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Abstract

We provide a functional encryption system that supports functionality for regular languages.
In our system a secret key is associated with a Deterministic Finite Automata (DFA) M . A
ciphertext CT encrypts a message m and is associated with an arbitrary length string w. A user
is able to decrypt the ciphertext CT if and only if the DFA M associated with his private key
accepts the string w.

Compared with other known functional encryption systems, this is the first system where the
functionality is capable of recognizing an unbounded language. For example, in (Key-Policy)
Attribute-Based Encryption (ABE) a private key SK is associated with a single boolean formula
φ which operates over a fixed number of boolean variables from the ciphertext. In contrast, in
our system a DFA M will meaningfully operate over an arbitrary length input w.

We propose a system that utilizes bilinear groups. Our solution is a “public index” system,
where the message m is hidden, but the string w is not. We prove security in the selective model
under a variant of the decision `-Bilinear Diffie-Hellman Exponent (BDHE) assumption that we
call the decision `-Expanded BDHE problem.

1 Introduction

Functional encryption is an emerging new way of viewing encryption. Instead of encrypting data
to a particular user, an encryptor will encrypt data under the public parameters of a system. Users
in the system will obtain a secret key SK (issued from some authority) that is associated with a
value k . What a user learns about the data depends on the systems functionality and their key
value k.

Perhaps the most well known and representative functional encryption system is Attribute-
Based Encryption (ABE) [25, 18]. In a (Key-Policy) ABE system, a key is associated with a single
boolean formula φ and a ciphertext is associated with a pair of a message m and variables ~x. A user
can decrypt and learn m if and only if ~x satisfies the formula φ. One salient feature of this system
is that the formula φ only operates over a fixed number of variables (i.e., a bounded description
from the ciphertext). However, there are many applications where we might want the functionality
key to operate over arbitrary sized input data. For example, we could imagine a network logging
application where an encryption input represents an arbitrary number of events logged. Another
example is an encryption of a database of patient data that includes disease history paired with gene
sequences where the number of participants is not apriori bounded or known. This restriction on
fixed size inputs is not limited to Attribute-Based Encryption; other functional encryption systems
such as Spatial Encryption [10, 19] or Inner Product Encryption [21, 23, 24] also operate over fixed
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size inputs.1

Functional Encryption over Arbitrary Size Inputs We initiate the study of functional
encryption systems that operate over arbitrary size inputs. We begin with systems that support
a regular language functionality. Regular languages provide a natural starting point since they
are well studied and are used in various practical applications such as specifying rules in firewall
systems.

A general class of applications is where there is a family of documents that has a public (not
hidden) template along with some secret data that fits within that template. For instance, one
can consider tax returns — which can be arbitrarily long — where the template consists of the
deductions claimed and the private data is the amount of these deductions. An auditor might be
authorized to read the private data of a return if the deductions match a certain regular expression.
Another example is a virus scanner for webpages. Here we might wish the scanner to be able to
take a deeper look into pages that match a certain pattern, but have some content remain hidden
otherwise.

In general there are multiple sources of data such as video and databases that can be of arbitrary
length. While a long term goal is to realize functional encryption for arbitrary programs, regular
languages capture interesting properties. For instance, one can check for the presence of substrings
or check the parity of data.

Our Contribution We construct what we call a Deterministic Finite Automata (DFA)-based
Functional Encryption system. In our system the encryption algorithm takes in a pair of a message
m and an arbitrary length string w over a finite alphabet Σ. The key generation algorithm takes as
input the description of a DFA M = (Q,Σ, δ, q0, F ) and outputs a secret key. Briefly, Q is a set of
states, Σ the alphabet, δ : Q×Σ→ Q a next state transition function, q0 ∈ Q a unique start state
and F ⊆ Q a set of accept states.2 A user with a secret key for DFA M will be able to decrypt
a ciphertext CT associated with w if and only if M accepts the string w. Our system is of the
“public index” type [11] (like ABE) in that while the message m is hidden w can be determined
from the ciphertext (without a secret key).

Designing an encryption system to support a DFA-type functionality provides a new set of
challenges. It is useful to compare them to those in building a boolean formula (ABE) type
system. In existing ABE systems a ciphertext had to represent the variables in ~x. This generally
consisted of either including or excluding a particular ciphertext component depending on whether
a corresponding variable was true. In our DFA system we must meaningfully represent an arbitrary
length string w. Here representing the order of the symbols comprising w is paramount. In an ABE
key generation phase a boolean formula can be mapped closely with the linear secret sharing of the
master secret key in the exponent. Similarly, decryption maps closely with the linear reconstruction
of these exponents (post pairing with pieces of the ciphertext). Building a DFA description M into
a secret key and enforcing its execution during decryption is a more complex task.

We now give a high level overview of some of the main ideas of our construction. We defer several
details to Section 3 where the reader will have the benefit of our construction description. Our
construction makes use of (prime order) bilinear groups and is focused on three main mechanisms

1While a regular language can be recognized by a family of boolean formulas, a secret key in an ABE system is
associated with a single formula.

2We give an overview of DFAs in Section 2.
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for decryption. We call these the initiation, transition, and completion mechanisms. At a high level
the only useful actions a decryptor or attacker should be able to take are by applying them. These
mechanisms are realized by how we structure ciphertexts and private keys.

When encrypting a ciphertext for string w of ` symbols, the encryptor chooses ` + 1 random
exponents s0, s1, . . . , s` ∈ Zp where p is the order of the group. A private key machine M =
(Q,Σ, δ, q0, F ) will have |Q| random group elements chosen D0, . . . , D|Q|−1, where Dx is associated
with state qx.

Suppose a user is trying to decrypt a ciphertext associated with string w with a secret key SK
for machine M . Throughout the process of decryption we would like to enforce that the user (or
attacker) can only compute e(g,Dx)sj if the machine M lands on state qx after reading j symbols
of w.

First, the initiation mechanism allows the decryptor to obtain the value e(g,D0)s0 ∈ GT . This
initiation mechanism should only be good for computing this value and not useable for other Di, si.
Next, the decryptor can repeatedly apply the transition mechnamism. The transition mechanism is
structured such that one can compute (e(g,Dx)sj )−1e(g,Dy)sj+1 if and only if the j + 1-th symbol
of w is σ and the transition δ(x, σ) = y. Multiplying this into the accumulated value will allow the
decryption algorithm to change the accumulated value e(g,Dx)sj to e(g,Dy)sj+1 . Thus, mirroring
the computation of the DFA M on w. Finally, we will end up with some accumulated value
e(g,Dx)s` . If the state qx is an accept state in F , then one can apply the completion mechanism
which computes e(g, g)αs`(e(g,Dx)s`)−1 and this can be multiplied in to simply obtain e(g, g)αs` .
This is the term used to blind the message.

We prove security in the selective model under a variant of the decision `-Bilinear Diffie-Hellman
Exponent (BDHE) assumption that we call the decision `-Expanded BDHE assumption. The
parameter ` of the assumption depends upon the length of the string w∗ associated with the
challenge ciphertext. Our proof uses what has been called a partitioning strategy where a string
w∗ is embedded into the public parameters in such a way that a reduction algorithm can create
private keys for any DFA M that does not accept w∗. Our proof will also need to somehow reflect
the computation of M on w∗ when creating private keys for M . The main reason for applying
a parameterized assumption is that our reduction needs to embed an arbitrary size w∗ into fixed
small sized parameters.

Efficiency We give a brief overview of the computation and storage costs associated with our
system. The public parameters contain 5+ |Σ| group elements, where |Σ| is the size of the alphabet.
A ciphertext consists of 5 + 2|w| group elements and an encryption costs 5 + 3|w| exponentiations,
where |w| is the string associated with the ciphertext. A private key consists of 4 + 3|T | group
elements, where |T | is the number of transitions in the DFA M associated with the key. Finally, a
successful decryption requires 4 + 3|w| pairing operations.

Backtracking, NFAs and Future Challenges One additional complexity to the prior discus-
sion of mechanisms is that the transition function can be applied in reverse to “backtrack” through
the computation. At first this does not seem to be any issue at all since (using our above example)
it seems an attacker will only be able to go back from a value e(g,Dy)sj+1 , representing that he
was at state qy after j + 1 symbols, to a prior value e(g,Dx)sj which represents that earlier the
machine was at state qx after j symbols. However, a twist occurs if there exists another state x′

and the transition function δ(x′, σ) = y, where the j + 1-th symbol of w is σ.
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In this case the attacker can actually backtrack along the “wrong” transition and compute
e(g,Dx′)sj ; falsely representing that after evaluating the first j symbols of w M was in state qx′ !
It turns out that in the case of our DFA system — reflected in our proof— this is not a problem
as an attacker can only go backwards so far. When it goes forward again the determinism of M
means that we will eventually return to the same state qy after j + 1 symbols.

While this backtracking attack primarily complicates the proof of our DFA-based system, it is
indicative that realizing efficient constructions of Nondeterministic Finite Automata (NFA) Func-
tional Encryption systems will likely be difficult. In particular, the most natural extension of our
construction to NFAs falls victim to a backtracking attack where an attacker used the inverse tran-
sitions and followed by a different forward transitions (as could be allowed by the nondeterminism).
Creating efficient NFA constructions is an interesting problem since the best generic way of repre-
senting an NFA (or regular expressions) in terms of a DFA requires an exponential blowup in the
number of states. However, we suspect that achieving this will be difficult and perhaps related to
the difficulty of building efficient ABE systems for circuits.

We also comment that our current proof techniques use both the selective model and a parame-
terized assumption. An interesting question is if either or both of these properties can be improved
using Dual System Encryption [29] proof techniques. While Dual System Encryption was used to
prove ABE systems fully secure under static assumptions [22], the core technique encumbered a
“one-use” restriction on attributes in formulas which had to be overcome using a certain encoding
technique. The encoding bounded at setup the number of times an attribute could be used in
a formula. The natural analog of this encoding and its resulting setup bound would negate the
motivation of having arbitrary string sizes as the ciphertext input.

A final open challenge is to design a functional encryption system where the DFA M associated
with a key is applied directly on encrypted data. That is the string w itself would be hidden and
a user would only learn whether M did or did not accept w. Creating such a cryptosystem and
moving beyond the public index model in this setting appears challenging.

1.1 Other Related Work

Identity-Based Encryption (IBE), which is one of the most basic forms of functional encryption,
was introduced by Shamir [26] in 1984. It wasn’t until much later that Boneh and Franklin [9]
and Cocks [14] independently proposed IBE systems. There have been multiple IBE constructions
using bilinear maps [5, 28, 15] and more recently lattice-based constructions [16, 13, 2, 3].

The beginning of functional encryption can be traced back to early Attribute-Based Encryption
systems [25, 18]. There exists a complimentary form of ABE known as Ciphertext-Policy ABE [4,
17, 30] where the secret key is associated with a set of variables and the ciphertext with a boolean
formula φ. A natural analog in our DFA-based encryption is to associate a DFA M with the
ciphertext and a string with a private key.

In the terminology of [11] our scheme works in the public index model since the string w is not
hidden. Starting with Anonymous IBE systems [8, 1] systems there have been multiple systems
that attempt to hide this information. Some examples include Hidden Vector Encryption [12, 20]
and Inner Product functionalities [21, 23, 24] among others.
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2 Functional Encryption for DFAs: Definitions and Assumption

We now give a formal definition of our DFA-Based Functional Encryption scheme. In the termi-
nology of Boneh, Sahai, and Waters [11] we give a functional encryption scheme for functionality
F (k, x = (w,m)) where k is the description of a deterministic finite automata M and x is the the
pair of a string w and a message m. The functionality F outputs the encrypted message m if the
machine M accepts w and otherwise outputs ⊥. The functional encryption scheme is of the “public
index” type in that the string w is not hidden.

While our system fits within the framework of functional encryption [11] (as sketched above),
we choose to present a direct definition for DFA-based functional encryption. We begin by giving
a brief overview of DFAs. Then we present our algorithms and game-based security definitions.
Finally, we give our bilinear group assumption used to prove security.

2.1 Overview of Deterministic Finite Automata

We give a brief overview of Deterministic Finite Automata (DFA) using terminology and definitions
from Sipser [27] and refer the reader to Sipser [27] for further details. A Deterministic Finite
Automata M is a 5-tuple (Q,Σ, δ, q0, F ) in which:

1. Q is a set of states

2. Σ is a finite set of symbols called the alphabet

3. δ : Q× Σ→ Q is a function known as a transition function

4. q0 ∈ Q is called the start state

5. F ⊆ Q is a set of accept states.

For convenience when describing our encryption systems we add the notation of T as being the
set of transitions associated with the function δ, where t = (x, y, σ) ∈ T iff δ(x, σ) = y.

Suppose that M = (Q,Σ, δ, q0, F ). We say that M accepts a string w = w1, w2, . . . , w` ∈ Σ∗ if
there exists a sequence of states r0, r1, . . . , rn ∈ Q where:

1. r0 = q0

2. For i = 0 to n− 1 we have δ(ri, wi+1) = ri+1

3. rn ∈ F .

We will use the notation Accept(M,w) to denote that the machine M accepts w and Re-
ject(M,w) to denote that M does not accept w. A DFA M recognizes a language L if M accepts
all w ∈ L and rejects all w /∈ L; such a language is called regular.

2.2 DFA-Based Functional Encryption

We now give our definition of a DFA-based Functional Encryption system. A (Key-Policy) DFA-
based encryption scheme consists of four algorithms: Setup, Encrypt, KeyGen, and Decrypt. In
addition to the security parameter, the setup algorithm will take as input the description of an
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alphabet Σ. This alphabet will be used for all strings and machine descriptions in the system.3

The algorithm descriptions follow:

Setup(1n,Σ) The setup algorithm takes as input the security parameter and the description of
a finite alphabet Σ. The alphabet used is shared across the entire system. It outputs the public
parameters PP and a master key MSK.

Encrypt(PP, w,m) The encryption algorithm takes as input the public parameters PP, an arbi-
trary length string w ∈ Σ∗, and a message m. It outputs a ciphertext CT.

Key Generation(MSK,M = (Q, T , q0, F )) The key generation algorithm takes as input the
master key MSK and a DFA description M .The description passed does not include the alphabet
Σ since it is already determined by the setup algorithm. In addition, we encode the transitions as
a set T of three tuples as described above. The algorithm outputs a private key SK.

Decrypt(SK,CT). The decryption algorithm takes as input a secret key SK and ciphertext CT.
The algorithm attempts to decrypt and outputs a message m if successful; otherwise, it outputs a
special symbol ⊥.

Correctness Consider all messages m, strings w, and DFA M such that Accept(M,w). If
Encrypt(PP, w,m) → CT and KeyGen(MSK,M) → SK where PP,MSK were generated from a
call to the setup algorithm, then Decrypt(SK,CT) = m.

Security Model for DFA-Based Functional Encryption We now describe a game-based
security definition for DFA-Based Functional Encryption. As in other functional encryption systems
(e.g. [9, 25]), an attacker will be able to query for multiple keys, but not ones that can trivially
be used to decrypt a ciphertext. In this case the attacker can repeatedly ask for private keys
corresponding any DFA M of his choice, but must encrypt to some string w∗ such that every
machine M for which a private key was requested for rejects w∗. The security game follows.

Setup. The challenger first runs the setup algorithm and gives the public parameters, PP to the
adversary and keeps MSK to itself.

Phase 1. The adversary makes any polynomial number of private keys queries for machine
descriptions M of its choice. The challenger returns KeyGen(MSK,M).

Challenge. The adversary submits two equal length messages m0 and m1. In addition, the ad-
versary gives a challenge string w∗ such that for all M requested in Phase 1, Reject(M,w∗).
Then the challenger flips a random coin b ∈ {0, 1}, and computes Encrypt(PP, w,mb)→ CT∗.
The challenge ciphertext CT∗ is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that for all M requested Reject(M,w∗).
3To fit our system properly in the framework of [11] we would need to have a separate functionality for every

alphabet Σ. Then we would have a family of functional encryption systems; one for each alphabet. Here we choose
to let Σ be a parameter to the setup algorithm.
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Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . We note that the

definition can easily be extended to handle chosen-ciphertext attacks by allowing for decryption
queries in Phase 1 and Phase 2.

Definition 1. A DFA-based Functional Encryption system is secure if all polynomial time adver-
saries have at most a negligible advantage in the above game.

We say that a system is selectively secure if we add an Init stage before setup where the adversary
commits to the challenge string w∗ and alphabet Σ.

2.3 Expanded `-BDHE Assumption

We define the decision `-Expanded Bilinear Diffie-Hellman Exponent problem as follows. Choose a
group G of prime order p > 2n for security parameter n. Next choose random a, b, c0, . . . , c`+1, d ∈
Zp∗ and a random g ∈ G. Suppose an adversary is given ~X=

g, ga, gb, gab/d, gb/d

∀i∈[0,2`+1],i 6=`+1,j∈[0,`+1] ga
is, ga

ibs/cj

∀i∈[0,`+1] g
aib/ci , gci , ga

id, gabci/d, gbci/d

∀i∈[0,2`+1],j∈[0,`+1] ga
ibd/cj

∀i,j∈[0,`+1],i 6=j ga
ibcj/ci .

Then it must remain hard to distinguish e(g, g)a
`+1bs ∈ GT from a random element in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving decision `-Expanded BDHE
in G if ∣∣∣∣Pr

[
B
(
~X, T = e(g, g)a

`+1bs) = 0
]
− Pr

[
B
(
~X, T = R

)
= 0
] ∣∣∣∣ ≥ ε

Definition 2.1. We say that the decision `-Expanded BDHE assumption holds if no polytime
algorithm has a non-negligible advantage in solving the decision `-Expanded BDHE problem.

We give a proof that the assumption holds in the generic group model in Appendix B.

3 Construction

We now present our construction of a DFA-based Function Encryption system. We first describe
our construction and then provide some additional intuitive discussion. Our formal proof appears
in the next section.
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3.1 Algorithms

Setup(1n,Σ) The setup algorithm takes as input a security parameter n and an alphabet Σ. It
first chooses a prime p > 2n and creates a bilinear group G of prime order p. The algorithm then
chooses random group elements g, z, hstart, hend ∈ G. In addition, for all σ ∈ Σ it chooses random
hσ ∈ G. Finally, an exponent α ∈ Zp is randomly chosen. The master secret key MSK includes
g−α along with the public parameters. The public parameters are the description of the group G
and the alphabet Σ along with:

e(g, g)α, g, z, hstart, hend, ∀σ∈Σ hσ.

Encrypt(PP, w = (w1, . . . , w`),m) The encryption algorithm takes in the public parameters, an
arbitrary length string w of symbols, and a message m ∈ GT . Let wi denote the i-th symbol of
w and ` denote the length of w. The encryption algorithm chooses random s0, . . . , s` ∈ Zp and
creates the ciphertext as follows.

First, it sets
Cm = m · e(g, g)α·s` and

Cstart1 = C0,1 = gs0 , Cstart2 = (hstart)s0

Then, for i = 1 to ` it sets:

Ci,1 = gsi , Ci,2 = (hwi)
sizsi−1 .

Finally, it sets
Cend1 = C`,1 = gs` , Cend2 = (hend)s`

The output ciphertext is

CT =
(
w,Cm, Cstart1, Cstart2, (C1,1, C1,2), . . . , (C`,1, C`,2), Cend1, Cend2

)
KeyGen(MSK,M = (Q, T , q0, F )) The key generation algorithm takes as input the master secret
key and the description of a deterministic finite state machine M . The description of M includes
a set Q of states q0, . . . q|Q|−1 and a set of transitions T where each transition t ∈ T is a 3-tuple
(x, y, σ) ∈ Q×Q×Σ. In addition, q0 is designated as a unique start state and F ⊆ Q is the set of
accept states. (Recall, Σ is given in the parameters.)

The algorithm begins by choosing |Q| random group elements D0, D1, . . . , D|Q|−1 ∈ G, where
we associate Di with state qi. Next, for each t ∈ T it chooses random rt ∈ Zp; it also chooses
random rstart ∈ Zp and ∀qx ∈ F it chooses random rendx ∈ Zp .

It begins creating the key with

Kstart1 = D0(hstart)rstart , Kstart2 = grstart

For each t = (x, y, σ) ∈ T the algorithm creates the key components

Kt,1 = D−1
x zrt , Kt,2 = grt , Kt,3 = Dy(hσ)rt .

Finally, for each qx ∈ F it computes
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Kendx,1 = g−α ·Dx(hend)rendx , Kendx,2 = grendx

SK =
(
M,Kstart1,Kstart2, ∀t ∈ T (Kt,1,Kt,2,Kt,3), ∀qx ∈ F (Kendx,1,Kendx,2)

)
Decrypt(SK,CT) Suppose we are given a ciphetext CT associated with a string w = w1, . . . , w`
and a secret key SK associated with a DFA M = (Q, T , q0, F ) where Accept(M,w). Then there
exist a sequence of `+ 1 states u0, u1, . . . , u` and ` transitions t1, . . . , t` where u0 = q0 and u` ∈ F
and for i = 1, . . . , ` we have ti = (ui−1, ui, wi) ∈ T .

The algorithm begins by computing:

B0 = e(Cstart1,Kstart1) · e(Cstart2,Kstart2)−1 = e(g,D0)s0 .

Then for i = 1 to ` it iteratively computes:

Bi = Bi−1 · e(C(i−1),1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3) = e(g,Dui)
si

Since the machine accepts we have that u` = qx for some qx ∈ F and B` = e(g,Dx)s` .
It finally computes

Bend = B` · e(Cendx,1,Kendx,1)−1 · e(Cendx,2,Kendx,2) = e(g, g)αs` .

This value can then be divided from Cm to recover the message m.

3.2 Further Discussion

As discussed in the introduction, our construction contains three primary mechanisms used for
decryption. The first step of the decryption process gives what in the introduction we called the
initiation mechanism, which starts by computing e(g,D0)s0 . This used the “start” values from the
keys and ciphertexts. We observe that this mechanism has structural similarities to the Boneh-
Boyen [5] Identity-Based Encryption system.

The next several steps of decryption provide the transition mechanism. The evaluation of
e(C(i−1),1,Kti,1)e(Ci,2,Kti,2)−1e(Ci,1,Kti,3) computes (e(g,Dx)si−1)−1e(g,Dy)si , which updates the
accumulated value to e(g,Dy)si . Representing that the machine M is in state y after processing
i symbols of w. A paramount feature is that the Ci,2 components of the ciphertext “chain” adjacent
symbols together. This along with the structure of the private key enforces that (e(g,Dx)si−1)−1e(g,Dy)si
can only be computed if the i-th symbol is σ and the transition from state x to y on symbol σ is
in the DFA for some σ.

Finally, the completion mechanism allows for the computation of e(g, g)αs` if the accumulated
value reaches e(g,Dx)s` for qx ∈ F . The completion mechanism is very close in design to the
initiation mechanism, but has the master key g−α multiplied into its key component.

As described in the introduction, an attacker can backtrack to get some accumulated value that
may not represent the actual computation of M on w. However, the attacker intuitively will only
be able to backtrack so far and since M is deterministic must eventually go forward again to the
same spot if he is to decrypt. This intuition is captured rigorously in the security proof in the next
section.
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3.3 Rerandomization of Ciphertexts and Secret Keys

We give two algorithms for the rerandomization of ciphertexts and private keys. Our ciphertext
rerandomization algorithm takes in any well formed ciphertext for string w and produces a new
ciphertext for the string w which encrypts the same message as the original. Moreover, the output
ciphertext has the same distribution as one created fresh from the encryption algorithm. Similarly,
the key rerandomization algorithm takes any valid secret key SK for DFA M and outputs a new
secret key for DFA M that where the distribution is the same as the KeyGen algorithm.

These algorithms will be used for proving security of our system in the next section. Our
main reduction techniques will produce valid challenge ciphertexts and private keys; however, these
might not be well distributed. The randomization algorithms can then be applied to get the
properly distribution on ciphertexts and keys. We segregate rerandomization as a separate step to
help simplify the presentation of our proofs.4 Our algorithms do simple additive (in the exponent)
rerandomization. Since they are fairly straightforward we defer their presentation to Appendix A.

4 Security Proof

We now prove security of our construction in the selective mode. We assume a successful attacker
A against our system. Our reduction algorithm B will run A and use it to break the decision `∗-
Expanded BDHE assumption, where `∗ is the length of the string w∗ used in creating the challenge
ciphertext. Our reduction describes how B simulates the Setup, Key Generation, and Challenge
Ciphertext generation phases of the security game.

We prove the following theorem.

Theorem 4.1. Suppose the decision `∗-Expanded BDHE assumption holds. Then no poly-time
adversary can selectively break our DFA-based encryption system where the challenge string w∗

encrypted is of length `∗.

Suppose we have an adversaryA with non-negligible advantage ε = AdvA in the selective security
game against our construction for alphabet Σ. Moreover, suppose it chooses a challenge string w∗

of length `∗. Then B runs A and simulates the security game as follows.

Init B takes a decision `∗-Expanded BDHE challenge ~X, T . The attacker, A, declares a challenge
string w∗ of length `∗. We let w∗j denote the j-th symbol of w∗. In addition, we define w∗`∗+1 =
w∗0 = ⊥ for a special symbol ⊥ /∈ Σ.

Setup The reduction algorithm first chooses random exponents5 vz, vstart, vend ∈ Zp and ∀σ ∈
Σ vσ. The parameter values are chosen as follows:

e(g, g)α = e(ga, gb), g = g, z = gvzgab/d

This implicitly sets α = ab. Next it sets:
4Most prior reductions of a similar nature (e.g. [5, 6, 28]) build the rerandomization directly in the main reduction.
5These values will be used to sure that are public parameters are distributed as in the real system. While this is

of course necessary, they are not central to the core ideas of the reduction. As a simplification, a reader might choose
to ignore these (imagine they are all 0) to help understand the main ideas.
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hstart = gvstart
∏

j∈[1,`∗]

g−a
jb/cj , hend = gvend

∏
j∈[2,`∗+1]

g−a
jb/cj .

Finally,
∀σ∈Σ hσ = gvσg−b/d ·

∏
j∈[0,`∗+1] s.t.

w∗j 6=σ

g−a
(`∗+1−j)b/c(`∗+1−j) .

The reduction algorithm embeds its knowledge of w∗ into the the public parameters. The
parameter hσ will have a term g−a

`∗+1−jb/c`∗+1−j if and only if the j-th symbol of w∗ is not σ. As
we will see this embedding will be crucial to simulating a challenge ciphertext, while maintaining
the ability to generate keys. The terms are well distributed since a is chosen randomly in the
assumption and due to the ‘v’ exponents, which randomize the other parameters. We also observe
that this equation is well defined since we defined w∗`∗+1 = w∗0 = ⊥. Since ⊥ /∈ Σ we have that
for all σ the parameter hσ always contains the terms g−ba

(`∗+1)/c(`∗+1) and g−ba
0/c0 .

Challenge We describe how B creates a challenge ciphertext. The reduction will intuitively set
si = sai ∈ Zp. B first chooses a coin β and begins to create a ciphertext CT. It first sets w = w∗

(from Init) and sets Cm = mβ · T . Next, it sets

Cstart1 = gs, Cstart2 = (hstart)s = (gs)vstart
∏

j∈[1,`∗]

g−a
jbs/cj

Then, for i = 1 to `∗:

Ci,1 = ga
is, Ci,2 = (ga

is)vw∗i (ga
i−1s)vz ·

∏
j∈[0,`∗+1]

s.t. w∗j 6=w∗i

g(−a`∗+1−j+i)bs/cj .

We make two observations. First, the algorithm B does not receive from the assumption the
term g−a

`∗+1bs/cj for any j. Thus, it is important that such a term not be included in Ci,2. We see
that such a term can only appear in the product above when i = j, however, this cannot be the
case since if i = j then w∗j = w∗i, which is explicitly excluded from the product.

Second, we remark that zsi−1 produces a term ga
ibs/d which B does not have. However, (hw∗i)

si

produces a term which is the inverse of this and these cancel each other out in the computation of
Ci,2 = zsi−1(hw∗i)

si . The remaining terms shown above are produceable from the assumption.
These two observations reflect important points in the proof. The first shows how the embedding

of the challenge string w∗ in the hσ values allows us the creation of the challenge ciphertext. The
second cancellation reflects the “linking” of adjacent symbols of w∗ that is at the core of the security
of the ciphertext construction.

Finally, it creates

Cend1 = ga
`∗s, Cend2 = (hend)a

`∗s = (ga
`∗s)vend

∏
j∈[2,`∗+1]

g−a
`∗+jbs/cj

To finish, the B must run the ciphertext rerandomization algorithm from Appendix A on CT
to get a well distributed challenge ciphertext CT∗. It then returns CT∗ to A. If T = ga

`∗+1bs — is
a valid Expanded BDHE tuple — then (the rerandomized) CT∗ is an encryption of mβ. Otherwise
the ciphertext will reveal no information about β.
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Key Generation The key generation phases (1 and 2) are the most complex part of this reduc-
tion. We describe how B can respond to a private key request for DFA M = (Q, T , q0, F ).

Before showing how B creates the actual key components we start by doing some prep work
to show how the Dx values will implicitly be assigned. B will not actually be able to directly
create these. We will describe the terms which comprise each Dx value and will create the keys to
be consistent with these. Intuitively, the assignments should in some way match the execution of
machine M on w∗.

We begin by introducing some notation. First we let w∗(i) denote the last i symbols of w∗. It
follows that w∗(`

∗) = w∗ and w∗(0) is the empty string. In addition, we for k ∈ [0, |Q| − 1] we let
Mk = (Q, T , qk, F ). That is Mk is the same DFA as M except the start state is changed to qk.
(Note that M0 = M .)

Now for each qk ∈ Q we create a set Sk of indices between 0 and `∗. For i = 0, 1, . . . , `∗ we put
i ∈ Sk if and only if Accept(Mk, w

∗(i)). Then we assign

Dk =
∏
i∈Sk

ga
i+1b.

This assignment of Dk values is meant to “mark” the computation of M on the challenge string
w∗. The term ga

i+1b will appear in Dk if it is possible to reach an accepting final state using the
last i symbols of w∗ starting at state qk. We make two important observations for creating private
keys. First, the term ga

`∗+1b does not appear in D0. This follows from the fact that any valid
request of a DFA M must reject w∗ and is crucial to creating Kstart1. Next for all x ∈ F , we have
that the term ga

1b does appear in Dx. This occurs since Mx will accept the empty string if it starts
at an accepting state x and is a critical fact needed for creating Kendx,1.

The values embedded in Dk reflect more than just the computation of M on w∗. It embeds the
execution of all Mk (M with all possible starting states) from all positions of the string w∗. This is
done to reflect the possible backtracking attacks described in the last section. We emphasize that
B cannot actually produce these Dk values using the terms given from the assumption. Instead
it will construct the key components to be consistent with these values. Uncomputable terms will
cancel when creating the components. B begins with creating the start and end key terms.
B starts by implicitly setting rstart = Σi∈S0 ci+1.

Kstart2 = grstart =
∏
i∈S0

gci+1

Kstart1 = D0(hstart)rstart = (Kstart2)vstart ·
∏

j∈[1,`∗],i∈S0
j 6=i+1

g−a
jbci+1/cj

Our assignments canceled out the terms of the form ga
i+1b from D0 and the remaining terms that

are given in Kstart1 are those that we are given from the assumption. Notice that since the term
ga

`∗+1b was not in D0 it did not need to be canceled; this is important since the setting of hstart

gave no way to do this. (The term ga
`∗+1b/c`∗+1 is not in hstart.)

Next, for all qx ∈ F it creates the key components. It first creates starts by implicitly setting
rendx = Σi∈Sx,i 6=0 ci+1.

Kend2,x = grendx =
∏
i∈Sx
i 6=0

gci+1
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Kend1,x = g−αDx(hend)rendx = (Kend2,x)vend ·
∏

j∈[2,`∗+1],i∈Sx
i 6=0,j 6=i+1

g−a
jbci+1/cj

Our assignment of Kend2,x canceled out the terms of the form ga
i+1b from Dx except for when i = 0.

Here, Dx has the term gab and this cancels with g−α = g−ab. It is essential that Dx contain the
term gab since hend is structured such there is no other way of canceling with g−α. (The term
ga

1b/c1 is not in hend.)
We finally need to create the key components for each t = (x, y, σ) ∈ T . We organize this into

a set of intermediate computations. For i = 0 to `∗ + 1 we will define (Kt,1,i,Kt,2,i,Kt,3,i). Then
we will let Kt,1 =

∏
i∈[0,`∗+1]Kt,1,i, Kt,2 =

∏
i∈[0,`∗+1]Kt,2,i, Kt,3 =

∏
i∈[0,`∗+1]Kt,2,i.

Intuitively, for each transition t = (x, y, σ) we step through each i from 0 to `∗. 6 For each i
we describe how to set Kt,2,i such that it will cancel ga

i+1
b from Dx if this term appears in Dx and

how to cancel ga
ib from Dy if this term appears in Dy in computing the Kt,1,Kt,3 key components.

We step through four possible cases.

Case 1: i /∈ Sx ∧ (i− 1) /∈ Sy

Set Kt,1,i,Kt,2,i,Kt,3,i = 1 (the identity element). This is when there are not term ga
i+1b in

either Dx nor term ga
ib in Dy so nothing needs to be canceled.

Case 2: i ∈ Sx ∧ (i− 1) ∈ Sy

Set Kt,2,i = ga
id and Kt,1,i = (Kt,2,i)vz .

Kt,3,i = (Kt,2,i)vσ ·
∏

j∈[0,`∗+1] s.t.

w∗j 6=σ

g−a
(`∗+1−j+i)bd/c(`∗+1−j)

This is when there are terms ga
i+1b in Dx and ga

ib in Dy. The setting of Kt,2,i allows them to
both be canceled and the remaining terms above are “collateral” which can be taken from the
assumption. This action is independent of the symbol w∗i+1. We can think of the setting of
Kt,2,i as a “copy action” in that a similar cancellation happens on both sides of the transition.

Case 3: i /∈ Sx ∧ (i− 1) ∈ Sy ∧ w∗`∗+1−i 6= σ

Set Kt,2,i = gci and Kt,1,i = (Kt,2,i)vzgabci/d.

Kt,3,i = (Kt,2,i)vσ · g−bci/d ·
∏

j∈[0,`∗+1] s.t.

j 6=`∗+1−i ∧ w∗j 6=σ

g−a
(`∗+1−j)bci/c(`∗+1−j)

In this case there is not a term ga
i+1b in Dx, but there is a term ga

ib in Dy. Therefore
we cannot apply the above “copy” technique from Case 2. Instead we use the fact that

6We explicitly note that −1 and `∗ + 1 /∈ Sk for all k, which allows these cases to all be well defined for the range
of i.
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w∗`∗+1−i 6= σ. (Note that w∗`∗+1−i is the first symbol of the string w∗(i) — the string of
the last i symbols of w∗.) We set Kt,2,i = gci which cancels the only ga

i
term in Dy. Since

w∗`∗+1−i 6= σ we have that hσ contains the term g−a
ib/ci . Raising this to ci provides the

desired cancellation. The remaining terms shown above are “collateral” that can be taken
from the assumption.

Case 4: i ∈ Sx ∧ (i− 1) /∈ Sy ∧ w∗`∗+1−i 6= σ

Set Kt,2,i = ga
idg−ci and Kt,1,i = (Kt,2,i)vzg−abci/d.

Kt,3,i = (Kt,2,i)vσ ·gbci/d
∏

j∈[0,`∗+1] s.t.

w∗j 6=σ

g−a
(`∗+1−j+i)bd/c(`∗+1−j)

∏
j∈[0,`∗+1] s.t.

j 6=`∗+1−i ∧ w∗j 6=σ

ga
(`∗+1−j)bci/c(`∗+1−j)

How we handle this case can best be understood as a combination of how we handle Cases 2
and three. Here there is a term ga

i+1b in Dx, but there is a not term ga
ib in Dy. We first put

a term ga
id in Kt,2,i to invoke the “copy” mechanism from Case 2. This gives us the desired

cancellation for part of Dx, but also creates an undesirable term ga
ib that cannot be cancelled

with Dy. Therefore we also include a term of g−ci in in Kt,2,i to invoke the cancelation of
the “undesirable term”. As in Case 3, we have that w∗`∗+1−i 6= σ and hσ contains the term
g−a

ib/ci . Again, remaining terms shown above are “collateral” which can be taken from the
assumption. We observe that these terms are basically just those generated from Case 2 and
Case 3 combined.

These four cases cover all possibilities. By the definition of a DFA when w∗`∗+1−i = σ we have
that i ∈ Sx if and only if i− 1 ∈ Sy. This is a consequence of the fact that M is deterministic. (If
M were instead a Nondeterministic Finite Automata, the prior statement would not hold. )

This shows how B creates all the key components. B must run the key rerandomization algo-
rithm from the previous section on SK to get a well distributed key S̃K for the machine M . Then
it returns S̃K to A.

Guess The adversary will eventually output a guess β′ of β. If β = β′, then B then outputs 0 to
guess that T = e(g, g)a

`∗+1bs ; otherwise, it and outputs 1 to indicate that it believes T is a random
group element in GT .

When T is a tuple the simulator B gives a perfect simulation so we have that

Pr
[
B
(
~y, T = e(g, g)a

`∗+1bs
)

= 0
]

=
1
2

+ AdvA.

When T is a random group element the messageMβ is completely hidden from the adversary and

we have Pr
[
B
(
~X, T = R

)
= 0
]

= 1
2 . Therefore, B can play the decision `∗-Expanded BDHE game

with non-negligible advantage.

5 Conclusions

We introduced a new type of functional encryption system that works over regular languages. Our
system has secret keys that encode a Deterministic Finite Automata M and ciphertexts that are
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associated with an arbitrary length string w and an encrypted message m. A user with a secret key
for DFA M can decrypt a ciphertext associated with w if and only if M accepts w. Our construction
makes use of bilinear maps and constructs mechanisms that enforce the DFA evaluation.

Interesting future challenges include developing a system that can be proved adaptively secure
and under a non-parameterized assumption. Looking farther out, one would like to be able to
extend the functionality further, eventually all the way to support Turing Machines.
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A Rerandomization of Ciphertexts and Private Keys

We present our two rerandomization algorithms.

Ciphertext Rerandomization Let C̃T be a ciphertext where we denote the different compo-
nents with a tilde symbol overhead. The rerandomization algorithm chooses random s′`, . . . , s

′
`. We

compute the new ciphertext as:

w = w̃, Cm = C̃m · (e(g, g)α)s
′
`

Cstart1 = C̃start1 · gs
′
0 , Cstart2 = C̃start2 · (hstart)s

′
0 ,

Cend1 = C̃end1 · gs
′
` , Cend2 = C̃end2(hend)s

′
`

For i ∈ [1, `] Ci,1 = C̃i,1 · gs
′
i , Ci,2 = C̃i,2 · (hwi)s

′
izs
′
i−1

The process essentially rerandomizes all of the exponents. If the original ciphertext C̃T was
a valid encryption of the message m for the string w with exponents of s̃0, . . . , s̃`, then the new
ciphertext is a valid ciphertext of the same message and string with exponents si = s̃i + s′i. The
resulting distribution is the same as for a fresh encryption of m under the string w.

Key Rerandomization Let S̃K be a private key for DFA M̃ = (Q, T , q0, F ). We denote the
different components of S̃K with a tilde symbol overhead. The rerandomization algorithm chooses
random D′0, D

′
1, . . . , D

′
|Q|−1 ∈ G and for each t ∈ T it chooses random r′t ∈ Zp. It also chooses

random r′start ∈ Zp and ∀qx ∈ F it chooses random rend
′
x ∈ Zp . We compute the new key as:

M = M̃, Kstart1 = K̃start1 ·D′0(hstart)r
′
start , Kstart2 = K̃start2 · gr

′
start

∀t = (x, y, σ) ∈ T Kt,1 = K̃t,1 ·D′x
−1
zr
′
t , Kt,2 = K̃t,2 · gr

′
t , Kt,3 = K̃t,3 ·D′y(hσ)r

′
t .

Finally, it for each qx ∈ F it computes

Kendx,1 = K̃endx,1 ·D′x(hend)rend
′
x , Kendx,2 = K̃endx,2 · grend

′
x

If the key S̃K were well formed with randomness D̃i and r̃t, r̃end, then the new key has random-
ness Di = D′iD̃i and rt = r′t+r̃t, rstart = r′start+r̃start and for all qx ∈ F we have rendx = rend

′
x+r̃endx.

The resulting distribution is the same as for a fresh key generation for machine M .

B Generic Security of Our Assumption

We show that the decision `-Expanded BDHE assumption is generically secure. We use the generic
proof template of Boneh, Boyen, and Goh [7].

We first recall the decision `-Expanded Bilinear Diffie-Hellman Exponent problem from Sec-
tion 2.3. Choose a group G of prime order p > 2n for security parameter n. Next choose random
a, b, c0, . . . , c`+1, d ∈ Zp∗ and a random g ∈ G. Suppose an adversary is given ~X=

g, ga, gb, gab/d, gb/d

17



∀i∈[0,2`+1],i 6=`+1,j∈[0,`+1] ga
is, ga

ibs/cj

∀i∈[0,`+1] g
aib/ci , gci , ga

id, gabci/d, gbci/d

∀i∈[0,2`+1],j∈[0,`+1] ga
ibd/cj

∀i,j∈[0,`+1],i 6=j ga
ibcj/ci .

Then it must remain hard to distinguish e(g, g)a
`+1bs ∈ GT from a random element in GT .

To prove the assumption generically secure we need to check two properties: That the that
the terms of the assumption have low degree and that the target of the assumption is symbolically
independent of all terms that can computed from the assumption.

One anomaly from the BBG framework is that our assumption includes inverses. In particular,
the variables d, c0, c1, . . . , c`+1 may appear inverted. This can be overcome by observing that we
can rewrite our assumption in terms of a generator u where g = ud

Q
i∈[0,`+1] ci . By applying this

substitution we get a set of polynomials where the highest degree term is at most 3` + 5. Thus,
the assumption is generically secure for any ` that is polynomial in the security parameter. Now it
remains to show symbolic independence.

Using the terminology from BBG we need to show that f = a`+1bs is independent of the set of
polynomials P and Q. Q7 is the set of all polynomials given in the target group. Since all given
terms are in the bilinear group we have that Q = {1}. The set P is the set of a polynomials that
comprise the exponents of the bilinear group elements given.

Although our assumption has several elements given, checking independence is not very difficult.
For notice for each y ∈ P will have only one term associated with it (is not a sum of multiple terms).
Therefore, we just need to check that for any two exponents y1, y2 ∈ P do not equal f = a`+1bs.
Checking this is made easier by observing that there are only two sets of terms given that involve
the variable s.

∀i∈[0,2`+1],i 6=`+1,j∈[0,`+1] ais, aibs/cj

The first set of terms involves ais for i 6= ` + 1. To be able to symbolically match f we would
need a term of the form ajb such that i+ j = `+1 for i in the given range. A brief inspection yields
that no such terms exists. (Note this holds since the terms of the form aibcj/ci are only given for
i 6= j. In addition, while b = a0b is given we do not have a`+1s.)

The second set of terms are of the form aibs/cj . To be able to symbolically match f we would
need a term of the form akcj where k + i = ` + 1. Since i 6= ` + 1 we would need k 6= 0. Another
inspection yields that no such terms exist.

7We note that in this context, Q is no longer the set of states of a DFA.
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