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Abstract. We extend the work of Bellare, Boldyreva and Staddon on the systematic analysis of randomness
reuse to construct multi-recipient encryption schemes to the case where randomness is reused across different
cryptographic primitives. We find that through the additional binding introduced through randomness reuse,
one can actually obtain a security amplification with respect to the standard black-box compositions, and
achieve a stronger level of security. We introduce stronger notions of security for encryption and signatures,
where challenge messages can depend in a restricted way on the random coins used in encryption, and show
that two variants of the KEM/DEM paradigm give rise to encryption schemes that meet this enhanced notion
of security. We obtain a very efficient signcryption scheme that is secure against insider attackers without
random oracles.
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1 Introduction

Signcryption is a cryptographic primitive that aims to simultaneously provide the guarantees of public-key en-
cryption and signature schemes [24], i.e., confidentiality, integrity, authentication and possibly non-repudiation,
whilst offering efficiency gains. One trivial way to obtain the signcryption functionality—if one is not inter-
ested in saving computational power or bandwidth—is to use a black-box combination of the two primitives.
This approach was systematically studied by An, Dodis and Rabin [2], by looking at Encrypt-then-Sign (EtS),
Sign-then-Encrypt (StE) and Encrypt-and-Sign (EaS) compositions. The former two constructions are natu-
ral sequential compositions of the two primitives, whereas EaS is a parallel composition using a commitment
scheme to enforce the necessary binding. A well-known, albeit surprising, result in [2] is that the interaction
between the signature and encryption primitives can work against the security of the composition, making it im-
possible to achieve the strongest levels of security, even when the underlying encryption and signature schemes
are themselves strongly secure. For example, in an StE construction an attacker knowing the secret key of the
receiver is always able to forge valid signcryptions simply by decrypting and re-encrypting the contents of a
legitimately generated ciphertext, regardless of the security guarantees provided by the underlying signature
scheme: this translates into a trivial break of unforgeability against insider attackers in the signcryption setting.

One general approach to obtaining efficiency gains in cryptography is to reuse randomness across instan-
tiations of various cryptographic algorithms. This technique can allow for significant savings in processing
load and bandwidth, as partial results (and even ciphertext elements) can be shared between multiple instances
of cryptographic algorithms. For this reason, randomness reuse is frequently used in the context of batch en-
cryption operations where (possibly different) messages are encrypted to multiple recipients, as recognized by
Kurosawa [16] in the construction of multi-recipient encryption schemes. Furthermore, randomness reuse is
also used as an optimization technique, in an ad-hoc way, in the construction of signcryption schemes [24,23].
Nevertheless, this avenue must be pursued with caution, since randomness reuse may, of course, hinder the
security of the resulting cryptographic schemes.

Bellare et al. [4], building on the work of Kurosawa [16], systematically study the problem of reusing
randomness in multi-recipient encryption. The authors consider the particular case of constructing such schemes
by running multiple instances of a public-key encryption (PKE) scheme, whilst sharing randomness across them.
An interesting result in this work is a general method for identifying PKE schemes that are secure when used



in this scenario. Schemes which satisfy the so-called reproducibility test permit establishing the security for
multiple recipients with randomness reuse through a variant of the hybrid argument.

Our work falls within two recent trends of practice-oriented cryptographic research. On one hand, it can
be seen as a shared state between cryptographic primitives. This follows [19,13], where the authors consider
sharing key pairs between encryption and signature schemes in cryptographic protocols, and the dangers that
this entails in black-box compositions akin to the ones considered in this paper. On the other hand, our work
focuses on getting the most out of (and reducing the need for) high-quality randomness, a resource which is
hard to come by in practical applications. We see this as a natural dual of recent work [5,15,20] considering the
implications of using bad quality randomness as inputs to cryptographic primitives.

OUR CONTRIBUTIONS. In this paper we extend the work of Bellare et al. [4] to the case where randomness is
reused across different cryptographic primitives, and analyze the security of signcryption schemes constructed
by composing encryption and signature schemes under randomness reuse. More in detail, our contributions are
the following:

– We define a compatibility notion that establishes classes of signature and encryption schemes that can
be composed under randomness reuse to obtain correct signcryption schemes. We then identify security
properties that are sufficient for the EtS and StE compositions with randomness reuse to result in secure
signcryption schemes. In particular, we introduce the notion of randomness-dependent security for both
signatures and encryption schemes. Intuitively, security must be preserved when the messages chosen by
attackers are allowed to depend (in a restricted way) on the implicit randomness input to the underlying
cryptographic algorithms. We believe these security notions may be of independent interest in the study of
the role of randomness in cryptographic security and, particularly, in the generic analysis of randomness
reuse optimizations for scenarios where multiple (possibly heterogenous) cryptographic operations are car-
ried out in a batch procedure (e.g., optimizing the overall performance of a server continuously carrying out
key agreement, signature and encryption operations).

– We find that through the additional binding that is established via the reuse of randomness, it is possible to
achieve full insider security. Our results hold in the dynamic multi-user setting, although in some cases we
require adversaries to register the full key pairs of all users created for the attack. This is usually called the
registered key model [18] and it captures natural restrictions in many PKI settings. This is a security ampli-
fication with respect to the equivalent compositions without randomness reuse, in which it is not possible to
achieve this level of security, even starting from underlying schemes providing the same security guarantees
we require for our results. In other words, our results depend in an essential way on reusing randomness,
and it is not the case that a standard composition of randomness-dependent secure signature and encryption
schemes trivially yields a comparable result. In this respect, our work generalizes independent work in the
same direction presented in [18], and that we contextualize in Section 2.

– We identify a set of simple and natural properties of KEMs and DEMs that suffice to ensure that PKE
schemes constructed from both variants of the KEM/DEM composition paradigm proposed in [12,14] fall
within our framework. As a particular case, when the Kurosawa–Desmedt [17] encryption scheme is com-
posed with the Boneh–Boyen signature scheme [9] in the StE construction, we obtain the most efficient
signcryption scheme to be proven insider secure in the standard model. One caveat is that our results hold
only in the registered key model. In compensation, our scheme offers non-repudiation, inherited from the
StE construction, and a combination of computational and communication (bandwidth) efficiency that out-
performs previous solutions.

STRUCTURE OF THE PAPER. In the next section we review the related work in more detail. Then, in Section 3
we settle notation by introducing the standard syntax, correctness and security definitions for signature, encryp-
tion and signcryption schemes. In Section 4 we describe the properties that are sufficient for the EtS and StE
compositions to yield secure signcryption schemes under randomness reuse, and prove the corresponding com-
position theorems. Finally, in Section 5 we describe the potential instantiations of our framework and present a
concrete construction. We end by some concluding remarks in Section 6.
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2 Related Work

Matsuda et al. [18] and Chiba et al. [11] systematically study the construction of signcryption schemes using
compositions of standard cryptographic primitives, aiming to obtain levels of efficiency and security that are
comparable to the best concrete schemes in the literature via generic constructions. We briefly describe these
contributions and relate them to our work.

Targeting efficiency at the cost of full insider security, the authors in [18] propose generic constructions
of signcryption schemes from tag-based non-interactive key-exchange protocols, symmetric encryption and a
MAC. Such schemes are highly efficient when instantiated with schemes proven secure in the ROM. These
authors also show that the original results of An et al. [2] can be adapted to the case in which the public-key
encryption scheme is replaced by a tag-based KEM (not to be confused with a tag-KEM [1]) and a DEM. This
brings efficiency advantages for the multi-user scenario, with respect to the transformation originally presented
in [2], where public keys are encrypted along with the plaintext. Furthermore, they observe that, if the signature
scheme is “one-to-one”, i.e., if there is only one valid signature for each message, under each public key, the
EtS construction becomes fully secure against insider attackers. The downside is that such signature schemes
are only known in the ROM.

In a different direction, and independently of our work, Matsuda et al. [18] show how to perform com-
positions of tag-based KEMs and signature schemes to obtain efficiency gains in an StE-like construction via
randomness reuse. They also describe a series of schemes that can be used to instantiate these constructions. The
resulting compositions are efficient and achieve full insider security, with the caveat that strong unforgeability
can only be proven in a slightly weaker model, where the adversary must register the secret keys for the public
keys it chooses to query to the signcryption oracle. Our results have the same limitation.

The main differences between our work and the approach in [18] are the following. Our results are more
general in that they consider the composition of encryption schemes and signature schemes under randomness
reuse, rather than lower level primitives. On one hand, this sets our results as natural extensions to the work by
An et al. [2] on signature and encryption compositions, and also of the work of Bellare et al. [4], allowing us to
establish a connection between the two results. On the other hand, our results capture the ones included in [18]
on randomness reuse for the construction of signcryption schemes as particular cases, and cover a broader class
of constructions. More precisely, our compatibility framework and security results apply to general encryption
schemes, rather than those specifically constructed from tag-based KEMs. This allows us to capture not only
schemes constructed using a specific flavor of tag-KEMs [18], but also encryption schemes constructed from
other known variants of the KEM/DEM paradigm [12,14], and even schemes that do not follow this paradigm.

Chiba et al. [11] propose the first fully secure signcryption schemes in the standard model by using a variant
of the StE construction that relies on a chosen-ciphertext-secure tag-based KEM, a chosen-ciphertext-secure
DEM that has a “one-to-one” property, and a strongly unforgeable signature scheme. Such schemes are less
efficient than the one we propose, but are proven secure without the key registration requirement.

3 Preliminaries

NOTATION. We write a ← b to denote the algorithmic action of assigning the value of b to the variable a. We
use⊥/∈ {0, 1}? to denote special failure symbol. If S is a set, we write a←$ S for sampling a from S uniformly
at random. If A is a probabilistic algorithm we write a←$ A(i1, i2, . . . , in) for the action of running A on
inputs i1, i2, . . . , in with random coins, and assigning the result to a. Sometimes we run A on specific coins r
and write a← A(i1, i2, . . . , in; r).

GAMES. In this paper we use the code-based game-playing language [7]. Each game has an Initialize and a
Finalize procedure. It also has specifications of procedures to respond to an adversary’s various queries. A
game is run with an adversary A as follows. First Initialize runs and its outputs are passed to A. Then A runs
and its oracle queries are answered by the procedures of the game. When A terminates, its output is passed to
Finalize which returns the outcome of the game. In each game, we restrict attention to legitimate adversaries,
which is defined specifically for each game. We use lists as data structures to keep relevant state in the games.
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The empty list is represented by square brackets [ ]. We denote by List ← a : List the action of appending
element a to the head of a list List.

PUBLIC-KEY ENCRYPTION. A public-key encryption scheme E = (EGen,Enc,Dec) is specified by three
polynomial-time algorithms (in the length of their inputs) associated with a message spaceM and a randomness
spaceR.

– EGen(1λ) is the probabilistic key-generation algorithm, taking as input the security parameter and returning
a secret key sk and a public key pk.

– Enc(m, pk; r) is the probabilistic encryption algorithm. On input a message m ∈ M, a public key pk, and
possibly some random coins r ∈ R, this algorithm outputs a ciphertext c.

– Dec(c, sk) is the deterministic decryption algorithm. On input of a ciphertext c and a key sk, this algorithm
outputs a message m or failure symbol ⊥.

The correctness of a public-key encryption scheme requires that for any λ ∈ N, any (sk, pk)←$ EGen(1λ),
any m ∈ M, and any random coins r ∈ R, we have that Dec(Enc(m, pk; r), sk) = m. The standard notion
of security for a public-key encryption scheme considered here is indistinguishability under chosen ciphertext
attacks (IND-CCA).

Definition 1. A public-key encryption scheme is IND-CCA secure if, for every legitimate PPT adversary A, the
following definition of advantage is negligible in λ

AdvIND-CCA
E,A (λ) := 2 · Pr[IND-CCAE,A(1λ)⇒ T]− 1 ,

where game IND-CCAE,A described in Figure 1.

procedure Initialize(1λ):
(sk, pk)←$ EGen(1λ)
b←$ {0, 1}
List← [ ]
Return pk

procedure LoR(m0,m1):
c←$ Enc(mb, pk)
List← c : List
Return c

procedure Dec(c):
m← Dec(c, sk)
Return m

procedure Finalize(b′):
Return (b = b′)

Fig. 1: Game IND-CCA for scheme E = (EGen,Enc,Dec). Adversary A is legitimate if: 1) it calls LoR once, with
m0,m1 ∈M and |m0| = |m1|; and 2) it does not call Dec with c ∈ List.

DIGITAL SIGNATURE. A signature scheme S = (SGen,Sign,Verify) is specified by three polynomial-time
algorithms with a randomness spaceR and a message spaceM.

– SGen(1λ) is the probabilistic key-generation algorithm which takes as input the security parameter and
returns a secret key sk and a public key pk.

– Sign(m, sk; r) is the probabilistic signature generation algorithm. On input a message m, a secret key sk,
and possibly some random coins r ∈ R, this algorithm outputs a signature σ.

– Verify(m, σ, pk) is the deterministic signature verification algorithm. On input of a signature σ, a message
m and a public key pk, this algorithm outputs a boolean value T or F.

The correctness of a signature scheme requires that for any λ ∈ N, any m ∈ {0, 1}?, any (sk, pk)←$ SGen(1λ),
and any r ∈ R, we have that Verify(Sign(m, sk; r),m, pk) = T. The standard notion of security for a digital
signature scheme considered in this paper is strong existential unforgeability under chosen-message attacks
(sUF-CMA).

Definition 2. A digital signature scheme is sUF-CMA secure if, for every legitimate PPT adversary A, the
following definition of advantage is negligible in λ

AdvsUF-CMA
S,A (λ) := Pr[sUF-CMAS,A(1

λ)⇒ T] ,

where game sUF-CMAS,A described in Figure 2.
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procedure Initialize(1λ):
(sk, pk)←$ SGen(1λ)
List← [ ]
Return pk

procedure Sign(m):
σ ←$ Sign(m, sk)
List← (m, σ) : List
Return σ

procedure Finalize(m, σ):
If (m, σ) ∈ List Return F
If Verify(m, σ, pk) Return T
Else Return F

Fig. 2: Game sUF-CMA for a digital signature S = (SGen, Sign,Verify).

SIGNCRYPTION. A signcryption scheme SC = (Gen,Signcrypt,Unsigncrypt) is specified by three polynomial-
time algorithms associated with a message spaceM and a randomness spaceR.

– Gen(1λ) is the probabilistic key-generation algorithm which takes as input the security parameter and re-
turns a secret key sk and a matching public key pk. Unless one wishes to signcrypt a message to oneself,
two key pairs are required to signcrypt and unsigncrypt.

– Signcrypt(m, skS , pkR; r) is the probabilistic signcryption algorithm. On input a message m ∈ M, the
sender’s secret key skS , the receiver’s public key pkR, and possibly some random coins r ∈ R, this algo-
rithm outputs a signcryption c.

– Unsigncrypt(c, pkS , skR) is the deterministic unsigncryption algorithm. On input a signcryption c, the
sender’s public key pkS , and the receiver’s secret key skR, this algorithm outputs a message m or failure
symbol ⊥.

The correctness of a signcryption scheme requires that for any m ∈M, any λ ∈ N, any (skS , pkS)←$ Gen(1λ),
any (skR, pkR)←$ Gen(1λ), and any random coins r ∈ R, we have Unsigncrypt(Signcrypt(m, skS , pkR; r), pkS , skR) =
m. We consider here the strong notion of confidentiality, introduced by [23], in which the adversary is allowed
to choose without restrictions pkS to query to the Unsigncrypt oracle. The adversary may also choose the
challenge key pair (skS , pkS), but the key pair is required to be valid. Analogously to IND-CCA for encryption,
LoR oracle can only be called once. We refer to this model as dynamic multi-user indistinguishability against
insider chosen-ciphertext attacks (IND-iCCA).

Definition 3. A signcryption scheme is IND-iCCA secure if, for every legitimate PPT adversaryA, the following
definition of advantage is negligible in λ

AdvIND-iCCA
SC,A (λ) := 2 · Pr[IND-iCCASC,A(1λ)⇒ T]− 1 ,

where game IND-iCCASC,A described in Figure 3.

procedure Initialize(1λ):
(skR, pkR)←$ Gen(1λ)
b←$ {0, 1}
List← [ ]
Return (pkR)

procedure Finalize(b′):
Return (b = b′)

procedure LoR(m0,m1, (skS , pkS)):
c←$ Signcrypt(mb, skS , pkR)
List← (c, pkS) : List
Return c

procedure Unsigncrypt(c, pkS):
m← Unsigncrypt(c, pkS , skR)
Return m

Fig. 3: Game IND-iCCA for a signcryption SC = (Gen, Signcrypt,Unsigncrypt). An adversaryA is legitimate if: 1) it calls
LoR once, with m0,m1 ∈ M and |m0| = |m1|, and a valid key pair (skS , pkS); and 2) it does not query Unsigncrypt
with (c, pkS) ∈ List.

We also define dynamic multi-user strong existential unforgeability against insider chosen message attacks for
authenticity, but in a slightly weaker model that obliges the adversary to register a key pair (skR, pkR) before
querying the Signcrypt oracle or Finalize with pkR. For this purpose, a Key-Reg oracle is also available.
This model is called sUF-iCMA, for short.

Definition 4. A signcryption scheme is sUF-iCMA secure if, for every legitimate PPT adversary A, the follow-
ing definition of advantage is negligible in λ

AdvsUF-iCMA
SC,A (λ) := Pr[sUF-iCMASC,A(1

λ)⇒ T] ,

where game sUF-iCMASC,A described in Figure 4.
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procedure Initialize(1λ):
(skS , pkS)←$ Gen(1λ)
List← [ ]
List′ ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ List′

c←$ Signcrypt(m, skS , pkR)
List← (c, pkR) : List
Return c

Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

List′ ← (sk, pk) : List′

Return T
Else Return F

procedure Finalize(c, pkR):
If (c, pkR) ∈ List Return F
If (skR, pkR) ∈ List′

m← Unsigncrypt(c, pkS , skR)
If m 6=⊥ Return T

Return F

Fig. 4: Game sUF-iCMA for a signcryption SC = (Gen, Signcrypt,Unsigncrypt).

REMARK. We assume one can confirm the validity of a key pair using an efficient algorithm isValid, which is
usually the case for practical schemes. Under this assumption, one could omit the key pair validity restriction in
the adversary legitimacy definition in the IND-iCCA security model, and require the signcryption algorithm to
internally check for sender key pair validity. This does not apply to the key registration oracle in the unforge-
ability game, as this is conditioning the adversary to provide valid key pairs for the receivers (note that this
check cannot be done internally by the signcryption algorithm). However, one could remove the validity check
restriction in Finalize, and require that the unsigncryption algorithm does check for receiver key pair validity.

4 Compositions with Randomness Reuse

In this section we look at black-box compositions of signature and encryption under randomness reuse. We
describe properties that are sufficient for the encrypt-then-sign and sign-then-encrypt constructions with shared
randomness to yield secure signcryption schemes, and prove the corresponding composition theorems. Our
proposed framework gives rise to signcryption schemes that attain full insider security in dynamic multi-user
models. We defer a discussion on instantiability to Section 5.

4.1 Composition-enabling properties

PARTITIONED SCHEMES, COMPATIBILITY, AND CONDITIONAL INJECTIVITY. The notion of joint signature
and encryption in the public-key setting with randomness reuse implies that the signature and encryption algo-
rithms share the same randomness space. In order to clarify the concept and simplify the security proofs, we
will restrict our attention to partitioned schemes [10]. Furthermore, to enable composition under randomness
reuse, we also require the signature and encryption schemes to be compatible. We formalize these notions next.

Definition 5 (Partitioned schemes). We say a signature scheme is partitioned, if its signature space is com-
posed of pairs (σ,R), where the signature generation algorithm calculates R independently of the input message
and keys. More precisely, we require that experiment IndepS in Figure 5 returns T with probability 1 for all
messages m0 and m1 in the appropriate space. Similarly, an encryption scheme is partitioned, if its ciphertext
space is composed of pairs (c,R) and experiment IndepE in Figure 5 returns T with probability 1 for all
messages m0 and m1 in the appropriate space.

Definition 6 (Compatibility). A signature scheme S and an encryption scheme E are compatible if they are
partitioned, share the same random space R, and the experiment Compatibility in Figure 5 returns T with
probability 1 for any messages m0 and m1 in the appropriate spaces.

Finally, we also require the following injectivity properties in partitioned schemes, which essentially state that,
once the randomness dependent component R is fixed, and for any fixed key pair, the signature generation and
encryption algorithms become injective mappings from the message space onto the signature and ciphertext
spaces, respectively. We observe that these properties can be relaxed to computational hardness assumptions,
and all our results still go through.
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test IndepS(m0,m1):
(sk0, pk0)←$ SGen(1λ)

(sk1, pk1)←$ SGen(1λ)
r←$ R
(σ0,R0)← Sign(m0, sk0; r)
(σ1,R1)← Sign(m1, sk1; r)
Return (R0 = R1)

test IndepE(m0,m1):
(sk0, pk0)←$ EGen(1λ)

(sk1, pk1)←$ EGen(1λ)
r←$ R
(c0,R0)← Enc(m0, pk0; r)
(c1,R1)← Enc(m1, pk1; r)
Return (R0 = R1)

test CompatibilityS,E(m0,m1):

(sk0, pk0)←$ SGen(1λ)

(sk1, pk1)←$ EGen(1λ)
r←$ R
(σ,R0)← Sign(m0, sk0; r)
(c,R1)← Enc(m1, pk1; r)
Return (R0 = R1)

Fig. 5: Partitioning and compatibility tests for a partitioned signature S = (SGen, Sign,Verify), and a partitioned public-key
encryption E = (EGen,Enc,Dec).

Definition 7 (Conditional injectivity). We say a partitioned signature scheme is conditionally injective if for
all key pairs (sk, pk), all messages m and signatures (σ,R) in the appropriate spaces, it holds that:

Sign(m, sk) = (σ,R) ∧ σ 6= σ′ ⇒ Verify(m, (σ′,R), pk) = F.

We say a partitioned encryption scheme is conditionally injective if for all key pairs (sk, pk), messages m and
ciphertexts (c,R) in the appropriate spaces, it holds that:

Enc(m, pk) = (c,R) ∧ c 6= c′ ⇒ Dec((c′,R), sk) 6= m.

REPRODUCIBILITY. Following the approach of Bellare et al. [4], we introduce new notions of reproducibility
that allow identifying encryption and signature schemes for which it is possible to prove that randomness reuse
does not hurt the security of compositions.

Definition 8 (Reproducibility). We say that a signature scheme is reproducible if there exists a deterministic
polynomial-time reproduction algorithm RepS (resp. RepE ) taking a message, a secret key, and a value R such
that experiment RepS (resp. RepE ) in Figure 6 returns T with overwhelming probability for all messages m
in the appropriate space.

test RepS(m):
(sk, pk)←$ SGen(1λ)
r←$ R
(σ,R)← Sign(m, sk; r)
σ′ ←$ RepS(m, sk,R)
Return (σ = σ′)

test RepE(m):
(sk, pk)←$ EGen(1λ)
r←$ R
(c,R)← Enc(m, pk; r)
c′ ←$ RepE(m, sk,R)
Return (c = c′)

Fig. 6: Reproducibility test for a partitioned signature S = (SGen, Sign,Verify) with reproducibility algorithm RepS , and
a partitioned public-key encryption E = (EGen,Enc,Dec) with reproducibility algorithm RepE .

Intuitively, the schemes are reproducible if it is possible to reconstruct a valid signature (resp. ciphertext) with-
out having explicit access to the random coins, but instead having access to the secret key. We note that this
property seems natural for encryption schemes, where knowledge of the secret key may “compensate” for the
lack of knowledge of the implicit randomness. As for signature schemes, this property may seem less natural,
as the reproducibility algorithm should be able to produce valid signatures, while having access to apparently
less information than the signature generation algorithm itself. However, one can easily see that if R = r, then
a signature scheme is trivially reproducible. Furthermore, Matsuda et al. [18] present various (standard model)
signature schemes that, not having this characteristic, are shown to be reproducible. We note that our formal-
ization defines reproducibility as a property of a single scheme, and not as a property of a pair of schemes. We
see this as an important definitional choice in ensuring that our framework can be extended to reason about
randomness reuse between other cryptographic primitives.

4.2 Security under randomness-dependent attacks

We introduce two new attack models, one for encryption and one for digital signatures. In a nutshell, these mod-
els allow messages queried by the adversaries to the relevant oracles to depend on the randomness component
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R, so this is provided to the adversary in advance. These models are specific for partitioned schemes and aimed
at proving security under randomness reuse. We defer considerations on the feasibility of achieving this level of
security to the following section.

SECURITY OF ENCRYPTION UNDER RANDOMNESS-DEPENDENT ATTACKS. We define a new security model
for encryption, which we call “indistinguishability under randomness-dependent chosen-ciphertext attacks”
(IND-RDA). This new model is similar to IND-CCA except that the adversary receives the R component for
the challenge in the beginning of the game. To capture this notion of security, rather than partitioning the en-
cryption algorithm, we simply encrypt the fixed all-zeros message at the beginning of the game, in order to
obtain a pair (r,R). Note that, since R is guaranteed not to depend on the message, we have that reusing r to
produce the challenge ciphertext will yield a consistent security game definition.

Definition 9. A public-key encryption scheme is IND-RDA secure if, for every legitimate PPT adversaryA, the
following definition of advantage is negligible in λ

AdvIND-RDA
E,A (λ) := 2 · Pr[IND-RDAE,A(1λ)⇒ T]− 1 ,

where game IND-RDAE,A described in Figure 7.

procedure Initialize(1λ):
b←$ {0, 1}
List← [ ]

(sk, pk)←$ EGen(1λ)
r←$ R
(c,R)← Enc(0, pk; r)
Return (pk,R)

procedure LoR(m0,m1):
(c,R)← Enc(mb, pk; r)
List← (c,R) : List
Return (c,R)

procedure Dec(c,R):
m← Dec((c,R), sk)
Return m

procedure Finalize(b′):
Return (b = b′)

Fig. 7: Game IND-RDA for a partitioned public-key encryption E = (EGen,Enc,Dec). An adversary A is legitimate if: 1)
it calls LoR once, with m0,m1 ∈M and |m0| = |m1|; and 2) it never calls Dec on (c,R) ∈ List.

SECURITY OF SIGNATURES UNDER RANDOMNESS-DEPENDENT ATTACKS. We also introduce a new security
notion for partitioned signature schemes, which we call “strong unforgeability under randomness-dependent
chosen message attacks” (sUF-RDA). This new model is similar to sUF-CMA, with the caveat that calls to the
Sign oracle are done in two steps. On a first interaction, the adversary obtains the randomness component for
the signature scheme, and in the next step it provides the message on which the full signature is generated.

Definition 10. A digital signature scheme is sUF-RDA secure if, for every legitimate PPT adversary A, the
following definition of advantage is negligible in λ

AdvsUF-RDA
S,A (λ) := Pr[sUF-RDAS,A(1λ)⇒ T] ,

where game sUF-RDAS,A described in Figure 8.

procedure Initialize(1λ):
(sk, pk)←$ SGen(1λ)
List← [ ]
flag← F
Return (pkS)

procedure Sign(m):
If flag = T

(σ,R)← Sign(m, sk; r)
List← (m, (σ,R)) : List
flag← F
Return (σ,R)

Else
r←$ R
(σ,R)← Sign(0, sk; r)
flag← T
Return (⊥,R)

procedure Finalize(m, (σ,R)):
If (m, (σ,R)) /∈ List ∧ Verify(m, (σ,R), pk)

Return T
Else Return F

Fig. 8: Game sUF-RDA for a partitioned signature S = (SGen, Sign,Verify).

It is clear that the security notion IND-RDA implies IND-CCA, and that sUF-RDA implies sUF-CMA. On the
other hand, it is easy to find counterexamples showing that IND-CCA does not imply IND-RDA, nor does
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sUF-CMA imply sUF-RDA: simply construct a scheme based on an encryption/signature algorithm that returns
the secret key when the input message is a fixed function of (e.g., equal to) the randomness component. We note
that such counterexamples can be constructed even if the underlying schemes are reproducible, which shows
reproducibility is not sufficient to imply randomness-dependent security.

4.3 Secure compositions under randomness reuse

Let a digital signature S and a public-key encryption E be two compatible schemes, with randomness spaceR.
Our first construction, denoted EtS and described in Figure 9, produces a signcryption scheme from E and S
in an encrypt-then-sign composition with randomness reuse. Conversely, in the StE construction, E and S are
used in a sign-then-encrypt composition as shown in Figure 10, also with randomness reuse. We observe that we
adopt the strategy proposed by An et al. [2] to achieve security in the multi-user model, by always including the
receiver’s public key in the signed data, and always including the sender’s public key in the encrypted payload,
so that it can be checked for consistency upon decryption3.

algorithm Gen(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(sk, pk)← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

algorithm Signcrypt(m, skS , pkS , pkR):
(sk1, sk2)← skS ; (pk1, pk2)← pkR
r←$ R
(c,R)← Enc((m, pkS), pk2; r)
(σ,R)← Sign((c,R, pkR), sk1; r)
ĉ← (c, σ,R)
Return ĉ

algorithm Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2)← pkS ; (sk1, sk2)← skR
(c, σ,R)← ĉ
(m, pk′S)← Dec((c,R), sk2)
If pkS = pk′S ∧ Verify((c,R, pkR), (σ,R), pk1)

Return m
Return⊥

Fig. 9: EtS construction with randomness reuse.

algorithm Gen(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(sk, pk)← ((sk1, sk2), (pk1, pk2))
Return (sk, pk)

algorithm Signcrypt(m, skS , pkS , pkR):
(sk1, sk2)← skS ; (pk1, pk2)← pkR
r←$ R
(σ,R)← Sign((m, pkR), sk1; r)
Return Enc((m, σ, pkS), pk2; r)

algorithm Unsigncrypt(ĉ, pkS , skR, pkR):
(pk1, pk2)← pkS ; (sk1, sk2)← skR
(c,R)← ĉ
(m, σ, pk′S)← Dec((c,R), sk2)
If pkS = pk′S ∧ Verify(m, (σ,R), pk1)

Return m
Else Return⊥

Fig. 10: StE construction with randomness reuse.

The following theorems state the security guarantees provided by these constructions. The proofs can be found
in the appendix.

Theorem 1 (Security of the EtS construction). Suppose signature scheme S and encryption scheme E are
compatible and that S is conditionally injective. Then the following hold:
1) If E is reproducible and S is sUF-RDA secure, then the resulting EtS construction is sUF-iCMA secure.
2) If S is reproducible and E is IND-CCA secure, then the resulting EtS construction is IND-iCCA secure.

Theorem 2 (Security of the StE construction). Suppose signature scheme S and encryption scheme E are
compatible and that E is conditionally injective. Then the following hold:
1) If S is reproducible and E is IND-RDA secure, then the resulting StE construction is IND-iCCA secure.
2) If E is reproducible, and S is sUF-CMA secure, then the resulting StE construction is sUF-iCMA secure.

We note that we obtain chosen-ciphertext security and strong unforgeability, both against insider attackers,
even though this could not be achieved simultaneously by plain sequential composition without randomness
reuse. The intuition behind the proofs of both theorems is the following. All proofs require simulating challenge
signcryptions with shared randomness across encryption and signatures, and such signcryptions must embed a
challenge from a signature or encryption security game. If one tried to reduce directly to the standard notions of
security for signature and encryption, this proof strategy would fail, as one needs to commit to challenge mes-
sages before having access to the randomness associated with the challenge. For example, this means that one

3 The overhead of encrypting the public key can be greatly reduced by encrypting its image under a collision-resistant hash
function, or using an efficient tag-based PKE as proposed in [18].
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would not be able to request a signature on a ciphertext which shares the same randomness, as this randomness
is totally hidden from us. The randomness-dependent attack models fix this problem by allowing adversaries to
have access to the randomness components R in challenge encryptions and signatures before committing to a
challenge message. Having access to R, one can simulate signatures and encryptions using the reproducibility
properties of the schemes. For example, when proving that the StE construction is IND-iCCA secure by reducing
to the IND-RDA property of the encryption scheme, one constructs the challenge signcryption as follows. When
the adversary provides two challenge messages (m0,m1), one first obtains R and then uses the reproducibility
property of S to simulate signatures σ0 and σ1 on the challenge messages. One then queries the LoR oracle on
the resulting message/signature pairs (m0||σ0,m1||σ1). The challenge will then be guaranteed to be correctly
simulated with randomness reuse. We note that key registration is required for the unforgeability proofs, as the
secret keys required to run the reproducibility algorithms must be provided by the adversary. This is not an is-
sue in the chosen-ciphertext security proofs, since the sender’s secret key must always be provided to the LoR
oracle (i.e., this is the case even in the standard dynamic multi-user model for signcryption).

REMARK. The proofs of the theorems actually establish a slightly stronger result than that stated in the theorems.
Indeed, the results would still go through if the randomness-dependent security models are modified in line with
the weaker notions of generalized chosen-ciphertext security [2] and existential unforgeability. We have chosen
not to include the details in the presentation for the sake of clarity.

REMARK. Our constructions aim to minimize the overhead of the resulting signcryption scheme. For this reason,
StE construction does not include the full signature inside the ciphertext — notice that R is not included inside
the ciphertext. We remark that by including the full signature we could relax the security requirements of
the signature to weak unforgeability, whilst still achieving strong unforgeability for the resulting composed
signcryption scheme. This security amplification is accomplished by combining the extra binding provided by
the randomness sharing with the conditional injectivity of the algorithms.

REMARK. The combination of randomness-dependent security and reproducibility for encryption schemes may
be of independent interest in the design of multi-recipient encryption schemes with randomness reuse. Indeed,
it is straightforward to show that for schemes displaying both properties the techniques proposed by Bellare et
al. [4] can be adapted to prove security under a stronger model than that originally adopted. Recall that in [4] the
adversary can place parallel challenge queries of n message pairs to the challenge oracle, and this will return
n ciphertexts under n different public keys. The returned ciphertexts share the same encryption randomness.
Applying our techniques, one can give extra power to the adversary in that it need not be restricted to making
parallel challenge queries, but may choose challenge messages adaptively after seeing ciphertexts that share the
same randomness. Note that security can even be proven in an analogue of the key registration model, in which
the adversary can choose some keys maliciously.

5 Instantiating the Constructions

5.1 Security under randomness-dependent attacks
One interesting aspect of our results is the requirement for a stronger security guarantee from the underlying
signature and encryption components, in order to obtain security under randomness reuse. Concretely, this
translates into the randomness-dependent attack models we have introduced in the previous section and raises
the obvious question of how likely it is that off-the-shelf public-key encryption or signature schemes meet
this level of security. Although we have no positive results for signature schemes in the standard model, we will
show in this section that the class of encryption schemes achieving randomness-dependent security is potentially
large, simply by looking at KEM/DEM paradigms for constructing PKEs. In fact, the Kurosawa–Desmedt [17]
appears as a notably efficient example that falls within our general framework. This observation allows to go
beyond the efficiency levels both in terms of computational load and bandwidth of the previously most efficient
standard model constructions.

RDA-SECURE SIGNATURE SCHEMES. For signature schemes, and restricting our attention to constructions
whose security does not rely on random oracles, we found that current signature schemes do not meet this
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level of security. The typical problem, which occurs for example in the Boneh–Boyen signature scheme, is that
the security proof critically relies on the ability to postpone the release of the randomness-dependent signature
component until after the adversary has provided the message to be signed. This is a possible explanation for
the lack of EtS-like constructions with randomness reuse in the standard model. If we admit random oracles,
then one can consider any deterministic signature scheme, and randomness reuse no longer makes much sense
as an optimization. Luckily, a RDA-secure signature is only required for the EtS construction. We therefore
concentrate our attention on StE compositions, where the randomness-dependent security requirement applies
only to the underlying encryption scheme.

RDA-SECURE ENCRYPTION FROM THE KEM/DEM PARADIGM. The first formalization of a KEM/DEM com-
position theorem was presented by Cramer and Shoup in their seminal paper on chosen-ciphertext-secure public-
key encryption [12]. To simplify our discussion, we will restrict our attention to KEMs where the ciphertext is
public-key independent [3], i.e., where the user-specific components of the public key passed to encapsulation
are not used to calculate the ciphertext c, but only in the calculation of the secret key4 k. We observe that PKE
constructed from KEM/DEM schemes such as the ones we consider are naturally partitioned, and that the KEM
ciphertext can be seen as the R component of the PKE ciphertext.

The KEM/DEM composition theorem in [12] roughly goes as follows. One performs a single game hop,
modifying the IND-CCA game so that, rather than using the secret key output by the KEM in the challenge
ciphertext generation, one uses a random secret key as input to the DEM. The definition of the decryption oracle
is also modified consistently with this change. The transition between the two games can then be reduced to the
KEM security assumption. The adversary’s advantage in the second game can finally be reduced to the security
of the DEM, as the secret key being used for data encapsulation is totally unrelated to that output by the KEM.

The same proof strategy can easily be adapted to show that KEM/DEM composition yields a RDA-secure
PKE. To see this, observe that the KEM adversary constructed in the proof outlined above is able to obtain the
challenge ciphertext (i.e., the R component in the PKE ciphertext) right at the beginning of the game, inde-
pendently of the PKE adversary’s actions. Furthermore, the DEM attacker constructed in the final step of the
proof can generate the KEM ciphertext for the challenge right at the beginning. We can therefore conclude that
the KEM/DEM construction initially proposed by Cramer and Shoup achieves randomness dependent chosen-
ciphertext security without any modification. This result shows how our framework generalizes the results pub-
lished in [18], in which the authors define reproducibility over KEMs, and then prove security of a signcryption
scheme constructed from a KEM, a DEM and a signature scheme, in a StE construction with randomness reuse
across the KEM and the signature schemes.

REMARK. The authors in [18] actually present their results based on a notion of a tag-based KEM that allows
them to bind the sender’s public key to the KEM ciphertext, rather than encrypting it together with the payload,
but the KEM/DEM composition theorem they rely on does not take advantage of this binding and is a particular
case of the one we describe above. Indeed, it is interesting that the tag-KEM/DEM composition paradigm pro-
posed in [1] does not immediately yield RDA-secure schemes. The problem here is that the tag-KEM ciphertext
can only be obtained after the tag has been defined, and this depends on the encrypted message in the hybrid
construction of [1].

RDA-SECURE ENCRYPTION FROM WEAKENED KEY ENCAPSULATION. Hofheinz and Kiltz [14] propose an
alternative KEM/DEM composition framework in which the security of the KEM can be weakened, as long
as the DEM scheme satisfies a stronger notion of security known as one-time authenticated encryption. Such
schemes can be constructed using the encrypt-then-mac approach, but no length-preserving solutions exist [14].
Interestingly this hybrid encryption paradigm preserves the independence between KEM and DEM components
that allowed our extension to randomness-dependent attacks to go through. Indeed, the proof for the composi-
tion theorem in [14] follows a similar structure as that described above. This means that restricting our attention
to (weak) KEM schemes where ciphertexts are public key independent, we immediately obtain partitioned and
randomness-dependent chosen-ciphertext secure PKEs that can be used to instantiate our signcryption construc-

4 Such schemes are common, and include those originally proposed by Cramer and Shoup [12]. Our results could be
generalized to schemes that do not meet this constraint, by introducing a notion of partitioned KEM schemes.
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tions. Notably, the weak KEM that is used in the very efficient Kurosawa–Desmedt encryption scheme [17] has
this property.

5.2 Compatibility, reproducibility, and conditional injectivity

Matsuda et al. [18] presented an extensive description of schemes that meet compatibility, reproducibility and
conditional injectivity properties as required by the generic constructions using a tag-based KEM, a signature
and a DEM with randomness reuse. Although the presentation is slightly different, all the schemes used to in-
stantiate their constructions can be used to instantiate our own. However, the Boneh–Boyen signature scheme [9]
was not considered by [18] as a candidate for signcryption schemes constructed under randomness reuse. We
present a modified version of this signature scheme in the following subsection that displays the necessary
properties, which enables us to use it in the instantiation of our construction. Additionally, the KEM/DEM com-
positions we have described above, when using a public-key independent KEM and a deterministic DEM which
is one-to-one over the messages, also give suitable encryption schemes for instantiation.

5.3 An efficient instantiation

In this section we present a concrete instantiation of our results that, to the best of our knowledge, is the most
efficient signcryption providing full insider security without random oracles. The scheme instantiates our StE
construction with randomness reuse with the Kurosawa–Desmedt encryption scheme [17] and the Boneh–Boyen
signature scheme [9]. On the negative side, the scheme’s strong unforgeability is only proven under the key
registration restriction. On the other hand, the scheme offers non-repudiation for free, which is inherited from
the StE construction: the receiver obtains a valid signature on the recovered message.

THE KUROSAWA–DESMEDT ENCRYPTION SCHEME. We recall the encryption scheme in [17]. Here, G is
a cyclic group of prime order q in which the DDH assumption holds, and g1, g2 ∈ G are two random distinct
generators. Also, SKE is a one-time authenticated symmetric-key encryption scheme. As referred in the previous
section, SKE cannot be assumed to be length-preserving, so we will assume a minimum overhead of size |MAC|,
corresponding to a MAC tag. The scheme also requires two hash functions H1 : G → {0, 1}k and H2 :
G xG→ Zq , where the former must be a secure key-derivation function (i.e., entropy smoothing), and the latter
must be target collision resistant. We have shown in the previous section that the Kurosawa–Desmedt encryption
scheme is partitioned, that it is randomness-dependent chosen-ciphertext-secure and that, when instantiated with
a deterministic and one-to-one DEM it is conditionally injective.

To be used in our constructions, we further require the scheme to be reproducible. It is straightforward to
show that the scheme satisfies this property. Given a ciphertext (c,R) under an arbitrary public key, a secret key
sk and a message m, the reproducibility algorithm produces a randomness reusing encryption of m as follows.
It first takes the R = (R1,R2) and calculates a secret key k precisely as this is done in the decryption algorithm
using sk. It then encrypts the m under the DEM using k to obtain the required ciphertext (c,R).

algorithm Gen:
w ←$ Zq, x←$ Zq
y ←$ Zq, z ←$ Zq
a← gw1 g

x
2 , b← gy1 g

z
2

sk← (w, x, y, z)

pk← (a, b)

Return (sk, pk)

algorithm Enc(m, pk):
(a, b)← pk

r←$ Zq
R1 ← gr

1,R2 ← gr
2

s← H2(R1,R2)

K← H1(a
rbsr)

c← SKE.Enc(K,m)

R← (R1,R2)

Return (c,R)

algorithm Dec((c,R), sk):
(w, x, y, z)← sk

(R1,R2)← R

s← H2(R1,R2)

K← H1(Rw+ys
1 · Rx+zs2 )

m← SKE.Dec(K, c)

Return m

Fig. 11: The Kurosawa–Desmedt encryption scheme [17].

THE BONEH–BOYEN SIGNATURE SCHEME. The Boneh–Boyen signature scheme [9] is strongly unforgeable
in the standard model. It relies on bilinear groups, and so we briefly recall this notion below.

Definition 11. A bilinear group description Γ is a tuple (p,G1,G2,GT , e, g3, g4) where:
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– G1, G2 and GT are groups of order p with efficiently computable group laws.
– g3 and g4 are generators of G1 and G2 respectively.
– e is a bilinear pairing e : G1 x G2 → GT , i.e., a map satisfying the following properties:
• Bilinearity: ∀u ∈ G1,∀v ∈ G2,∀a, b ∈ Z, e(ua, vb) = e(u, v)ab;
• Non-degeneracy: e(g3, g4) 6= 1 and is thus a generator of GT .

We present the signature scheme of [9] in Figure 12. Observe that we slightly modified the signature and verifica-
tion algorithms to make the scheme compatible with Kurosawa–Desmedt encryption [17], i.e., so that signatures
present the same R component. Intuitively, we replace the randomness generation operation in the signature al-
gorithm so that, rather than sampling s directly, we obtain it from the R component in a Kurosawa–Desmedt
ciphertext. We therefore consider a group G of order q as described by the Kurosawa–Desmedt encryption
scheme, with two distinct generators g1, g2 ∈ G.

We require an encoding function Map that takes a random element in group G onto an element in the ran-
domness space of the Boneh–Boyen signature scheme.5 This encoding function is fed with the first element in
the Kurosawa–Desmedt R component gr

1. The second element gr
2 is simply included as part of the signed mes-

sage; we use the standard approach of extending the Boneh–Boyen signature scheme to messages of arbitrary
length, introducing a collision-resistant hash function H : {0, 1}? → Zp. We note that the apparent loss in
efficiency in the signature scheme disappears when one uses this version of the scheme in our StE construction.
Also note that the signature scheme is reproducible. The reproduction algorithm proceeds identically to the
signature algorithm, except it skips the steps where r←$ Zq and R are computed.

algorithm Gen:
x←$ Zp, y ←$ Zp
u← gx4 , v ← gy4
z ← e(g3, g4)

sk← (x, y)

pk← (u, v, z)

Return (sk, pk)

algorithm Sign(m, sk):
(x, y)← sk

r←$ Zq
R1 ← gr

1,R2 ← gr
2

s← Map(R1)

h← H(m,R2)

a← 1/(x+ h+ ys) mod p

σ ← ga3
R← (R1,R2)

Return (σ,R)

algorithm Verify(m, (σ,R), pk):
(u, v, z)← pk

(R1,R2)← R

h← H(m,R2)

s← Map(R1)

If e(σ, u · gh4 · v
s) = z

Return T

Else Return F

Fig. 12: The Boneh–Boyen signature scheme [9] modified to be compatible with the Kurosawa–Desmedt encryption scheme.

We now discuss the security of the modified Boneh–Boyen signature scheme. It is straightforward to show
that this scheme remains strongly unforgeable provided that the DDH problem is hard in group G and that Map
is a one-to-one and efficiently invertible mapping from G to Zp (the inversion algorithm is only used in the proof
of security). A closer look at the proof reveals that even weaker properties on Map suffice. Indeed, the function
only needs to be injective, efficiently invertible, and map G to a sufficiently large fraction of Zp elements. To
meet these requirements, we may instantiate G as the group of points on an elliptic curve, where the DDH
problem is assumed to be hard. Standard point compression techniques [8] allow us to instantiate Map with an
injective encoding whose image corresponds to a sufficiently large fraction of Zp values. More precisely, for
carefully chosen elliptic curves, there exist injective and efficiently invertible mappings from curve points into
bit strings of length l, where l is approximately the logarithm of the order of the group. Such encodings will
have the property we require when p is chosen to be sufficiently close to 2l.

The security proof of the modified Boneh–Boyen signature scheme can be found in Appendix C. Intuitively,
to reduce the security of the modified scheme to the original version, one simulates signature queries by repeat-
edly querying the signature oracle, until one obtains a signature where the randomness value can be inverted
back into G. Furthermore, a valid forgery on the modified scheme will still constitute a valid forgery on the
original scheme.

COMPARISON. We present in Table 1 a comparison of our StE construction with randomness reuse, when
instantiated with the Kurosawa–Desmedt encryption scheme and the Boneh–Boyen signature scheme, with

5 As in the original scheme, in the unlikely event that s = −(x + h)/y, we simply sample a new randomness. We omit
this in Figure 12 for readability.
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previous signcryption constructions in various relevant parameters. We consider only signcryption schemes
offering full insider security in dynamic multi-user models, and not relying on random oracles. We present
results for the 80-bit security level. In addition to efficiency considerations, we also present the underlying
computational assumptions, whether key registration is required, and whether the scheme offers non-repudiation
by providing receiver’s with valid signatures on the recovered messages.

For computational efficiency, we compare the number of exponentiations, multi-exponentiations, and pair-
ing computations (in this order), both in the signcryption and unsigncryption operations. Clearly the new scheme
matches the previously computationally more efficient solution from [21]. We also include the size of the ran-
dom coins required for the signcryption operation. Here, our scheme displays a saving of 50% over previous
solutions, due to the randomness reuse optimization. Finally, in terms of overhead (i.e., the difference between
ciphertext length and message length), our scheme compares favorably with other solutions. The 160-bit over-
head with respect to the solutions in [11,18] can be explained by including a digest of the sender’s public key
in the payload, which must be calculated using a collision-resistant hash function. This might be avoided by
considering a tag-based variant of the encryption scheme as in [11,18], although we have not considered this
possibility.

Scheme Assumptions Key Reg. Non-Rep. Computations Randomness Overhead
sc. usc. (bits) (bits)

[11] DBDH, q-SDH No Yes [4, 0, 0] [1, 1, 2] 320 640
[11] DBDH, q-SDH No Yes [3, 1, 0] [1, 1, 2] 320 720
[18] DBDH, co-CDH Yes Yes [4, 1, 0] [1, 1, 3] 320 640
[23] DBDH, q-SDH Yes No [3, 2, 0] [3, 1, 4] 480 800
[21] DDH, q-SDH No No [3, 1, 0] [0, 2, 1] 320 720
[22] DDH, q-SDH No No [4, 1, 0] [1, 2, 1] 320 800
New scheme DDH, q-SDH Yes Yes [3, 1, 0] [0, 2, 1] 160 720

Table 1: Comparison with signcryption schemes in the literature. We consider [21,22] also instantiated with the BB signature
scheme. We take |G| = |Zp| = |H| = 160 and |MAC| = 80 bits.

6 Conclusion

We introduced a generic framework to analyze the generic composition of signatures and encryption schemes
while sharing randomness across the two primitives. We also introduced randomness-dependent attack models
for encryption and signature schemes as a critical stepping stone in achieving our goal. Encryption schemes
satisfying this level of security can be easily constructed using two variants of the KEM/DEM paradigm. Our
framework generalizes prior work in the same direction, improves previous results on randomness reuse in
multi-recipient encryption schemes, and can be naturally extended to address randomness reuse across other
cryptographic primitives. We have shown that our framework enables the construction of efficient signcryp-
tion schemes by instantiating the StE construction with the Kurosawa–Desmedt and Boneh–Boyen encryption
schemes. It remains an open problem to insatiate the EtS construction, as it requires designing (efficient) signa-
ture schemes that achieve randomness-dependent security in the standard model.
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A Proof of Theorem 1

A.1 Strong Unforgeability

Proof. Let SC be the signcryption scheme which results from the EtS construction (described in Section 4) of
signature S and encryption E , and let A be the adversary that plays against Game0 (Figure 13), which is game
sUF-iCMA for signcryption scheme SC. Since the signature S satisfies conditional injectivity, we can rephrase

procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(skS , pkS)← ((sk1, sk2), (pk1, pk2))
Listĉ ← [ ]
Listk ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ Listk

(pk1, pk2)← pkR
(sk1, sk2)← skS
r←$ R
(c,R)← Enc((m, pkS), pk2; r)
(σ,R)← Sign((c,R, pkR), sk1; r)
ĉ← (c, σ,R)
Listĉ ← (ĉ, pkR) : Listĉ

Return ĉ
Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

Listk ← (sk, pk) : Listk

Return T
Else Return F

procedure Finalize(ĉ, pkR):
If (ĉ, pkR) ∈ Listĉ Return F
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
(pk1, pk2)← pkS
(c, σ,R)← ĉ
If Verify((c,R, pkR), (σ,R), pk1) ∧

(m, pk′S)← Dec((c,R), sk2)
If m 6=⊥ ∧ pkS = pk′S Return T

Return F

Fig. 13: Game0 - Game sUF-iCMA for signcryption SC, in the EtS construction.

Game0, and from the adversary’s point of view, the simulation is exactly the same. This is just a bridging step
that will lead to Game1 (Figure 14). In Game1, instead of storing the hole signcryption ĉ in Listĉ, we only store
(c,R) since, by conditional injectivity, this is enough to determine if a forgery should be accepted as valid. Now,

procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(skS , pkS)← ((sk1, sk2), (pk1, pk2))
Listĉ ← [ ]
Listk ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ Listk

(pk1, pk2)← pkR
(sk1, sk2)← skS
r←$ R
(c,R)← Enc((m, pkS), pk2; r)
(σ,R)← Sign((c,R, pkR), sk1; r)
ĉ← (c, σ,R)
Listĉ ← (c,R, pkR) : Listĉ

Return ĉ
Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

Listk ← (sk, pk) : Listk

Return T
Else Return F

procedure Finalize(ĉ, pkR):
(c, σ,R)← ĉ
If (c,R, pkR) ∈ Listĉ Return F
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
(pk1, pk2)← pkS
If Verify((c,R, pkR), (σ,R), pk1) ∧

(m, pk′S)← Dec((c,R), sk2)
If m 6=⊥ ∧ pkS = pk′S Return T

Return F

Fig. 14: Game1

we construct a program B (Figure 15) that simulates Game1 and breaks sUF-RDA security of signature S each
time A wins its game. Note that B perfectly simulates Game1 and that A can only win its game if it outputs a
valid signature (σ,R) on message (c,R, pkR). Therefore,

AdvsUF-iCMA
SC,A (λ) = AdvsUF-RDA

S,B (λ) .

ut
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procedure Initialize(pk1, ListR, 1
λ):

(sk2, pk2)←$ EGen(1λ)
pkS ← (pk1, pk2)
Listk ← [ ]
Return pkS

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

Listk ← (sk, pk) : Listk

Return T
Else Return F

procedure Finalize(ĉ, pkR):
(c, σ,R)← ĉ
sUF-RDA.Finalize((c,R, pkR), (σ,R))

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
R← head(ListR)
ListR ← tail(ListR)
(c,R)← RepE((m, pkS), sk2,R)
(σ,R)← Sign((c,R, pkR))
ĉ← (c, σ,R)
Return ĉ

Else Return⊥

Fig. 15: Program B, which breaks sUF-RDA security of S if A wins Game1.

A.2 Chosen Ciphertext Security

Proof. Let SC be the signcryption scheme which results from the EtS construction (described in Section 4) of
signature S and encryption E , and let A be the adversary that plays against Game0 (Figure 16), which is game
IND-iCCA for signcryption scheme SC. Because the signature scheme S satisfies conditional injectivity, we

procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(skR, pkR)← ((sk1, sk2), (pk1, pk2))
b←$ {0, 1}
List← [ ]
Return pkR

procedure Unsigncrypt(ĉ, pkS):
(c, σ,R)← ĉ
(pk1, pk2)← pkS
(sk1, sk2)← skR
If (ĉ, pkS) ∈ List Return⊥
If Verify((c,R, pkR), (σ,R), pk1)

(m, pk′S)← Dec((c,R), sk2)
If (pkS = pk′S) Return m

Return⊥

procedure LoR(m0,m1, (skS , pkS)):
(sk1, sk2)← skS
(pk1, pk2)← pkR
r←$ R
(c,R)← Enc((mb, pkS), pk2; r)
(σ,R)← Sign((c,R, pkR), sk1; r)
ĉ← (c, σ,R)
List← (ĉ, pkS) : List
Return ĉ

procedure Finalize(b′):
Return (b = b′)

Fig. 16: Game0 - Game IND-iCCA for signcryption SC, in the EtS construction.

can rephrase the environment of Game0. This bridging step will lead to Game1 (Figure 17). With the help of
algorithm RepS , we construct a program B (Figure 18) that perfectly simulates the environment of Game1, and
wins game IND-CCA2 every time A wins Game1. Therefore,

AdvIND-iCCA
SC,A (λ) = AdvIND-CCA,B

E (λ) .

ut

B Proof of Theorem 2

B.1 Chosen Ciphertext Security

Proof. Let SC be the signcryption scheme which results from the StE construction (described in Section 4)
of signature S and encryption E , and let A be the adversary that plays against Game0 (Figure 19), which is
game IND-iCCA for signcryption scheme SC. We conclude this proof by building a program B (Figure 20) that
simulates the environment of Game0 for A in a way that B wins IND-RDA whenever A wins Game0. Note
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procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(skR, pkR)← ((sk1, sk2), (pk1, pk2))
b←$ {0, 1}
List← [ ]
Return pkR

procedure Unsigncrypt(ĉ, pkS):
(c, σ,R)← ĉ
(pk1, pk2)← pkS
(sk1, sk2)← skR
If (c,R, pkS) ∈ List Return⊥
If Verify((c,R, pkR), (σ,R), pk1)

(m, pk′S)← Dec((c,R), sk2)
If (pkS = pk′S) Return m

Return⊥

procedure LoR(m0,m1, (skS , pkS)):
(sk1, sk2)← skS
(pk1, pk2)← pkR
r←$ R
(c,R)← Enc((mb, pkS), pk2; r)
(σ,R)← Sign((c,R, pkR), sk1; r)
ĉ← (c, σ,R)
List← (c,R, pkS) : List
Return ĉ

procedure Finalize(b′):
Return (b = b′)

Fig. 17: Game1

procedure Initialize(pk2, 1
λ):

(sk1, pk1)←$ SGen(1λ)
pkR ← (pk1, pk2)
List← [ ]
Return pkR

procedure Unsigncrypt(ĉ, pkS):
(c, σ,R)← ĉ
(pk1, pk2)← pkS
If (c,R, pkS) ∈ List Return⊥
If Verify((c,R, pkR), (σ,R), pk1)

(m, pk′S)← IND-CCA.Dec(c,R)
If pkS = pk′S Return m

Return⊥

procedure LoR(m0,m1, (skS , pkS)):
(sk1, sk2)← skS
(c,R)← IND-CCA.LoR((m0, pkS), (m1, pkS))
(σ,R)← RepS((c,R, pkR), sk1,R)
ĉ← (c, σ,R)
List← (c,R, pkS) : List
Return ĉ

procedure Finalize(b):
IND-CCA.Finalize(b)

Fig. 18: Program B, which breaks IND-CCA security of E if A wins Game1.

procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
b←$ {0, 1}
List← [ ]
Return pkR

procedure Unsigncrypt(ĉ, pkS):
(c, σ,R)← ĉ
(pk1, pk2)← pkS
(sk1, sk2)← skR
If (ĉ, pkS) ∈ List Return⊥
(m, σ, pk′S)← Dec((c,R), sk2)
If pkS = pk′S ∧ Verify((m, pkR), (σ,R), pk1)

Return m
Else Return⊥

procedure LoR(m0,m1, (skS , pkS)):
(sk1, sk2)← skS
(pk1, pk2)← pkR
r←$ R
(σ,R)← Sign((mb, pkR), sk1; r)
(c,R)← Enc((mb, σ, pkS), pk2; r)
ĉ← (c,R)
List← (ĉ, pkS) : List
Return ĉ

procedure Finalize(b′):
Return (b = b′)

Fig. 19: Game0 - Game IND-iCCA for signcryption SC, in the StE construction.

that if A queries the Unsigncrypt with ĉ from LoR under a new pk′S , Unsigncrypt must return ⊥ since
pkS 6= pk′S . Thus,

AdvIND-iCCA
SC,A (λ) = AdvIND-RDA

E,B (λ) .

ut
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procedure Initialize(pk2,R, 1λ):
(sk1, pk1)←$ SGen(1λ)
pkR ← (pk1, pk2)
List← [ ]
Return pkR

procedure Unsigncrypt(ĉ, pkS):
(c,R)← ĉ
(pk1, pk2)← pkS
If (ĉ, pkS) ∈ List Return⊥
(m, σ, pk′S)← IND-RDA.Dec(c,R)
If pkS = pk′S ∧ Verify((m, pkR), (σ,R), pk1)

Return m
Else Return⊥

procedure LoR(m0,m1, (skS , pkS)):
(sk1, sk2)← skS
(pk1, pk2)← pkR
(σ0,R)← RepS((m0, pkR), sk1,R)
(σ1,R)← RepS((m1, pkR), sk1,R)
m′0 ← (m0, σ0, pkS)
m′1 ← (m1, σ1, pkS)
(c,R)← IND-RDA.LoR(m′0,m′1)
ĉ← (c,R)
List← (ĉ, pkS) : List
Return ĉ

procedure Finalize(b′):
Return (b = b′)

Fig. 20: Program B, which breaks IND-CCA security of E if A wins Game0.

B.2 Unforgeability

Proof. Let SC be the signcryption scheme which results from the StE construction (described in Section 4)
of signature S and encryption E , and let A be the adversary that plays against Game0 (Figure 21), which is
game sUF-iCMA for signcryption scheme SC. To prove this theorem, we construct a program B (Figure 22)

procedure Initialize(1λ):
(sk1, pk1)←$ SGen(1λ)

(sk2, pk2)←$ EGen(1λ)
(skS , pkS)← ((sk1, sk2), (pk1, pk2))
Listĉ ← [ ]
Listk ← [ ]
Return pkS

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ Listk

(pk1, pk2)← pkR
(sk1, sk2)← skS
r←$ R
(σ,R)← Sign((m, pkR), sk1; r)
(c,R)← Enc((m, σ, pkS), pk2; r)
ĉ← (c,R)
Listĉ ← (ĉ, pkR) : Listĉ

Return ĉ
Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

Listk ← (sk, pk) : Listk

Return T
Else Return F

procedure Finalize(ĉ, pkR):
If (ĉ, pkR) ∈ Listĉ Return F
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
(pk1, pk2)← pkS
(c,R)← ĉ
(m, σ, pk′S)← Dec((c,R), sk2)
If pkS = pk′S ∧ Verify((m, pkR), (σ,R), pk1)
Return T

Else Return F

Fig. 21: Game0 - Game sUF-iCMA for signcryption SC, in the StE construction.

that simulates Game0 and breaks sUF-CMA security of signature S each time A wins its game. Suppose that
A submits a valid forgery ((c?,R?), pk?R) on Game0. A may have queried Signcrypt several times, but the
oracle’s outputs must have been different from A’s forgery at least by one of forgery’s components. Let’s
analyze each one individually. If c? changes, by conditional injectivity, so does the underlying cleartext, which
now must contain a new valid signature. If R? differs, the underline cleartext is either the same and we have
a new signature on the same message, or it is different and we have a signature on a new message. pk?R alone
cannot change otherwise A wouldn’t have produced a valid forgery.

Therefore, we have that
AdvsUF-iCMA

SC,A (λ) = AdvsUF-CMA
S,B (λ) .

ut

C Security Proof of the Modified Boneh–Boyen Signature Scheme

Proof. We present the DDH assumption in game form in Figure 23, for a cyclic group G of prime order q
with generator g: the assumption holds in G if the probability of success in the game is negligibly close to 1/2
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procedure Initialize(pk1, 1
λ):

(sk2, pk2)←$ EGen(1λ)
pkS ← (pk1, pk2)
Return pkS

procedure Signcrypt(m, pkR):
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
m′ ← (m, pkR)
(σ,R)← sUF-CMA.Sign(m′)
(c,R)← RepE((m, σ, pkS), sk2,R)
ĉ← (c,R)
Listĉ ← (ĉ, pkR) : Listĉ

Return ĉ
Else Return⊥

procedure Key-Reg(sk, pk):
If isValid(sk, pk)

Listk ← (sk, pk) : Listk

Return T
Else Return F

procedure Finalize(ĉ, pkR):
If (?, pkR) ∈ Listk

Get skR From Listk

(sk1, sk2)← skR
(c,R)← ĉ
(m, σ, pk′S)← Dec((c,R), sk2)
sUF-CMA.Finalize((m, pkR), (σ,R))

Else Return⊥

Fig. 22: Program B, which breaks sUF-CMA security of S if A wins Game0.

for all ppt adversaries. Game0 is game sUF-CMA defined in Figure 2 instantiated with our modified Boneh–

procedure Initialize():
a←$ Zq
b←$ Zq
c←$ Zq
x←$ {0, 1}
If x = 0 Return (g, ga, gb, ga·b)

Else Return (g, ga, gb, gc)

procedure Finalize(x′):
If x = x′ Return T
Else Return F

Fig. 23: Decisional Diffie–Hellman Problem.

Boyen signature scheme presented in Figure 12. In Game1 (Figure 24), on every signature query, we compute
R2 as gr′

2 for some random r′ ∈ Zq sampled independently of r. Let A be any ppt adversary against modified
Boneh–Boyen. We now show that any such adversary that can successfully dustinguish between Game0 and
Game1 contradicts the DDH assumption. More precisely, we build a distinguishing program B (Figure 25) that
interpolates between Game0 and Game1, and show that |Pr[GameA1 ⇒ T] − Pr[GameA0 ⇒ T]| ≤ AdvDDH

B .
Note that in case game of Figure 23 returns a DH tuple, B perfectly simulates Game0 since ri = bvi + si and ri
is independent of rj for i 6= j ∈ {1..l} (where l is the number of queries placed byA to the signature oracle) and
random vi, si. Otherwise, ri = bvi + si and r′i =

c
a · vi + si are independent elements of each other and of any

rj and r′j for i 6= j ∈ {1..l}, which results in a perfect simulation of Game1. We can now reduce the advantage

procedure Initialize(1λ):
x←$ Zp, y ←$ Zp
u← gx4 , v ← gy4
z ← e(g3, g4)

sk← (x, y)

pk← (u, v, z)

List← [ ]

Return pk

procedure Sign(m):
r←$ Zq
r′ ←$ Zq
R1 ← gr

1,R2 ← gr′
2

s← Map(R1)

h← H(m,R2)

a← 1/(x+ h+ ys) mod p

σ ← ga3
R← (R1,R2)

List← (m, (σ,R)) : List

Return (σ,R)

procedure Finalize(m, (σ,R)):
(R1,R2)← R

h← H(m,R2)

s← Map(R1)

If e(σ, u · gh4 · v
s) = z ∧

(m, (σ,R)) /∈ List

Return T

Else Return F

Fig. 24: Game1 - Modified Boneh–Boyen signature scheme after DDH reduction.

of A in Game1 directly to that of an adversary that breaks the original Boneh–Boyen signature scheme. We
consider here the Boneh–Boyen variant that takes messages of arbitrary length (for this, hash function H must
be collision resistant).
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procedure Initialize():
x←$ Zp, y ←$ Zp
u← gx4 , v ← gy4
z ← e(g3, g4)

(g1, g2, B, C)← DDH.Initialize()

sk← (x, y)

pk← (u, v, z)

List← [ ]

Return pk

procedure Sign(m):
v ←$ Zp
s←$ Zp
R1 ← Bv · gs1,R2 ← Cv · gs2
s← Map(R1)

h← H(m,R2)

a← 1/(x+ h+ ys) mod p

σ ← ga3
R← (R1,R2)

List← (m, (σ,R)) : List

Return (σ,R)

procedure Verify(m, (σ,R), pk):
(u, v, z)← pk

(R1,R2)← R

h← H(m,R2)

s← Map(R1)

If e(σ, u · gh4 · v
s) = z ∧

(m, (σ,R)) /∈ List

DDH.Finalize(1)

Else DDH.Finalize(0)

Fig. 25: Program B, which solves the DDH problem if A distinguishes between Game0 and Game1.

We build an attacker C (Figure 26) that forges a signature for the original scheme each time A produces
a forgery in Game1. For correct simulation, Map is required to be injective, efficiently invertible, and map G
(of prime order q) to a sufficiently large fraction of Zp elements. Concretely, we require that for any security
parameter λ, the probability that a random element from Zp is not an image under Map of some element in G,
given by p−q

p , is upper-bounded by some constant smaller than 1 (e.g. 1/2). Since, for each signature query, C
tries up to λ times to find an element in Zp which is invertible back to into G, the probability that the simulation
fails is upper bounded by l · (p−qp )λ, which is negligible in λ. Also note that a valid forgery provided to C will
still constitute a valid forgery on the original Boneh–Boyen scheme. Putting the terms together, we conclude

procedure Initialize(1λ):
pk←$ sUF-CMA.Initialize(1λ)

Return pk

procedure Sign(m):
r′ ←$ Zp
R2 ← gr′

2

R1 ←⊥, i = 0

While(R1 =⊥ ∧ i < λ)

(σ, s)←$ sUF-CMABB.Sign(m,R2)

R1 ← Map−1(s)

i← i+ 1

R← (R1,R2)

Return (σ,R)

procedure Finalize(m, (σ,R)):
(R1,R2)← R

s← Map(R1)

sUF-CMABB.Finalize(s, (m,R2))

Fig. 26: Program C, which breaks sUF-CMA security of Boneh–Boyen original signature scheme if A forges in Game1.

the proof by upper bounding the overall advantage of A as

AdvGame0

A (λ) ≤ AdvGameDDH

B (λ) +AdvsUF-iCMA
BB,C (λ) + l ·

(
p− q
p

)λ
.

ut

21


	On the Joint Security of Signature and Encryption Schemes under Randomness Reuse: Efficiency and Security Amplification

