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Abstract

We introduce the notion of an arithmetic codex, or codex for short. Codices en-
compass several well-established notions from cryptography (various types of arithmetic
secret sharing schemes, which all enjoy additive as well as multiplicative properties) and
from algebraic complexity (bilinear complexity of multiplication in algebras) in a single
mathematical framework. Arithmetic secret sharing schemes have important applications
to secure multiparty computation and even to two-party cryptography. Interestingly,
several recent applications to two-party cryptography rely crucially on the existence of
certain asymptotically good schemes. It is intriguing that their construction requires
asymptotically good towers of algebraic function fields over a finite field: no elementary
(probabilistic) constructions are known in these cases. Besides introducing the notion,
we discuss some of the constructions, as well as some limitations.

1 Preliminaries

Let K be a field. In this paper, a K-algebra S is a commutative ring S with multiplicative
unity 1S such that K ⊂ S is a subring (so, 1K = 1S by definition). In particular, S is a
K-vector space. Products of K-algebras (e.g., the n-fold product Kn) will be viewed as K-
algebras with component-wise multiplication as ring-multiplication and with K “diagonally
embedded”, i.e., λ ∈ K is given by (λ, . . . , λ) in the product.

Products of extension fields of K are among the most elementary examples of K-algebras.
There is the following classical characterization theorem for this case.

Theorem 1 Suppose S is a K-algebra having finite dimension as a K-vector space. Then
the following holds.

• S has 0 as its only nilpotent if and only if S is a finite product of finite-degree extension
fields of K.
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• S has non-zero discriminant if and only if S is a finite product of finite-degree separable
extension fields of K.

Note that if K is a perfect field (such as K = Fq, the finite field of order q), these two classes
coincide. There is a rich literature on K-algebras that includes many other, sometimes much
more involved classes. However, there is no complete classification as yet. In this paper,
we are mostly interested in the case where K is a finite field and the K-algebras are finite
products of finite-degree extension fields of that finite field. That said, the definitions to
follow are general and not restricted to this choice.

2 The Codex Definition

Let S be a K-algebra and let n ≥ 1 be an integer. Suppose that C ⊂ Kn is a K-linear
subspace and that ψ : C −→ S is a surjective K-vector space morphism (so dimK(S) ≤ n).

Definition 1 If s ∈ S and x ∈ C are such that ψ(x) = s, then x is said to present s.

Definition 2 (Projection Maps) Let x ∈ Kn. Then x = (xi)
n
i=1 is the standard coordinate-

vector of x. Let A ⊂ {1, . . . , n} be a non-empty set. The projection map

πA : Kn −→ K |A|,

x 7→ (xi)i∈A

selects the A-indexed coordinates. Sometimes xA is used as a shorthand for πA(x).

Let d, t, r be integers with d ≥ 1 and 0 ≤ t < r ≤ n. The three crucial properties of
codices are as follows, informally speaking. First, each element of s ∈ S is “presented” in
the sense that ψ(x) = s for some x ∈ C. Second, the coordinate-wise product (in Kn) of
any d C-elements uniquely determines the product of the d S-elements presented by them.
In fact, any r coordinates of this coordinate-wise product suffice. Moreover, in each of these
cases, there exists a K-linear map by which it can be determined. Third, any t coordinates
of a generic (“random”) C-element are jointly independent (“give no information”) about
the S-element that this C-element presents. The formal definition is as follows.

Definition 3 (Codex) The pair C = (C,ψ) is an (n, t, d, r)-codex for S over K if the
following holds.

1. The map ψ is surjective.

2. There is (d, r)-product reconstruction. This means that, for each set B ⊂ {1, . . . , n}
with |B| = r, there exists a K-linear map

ρB : Kn −→ S

such that

(a) ρB(
∏d
i=1 xi) =

∏d
i=1 ψ(xi) for all (x1, . . . ,xd) ∈ Cd.

(b) ρB(y) = 0 for all y ∈ Kn with πB(y) = 0.
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3. There is t-disconnection. By definition, C is 0-disconnected. If t > 0, then C is t-
disconnected if for each A ⊂ {1, . . . , n} with |A| = t, the map

φA : C −→ S × πA(C)

x 7→ (ψ(x), πA(x))

is surjective. If, additionally, πA(C) = Ftq for all sets A ⊂ {1, . . . , n} with |A| = t,
there is uniformity.

Note that the case d = 1 is oblivious of the multiplicative structure of S. Though we
will be mostly interested in the case d > 1, the case d = 1 is interesting in its own right. See
below. Also note that if t = 0, there is no privacy guarantee. On the other hand, r ≤ n. So
product-reconstruction is guaranteed by definition.

Suppose K is a finite field and |A| = t. Then C is finite and φA is a regular map. Therefore,
if x is uniformly random on C, then φA(x) is uniformly random on S × πA(C). Thus,
ψ(x) has the uniform distribution on S and, furthermore, ψ(x) and πA(x) are independently
distributed. This has the following consequence. Consider the linear secret sharing scheme
where x ∈ C is selected uniformly at random such that ψ(x) equals the intended secret
s ∈ S and where the n individual coordinates of x are the shares. Then there is t-privacy.
If d = 1, there is r-reconstruction. It can be shown that if d > 1, then there there is
(r − dt)-reconstruction in this scheme.

Definition 4 (Arithmetic Secret Sharing) If K is a finite field, d ≥ 2 and t ≥ 1, then
C is an (n, t, d, r)-arithmetic secret sharing scheme (with secret-space S and share-space K).

Remark 1 (On Applications of Arithmetic Secret Sharing) As a opposed to the
notion of “plain secret sharing”, which is very suggestive as to how it may actually be used in
cryptographic protocols, the notion of arithmetic secret sharing is less intuitive. For instance,
the way the properties of these schemes are exploited in secure computation can hardly be
guessed straight from their definition. Please refer to [8] for a high-level explanation of two
of the main applications of arithmetic secret sharing to secure computation. See also the
references in Section 5.

Definition 5 (Arithmetic Embeddings) If dimK S = dimK C (as vector spaces) and if
d ≥ 2 then C is an (n, d)-arithmetic embedding (of S over K).

Remark 2 If d = 2, then the smallest n such that an (n, 2)-arithmetic embedding of S
over K exists is the bilinear multiplication complexity of S over K, a classical notion from
algebraic complexity theory [5]. Especially the case where K is a finite field Fq and S is an
extension field Fqk (for some integer k > 1) has been extensively studied.

Our notion of a codex distinguishes itself in several ways. These include the following.
First, through t-disconnection and uniformity (as well as (d, r)-product reconstruction as op-
posed to the more common (2, n)-product reconstruction). Second, arithmetic secret sharing
schemes with secret-space Fkq and share-space Fq have particularly important cryptographic
applications, whereas bilinear complexity is trivial here. From a cryptographic point of view,
our notion encompasses all known variations on arithmetic secret sharing. Third, codices
often support “efficient decoding” of the S-element even if a presentation x ∈ C comes with
some errors, by a linearization argument that makes generic use of the properties of the
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codex1. See [19] for efficient decoding in the presence of t such errors in an (n, t, 2, n − t)-
codex and see [8] for a more general result. Finally, it is also possible to define natural
notions of duality. It is also sometimes useful to introduce additional parameters pertaining
to C, its powers or some of their duals.

Definition 6 Suppose C ⊂ Kn is a K-linear subspace. Let d ≥ 1 be an integer. Then
md(C) denotes the set of all z ∈ Kn such that z =

∏d
i=1 xi for some (x1, . . . ,xd) ∈ Cd.

Definition 7 (Powers of a Space) Suppose C ⊂ Kn is a K-linear subspace. Let d ≥ 1
be an integer. Then C∗d ⊂ Kn is the K-linear subspace of Kn generated by md(C).

3 Some Examples of Codices

We give some first examples. These are all based on (a generalization of) Lagrange’s Inter-
polation Theorem:

Theorem 2 Let K denote an algebraic closure of K. Suppose x1, . . . , xm ∈ K satisfy the
property that their respective minimal polynomials hi(X) ∈ K[X] are pair-wise distinct, i.e.,
xi, xj are not Galois-conjugate over K if i 6= j. For i = 1, . . . ,m, write δi = deg hi (=
dimK [K(xi) : K]). Then the evaluation map

E : K[X]≤M−1 −→
m⊕
i=1

K(xi) , f 7→ (f(xi))
m
i=1

is an isomorphism of K-vector spaces, where M =
∑m

i=1 δi and where K[X]≤M−1 denotes
the K-vector space of polynomials f(X) ∈ K[X] such that deg f ≤M − 1.

Proof. Since the K-dimensions on both sides are identical, it is sufficient to argue
injectivity. Suppose f ∈ K[X]≤M−1, f 6= 0, has each of the xi’s as a root. Since the hi’s are
pairwise co-prime, their product divides f . But then deg f ≥M , a contradiction. 4

We now show constructions of codices for the Fq-algebras S = Fkq and S = Fqk , respec-
tively.

Theorem 3 Let Fq be a finite field. Suppose n, d, k are positive integers and t is a non-
negative integer such that d(t+ k − 1) < n. Then:

• There is an (n, t, d, d(t+ k − 1) + 1)-codex for Fkq over Fq if n+ k ≤ q.

• There is an (n, t, d, d(t+ k − 1) + 1)-codex for Fqk over Fq if n ≤ q and k ≥ 2.

In both cases, it holds that there is uniformity if t ≥ 1.

Proof. Let p1, . . . , pn ∈ Fq be pair-wise distinct. This is possible since n ≤ q. Define C
as the Fq-linear subspace {(f(p1), . . . , f(pn)) | f(X) ∈ Fq[X]≤t+k−1} ⊂ Fnq . Since t+k−1 < n,
this gives a one-to-one identification between Fq[X]≤t+k−1 and C.

In the first case, select pairwise distinct q1, . . . , qk ∈ Fq \ {p1, . . . , pn}. This is possible
since k ≤ q−n. Define the map ψ : C → Fkq by first identifying c ∈ C with its corresponding
f ∈ Fq[X]≤t+k−1, followed by the evaluations (f(q1), . . . , f(qk)). In the second case, select
p0 ∈ Fq \Fq such that Fqk = Fq(p0). The map ψ′ : C → Fqk is defined similarly to ψ, except

1In fact these properties allow us to apply a generalization of the arguments in Berlekamp-Welch decoding
algorithm and the decoding algorithm based on error correcting pairs of [36]– see also [24]
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that evaluation is at p0 instead of q1, . . . , qk. The proofs for both cases are similar. We only
argue the second.

First, the map ψ′ is surjective, as follows. The space Fq[X]≤k−1 can be identified one-to-
one with Fqk (as vector space), via evaluation at p0. So the extension of this evaluation to
the large space Fq[X]≤t+k−1 is surjective. Since C is identified with Fq[X]≤t+k−1, the claim
holds.

Next, suppose t ≥ 1 and let A ⊂ {1, . . . , n} with |A| = t. The map φA : C −→ Fqk × Ftq
is surjective, as follows. For each (u,v) ∈ Fqk × Ftq, there is a (unique) f ∈ Fq[X]≤t+k−1
such that f(p0) = u and (f(pi))i∈A = v. Since C is identified with Fq[X]≤t+k−1, there is a
(unique) c ∈ C such that ψ′(c) = u and πA(c) = v.

Finally, there is (d, d(t+k−1)+1)-product reconstruction, as follows. Let B ⊂ {1, . . . , n}
with |B| = d(t + k − 1) + 1 := r. This makes sense, since d(t + k − 1) + 1 ≤ n. Define C
as the Fq-linear subspace {(f(pi))i∈B | f(X) ∈ Fq[X]≤r−1} ⊂ Frq. This gives a one-to-

one identification of C with Fq[X]≤r−1. For any f1, . . . , fd ∈ Fq[X]≤k+t−1, it holds that∏d
i=1 fi ∈ Fq[X]≤r−1. Therefore, C∗d ⊂ C. Define ψ

′
: C → Fqk similarly to ψ′, i.e., identify

c ∈ C with its corresponding f ∈ Fq[X]≤r−1, followed by evaluation at p0. It follows that,

for all c1, . . . , cd ∈ C, ψ
′ ◦ πB(c1 · · · cd) = ψ′(c1) · · ·ψ′(cd). 4

We now have the following examples.

1. For any k > 1, there is an (2k − 1, 0, 2, 2k − 1)-codex for Fqk over Fq such that the
dimension of the underlying Fq-linear code equals k. This corresponds to a bilinear mul-
tiplication algorithm for Fqk over Fq. This is a classical notion in algebraic complexity
theory, see [5]. Condition: q ≥ 2k − 1.

2. Shamir’s secret sharing scheme [39] is an (n, t, 1, t+1)-codex for Fq over Fq. Conditions:
q > n, 1 ≤ t < n.

3. If, additionally, t < 1
2n, it has multiplication. If, in fact, t < 1

3n, then it has strong
multiplication (see [17]). This corresponds to an (n, t, 2, n)-codex for Fq over Fq, respec-
tively, an (n, t, 2, n− t)-codex for Fq over Fq. These properties were first used in [4, 12]
in the context of secure multi-party computation. Conditions: q > n, 1 ≤ t < 1

2n (resp.
1 ≤ t < 1

3n).

4. Franklin-Yung’s variation [25] on Shamir’s scheme, also known as a “packed secret
sharing scheme” (with strong multiplication) corresponds to an (n, t, 2, n− t)-codex for
Fkq over Fq. Conditions: k ≥ 1, q > n+ k − 1, 1 ≤ t < 1

3(n− 2k + 2).

5. A variation on Franklin-Yung’s scheme [14], where Fkq is replaced by Fqk . This corre-
sponds to (n, t, 2, n − t)-codex for Fqk over Fq. Conditions: k > 1, q ≥ n, 1 ≤ t <
1
3(n− 2k + 2).

6. Construction from Self-Dual Codes [15]. Another type of elementary examples is as
follows. Any Fq-linear self-dual code of length n + 1 and minimum distance d ≥
2, gives rise to an (n, d − 2, 2, n)-codex for Fq over Fq. Various other constructions
based on general linear codes (e.g., high information rate ramp schemes with/without
multiplicative properties) can also be found in [15]. A special case already appeared
in [17], though in different language.

By using “the point at infinity” there is an “extra evaluation point” in several of the above
constructions. For instance, in the 4th example this corresponds to the “degree t + k − 1
coefficient” of the polynomials. This way, the condition in the 1st example becomes q ≥ 2k−2
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instead of q ≥ 2k − 1, in the 2nd and 3rd it becomes q ≥ n instead of q > n and in the 4th
it becomes q ≥ n+ k − 1 instead of q > n+ k − 1.

4 Remarks on the Powering Operation

The powering operation is in general not benign as C∗d may quickly fill all of Kn. So if C
has some “nice property” (typically requiring “redundancy”), then generally one should not
expect C∗d to have it as well (not even for small d > 1).

Here we give some easy indications why.

Lemma 1 Suppose C ⊂ Kn (n > 1) is a K-linear subspace generated by 1,x ∈ C, where x
has pairwise distinct, non-zero coordinates and where 1 denotes the the vector (1, . . . , 1) ∈
Kn. Then C∗(n−1) = Kn.

Proof. This is a direct consequence of the properties of Vandermonde-determinants.
The conditions imply that there are n vectors in C∗(n−1) that correspond one-to-one with
the columns of some regular Vandermonde-matrix. Hence, C∗(n−1) equals Kn. 4

Definition 8 (Distance and Dual Distance) For a K-linear subspace C ⊂ Kn with
C 6= {0},Kn, define its distance dH(C) as the smallest Hamming-weight wH(x) taken over
all non-zero vectors x ∈ C. Moreover, define its dual distance d⊥H(C) as dH(C⊥), where
C⊥ ⊂ Kn is the “orthogonal complement” of C, i.e., the K-linear space consisting of all
vectors in Kn orthogonal to C (with respect to the standard inner product).

Lemma 2 Suppose C ⊂ Kn (n > 2) is a K-linear subspace with C 6= {0},Kn. Suppose t is

an integer such that d⊥H(C) > t > 1. Then C∗d
n−1
t−1
e = Kn.

Proof. The conditions imply that πA(C) = Kt for all A ⊂ {1, . . . , n} with |A| = t.
Now construct the n standard basis-vectors ui of Kn one-by-one, as follows. Without loss
of generality, consider just u1 = (1, 0, . . . , 0) ∈ Kn. Select a vector in C such that its “left-
most” coordinate equals 1, followed by a window of t − 1 > 0 consecutive 0’s. Next, do as
before, except that the window of 0’s starts right after where the previous ended. Repeat
this until the “end of the vector has been reached” (where, in the very last step, the window
may possibly be of smaller size than t − 1, of course). This way, dn−1t−1 e vectors in C are
obtained whose coordinate-wise product equals u1. 4

5 Asympotical Results

Asymptotic study of bilinear complexity of multiplication in finite extensions of a finite
field was initiated by Chudnovsky and Chudnovsky [16] in 1986. Here, Fq is fixed and
an unbounded number of finite extensions of Fq considered. The purpose is to derive upper
bounds on the asymptotic ratio between bilinear complexity of multiplication in an extension
and its degree. Using a variation on the techniques of Tsfasman,Vladuts and Zink [42]
from their 1982 breakthrough improvement of the Gilbert-Vashamov error correcting bound
(which relies on deep results from algebraic geometry [30] in combination with Goppa’s
idea [28] of algebraic geometry codes), they showed that, surprisingly, this ratio is bounded
from above by a constant (depending on q). Subsequent work gives better estimates for these
constants. This work was continued by Shparlinski, Tsfasman and Vladuts [40]. See [5] for
an overview, as well as for generalizations. Some more recent papers on the topic include
[1, 11, 37].
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Motivated by showing a suitable asymptotic version of the “Fundamental Theorem on
Information-Theoretically Secure Multi-Party Computation” [4, 12] by Ben-Or, Goldwasser
and Wigderson and Chaum, Crépeau and Damgaard from 1988, Chen and Cramer [13]
initiated in 2006 the study of “asymptotically good arithmetic secret sharing schemes” and
showed the first positive results for the strongest notions, using yet another variation on the
algebraic geometric techniques of Tsfasman, Vladuts and Zink.

In 2007, the results of [13] played a central role in the surprising work of Ishai, Kushile-
vitz, Ostrovsky and Sahai [33] on the “secure multi-party computation in the head” paradigm
and its application to communication-efficient zero-knowledge for circuit satisfiability. This
caused nothing less than a paradigm shift that perhaps appears even as counter-intuitive:
secure multi-party computation (an in particular, asymptotically good arithmetic secret shar-
ing) is a very powerful abstract primitive for communication-efficient two-party cryptography.
Subsequent fundamental results that also rely on the asymptotics from [13] concern two-party
secure computation [34, 21, 22], OT-combiners [29], correlation extractors [32], amortized zero
knowledge [20] and OT from noisy channels [31]. For a full discussion and for some detailed
examples of codices are used in applications, see [8].

The results of [13] were strengthened in [7]. A more powerful paradigm for the con-
struction of arithmetic secret sharing schemes based on novel algebraic geometric ideas was
presented in [8]. We first review the results from [13]. For terminology and theory on alge-
braic function fields, we refer to Stichtenoth [41] and for more details on the constructions,
we refer to [13], [8].

Let F be an algebraic function field with full field of constants Fq. Its genus is g(F ). The
set of places of F is P(F ) and the set of places of degree k is P(k)(F ). The group of divisors
on F is denoted by Div(F ). Given D ∈ Div(F ), its Riemann-Roch space is L(D) and the
dimension of L(D) as an Fq-vector space is `(D). Note that `(D) = 0 if degD < 0.

Theorem 4 (Riemann-Roch) Let K ∈ Div(F ) be a canonical divisor. Then, for each
D ∈ Div(F ), it holds that `(D) = degD − g(F ) + 1 + `(K −D).

This theorem implies the following generalization of Lagrange’s interpolation theorem.

Theorem 5 Let P1, . . . , Pm ∈ P(F ) be pairwise distinct. Write P =
∑m

i=1 Pi ∈ Div(F ) and
write degPi = di for i = 1, . . . ,m. Let D ∈ Div(F ) be such that its support does not include
any of the Pi’s and such that `(D) > 0. Let K ∈ Div(F ) be a canonical divisor of F . The
evaluation map

E : L(D)→
m⊕
i=1

Fqdi ,

f 7→ (f(Pi))
m
i=1

has the following properties.

• It is injective if `(D − P ) = 0

• It is surjective if `(K −D + P ) = 0

Theorem 6 ([13, 8]) Suppose n, d, t, r, k are positive integers such that |P(1)(F )| ≥ n + k
and such that 1 ≤ t < r ≤ n. Let P1, . . . , Pn, Q1, . . . , Qk ∈ P(1)(F ) be pairwise distinct.
Define Q =

∑k
i=1Qi ∈ Div(F ) and, for each non-empty set A ⊆ {1, . . . , n}, define PA :=∑

i∈A Pi ∈ Div(F ). Let K ∈ Div(F ) be a canonical divisor.
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If the system of “Riemann-Roch equations”{
`(K −X +Q+ PA) = 0 for all A ⊂ {1, . . . , n}, |A| = t
`(dX − PB) = 0 for all B ⊂ {1, . . . , n}, |B| = r

has a solution X := G, where G ∈ Div(F ), then there exists an (n, t, d, r)-codex for Fkq over
Fq with uniformity.

Proof. We give a sketch as follows. Note that if there is a solution, we may without
loss of generality assume its support is disjoint from P1, . . . , Pn, Q1, . . . , Qk. Let G be such
a solution. Let C := {(f(P1), . . . , f(Pn)) : f ∈ L(G)} ⊆ Fnq .

Define the evaluation map E : L(G)→ Fnq by f 7→ (f(P1), . . . , f(Pn)). From the assump-
tions and Theorem 5 it is not difficult to see this is injective and that, therefore, there is an
inverse E−1 : C → L(G). Define the map E0 : L(G) → Fkq by f 7→ (f(Q1), . . . , f(Qk)) and
define ψ = E0 ◦ E−1.

The theorem now follows from Theorem 5, together with the fact that for any f1, . . . , fd ∈
L(G), it holds that

∏d
i=1 fi ∈ L(dG). For a more detailed proof, see [13] and [8] (or [9]) 4

A sufficient condition for solvability is the existence of a (positive) integer m such that
if G ∈ Div(F ) and degG = m then deg(K − G + Q + PA) < 0 for all sets A of size t and
deg(dG−PB) < 0 for all B of size r. Indeed, if such an m exists, then any divisor of degree
m is a solution. Note that the degree of K − G + Q + PA (resp. dG − PB) is the same for
all A (resp. B) of size t (resp. r). If degD > 2g(F ) − 2, then `(D) = degD − g(F ) + 1.
This is a corollary to the Riemann-Roch Theorem. Using this fact, it follows that setting
m = 2g−1+k+t and r = dm+1 suffices, under the assumption that d(2g(F )+k+t−1)+1 ≤ n.
This leads to the following theorem.

Theorem 7 (“Existence from solving by degree”) [13] Let F be an algebraic function field
with Fq as its full field of constants. Suppose n, d, t, k are positive integers such that d(2g(F )+
k+ t−1)+1 ≤ n ≤ |P(1)(F )|−k. Then there exists an (n, t, d, d(2g(F )+k+ t−1)+1)-codex
for Fkq over Fq with uniformity.

In comparison to Theorem 3, the condition q + 1 ≥ n+ k has become |P(1)(F )| ≥ n+ k,
which is weaker. However, this does not come entirely for free, as the second condition
d(2g(F ) + k + t− 1) + 1 ≤ n involves the genus of F . Before we study these results asymp-
totically, let us point out that a similar result holds for codices for Fqk over Fq.

Theorem 8 Let F be an algebraic function field with Fq as its full field of constants. Suppose
n, d, t, k are positive integers such that k ≥ 2, |P(k)(F )| ≥ 1 and d(2g(F ) + k + t− 1) + 1 ≤
n ≤ |P(1)(F )|. Then there exists an (n, t, d, d(2g(F ) + k + t − 1) + 1)-codex for Fqk over Fq
with uniformity.

For “good” constructions, |P(1)(F )| should be as large as possible compared to g(F ). The
classical Hasse-Weil bound gives an upper bound on the number of places of degree 1 as a
function of the genus g and q. It states that |P(1)(F )| ≤ q + 1 + 2qg(F ). Asymptotically,
a better upper bound is known. Write Nq(g) = maxF |P(1)(F )|, where F ranges over all
function fields with Fq as its full field of constants and having genus g. The quantity A(q) :=

lim supg→∞
Nq(g)
g is Ihara’s constant. The Drinfeld-Vlǎduţ upper bound states that A(q) ≤√

q − 1. On the positive side, Ihara [30] first showed by using modular curves that A(q) ≥√
q − 1 for any square q, i.e., q = pm where p > 0 is a prime integer and m > 0 is an even

integer. Therefore, the Drinfeld-Vlǎduţ upper bound is sharp for all square q. An explicit
construction in this case was given by Garcia and Stichtenoth [26].
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No single exact value of A(q) is known if q is a non-square. However, some important
lower bounds are known. We mention here just two results. Recently, Garcia,Stichtenoth,
Bassa and Beelen [27] showed an explicit tower of function fields over finite fields of the
form Fp2m+1 (p ≥ 2 an integer prime and m > 0 an integer) that implies A(p2m+1) ≥
2(pm+1−1)
p+1+ε with ε = p−1

pm−1 . Serre, using class field theory, showed that there is an absolute
positive real constant c such that A(q) ≥ c · log(q) for all finite fields Fq.

We have the following asymptotical result by Chen and Cramer.

Theorem 9 [13] Fix a finite field Fq and fix an integer d ≥ 2. Suppose A(q) > 2d. There
there exists an infinite family of codices (n, t, d, n− t)-codices for Fkq over Fq with uniformity
such that n −→∞, k = Ω(n) and t = Ω(n).

See [8] for the full statement, which also addresses efficient “recovery from t malicious errors”
(even in higher powers of the underlying codes). These schemes can be efficiently constructed
and operated. Note that the condition in the theorem is satisfied, for instance, if q is a square
and q > (2d+ 1)2, or if q is sufficiently large.

Also, the condition A(q) > 2d can be relaxed. First, in [7], a version of Theorem 9 is shown
which is valid for any finite field Fq, with d = 2. The idea is to combine Theorem 9 over an
extension field Fq` for which A(q`) > 4 with a dedicated field descent involving an arithmetic
embedding of Fq` over Fq. This descent annihilates uniformity, however. Moreover, it does
not generalize to all fields Fq when d > 2.

In [8, 9], a more sophisticated and novel algebraic geometric approach for solving the
Riemann-Roch systems is introduced. In Theorem 7 we have insisted in solving all equations
`(Di) = 0 of Theorem 6 by setting the parameters in such a way that degDi < 0. However
this does not necessarily lead to the best results. Instead, it not only uses information
about the asymptotic ratio between the number of rational points and the genus, but also
information on the ratio between (the logarithm of the) order of the d-torsion subgroup of
the (degree-0 divisor) class group and the genus. Our notion of torsion limit of a tower
of function fields introduced in [8] captures the combination. For instance, for an optimal
tower (attaining the Drinfeld-Vladuts bound), we ask the latter ratio to be as small as
possible. Considerations about the d-torsion arise because the “d-parameter” in codices
causes some of the mi’s to be equal to d. Our current most general approach to solving the
associated Riemann-Roch systems then involves combinatorial arguments exploiting torsion
limit information. Upper bounds for this torsion limit lead then to a significant weakening of
the condition A(q) > 2d from Theorem 9 while maintaining uniformity (which is important
in some applications).

General bounds on the torsion limit can be obtained from a classical result on Abelian
varieties by Weil and via the Weil-pairing, as shown in [8, 9]. However, as shown there as well,
in some cases much better bounds can be established. The basic idea is to apply a combi-
nation of the Deuring-Shafarevich p-rank formula with the Riemann-Hurwitz genus formula
to certain eligible Artin-Schreier towers so as to obtain a recursion involving p-ranks and
genuses only, from which information about the torsion limit is finally extracted by solving
the recursion. At present, one of the requirements for this idea to work is that, in consecutive
steps of the extension, the “error terms” in both formulas (arising from ramification in the
tower) differ by a non-zero constant so that, at the end of the day, the desired recursion
is simply obtained from the two formulas by Gaussian Elimination. Further requirements
in particular concern sufficiently precise knowledge of the genus in each step of the tower.
Currently, the best results are attained by applying this idea to the tower defined (over any
field Fq where q = p2e for some e > 0) by Garcia and Stichtenoth in [26]. There are some
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other optimal towers known where this idea applies as well, but there the result is not nearly
as good [3].

Finally, it is very interesting to note that there is no elementary (probabilistic) construc-
tion known for the asymptotically good arithmetic secret sharing schemes from Theorem 9:
the only known construction is algebraic geometric and requires asymptotically good towers
of functions fields.2 This is, so far, in contrast with the theory of error correcting codes,
where asymptotically good families are implied by elementary (probabilistic) methods.3

6 Limitations

We now state some limitations on codices. We shall be primarily concerned with arithmetic
secret sharing schemes.

The main strategy for proving bounds on arithmetic secret sharing schemes is via the
lemma below.

Lemma 3 [10] An (n, t, d, r)-codex for S over Fq is in particular an (n, t, 1, r−(d−1)t)-codex
for S over Fq.

Therefore, bounds on linear secret sharing schemes imply bounds on arithmetic secret
sharing schemes.

As we have seen, the algebraic geometric approach gives asymptotically good results.
However, compared to the elementary non-asymptotic case, the product-reconstruction pa-
rameter is increased by a factor that depends on the ratio between the genus and the number
of rational points. A loss is unavoidable, as we now show. First, consider the case d = 1.

Theorem 10 [10] For any (n, t, 1, r)-codex for S over Fq with t ≥ 1 it holds that r − t ≥
n−t+1
q .

Note that there is a stronger version of this theorem that is stated in terms of the share-
entropy, see [10] as well. As an application of Theorem 10, consider (n, t, 2, n − t)-codices
for Fq over Fq. These play a distinguished role in secure multi-party computation, see [17].
From Lemma 3, 3t

n−1 ≤ 1. Note that equality can be achieved in the non-asymptotic case.
Asymptotically, however, we have the following. Let Fq be a finite field. For each n ≥ 1, let
T (n, q) denote the largest integer t such that there exists a (n, t, 2, n − t)-codex for Fq over

Fq. Now define τ̂(q) = lim supn→∞
3·T (n,q)
n−1 .

Theorem 11 [10] For each finite field Fq, τ̂(q) < 1.

Note that, by [13, 7], τ̂(q) > 0 for each finite field Fq.

If the dimension of S is large, there is the following connection with the theory of error
correcting codes.

2This is also the case for asymptotically good arithmetic embeddings of finite field. Yet another, very
recent example is that of binary linear codes with asymptotically good square [38].

3By [15], (n, t, 2, n)-codices for Fq over Fq with large t are implied by self-dual Fq-linear codes of length n+1
with large minimum distance d. While self-dual codes admit elementary asymptotically good constructions,
these codices are not useful in any of the recent results we have mentioned, starting with [33]. At the
cost of halving the information-rate, it is also possible to use random linear codes, see [15]. There are some
relevant applications, though, for instance to passive-case i. t. secure MPC with single field elements as secrets.
See [15, 14] also for generic constructions of high-information rate ramp schemes from arbitrary linear codes
(as well as from algebraic geometric codes), where reconstruction (privacy) is argued from distance (dual
distance) of the codes.
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Theorem 12 [10] If there exists an (n, t, 1, r)-codex for S over Fq, then there exists a Fq-
linear error-correcting code of length n− t, dimension k (where k is the dimension of S) and
minimum distance at least n− r + 1.

Note that application of the Singleton bound implies r ≥ k + t. A more interesting result,
however, is obtained by applying, for example, the Griesmer bound. In combination with a
dualization technique enabling stronger bounds for large t and with Lemma 3, this implies
the following.

Theorem 13 [10] For any (n, t, d, r)-codex for S over Fq, where t, d ≥ 1 and k denotes the
dimension of S, it holds that r ≥ dt+ n−t+1

q +f+(q, k, n, t), where f+(q, k, n, t) = max{0, k−
1 − n−t+1

q(q+1)}. If in addition r ≤ n − 1, then r ≥ dt + n+2
2q−1 + h+(q, k, n) where h+(q, k, n) :=

max
{

0, 2q
2q+1

(
k − 1− 1

q ·
n+2
2q−1

)}
.

The bounds above are independent of S, except for its K-dimension. We show a different
limitation when S = Fqk (see [5] for lower bounds on bilinear complexity).

Theorem 14 For any (n, t, d, r)-codex for Fqk over Fq such that the integer k satisfies k ≥ 2,
it holds that d ≤ q.

Proof. Suppose there is an (n, t, d, r)-codex (C,ψ) for Fqk over Fq and d ≥ q + 1 holds.
Since k ≥ 2, there are elements x, y ∈ Fqk \ {0} with xq−1 6= yq−1. Let c,w ∈ C be such

that ψ(c) = x and ψ(w) = y. Since xq = x for all x ∈ Fnq , we have cqwd−q = cwd−1. Let

a ∈ Cd be such that its first q coordinates equal c and the remaining d− q equal w and let
b ∈ Cd be such that its first coordinate is c and the rest equal w. By the observation above,
md(a) = md(b). Therefore, for any function g : md(C

d)→ Fqk , we have

g ◦md(a) = g ◦md(b).

On the other hand

Md ◦ ψ(d)(a) = xqyd−q 6= xyd−1 = Md ◦ ψ(d)(b).

This contradicts (d, r)-reconstruction of (C,ψ). 4
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