
A New Efficient Authenticated ID-Based Group Key

Agreement Protocol

Morteza Arifi1, Mahmoud Gardeshi1 and Mohammad Sabzinejad Farash2

1 Fath research center, Imam Hussein University, Tehran, Iran,

2 Department of Mathematics and Computer Sciences, Tarbiat Moallem University, Tehran, Iran.

morteza.arifi@gmail.com, mgardeshi@ihu.ac.ir, m.sabzinejad@gmail.com

Abstract

Group key agreement (GKA) protocols Play a main role in constructing secure multicast channels. These

protocols are algorithms that describe how a group of parties communicating over a public network can

gain a common secret key. ID-based authenticated group key agreement (AGKA) cryptosystems based on

bilinear pairings are update researching subject because of the simplicity of their public key management

and their efficiency. The key agreement protocol is a good way to establish a common session key for

communication. But in a group of member’s communication, we not only need to establish a common

session key, but also need to concern the member changing situation. In this paper we propose a protocol

based on Weil pairing, ID-based authentication and complete ternary tree architecture. We show that our

protocol satisfies all known security requirements, and therefore it is more secure and efficient than the

compared group key exchange protocols that we discuss in this article.

Keywords

Group key agreement, ID-based Authentication, Pairing, Ternary Tree.

1. Introduction

A group key agreement is a protocol which allows

a group of users to exchange information over public

and insecure network to agree upon a common secret

key which a group session key can be derived. This

group session key can be used to achieve desirable

security goals, such as authentication, confidentiality

and data integrity.

There are two methods to generate a session

Key: key distribution and key agreement. Key

distribution needs a group controller to hold the

information of the whole users in the group, if the

group controller is stopped or attacked, then the group

fail. At the same time as the group members have

dynamic changing, the group controller may be

effectiveness in this situation. In contrast, key

agreement does not need the group controller; all

users in the group generate the session key by key

agreement. The session key includes information of

all users so that no user can control or predict the

session key.

The first key agreement protocol was proposed by

Diffie-Hellman [3]. It can guarantee the security of

communication between the two users. But it does not

authenticate users; hence it is vulnerable to the “man-

in-the-middle” attack. Joux [4] gave another direction

of key agreement. He implements a tripartite key

agreement protocol using Weil pairing. When three

users want to agree upon a common session key, only

one message must be delivered by each user in the

protocol. But, Joux’s protocol does not authenticate

the users, and is vulnerable to “man-in-the-middle”

attack too.

Both group key establishment techniques can be

Analyzed in context of either fixed or dynamic

groups; obviously we can always create the group key

for the modified group by restarting the protocol.

Nevertheless, this may be inefficient if groups are

large or the protocol has expensive computation cost.

Therefore, many dynamic group key establishment

protocols designed for efficient operations for

addition and leaving out from group members. One-

way function trees (OFTs) can be used to compute a

tree of keys. The keys are computed from the leaves

to the root. Key hierarchies are common in dynamic

group key distribution protocols for collaborative

schemes, since they improve protocol efficiency upon

dynamic group changes. The use of OFTs for group

key was first proposed by Sherman in [1]. Any two

party key agreement protocols satisfying some

particular properties [1] can be extended to a n-party

key agreement protocol using one-way function trees.

Tree-based Group Diffie-Hellman (TGDH) [11] is

mailto:morteza.arifi@gmail.com
mailto:mgardeshi@ihu.ac.ir
mailto:m.sabzinejad@gmail.com

one of the protocols that extend the Diffie-Hellman

protocol to a group key agreement protocol with one-

way function trees.

Reddy and Divya Nalla [5] extend the Identity

Based two-party authenticated key agreement

protocol to an authenticated group key agreement

protocol, using the one-way function trees to generate

the first ID-based group key agreement protocol. In

their protocol the leaves of the tree denote individual

users of group. Sheng-Hua Shiau et al.’s protocol

[10], also use a key tree structure. But they use

complete binary tree structure i.e. each node in the

tree represent one user. A ternary tree based protocol

was proposed by Barua et al. [8] that extend the basic

Joux's [8] protocol to multi-party setting. In their

protocol the leaves of the tree denote individual users

and each internal node corresponds to a representative

that represents set of users in the sub tree rooted at

that node. But their protocol was unauthenticated also.

Dutta et al. [7] authenticate this unauthenticated

protocol using multi-signatures.

In this paper, we propose a group key agreement

protocol based on Weil pairing. In our protocol, we

use the ID-based authentication and complete ternary

Tree architecture such that every node in the tree

represents a user of the group. If there are some users

want to join or leave the group, not all users in the

group need to renew their all computations to get

secret key; so it is suit for dynamic changing

environment. This paper is organized as followings:

Section 2 proposes the notations and assumptions.

Section 3 is the proposed protocol. We show the

analysis of some security properties that we

concerned in section 4. Section 5 describes the

comparison of computation overhead with other

protocols. Finally, section 6 shows our result.

2. Preliminaries

Assume be an additive group with a prime

Order and be a multiplicative group with the

order . is a generator of . We assume that the

discrete logarithm problem (DLP) is intractable in

and . And e is a bilinear mapping between two

groups . This bilinear map must

satisfy the following properties:

1. Bilinear: for all and
 , we have

 .

2. Non-degenerate: if P is a generator of , then

 .

3. Computable: There is an efficient algorithm to

compute for all .

For using bilinear mappings for implementation

protocol, there are some problems and assumptions

[8] as followings:

1. (Decisional Diffie-Hellman) Problem [2] in

 : Given for some

 , decides whether or not. The

problem can be solved in polynomial time by

 Assumption: There is not any

polynomial time algorithm to solve the

problem in .

2. (Hash Decisional Diffie-Hellman) Problem

[6] in : Given and a hash function

 , decides if .

HDH assumption: There is no polynomial time

algorithm to solve the HDH problem in .

3. (Bilinear Diffie-Hellman) Problem:

Given , compute .

BDH assumption: There is no polynomial time

algorithm to solve the BDH problem.

4. (Decisional Hash Bilinear Diffie-

Hellman) Problem: Given and a

hash function
 , decides if

 .

DHBDH assumption: There is no polynomial

time algorithm to solve the DHBDH problem.

3. The proposed protocol

In this section, we propose our new protocol. In

Order to perform ID-based authentication, each user

needs to register to the KGC (Key Generation Center)

in initial phase. We separate our protocol into three

phases: the initial phase, the key agreement phase and

the member changing phase.

3.1. The initial phase

 In this subsection we show that how each user

can registers to the KGC. After registering to the KGC

every member can perform the key agreement phase

to compute the group session key. For this purpose at

first KGC selects a random number
 then

compute and publish as his or her public

key. KGC keeps s as his or her master key secretly.

The identity of each user and his or her long-term

public key are respectively and

 . Each user will use to register to the KGC

from secure channel by the following steps:

Step 1: User sends to KGC.

Step 2: KGC computes user long-term private

key and send it to .

The public parameters of the protocol are:

 . Where

H ,

 ,

 and

 are cryptographic hash

functions.

3.2. The key agreement phase

In this subsection, we show that how permissible

users collaborate to compute a common session key.

In our protocol, the key agreement process is based on

complete ternary tree structure. Each node in that tree

is representing one user; Figure 1 is an example of 16

users.

Fig. 1. A complete ternary tree 0f a group with 16 users

 Assume there are n users in this group, every user

 () has his/her long-term public/private

key users will choose a random number as

short-term private key in each new run of the

protocol. There are four kinds of nodes in a complete

ternary tree: the leaf node, the internal node with one

left child only, the internal node with two children

(Boy & Girl) and the forth kind is internal node with

three children.

Case1. The node is a leaf (3i > n).

1.1. Sets .

1.2. User sends to his (her) parent and his

(her) sibling node (brother or sister).

Case2. The node only has one Boy child (3i-1 = n)

2.1. User selects another random number ́

additionally.

2.2. User sends messages ́ to the user

 , where , ́ ́ and

 ́ .

User sends messages to the

user , where and

 .

2.3. User verifies the following equation

and user verifies the following equation

 (́) .

2.4. If the equations in 2.3 hold, computes

 ́
 and computes

 ́
 .

Note that ́ .

2.5. If , then the session key is , else user

 sets and sends to his

parent, sibling nodes and sibling’s children in

the group.

Case3. The node has two children (. In this

case three users and and simply do the

tripartite one round key agreement.

3.1. User sends messages to the users

 and User sends messages

 to the user , and and finally

User sends messages to the user

 , and where in general and

3.2. In this step in general each User verifies the

received messages , from the

two other users with the following equation:

 .

3.3. If the equation in step 3.2 holds,

 Computes:

 computes:

 computes:

 .

It is clear that .

3.4. If , the session key is , else user sets

 and sends to his parent,

sibling nodes and sibling’s children in the group.

Case4. The node has three children.

Previous cases (case1, case2 and case3) that we

explained before are somehow like complete binary

cases that Sheng et al. proposed in their protocol [10]

(in this paper we used different equation for

authentication that needs two pairing whereas their

authentication needs three pairing).

This case which is the main contribution of the paper

and the most important part of the key agreement

phase of the complete ternary tree is as follows:

4.1. Each user chooses
 then computes

 and .

 Sends the message to the users

 , and .

 Also sends the message

to the users , and .

 Also sends messages to the

users , and .

 Also sends messages to

the user , and .

4.2. Each user verifies the messages received in the

previous step.

 Generally, the user verifies the received

messages by the

following equation:

(1)

 Notice that each user verifies the three other

users simultaneously.

4.3. If the verification relation (1) holds for users

and then:

 Computes and sends the messages

 ́ , ́ and

 ́ to users , and

respectively.

 also computes and sends the message

 ́ to the user .

 Generally, and ́

 .

4.4. In general, each user verifies the received

message ́ by the following equation:

 (́) (()) (2)

4.5. Finally, if the equation (2) holds, each user

computes the secret key as follows:

 ()

It is clear that all the computed keys are equal,

i.e. .

4.6. If , it means that the users reached to the

root of the tree and the session key is , else

sets and sends to his

parent, sibling nodes and sibling’s children in

the group.

Each user performs the above process until reaching

the root, thus all users in the group can get a common

session key .

3.3. The member changing phase

It is possible that users may want to join or leave

the group during a communication. For the security

considerations, the users before joining and after

leaving the group must be unable to get the messages

delivered in the group. Therefore we must perform

some actions for the users that want to join or leave

the group.

3.3.1. The join protocol

Assume that, there are n users in the group before

Any member joins the group. The position of the

newcomer user will be at th node of the

complete ternary tree. (S)he will perform the

following steps:

1. User sends the information of the group which

contains the number of the users in the group and

the public key of all users, to the user (the

newcomer).

2. User choose random number

as his/her short-term private key, then computes

and broadcasts and the

signature .

3. According to the following moods the new

session key will be generated. Each key kept

by the node on the path from th node to

root of the tree will be changed.

When the user joins into the group with n user,

there are three possible moods in the original group:

Mood1. or .

The last parent has three children after the user

joins into the group. See the figure 2.

Fig.2 There are 15 (n=3k) users in the group originally,

the 16th node is the newcomer.

Let ⁄ , is the parent of the newcomer user

 . In this case has three children and the

process of computing the session key is like Case4 in

the key agreement phase, and in this situation

acts as in Case4. At the end of Case4:

 Computes

 computes

 computes

 computes

It is clear that:

If , then the session key is , else sets

 and broadcasts to his parent,

sibling nodes and sibling’s children in the group.

Then he continues the key agreement phase to reach

the root.

Fig.3 There are 13 (n=3k+1) users in the group

originally, the 14th node is the newcomer.

Mood2. or .

The last parent has one child after the user joins

into the group. See the figure 3.

Let ⁄ , is the parent of the newcomer

user and now has just as his child. Like

the Case2 in the key agreement phase,

 User selects another random number ́

additionally and computes , ́ ́

and ́ then sends the

message ́ to the user .

 User also computes and

 then sends

the message to the user .

 and verify their received messages same

as step 2.3 of Case2. If verification is valid then

 computes ́
 , and

computes ́
 . Note that

 ́ .

If , then session key is , else user set

 , and sends to his parent, sibling

nodes and sibling’s children in the group and then

continues the key agreement phase until reaching the

root.
Mood3. or .

It means that the last parent in the ternary tree has two

children after that user joins into the group. See

the figure 4.

Fig.4 There are 14 (n=3k-1) users in the group

originally, the 15th node is the newcomer

Let ⁄ , is the parent of the newcomer

user , in this case has two children and the

process of computing the session key is like Case3 in

the key agreement phase, after performing steps 3.1

and 3.2,

 Computes

 computes

 computes

It is clear that . If , then

session key is , else sets and sends

 to his parent, sibling nodes and sibling’s

children in the group. And then continues the key

agreement phase until reaching the root.

Fig.2 when user join the group values and

 will change.

As mentioned before for refreshing the session key,

each session key kept by the node on the path

from th node to first (root) node will be

changed. So for all three cases explained in the join

protocol, the session keys and consequently

 will be changed. Figure 5 shows the path of these

changes when user joins into the group.

3.3.2. The leave protocol

Suppose that, there are n users in the group

Originally. Let the leaving user be , hence we

exchange the position of and , then delete

and compute a new session key. According to the

position of , there are three moods as follow.

Mood1.

In this mood, the leaving user is the last node in the

ternary tree. The protocol can delete the last node

directly, and generate a new common session key.

1. If , let ⁄ . In this case

after left the group, has two children.

selects a new random number ́ as his short-term

private key and performs same as Case3 in the

key agreement phase.

 computes ́ ́ and ́ ́

 ́ , then sends the message ́ ́ to

users and and finally computes

 ́ ́

 User after verifying the message ́ ́

computes

 ́
 ́

 User also after verifying the message

 ́ ́ computes

 ́
 ́

 If , then the session key is , otherwise

 sets and sends to his

parent, sibling nodes and sibling’s children in

the group and then continues the key

agreement phase until reaching the root.

2. If , let ⁄ . In this case after that

left the group, has one child and same as the

Case2 in the key agreement phase selects another

random number ́ additionally.

 computes , ́ ́ and

 ́ and sends the message

 ́ to the user .

 User also sends the message

 to the user , where

 and
 .

 and verify their received messages

like step 2.3 of Case2. If verification relations

hold, computes ́ ́
 ,

and computes

 ́ ́
 , where

 ́ ́ .

 If , then the session key is , else sets

 and sends to his parent,

sibling nodes and sibling’s children in the

group and then continues the key agreement

phase until reaching the root.

3. If , let ⁄ . In this case

after that left the group, does not have any

children so he chooses a new random number ́

as his short-term private key and replaces with

 ́ then sends ́ ́ and ́ ́ ́ ́ .

Finally refreshes and then continues the key

agreement phase until reaching the root.

Mood2.

In this mood, the position of the leaving user is the

root of the ternary tree. So the protocol deletes the

root node and replaces the root with the last node

 then performs as mood 1 in the leave protocol

which we explained to generate a new common

session key.

Figure 6 shows an example for a group with 16 users

originally and left the group.

Fig. 3. The leaving node is node, replaced root with

the last node 16.

Mood3.

In this mood, the protocol replaces with (the

last node in the ternary tree), and continues as mood 1

in the leave protocol to generate a new common

session key.

4. Security Analysis

In this section we show the analysis of some

security properties of our proposed protocol. These

security properties are as following:

(1) Known session key security:

This property states that if one session key has been

compromised, the security of the current run of the

protocol should not be affected. Assume that there are

four users in the group, and the

previous session key is

 ,

if the adversary wants to extract certain short-term

private key (e.g.), then (s)he must solve the BDHP

in , which is supposed to be hard. Also, the session

key depends on random numbers selected by the users

in each run of the key agreement phase, so the session

key will be different each time.

(2) Key authentication: (implicit) key authentication

requires that each legitimate protocol participant is

assured that no other party except other legitimate

participants can establish the group session key.

In our protocol, each participant signs his/her

generated messages by his/her own long term private

key, consequently all users upon receiving a message

from each other, first verifies it then follows the

protocol's procedure. So the participant can be assured

that only legitimate users can perform the protocol

and establish the group session key.

(3) Forward secrecy:

If any long-term private key of the users has been

revealed the security of the previous session keys

should not be affected. In the proposed protocol, the

long-term private key is used only for the

authentication, and the protocol does not use the long

term private key of the users to compute the common

session key. So it is clear that our protocol satisfies

the forward secrecy.

(4) key-compromise impersonation resilience: This

security property prevents the adversary who obtains

a long-term key of a user from being able to

impersonate other users. We note that long-term keys

are usually private keys which used either for

signature generation or decryption; so long-term keys

are used primarily for the purpose of authentication

rather than the actual computation of the group key.

So we do not need to concern for this attack.

(5) Key control: The property of key control says that

there is no any legitimate user in the group whom pre-

determines or influences the value of the session key.

In our protocol, the common session key is

determined by the collaboration of all users in the

group, so no one can control or pre-determinate the

session key.

5. Performance

We compare the computations and

communications of our protocol with Sheng et al.’s

protocol [10] and Barua et al.’s protocol [7] as Table

1. Both of these protocols use a key tree structure. But

in the later each user is represented in the leaf node,

also (s)he needs to hold the secret value from leaf

node to the root. Barua et al used ternary tree

structure but the former uses complete binary tree

structure and each node in the tree represent one user.

In our proposed protocol we use complete ternary tree

structure also and each node in the tree represent one

user. In contrast with Barua et al.’s protocol [7] our

protocol is based on the identity of the users so we

omit the expenses of PKI.

To compute the total number of pairings we sum

the total number of pairings which the leaf nodes

compute and the total number of pairings that internal

nodes compute. To compute the session key, leaf

nodes should continue the computation procedure

which explained in section 3.2 (according to his case)

until reaches the root of the tree. So the user who is in

the Leaf node of tree should repeat the computations

for times where is the number of

protocol's round, and there are ((

)) leaf

nodes in the leaves, but we should note that there may

be leaf nodes which are not in the last level (

) and they may be in the []-th level so they

repeat the computations one round less than the leaf

nodes which lie in the -th level. So we should

minus the number of them from the

 ((

)) , and we can check that there

are ⌈ ⁄

⌉ leaf nodes that are not in

the last level. For the internal nodes, in each level
we have users. Each of them repeat the procedure

which explained in section 3.2 for times until

get the session key, so the total number from level 0

to level is ∑
 . Finally the total

number of repetitions of procedure which we explain

in section 3.2 is

∑
 ((

))

 ⌈ ⁄

⌉

(3)

and for getting the common secret in procedure 3.2

we need 4 pairing for authenticating the messages and

one for computing the . So we should multiply the

equation (3) by the number 5. We can check that our

protocol is more efficient in computation cost

comparing with the two other protocols when the

number of users is high, but when then number of

users is not high their computation cost may be close

to our protocol.

For computing the total numbers of messages that

users will deliver, each internal node send 9 messages

and each leaf node send 4 messages, by multiplying

the total number of internal nodes and also the total

number of the leaf nodes, by 9 and 4 respectively and

adding them together we can find that the is

almost . Our protocol is better than Barua

et al’s [3] protocol in the communication cost. In the

table1:

R(n): total number of rounds that can be performed

concurrently.

B(n):total numbers of messages delivering.

P(n): total numbers of pairings.

6. Conclusion

We proposed an authenticated ID-based group key

agreement protocol based on pairing. We use a

complete ternary tree to maintain a group key

agreement process and each node in the tree

represents one user. In this protocol, each user can

authenticate the received messages by ID-based

authentication structure. It doesn’t need to verify the

certificate of users’ public key. It provides better

efficiency. We also proposed how users can join to or

leave from the group. It shows that our protocol is suit

for dynamic member changing. And our protocol fits

with some most important security properties, which

includes known session key security, key

authentication, forward secrecy, key compromise

impersonation and key control.

Table 1. The comparison of computational and communication overhead

Barua et al’s [3] ⌈ ⌉

 []

()

⌈ ⌉

Sheng et al’s

[10]
⌊ ⌋ {

∑

 (())

 ⌈

⌉

}

Our protocol ⌈ ⁄ ⌉ {
∑

 ((

))

 ⌈
 ⁄

⌉

}

Acknowledgment

I would like to thank Iran Telecommunication

Research Center (ITRC) for supporting this research.

References
[1] D.A. McGrew and A.T. Sherman. "Key establishment

in large dynamic groups using one-way function

trees". Manuscript, 1998.

[2] D. Boneh and M. Franklin. "Identity-Based Encryption

from the Weil Pairing." In Advances in Cryptology -

CRYPTO ’01, LNCS 2139, pages 213-229, Springer-

Verlag, 2001.

[3] Diffie W, Hellman M. “New directions in

cryptography,” IEEE Transactions on Information

Theory, Vol. 22, 1976, pp. 644-654.

 [4] Joux A., “A one-round protocol for tripartite Diffie-

Hellman,” Proc. Fourth algorithmic Number Theory

Symposium, Lecture Notes in Computer Science,

Springer-Verlag, Vol. 1838, 2000, pp. 385-394.

[5] K. C. Reddy and D. Nalla, “Identity Based

Authenticated Group Key Agreement Protocol,” in

Proceedings of INDOCRYPT’02, vol. LNCS 2551,

2002, pp. 215–233

[6] M.Abdalla, M.Bllare and P.Rogaway. DHIES "An

encryption scheme based on the Diffie-Hellman

problem," CT-RSA 2001 : 143-158

[7] R. Dutta, R. Barua and P. Sarkar. “Provably Secure

Authenticated Tree Based Group Key Agreement,”

Proc. of ICICS’04, LNCS 3269, Springer 2004, pp.

92-104.

[8] R. Barua, R. Dutta, P. Sarkar, "Extending Joux's

Protocol to Multi Party Key Agreement," 3rd

International Cryptology Conference in India --

Indocrypt'2003, LNCS 2904, Springer-Verlag, 2003,

pp. 205--217.

[9] Shamir A. “Identity-based cryptosystems and signature

schemes,” Advances in Cryptology-Crypto’84, LNCS

196, Springer-Verlag, 1984, pp. 47-53.

[10] Sheng-H, R Hwang, M Lin, "Key Agreement Protocol

Based on Weil Pairing," aina, vol. 1, pp.597-602

[11] Y. Kim, A. Perrig, and G. Tsudik. "Simple and fault

tolerant key agreement for dynamic collaborative

groups," in Proceedings of 7th ACM Conference on

Computer and Communications Security, pp. 235-

244, ACM Press, November 2000.

