractor cannot determine the challenge ch used by the prover but rather only a part of it chj .
Due to rushing, it is possible that the challenges ch1, . . . , chj−1, chj+1, . . . , chn are determined
adversarially after learning the value of chj . However the isomorphism guarantees that, for any
strategy the corrupt V ′i s take, the final challenge obtained from two different values ch′j 6= chj ,
must be different. That is, given chj 6= ch′j , then for any (ch1, . . . , chj−1, chj+1, . . . , chn) and
(ch′1, . . . , ch

′
j−1, ch

′
j+1, . . . , ch

′
n)

ch := M(ch1, . . . , chn) 6= ch′ := M(ch′1, . . . , ch
′
n).

The proof follows from [Dam10, HL10] with straightforward adaptations, and we omit the details.

A 1PnV-ZKPoK protocol for the discrete log relation (Proposition 7) can be constructed
using Proposition 12 by composing a perfectly-hiding trapdoor commitment scheme based on
Pedersen’s (non-trapdoor) commitment scheme [Ped92] (see [Fis01] for construction and dis-
cussion) with Schnorr’s Σ-Protocol for discrete log [Sch91]. The composed scheme is described
inside the dashed frame in Protocol 3.
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