
An ID-Based Key Agreement Protocol Based on
ECC Among Users of Separate Networks

Mohammad Sabzinejad Farash
Department of mathematics and computer sciences

Kharazmi University
Tehran, Iran

Email: sabzinejad@tmu.ac.ir

Mahmoud Ahmadian Attari
Faculty of Electrical and computer Engineering

K.N. Toosi University of Technology
Tehran, Iran

Email: mahmoud@eetd.kntu.ac.ir

Abstract—In this article we propose an identity based key
agreement protocol based on elliptic curve cryptography (ECC)
between users of different networks with independent private key
generations (PKGs). Our protocol is based on Cao et al.’s protocol
,proposed in 2010, in which instead of bilinear pairings, elliptic
curves are used for constructing an ID-based key agreement
protocol . Our protocol develops Cao et al’s protocol for situations
that two users of independent organizations or networks with
separate servers (that in this article, are named PKGs, because
their main duty is generating private keys for the users) want
to share a secret key via an insecure link. We also prove the
security of the protocol in the random oracle model.

Keywords—Identity Based Cryptography, Key Agreement Proto-
col, Elliptic Curve Cryptography, Random Oracle Model.

I. INTRODUCTION

In public key cryptography systems each user has a private
key and a corresponding public key. The main problem in this
field is how establishing a link between user’s identity (ID) and
her/his public key. A general solution for this problem is based
on Public Key Infrastructure (PKI), defined in ISO/IEC 9594-
8 [1], in which a trust authority, called Certificate Authority
(CA), issues a certificate contained user’s ID and user’s public
key signed with his/her private key. Because issuing and
using the certificate are costly, another solution named Identity
Based Cryptography (IBC) has been proposed.

The IBC idea was first proposed by Shamir in 1984 [2]. In
an IBC system, user’s ID is considered as her/his public key
and the user’s private key is generated by a trust authority,
called Key Generation Center (KGC) or Private Key Genera-
tion (PKG). The main advantage of the IBC systems is that
unlike PKI systems, issuing a certificate for each user is not
required because there is an inherent link between user’s ID
and her/his public key.

In 2001, Boneh and Franklin [3] gave the first fully func-
tional solution for ID-based encryption (IBE) using bilinear
pairings. Since then, numerous ID-based authenticated key
agreement protocols have been proposed based on bilinear
pairings (e.g., [4], [5], [6], [7]). In the identity-based cryp-
tosystems, users acquire their private key from the PKG. A
single PKG may be responsible for issuing private keys to
members of a small-scale organization, but it is unrealistic
to assume that a single PKG will be responsible for issuing

private keys to members of different organizations, let alone
the entire nation or the entire world. Furthermore, it is also
unrealistic to assume that different PKGs will share common
system parameters and differ only in the master key as done
by Chen and Kudla [4]. Therefore, it is needed to consider
multiple PKG environment where all the PKGs use different
system parameters. In 2005, Lee et al. proposed ID-based 2-
party and tripartite AK protocol for this setting [8]. However,
Kim et al. showed that, these protocol has a serious flaw that
allows attackers to impersonate others freely and proposed
modifications to the protocol [9].

On performance, according to the results in [10], [11], one
bilinear pairing operation requires several times more multipli-
cations in the underlying finite field than an elliptic curve point
scalar multiplication does in the same finite field. For low-
power devices such as sensors, cellphones and low-end PDAs,
which are usually characterized by limited battery lifetime and
low computational power, applications using bilinear pairings
can be too expensive to implement. In addition, most of
the ID-based cryptosystems require a special hash function
called map-to-point hash function [3] for converting a user’s
identifying information to a point on the underlying elliptic
curve. This operation is also time consuming and cannot be
treated as a conventional hash operation which is commonly
ignored in performance evaluation. To solve the problems
which appear due to the bilinear pairings, IBC systems based
on elliptic curves have been introduced and developed in
various areas including key agreement protocols e.g. [12], [13],
[14].

The contribution of this article is to construct a separate-
PKG type identity based key agreement protocol which does
not utilize bilinear pairings, but it uses elliptic curves which
is an appropriate choice for low-power and low-memory cryp-
tographic devices. The separate-PKG property allows users of
different networks to share a secret key for using in next secure
nommunications.

The remainder of the paper is organized as follows: Section
2 focuses on the mathematical background of elliptic curves
and security model of the key agreement protocols. In Section
3 we propose an ID-based key agreement protocol without
pairing for separate KGCs and prove its security in Section 4.
Finally, Section 5 concludes the paper.

II. PRELIMINARIES

A. Elliptic Curve

An elliptic curve E over a field Fp is defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ Fp and ∆ 6= 0 where ∆ is the
discriminate of E. The above equation is called the Weierstrass
equation. The condition ∆ 6= 0 ensures that the elliptic curve is
smooth, that is, there are no points at which the curve has two
or more distinct tangent lines. Also included in the definition
of an elliptic curve is a single element denoted by O and called
the ‘point at infinity’. The ‘chord and tangent rule’ is used for
adding two points to give a third point on an elliptic curve.
Together with this addition operation, the set of points denoted
as E(Fp) forms a commutative group G under addition with
O serving as its identity and P as its generation.
Assumption1 Computational Diffie-Hellman (CDH): For
a, b ∈R Z∗p, given P, aP and bP ∈ G, computing abP ∈ G is
hard.

B. Security model of key agreement

We now review the formal security model for ID-based
authenticated key agreement protocols due to Chen, Cheng
and Smart [15] which is an adapted version of Blake-Wilson
et al’s model [16]. In the model, each party involved in a
session is treated as an oracle, and an adversary can access
the oracle by issuing some specified queries (defined later).
An oracle Πs

i,j denotes the s-th instance of party i involved
with a partner party j in a session. The security of a protocol
is defined by a game with two phases. In the first phase, an
adversary E is allowed to issue the following queries in any
order:
• Send(Πs

i,j , x). Upon receiving the message x, oracle Πs
i,j

executes the protocol and responds with an outgoing
message m or a decision to indicate accepting or rejecting
the session. If the oracle Πs

i,j does not exist, it will be
created as initiator if x = λ, or as a responder otherwise.
In this work, we require i 6= j, i.e., a party will not run
a session with itself. Such restriction is not unusual in
practice.

• Reveal(Πs
i,j). If the oracle has not accepted, it returns

⊥; otherwise, it reveals the session key. Such an oracle
is called opened.

• Corrupt(i). The party i responds with its private key.
At some point, E can make a Test query to some fresh

oracle (Definition 1). E receives either the session key or a
random value from a particular oracle.
• Test(Πs

i,j). Oracle Πs
i,j which is fresh, as a challenger,

randomly chooses b ∈ {0, 1} and responds with the
session key, if b = 0, or a random sample from the
distribution of the session key, otherwise.

In the second phase, the adversary can continue making
Send,Reveal and Corrupt queries to the oracles, except that
it cannot reveal the test oracle Πs

i,j or its partner Πt
i,j (if it

exists), and it cannot corrupt party j.

• Output: Finally, the adversary outputs a guess b′ for b. If
b′ = b, we say that the adversary wins. The adversary’s
advantage is defined as

AdvE(κ) = |2Pr[b′ = b]− 1|

Definition1 (fresh oracle). An oracle Πs
i,j is fresh if: 1) Πs

i,j

has accepted; 2) Πs
i,j is unopened (not been issued the Reveal

query); 3) party j 6= i is not corrupted (not been issued the
Corrupt query) and 4) there is no opened oracle Πt

i,j , which
has had a matching conversation to Πs

i,j .
Definition of security in the model depends on the notion

of matching conversations. As mentioned in [15], two oracles
have matching conversations to each other if they have the
same session identifier which consists of a concatenation of
the messages exchanged between them.

A secure authenticated key (AK) agreement protocol is
defined as follows:

Definition2. A protocol is a secure AK if:
1) In the presence of a benign adversary, which faithfully

conveys messages, on Πs
i,j and Πt

i,j , both oracles always
accept holding the same session key, and this key is
distributed uniformly on 0, 1κ;

2) For any polynomial time adversary E, AdvE(κ) is
negligible.

III. THE PROPOSED PROTOCOL

An ID-based key agreement protocol between users of
separate KGCs is defined in terms of three algorithms system
setup, key generation and key agreement.

System Setup: On input 1κ, this algorithm outputs params,
a set of system parameters. Basically, this is similar to that
of Cao, Kou and Du’s work [14]. However, in our system,
there are total n different KGCs, which do not share common
system parameters. Therefore, each KGCi must configure its
parameters as follows:

1) Chooses a prime p(i) and determine the tuple
{Fp(i) , E(i)/Fp(i) , G(i), P (i)}.

2) Chooses two cryptographic secure hash functions H(i)
1 :

{0, 1}∗ ×G(i) −→ Z∗
p(i)

.
3) Chooses its master key x(i) ∈R Z∗

p(i)
and compute the

system public key P (i)
pub = x(i)P (i).

4) Publishes {Fp(i) , E(i)/Fp(i) ,G(i), P (i), P
(i)
pub, H

(i)
1 } as

system parameters and keep the master key x(i) secret.

Key Generation: Is a key derivation algorithm that on system
parameters, master key, and a user’s identifier and returns
the user’s ID-based long-term key. With this algorithm, each
KGCi works as follows for each user U with identifier IDU :

1) Chooses a random rU ∈R Z∗
p(i)

, compute RU = rUP
(i)

and hU = H
(i)
1 (IDU , RU).

2) Compute sU = rU + hUx
(i).

U’s private long-term key is sU and is transmitted to U via a
secure channel. U can verify his/her private key by checking
sUP

(i) = RU +H
(i)
1 (IDU , RU)P

(i)
pub.

Key Agreement: Two users A and B of two separate KGCs
establish an authenticated secret key as follow:

Step1. A → B: {IDA, T
(1)
A , T

(2)
A , RA}. A chooses two

random numbers a(1) ∈R Z∗
p(1)

and a(2) ∈R Z∗
p(2)

and

computes T (1)
A = a(1)P (1) and T (2)

A = a(2)P (2). Then A sends
{IDA, T

(1)
A , T

(2)
A , RA} to B.

Step2. B → A: {IDB , T
(1)
B , T

(2)
B , RB} B also chooses two

random numbers b(1) ∈R Z∗
p(1)

and b(2) ∈R Z∗
p(2)

and

computes T (1)
B = a(1)P (1) and T (2)

B = a(2)P (2). Then B sends
{IDB , T

(1)
B , T

(2)
B , RB} to A.

Step3. Upon receiving the message from B, A computes the
shared secrets as follow:

K
(1)
A = sAT

(1)
B

K
(2)
A = a(2)P

(2)
B

where P (2)
B = sBP

(2) = RB +H
(2)
1 (IDB , RB)P

(2)
pub.

Finally A computes session key with a general one-way
hash function like SHA-2 as follows:

KAB = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B , a(1)T

(1)
B

, a(2)T
(2)
B ,K

(1)
A ,K

(2)
A }

(1)

Step4. Upon receiving the message from A, B also computes
the shared secret keys as follow:

K
(1)
B = b(1)P

(1)
A

K
(2)
B = sBT

(2)
A

where P (1)
A = sAP

(1) = RA +H
(1)
1 (IDA, RA)P

(1)
pub.

Finally B also computes the session key with a general
one-way hash function like SHA-2 as follows:

KBA = H{IDA, IDB , T
(1)
A , T

(2)
A , T

(1)
B , T

(2)
B , b(1)T

(1)
A

, b(2)T
(2)
A ,K

(1)
B ,K

(2)
B }

(2)

IV. SECURITY PROOF

Theorem1. The protocol is a secure AK, provided the CDH
assumption holds and the hash function H is modeled as a
random oracle.

Proof. The first condition in Definition 2.2 follows from the
assumption that the two oracles follow the protocol and E
is benign. In this case, for our protocol it is clear that, both
oracles accept holding the same session key because

K
(1)
A = sAT

(1)
B = sAb

(1)P (1) = b(1)P
(1)
A = K

(1)
B

and

K
(2)
B = sBT

(1)
A = sBa

(1)P (1) = a(1)P
(1)
B = K

(2)
A

Thus, the session keys KAB and KBA (Equations 1 and 2,
respectively) are equal.

Now we prove that the protocol meets the second condition.
For a contradiction, assume that there is an adversary E
against our protocol that has a non-negligible advantage ε in
guessing correctly whether the response to a Test query is
real or random (i.e., winning the attacking game). Apart from
this adversary, we show how to construct a simulator S that
solves the CDH problem with non-negligible advantage ε(κ).
Suppose A is given an instance (aP, bP) ∈ G of the CDH
problem, and is tasked to compute cP ∈ G with c = ab mod
p.

We assume that the game between S and E involves
nkgc(κ) separate KGCs, each KGC can support nu(κ) users
and each user may be involved in ns(κ) sessions where κ is
the security parameter. As mentioned, our protocol executes
between users of separate KGCs so we denote each user
i ∈ {1, ..., nu(κ)} supported by key generation center k ∈
{1, ..., nkgc(κ)} with i(k) and consequently, oracle Πs

i(k)j(l)

denote the s-th instance of party i(k) involved with a partner
party j(l) in a session. S works by interacting with E as
follows:

setup: S simulates the system setup to the adversary E and
defines the system public parameters of each KGC. S ran-
domly chooses K,L ∈ {1, ..., npub(κ)}, I, J ∈ {1, ..., nu(κ)}
(where I 6= J) and s ∈ {1, ..., ns(κ)} and takes the tuple
{Fp, E/Fp,G, P, P (K)

pub , H
(K)
1 } as system public parameters of

KGCK. Then S computes the long-term keys for Ui supported
by KGCk denoted by s(k)i . S makes a list LPrivateKeys whose
elements are tuple (ID

(k)
i , s

(k)
i) and determined as follows:

– If i = I and l = K then take R(K)
I = aP which is the

input of CDH problem; hence S does not know the
long-term private key s

(K)
I and inserts (ID

(K)
I ,⊥)

into the list.
– Otherwise, S chooses r(k)i ∈ Z∗p at random and com-

putes R(k)
i = r

(k)
i P (k), h(k)i = H

(k)
i (ID

(k)
i , R

(k)
i)

and private key s(k)i = r
(k)
i +r

(k)
i x(k); then S inserts

(ID(k)
i , s

(k)
i) into the list.

Corrupt (ID
(k)
i): S looks through the list LPrivateKeys. If

ID
(k)
i is not on the list, S computes the private key and inserts

it into the list. S checks the value of s(k)i ; if s(k)i 6=⊥, then S
responds it to E ; otherwise, S aborts the game (Event1).

Send(Πt
i(k)j(l)

,M1,M2): S maintains a list LSend for
each oracle of the form (Πt

i(k)j(l)
, trant

i(k)j(l)
, (r(k))t

i(k)j(l)
,

(r(l))t
i(k)j(l)

, M1, M2, (K(k))t
i(k)j(l)

, (K(l))t
i(k)j(l)

, SKt
i(k)j(l)

)
where trant

i(k)j(l)
is the transcript of the oracle so far;

(r(k))t
i(k)j(l)

, (r(l))t
i(k)j(l)

are random integers used by the
oracle to generate messages, (K(k))t

i(k)j(l)
, (K(l))t

i(k)j(l)
, and

SKt
i(k)j(l)

are set ⊥ initially. Note that the list LSend can be
updated in other queries as well, such as Reveal and the H
queries. S proceeds as follows:

– If Πt
i(k)j(l)

6= Πs
I(K)J(L) ,M , then S treats according

to the protocol.
– Otherwise, S responds with the tuple

{ID(L)
J , T

(K)
J = bP, T

(L)
J , R

(L)
J } and sets r(K)J =⊥

in the list LSend.

Reveal(Πt
i(k)j(l)

): S maintains a list LReveal with tuples of

the form {Πt
i(k)j(l)

, ID(k)
i , ID(l)

j , X(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y (2)

j(l)
,

SKt
i(k),j(l)

}. To respond, first, S looks through to the list
LReveal; if it previously is queried, S responds SKt

i(k)j(l)
from

the list to E; otherwise S proceeds in the following way to
respond:

– Get the tuple of oracle Πt
i(k)j(l)

from the list LSend.
– If oracle Πt

i(k)j(l)
has not been accepted, then respond

with ⊥; if Πt
i(k)j(l)

= Πs
I(K)J(L) , then abort the game

(Event 2), and if SKt
i(k)j(l)

6= ⊥, return SKt
i(k)j(l)

.
– Otherwise, look through LH ;

◦ If the tuple {ID(k)
i , ID

(l)
j , X

(1)

i(k) , X
(2)

i(k) ,
Y

(1)

j(l)
, Y (2)

j(l)
} is not in the list, then S selects

a random number SKt
i(k),j(l)

∈ {0, 1}κ,
responds it to E and inserts the tuple
{Πt

i(k)j(l)
, ID(k)

i , ID(l)
j , X(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
,

Y
(2)

j(l)
, SKt

i(k)j(l)
} into LReveal;

◦ Otherwise (i.e. the tuple
{ID(k)

i , ID
(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y (2)

j(l)
} is

in the list LH), S proceeds as follows:
. If the existing tuple in LH is of the

form {Πt
i(k)j(l)

, ID(k)
i , ID(l)

j , X(1)

i(k) ,

X
(2)

i(k) , Y
(1)

j(l)
, Y

(2)

j(l)
, Z1u, Z2u,K1u,

K2u, hu}, then S responds hu to E
and updates the list LReveal.

. If the existing tuple in LH is of
the form {––, ID

(k)
i , ID(l)

j , X(1)

i(k) ,
X

(2)

i(k) , Y
(1)

j(l)
, Y

(2)

j(l)
, Z1u, Z2u,K1u,

K2u, hu}, then S selects a random
number SKt

i(k)j(l)
∈ {0, 1}κ, re-

sponds it to E and updates the list
LReveal.

. If the existing tuple in LH is
of the form {⊥, ID(k)

i , ID
(l)
j ,

X
(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l)
, Y

(l)

j(l)
, Z1u,

Z2u, K1u, K2u, hu}, then S
checks Z1u ∈ G(k), Z2u ∈ G(l),
e(X

(k)

i(k) , Y
(k)

j(l)
) = e(Z1u, P

(k)),

e(X
(l)

i(k) , Y
(l)

j(l)
) = e(Z2u, P

(l)),
K1u ∈ G(k), K2u ∈ G(l) and
e(P

(k)
i , Y

(k)

j(l)
) = e(K1u, P

(k)),

e(P
(l)
j , X

(l)

j(k)) = e(K1u, P
(l));

� If those hold, S responds hu
to E and replaces the tu-
ple {⊥, ID(k)

i , ID(l)
j , X(k)

i(k) ,

X
(l)

i(k) , Y
(k)

j(l)
, Y (l)

j(l)
, Z1u, Z2u,

K1u,K2u, hu} with the tu-
ple {Πt

i(k)j(l)
, ID(k)

i , ID(l)
j ,

X
(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y (2)

j(l)
, Z1u,

Z2u,K1u, K2u, hu} in the list
LH ; then S updates the list
LReveal.

� Otherwise, S selects a random
number SKt

i(k)j(l)
∈ {0, 1}κ

and responds it to E; then
S updates the list LReveal
and replaces the tuple
{⊥, ID(k)

i , ID
(l)
j , X

(k)

i(k) ,
X

(l)

i(k) , Y
(k)

j(l)
, Y (l)

j(l)
, Z1u, Z2u,

K1u, K2u, hu} with the
tuple {––, ID

(k)
i , ID

(l)
j ,

X
(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y (2)

j(l)
, Z1u,

Z2uK1u, K2u, hu} in the list
LH .

H(ID
(k)
i , ID

(l)
j ,X

(1)

i(k) ,X
(2)

i(k) , Y
(1)

j(l)
, Y

(2)

j(l)
, Z1u, Z2u, K1u,

K2u): S maintains a list LReveal with tuples of the
form {⊥, ID(k)

i , ID(l)
j , X(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l)
, Y (l)

j(l)
, Z1u, Z2u,

K1u,K2u, hu}. To respond, S first looks through to the list
LH ; if it previously is queried, S responds hu from the list
to E; otherwise S Looks through to LReveal and proceeds in
the following way to respond:
− If the tuple {ID(k)

i , ID
(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y

(2)

j(l)
}

is not in the list, then S selects a random number
hu ∈ {0, 1}κ, responds it to E and inserts the tuple
{⊥, ID(k)

i , ID
(l)
j , X

(1)

i(k) , X
(2)

i(k) , Y
(1)

j(l)
, Y

(2)

j(l)
, Z1u, Z2u,

K1u, K2u, hu} into LH ;
− Otherwise, S checks Z1u ∈ G(k), Z2u ∈ G(l),

e(X
(k)

i(k) , Y
(k)

j(l)
) = e(Z1u, P

(k)), e(X(l)

i(k) , Y
(l)

j(l)
) =

e(Z2u, P
(l)), K1u ∈ G(k), K2u ∈ G(l) and

e(P
(k)
i , Y

(k)

j(l)
) = e(K1u, P

(k)), e(P
(l)
j , X

(l)

j(k)) =

e(K1u, P
(l));

◦ If those hold, S responds SKt
i(k)j(l)

to

E and inserts the tuple {Πt
i(k)j(l)

, ID
(k)
i ,

ID
(l)
j , X

(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l)
, Y (l)

j(l)
, Z1u, Z2u,

K1u,K2u, hu = SKt
i(k)j(l)

} into the list
LH .

◦ Otherwise, S selects a random number hu ∈
{0, 1}κ, responds it to E and inserts the
tuple {––, ID

(k)
i , ID(l)

j , X(k)

i(k) , X
(l)

i(k) , Y
(k)

j(l)
,

Y
(l)

j(l)
, Z1u, Z2u, K1u,K2u, hu} into the list

LH .

Test (Πt
i(k)j(l)

): If Πt
i(k)j(l)

6= Πs
I(K),J(L) , S aborts the game

(Event 3). Otherwise, S selects a random number sk ∈
{0, 1}κ and responds to E.

Output: the adversary E outputs the guess b′ ∈ {0, 1}.

Now, the simulator S for solving the CDH problem proceeds
as follows:

The shared secret of the Test oracle Πs
I(K)J(L) is

(K(K))s
I(K)J(L) = s

(K)
I T

(K)
J = (a+ x(K))bP

= abP + bx(K)P = abP + x(K)T
(K)
J

it is clear that S can easily compute the part x(K)T (K)
J of

the shared secret by extracting the master private key of
KGCK, x(K) from setup phase of the game and finding T (K)

J

from the list LSend which is (M1)s
I(K)J(L) , while S cannot

compute the first part of the secret directly. However, S
can randomly select a Ku from the list LH and compute
Q = Ku − x(K)(M1)s

I(K)J(L) ; hence, Q = abP provided by:

1) Events 1, 2 and 3 do not occur;
2) (K(K))s

I(K)J(L) is in the list LH , and
3) Ku = (K(K))s

I(K)J(L) .

Therefore,

Pr[Q = abP] = Pr[Event1, Event2, Event3]

·Pr[(K(K))s
I(K)J(L) ∈ LH]

·Pr[Ku = (K(K))s
I(K)J(L)]

= 1
nu(κ)ns(κ)npub(κ)

Pr[(K(K))s
I(K)J(L) ∈ LH]

· 1
nH(κ)

(3)
where nH(κ) is number of elements of the list LH . Thus, for
computing the above probability, Pr[(K(K))s

I(K)J(L) ∈ LH]
should be computed. Assume that the event A is “The adver-
sary wins the game”. Therefore, the probability is computed
as follows:

Pr[A] = Pr[A|(K(K))s
I(K)J(L) /∈ LH]Pr[(K(K))s

I(K)J(L) /∈ LH]

+Pr[A|(K(K))s
I(K)J(L) ∈ LH]Pr[(K(K))s

I(K)J(L) ∈ LH]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH](1− Pr[(K(K))s

I(K)J(L) ∈ LH])

+Pr[A|(K(K))s
I(K)J(L) ∈ LH]Pr[(K(K))s

I(K)J(L) ∈ LH]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH] + (Pr[(K(K))s

I(K)J(L) ∈ LH]

−Pr[A|(K(K))s
I(K)J(L) /∈ LH])Pr[(K(K))s

I(K)J(L) ∈ LH]

≤ 1
2
+ 1

2
Pr[(K(K))s

I(K)J(L) ∈ LH]

Therefore,

Pr[A] ≤ 1

2
+

1

2
Pr[(K(K))sI(K)J(L) ∈ LH] (4)

On the other hand,

Pr[A] ≥ Pr[A|(K(K))s
I(K)J(L) /∈ LH]

·Pr[(K(K))s
I(K)J(L) /∈ LH]

= Pr[A|(K(K))s
I(K)J(L) /∈ LH]

·(1− Pr[(K(K))s
I(K)J(L) ∈ LH])

= 1
2 −

1
2Pr[(K

(K))s
I(K)J(L) ∈ LH]

(5)

Equations (4) and (5) lead to the following equation:

|2Pr[A]− 1| ≤ Pr[(K(K))sI(K)J(L) ∈ LH] (6)

Moreover, we know that

ε(κ) = AdvE(κ) = |2Pr[A]− 1| (7)

Then, Equations (6) and (7) follow that

Pr[(K(K))sI(K)J(L) ∈ LH] ≥ ε(κ) (8)

Thus, from Equations (3) and (8), the probability of solving
the CDH problem by the simulator S is as follows:

Pr[abP = Ku − x(K)(M1)s
I(K)J(L)]

= 1
nu(κ)ns(κ)npub(κ)nH(κ)Pr[(K

(K))s
I(K)J(L) ∈ LH]

≥ ε(κ) 1
nu(κ)ns(κ)npub(κ)nH(κ)

Since the advantage ε(κ) is a non-negligible function, the
probability of solving the CDH problem by the simulator S
also is non-negligible and this fulfills the proof. �

V. CONCLUSIONS

In this article we proposed a new identity based key
agreement protocol based on elliptic curves between two users
supported by separate PKGs that have independent system
parameters. Then we proved the security of the protocol in
the random oracle model by an extended version of Blake-
Wilson et al’s model. Using elliptic curves causes the pro-
tocol be compatible with low-power and lightweight devices,
and the property of multi PKGs, enables users of different
organizations to share secret keys and establishes a secure
communication.

REFERENCES

[1] ISO/IEC 9594-8:(the 4th edn.) (2001) Information technology–
Open Systems Interconnection–The Directory: Public-key and
attribute certificate frameworks. International Organization for
Standardization, Geneva, Switzerland.

[2] Shamir, A. (1984) Identity-based cryptosystems and signature
schemes, Proc. of CRYPTO1984, LNCS, 196, pp. 47–53.

[3] Boneh, D., Franklin, M., (2001) Identity-based encryption from
the weil pairing. Proc. of CRYPTO2001, LNCS, 2139, pp.213–
229.

[4] Chen, L., Kudla, C., (2003) Identity-based authenticated key
agreement protocols from pairing, Proc. of the Computer Se-
curity Foundations Workshop, IEEE Press, pp. 219–233.

[5] Smart, N. (2002) An Identity-based Authenticated Key Agree-
ment Protocol Based on Weil Pairing, Electronic Letters, 38 ,
630–632.

[6] McCullagh, N. and Barreto, P. (2005) A new two-party identity-
based authenticated key agreement, Proc. of CT-RSA 2005, pp.
262–274.

[7] Yi, X. (2003) Efficient ID-based key agreement from Weil
pairing, Electronics Letters, 39, 206–208.

[8] Lee, H., Kim, D., Kim, S. and Oh, H. (2005) Identity-based Key
Agreement Protocols in aMultiple PKG Environment. Proc. of
the Int. Conf. on Computational Science and Its Applications,
ICCSA 2005. Lecture Notes in Computer Science, 3483 , 877–
886, Springer.

[9] Kim, S., Lee, H. and Oh, H. (2005) Enhanced ID-Based Au-
thenticated Key Agreement Protocols for a Multiple Independent
PKG Environment, Proc. of ICICS 2005, LNCS, 3783 , 323–335,
Springer.

[10] Barreto, P., Kim, H., Lynn, B., and Scott. M. (2002) Efficient al-
gorithms for pairing-based cryptosystems, Proc. CRYPTO 2002,
LNCS, 2442 , pp. 354–368, Springer.

[11] Barreto, P., Lynn, B., and Scott. M. (2003) On the selection of
pairing-friendly groups. Selected Areas in Cryptography (SAC
2003), LNCS, 3006 , pp. 17–25, Springer.

[12] Cao, X., Kou, W., Yu, Y., Sun, R., (2008) Identity-based au-
thentication key agreement protocols without bilinear pairings,
IEICE Trans. Fundam. E91-A , 12, 3833–3836.

[13] Zhu, R.W., Yang, G. and Wong, D.S. (2007) An efficient identity-
based key exchange protocol with KGS forward secrecy for low-
power devices, Theor. Comput. Sci., 9 , 198–207.

[14] Cao, X., Kou, W., Yu, Y. and Sun, R. (2010) Identity-based
authentication key agreement protocols without bilinear pairings,
Information Sciences, 180, 2895–2903.

[15] Chen, L., Cheng, Z. and Smart, N.P. (2007) Identity-based key
agreement protocols from pairings, Int. J. Inf. Secur.,6 , 213–241.

[16] Blake-Wilson, S., Johnson, D. and Menezes, A. (1997) Key
agreement protocols and their security analysis, Proc. of the 6th
IMA International Conference on Cryptography and Coding, pp.
30–45.

