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Abstract

A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct
the secret while every independent set in the graph does not get any information on the secret. Similar
to secret-sharing schemes for general access structures, there are gaps between the known lower bounds
and upper bounds on the share size for graphs. Motivated by the question of what makes a graph “hard”
for secret-sharing schemes (that is, require large shares), we study very dense graphs, that is, graphs
whose complement contains few edges. We show that if a graph with n vertices contains

(

n
2

)

− n1+β

edges for some constant0 ≤ β < 1, then there is a scheme realizing the graph with total share size of
Õ(n5/4+3β/4). This should be compared toO(n2/ logn) – the best upper bound known for the share
size in general graphs. Thus, if a graph is “hard”, then the graph and its complement should have many
edges. We generalize these results to nearly completek-homogeneous access structures for a constant
k. To complement our results, we prove lower bounds for secret-sharing schemes realizing very dense
graphs, e.g., for linear secret-sharing schemes we prove a lower bound ofΩ(n1+β/2) for a graph with
(

n
2

)

− n1+β edges.

Key words. Secret sharing, share size, graph access structures, equivalence cover number.

1 Introduction

A secret-sharing scheme, introduced by [9, 45, 32], is a method by which a dealer, which holds a secret
string, can distribute strings, called shares, to a set of participants, enabling only predefined subsets of par-
ticipants to reconstruct the secret from their shares. The collection of predefined subsets authorized to recon-
struct the secret is called the access structure. We consider perfect schemes, in which any unauthorized set
of participants should learn nothing about the secret from their combined shares (even if they have unlimited
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power). Secret-sharing schemes are useful cryptographic building blocks, used in many secure protocols,
e.g., multiparty computation [7, 17, 19], threshold cryptography [25], access control [41], attribute-based
encryption [31, 53], and oblivious transfer [46, 52].

For a scheme to be efficient and be useful for the above mentioned applications, the size of the shares
should be small (i.e., polynomial in the number of participants). There are access structures that have
efficient schemes, e.g., the threshold access structure, inwhich the authorized sets are all sets containing
at leastℓ participants (for some thresholdℓ) [9, 45]. For every access structure there exist secret-sharing
schemes realizing it [32]. However, the best known schemes for general access structures, e.g., [8, 47, 13,
35], are highly inefficient, that is, for most access structures the size of shares is2O(n), wheren is the
number of parties in the access structure. The best lower bound known on the total share size for an explicit
or implicit access structure isΩ(n2/ log n) [21]. Thus, there exists a large gap between the known upper
and lower bounds. Bridging this gap is one of the most important questions in the study of secret-sharing
schemes. We lack sufficient methods for proving lower boundson the share size. Furthermore, we lack
the sufficient understanding of which access structures are“hard”, that is, which access structures require
large shares (if any). In contrast to general secret-sharing schemes, super-polynomial lower bounds are
known for linear secret-sharing schemes, that is, for schemes where the shares are generated using a linear
transformation. That is, there exists an explicit access structure such that the total share size of any linear
secret-sharing scheme realizing it isnΩ(logn) [3, 29, 30]. Linear secret-sharing schemes are important as
most known secret-sharing schemes are linear and many cryptographic applications require that the scheme
is linear. For more background on secret sharing see [4].

In this paper we consider a special family of access structures, in which all minimal authorized sets are
of size2. These access structures can be described by a graph, where each participant is represented by a
vertex and each minimal authorized set is represented by an edge. Graph access structures are useful and
interesting and have been studied in, e.g., [10, 12, 14, 22, 23, 24, 26, 38, 49, 51]. Some of the results found
for graph access structures, using graph theory, were laterextended to apply to all access structurea. This is
illustrated by the next example.

Example1.1. Blundo et al. [12] proved that the best share size of a scheme for a graph access structures is
either the size of the secret or at least 1.5 times larger thanthat size. This was generalized later to many
other families of access structures. Martı́-Farré and Padró [39] proved that the share size of every access
structure that is notmatroidal is at least 1.5 times larger than the size of the secret.

Other results on graph access structures have been extendedto homogeneous access structures [37, 43, 48],
which are access structures whose minimal authorized subsets are of the same size, and access structures
described by simple hypergraphs [20, 50].

Every graph access structure can be realized by a secret-sharing scheme in which the total share size
is O(n2/ log n) [15, 11, 27]; this scheme is linear. The best lower bound for the total share size required
to realize a graph access structure by a general secret-sharing scheme isΩ(n log n) [26, 10, 22]. The best
lower bound for the total share size required to realize a graph access structure by a linear secret-sharing
scheme isΩ(n3/2) [6]. Although the gap between the lower and upper bounds is smaller than that of general
access structures, studying this gap might reveal new insight that could be applied to the share size of general
access structures.

There are 3 main techniques for proving lower bounds on the size of shares in linear secret-sharing
schemes, namely, the self-avoiding criterion [6], Gál’s criterion [29], and Gál and Pudlák’s criterion [30].
Mintz [40] studied the limitations of these techniques for proving lower bounds for linear secret-sharing
schemes realizing graphs. He proved that the criteria of [6]and [30] cannot prove lower bounds better than
Ω(n3/2), and Gál’s criterion [29] cannot improve upon this lower bound under some restriction (namely,
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using rank 1 matrices). All applications of Gál’s criterion are under this restriction. The conclusion from
Mintz’s results is that proving a lower bound better thanΩ(n3/2) for graph access structures requires some
new ideas.

1.1 Our Results

In this work we study a natural family of graphs – the very dense graphs. These are graphs that have
(n
2

)

− ℓ
edges forℓ ≪ n2 (wheren is the number of vertices in the graph). The motivation for this work is trying
to understand which graphs are “hard”, that is, which graphsrequire total share size ofΩ(n2/polylog n) (if
any). For example, if a graph containsℓ edges, then it can be realized by a trivial secret-sharing inwhich
the total share size is2ℓ times the size of the secret [32]. Thus, if there exists a “hard” graph then it has to
haveΩ(n2/polylog n) edges. We are interested in the question if these “hard” graphs can be very dense.
Our results show that this is not possible.

Our main result is that if a graph has
(

n
2

)

−n1+β edges for some0 ≤ β ≤ 1, then it can be realized by a
secret-sharing scheme in which the total share size isÕ(n5/4+3β/4);1 this scheme is linear. In particular, if
β is a constant smaller than1, the total share size is≪ n2, that is, these are not “hard” graphs as discussed
above. Similarly, ifβ < 1/3, then the share size iso(n3/2); thus, these graphs are easier than the graphs for
which [6] proved their lower bounds for linear secret-sharing schemes. As a corollary of our main result we
prove that if a graph has

(n
2

)

− ℓ edges, whereℓ < n/2, then it can be realized by a scheme in which the
share size isn+O(ℓ5/4). Thus, ifℓ ≪ n4/5, then the total share size isn+ o(n), which is optimal up to an
additive factor ofo(n).

We extend the techniques used in this result to the study of two additional problems. First, we consider
the following scenario: we start with a graph and remove few edges from it. The question is how much
the share size of a secret-sharing scheme realizing the graph can grow as a result of the removed edges. If
we add edges, then trivially the share size grows at most linearly in the number of added edges. We show
that also when removing edges, the share size does not increase too much. We study this problem also for
general access structures, considering the removal of minimal authorized subsets for any access structure.
We show that for certain access structures the share size does not increase too much either. Second, we
study the removal ofℓ minimal authorized subsets fromk-out-of-n threshold access structures. We present
a construction with total share sizẽO(ℓn) for k ≪ n.

To complement our results, we prove lower bounds on the sharesize of secret-sharing schemes real-
izing very dense graphs. For graph access structures, the known lower bounds for general secret-sharing
schemes [26, 10, 22] and linear secret-sharing schemes [6] use sparse graphs withθ(n log n) edges and
θ(n3/2) edges, respectively. Using the above lower bounds, we provelower bounds ofΩ(βn log n) and
Ω(n1/2+β/2) for general and linear secret-sharing schemes respectively for some graphs with

(

n
2

)

− n1+β

edges. In addition, we prove lower bounds ofn+ℓ for graphs with
(

n
2

)

−ℓ edges, whereℓ < n/2. Our lower
bounds are not tight, however, they prove, as can be expected, that for linear secret-sharing schemes the to-
tal share size grows as a function of the number of excluded edges. The lower bounds for linear schemes
are interesting as most known secret-sharing schemes, including the schemes constructed in this paper, are
linear.

1We use theÕ notation which ignores polylogarithmic factors.
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1.2 Techniques

Brickell and Davenport [14] proved that a connected graph has an ideal scheme (that is, a scheme in which
the total share size isn times the size of the secret) if and only if the graph is a complete multipartite graph.2

To construct a scheme realizing a very dense graph, we cover the graph by complete multipartite graphs (in
particular, cliques), that is, we construct a sequence of multipartite graphsG1, G2, . . . , Gr such that each
graphGi is a subgraph ofG and each edge ofG is an edge in at least one graphGi. We next, for everyi,
share the secret independently using the ideal secret-sharing scheme realizingGi. The total share size in the
resulting scheme is the sum of the number of vertices in the graphsG1, G2, . . . , Gr. This idea of covering a
graph was used in previous schemes, e.g., [11, 12]. The contribution of this paper is how to find a “good”
cover for every dense graph.

Our starting point is constructing a scheme for graphs in which every vertex is adjacent to nearly all
other vertices, that is, graphs where the degree of every vertex in the complement graph is bounded by
somed ≪ n. We cover such graphs by equivalence graphs, that is, graphswhich are union of disjoint
cliques. Alon [1] proved, using a probabilistic proof, thatevery such graph can be covered byO(d2 log n)
equivalence graphs. We improve on this result, and prove, using a different probabilistic proof, that every
such graph can be covered byO(d log n) equivalence graphs. The total share size of the resulting scheme is
Õ(dn).

We use the above scheme to realize very dense graphs. We first cover all vertices whose degree in the
complement graph is “big”. There are not too many such vertices in the complement graph, and the share
size in realizing each star (namely, a vertex and its adjacent edges) is at mostn. Once we removed all edges
adjacent to vertices whose degree is “big”, we use the cover by equivalence graphs to cover the remaining
edges. To achieve a better scheme, we first remove vertices ofhigh degree using stars, then use covers of
bipartite graphs of [34] to further reduce the degree of the vertices in the complement graph, and finally use
the cover by equivalence graphs.

Additional Related Work. Sun and Shieh [50] consider access structures that are defined by aforbidden
graph, where each party is represented by a vertex, and2 parties are an unauthorized set iff their vertices are
connected by an edge. They give a construction with information ratio ofn/2. In [50], every set of size3 can
reconstruct the secret. Our problem is much harder as every independent set in the graph is unauthorized.

2 Preliminaries

In this section we define secret-sharing schemes and providesome background material used in this work.
We present a definition of secret-sharing as given in [18, 5].

2.1 Secret Sharing

Definition 2.1. LetP = {p1, . . . , pn} be a set of parties. A collectionΓ ⊆ 2P is monotoneif B ∈ Γ and
B ⊆ C imply thatC ∈ Γ. Anaccess structureis a monotone collectionΓ ⊆ 2P of non-empty subsets ofP .
Sets inΓ are calledauthorized, and sets not inΓ are calledunauthorized. The family of minimal authorized
subsets is denoted byminΓ.

2A graph is a complete multipartite if its vertices can be partitioned into disjoint sets, called parts, such that there isan edge
between two vertices iff they are from different parts. For additional graph terminology used in the rest of this section, see Sec-
tion 2.2.
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A distribution schemeΣ = 〈Π, µ〉 with domain of secretsK is a pair, whereµ is a probability distri-
bution on some finite setR called the set of random strings andΠ is a mapping fromK × R to a set of
n-tuplesK1 ×K2 × · · · ×Kn, whereKj is called thedomain of sharesof pj. A dealer distributes a secret
k ∈ K according toΣ by first sampling a random stringr ∈ R according toµ, computing a vector of
sharesΠ(k, r) = (s1, . . . , sn), and privately communicating each sharesj to partypj. For a setA ⊆ P ,
we denoteΠ(s, r)A as the restriction ofΠ(s, r) to its A-entries. The (normalized)total share sizeof a
distribution scheme is

∑

1≤j≤n log |Kj |/ log |K|.
Definition 2.2 (Secret Sharing). Let K be a finite set of secrets, where|K| ≥ 2. A distribution scheme
〈Π, µ〉 with domain of secretsK is a secret-sharing schemerealizing an access structureΓ if the following
two requirements hold:

CORRECTNESS. The secretk can be reconstructed by any authorized set of parties. That is, for any set
B = {pi1 , . . . , pi|B|

} ∈ Γ, there exists areconstruction functionReconB : Ki1 × . . . × Ki|B|
→ K such

that for everyk ∈ K,

Pr
[

ReconB

(

Π(k, r)B

)

= k
]

= 1. (1)

PRIVACY. Every unauthorized set cannot learn anything about the secret (in the information theoretic sense)
from their shares. Formally, for any setT /∈ Γ, for every two secretsa, b ∈ K, and for every possible vector
of shares〈sj〉pj∈T ,

Pr[ Π(a, r)T = 〈sj〉pj∈T ] = Pr[ Π(b, r)T = 〈sj〉pj∈T ]. (2)

Remarks2.3. There is an alternative definition of secret-sharing schemes (e.g., [36, 16]) using the entropy
function. For this definition, it is assumed that there is some known probability distribution on the domain
of secretsK and require that the secret and the shares of every unauthorized subset are independent random
variables (this can be formulated, e.g., using the entropy function). The two definitions are equivalent [4].

In this work we mainly consider graph access structures. LetG = (V,E) be an undirected graph.
We consider the graph access structure, where the parties are the vertices of the graph and the minimal
authorized sets are the edges. In other words, a set of vertices can reconstruct the secret iff it contains an
edge. In the rest of the paper we will not distinguish betweenthe graph and the access structure it describes
and we will not distinguish between vertices and parties.

2.2 Graph Terminology

We define the graph terminology that we use throughout this paper. Thedegreeof a graph is the maximum
degree of vertices in a graph. A graphG′ = (V ′, E′) is asubgraphof a graphG = (V,E) if V ′ ⊆ V and
E′ ⊆ E. We next define covers of graphs, which is used for our construction of secret-sharing schemes.

Definition 2.4. LetG = (V,E) be a graph. We say that a collection of graphsG1 = (V1, E1), . . . , Gr =
(Vr, Er) coverG if eachGi is a subgraph ofG andE = ∪r

i=1Ei.

A k-partite graphG = (V1, . . . , Vk, E), whereV1, . . . , Vk are disjoint, is a graph, whose vertices are
V = ∪k

i=1Vk, such that if(u, v) ∈ E, then there are indicesi 6= j such thatu ∈ Vi andv ∈ Vj (that is,
there are edges only between vertices in different parts). Ak-partite graph iscompleteif it contains all edges
between vertices in different parts. A graph is amultipartitegraph if it isk-partite for somek. For example,
a clique is a completek-partite graph, wherek is the number of vertices in the clique. A bipartite graph in
which |V1| = 1 is called astar; the vertex inV1 is thecenterand the ones inV2 are theleaves.
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2.3 Graphs and Secret Sharing

Brickell and Davenport [14] proved that a connected graph can be realized by an ideal scheme (that is, by a
scheme with total share sizen) iff the graph is a complete multipartite graph. As we use theideal scheme
for multipartite graphs we describe it below.

Theorem 2.5([14]). Let G = (V1, . . . , Vk, E) be a complete multipartite graph andp > k be a prime.
There is a linear secret-sharing realizingG where the domain of secrets and the domain of shares of each
party are{0, . . . , p− 1}.

Proof. Let s ∈ {0, . . . , p − 1} be the secret. We first generate shares in Shamir’s2-out-of-k scheme [45] for
the secrets. That is, we choosea ∈ {0, . . . , p− 1} at random with uniform distribution and we compute the
sharesi = a · i+ s mod p for 1 ≤ i ≤ k. Next, we givesi to all vertices inVi. Two vertices from different
parts, sayVi andVj, can reconstruct the secret as follows:s = (jsi − isj)/(j − i) (where the arithmetic is
in Fp – the finite field withp elements). On the other hand, if a setT is unauthorized, then it is contained in
someVi and all the vertices inT hold the same share in Shamir’s scheme and do not have any information
on the secret, that is, this share is uniformly distributed in {0, . . . , p − 1}.

Remarks2.6. The total share size in the above scheme isn. However, it requires thatp > k. In the rest
of the paper we assume thatp > n, thus, we can realize every multipartite subgraph of a graphG with n
vertices. This is a reasonable requirement that assumes that the number of bits in the secret is at leastlog n.
We will not mention the size of the secret in the rest of the paper and only consider the total share size of
the scheme.

In the rest of the paper we will construct schemes, where we choose subgraphs ofG which are multi-
partite, and share the secrets independently for each subgraph. The following is a well-known lemma.

Lemma 2.7. LetG = (V,E) be a graph andG1 = (V1, E1), . . . , Gr = (Vr, Er) be a cover ofG such that
eachGi is a complete multipartite graph. Assume that we share a secret s independently for eachGi using
the multipartite scheme. Then, the resulting scheme realizesG with total share size

∑r
i=1 |Vi|.

Proof. First, let(u, v) ∈ E be a minimal authorized set. Then, there exists at least onei such that(u, v) ∈ Ei

andu, v can reconstruct the secret from the shares of the scheme realizing Gi.
On the other hand, letT be an unauthorized set inG, that is,T is an independent set inG. SinceEi ⊆ E

for everyi, the parties inT get at most one different share in the scheme realizingGi. As in each scheme
we share the secrets independently (i.e., choosea independently), the unauthorized setT gets at mostr
random elements independent of each other, thus, they have no information on the secret.

For everyi, in the scheme realizingGi we give each party inVi a share whose size is the size of the
secret, thus, the total share size to realize all the graphs in the cover is

∑r
i=1 |Vi|.

2.4 Description of the Problem

In this work we study the problem of realizing a graph access structure, where the graph has few excluded
edges. Specifically, letG = (V,E) be an undirected graph with|V | = n and |E| =

(n
2

)

− ℓ for some
0 < ℓ <

(

n
2

)

. We consider the complement graphG = (V,E), wheree ∈ E iff e /∈ E. We callG the
excluded graphand call its edges theexcluded edges. In the rest of the paper, the excluded graphG is a
sparse graph with≪

(

n
2

)

edges.
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Example2.8. Assumeℓ = 1, that is, there is one excluded edge, say(vn−1, vn). In this case, the graph can
be realized by an ideal scheme as the graph is the complete(n− 1)-partite graph, wherevn−1, vn are in the
same part.

Example2.9. Assumeℓ = 2, and there are two adjacent excluded edges, say(vn−2, vn) and(vn−1, vn).
In this case, the graphG is not a complete multipartite graph, hence it cannot be realized by an ideal
scheme [14]. However, it can be realized by a scheme in which each of the partiesv1, . . . , vn−3, vn gets a
share whose size is the size of the secret andvn−2, vn−1 get a share whose size is twice the size of the secret.
Thus, the total share size isn+ 2.

The scheme is as follows: Generate shares according to the Shamir’s 2-out-of-(n − 2) secret-sharing
scheme, and give partyvi theith share in Shamir’s scheme for1 ≤ i ≤ n− 2. In addition give tovn−1 and
vn the (n − 2)th share in Shamir’s scheme. Using the above shares every pair of parties, except for pairs
contained in{vn−2, vn−1, vn}, can reconstruct the secret. As the only authorized pair in{vn−2, vn−1, vn} is
(vn−2, vn−1), we give them additional shares: we choose two random strings r1 andr2 whose exclusive-or
is the secret, and giver1 to vn−2 andr2 to vn−1.

The above scheme is a special case of the complete multipartite cover scheme, where we cover the
graphG by two graphs: A graphG1 = ({vn−2, vn−1} , {(vn−2, vn−1)}) (that is,G1 contains two parts and
one edge), and ann − 2 complete multipartite graph where everyvi, for 1 ≤ i ≤ n − 3, is a part, and
{vn−2, vn−1, vn} is a part.

By [11], the total size of shares to realizeG is at leastn+ 2. That is, the above scheme is optimal.

3 Constructions for Bounded Degree Excluded Graphs

If the excluded graph contains few edges, then the average degree of its vertices is small. We first construct
a scheme for graphs such that the degree of all vertices in itsexcluded graph is bounded by somed. In
Section 4 we show how we can use this construction for any graph with few excluded edges.

The construction of a secret-sharing scheme for a graphG whose excluded graphG has bounded degree
uses a cover ofG by cliques such that each vertex is contained in a relativelysmall number of cliques. This
is useful as cliques have an ideal scheme. To construct this cover we use colorings of the excluded graph.

Definition 3.1. An equivalence graphis a vertex-disjoint union of cliques. Anequivalence coverof G =
(V,E) is a coverG1 = (V,E1), . . . , Gr = (V,Er) ofG such that eachGi is is an equivalence graph.

A coloringof a graphG = (V,E) with c colors is a mappingµ : V → {1, . . . , c} such thatµ(u) 6= µ(v)
for every(u, v) ∈ E.

Lemma 3.2. LetG = (V,E) be a graph such that the degree of every vertex in its excludedgraphG is at
mostd. Then there exists an equivalence cover ofG with r = 16d ln n equivalence graphs.

Furthermore, there exists an equivalence cover ofG with r = 64d ln n equivalence graphs such that
each(u, v) ∈ E is an edge in at leastlnn graphs in the cover.

Proof. An equivalence cover ofG can be described by a coloring ofG and vice versa: given a coloringµ
of G we construct an equivalence graphG′ = (V,E′), which is a subgraph ofG, where two vertices inG′

are connected if they are colored by the same color, that is,E′ = {(u, v) : µ(u) = µ(v)}. For every color,
the set of vertices colored by such color is an independent set in G, hence a clique inG.

The existence of an equivalence cover ofG of sizer is proved by using theprobabilistic method(see,
e.g., [2]). We chooser random coloringsµ1, . . . , µr of G with 4d colors. That is, each coloring is chosen
independently with uniform distribution among all colorings ofG with 4d colors. For every coloringµi,
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we consider the equivalence graphGi as described above. We next prove that with probability at least half
G1, . . . , Gr is an equivalence cover ofG.

Let (u, v) ∈ E. We first fixi and compute the probability thatu andv have the same color in the random
coloringµi. Fix an arbitrary coloring of all vertices except foru andv. We prove that conditioned on this
coloring, the probability thatu andv are colored in the same color is at least1/(8d): The number of colors
not used by the neighbors ofu andv is at least2d, thus, the probability thatu is colored by such color is at
least half, and the probability that in this casev is colored in the same color asu is at least1/(4d). That is,
with probability at least1/(8d), the edge(u, v) is covered by the graphGi.

The probability that an edge(u, v) is not covered by ther random equivalence graphsG1, . . . , Gr is at
most

(

1− 1

8d

)r

≤ e−
r
8d =

1

n2
.

Thus, the probability that there exists an edge(u, v) ∈ E that is not covered by ther random equivalence
graphsG1, . . . , Gr is at most

(n
2

)

/n2 < 1/2. In particular, such cover withr equivalence graphs exists.
Furthermore, assume that we taker = 64d ln n random colorings. For an edge(u, v) ∈ E, define a

Boolean random variableXi, whereXi = 1 iff in the ith coloringu andv are colored in the same color, and
Xi = 0 otherwise. LetX =

∑64d lnn
i=1 Xi. Notice thatE(X) ≥ 64d ln n/8d = 8 ln n. By a Chernoff bound

Pr[X ≤ lnn] ≤ Pr[X ≤ E(x)/8] ≤ e−E(X)(1−1/8)2/2 < e−2 lnn = 1/n2.

Thus, there exists a sequence of64d ln n colorings such that, for every(u, v) ∈ E, in at leastlnn colorings
u andv are colored in the same color.

Remarks3.3. The existence of the equivalence cover in Lemma 3.2 is not constructive as we need to choose a
random coloring of a graph of bounded degree. Such coloring can be chosen with nearly uniform distribution
in polynomial time using a Markov process [33, 44]. Given a collection of equivalence graphs, it is easy to
check that for every edge(u, v) ∈ E there is at least one graph in the collection that covers(u, v). If this
is not the case we repeat the process of choosingr random colorings until we find a good collection. The
expected number of collections of colorings that have to be chosen before finding a good one isO(1). Thus,
we get a randomized polynomial-time algorithm to constructthe equivalence cover.

Alon [1] observed that the size of the smallest equivalence cover of a graphG is smaller than the
smallest clique cover ofG. He further proved that if the degree of every vertex inG is at mostd, thenG can
be covered byO(d2 lnn) cliques. We directly analyze the size of the smallest equivalence cover and get an
equivalence cover of sizeO(d ln n). To the best of our knowledge such bound was not known prior toour
work.

Lemma 3.4. Let G = (V,E) be a graph such that the maximum vertex degree inG = (V,E) is less or
equal tod. Then,G can be realized by a secret-sharing scheme in which the totalshare size is̃O(nd).

Proof. Consider a collection ofr = 16d ln n equivalence graphs that coverG (as guaranteed by Lemma 3.2).
We realize the access structure of each equivalence graphGi in the collection by an ideal scheme: For every
cliqueC in Gi, generate shares in Shamir’s2-out-of-|C| secret-sharing scheme, and distribute the shares
among the parties ofC.

For every excluded edge(u, v) /∈ E, the verticesu andv are in different cliques in eachGi (asGi is a
subgraph ofG). Thus, in the above schemeu andv do not get any information. On the other hand, every
edge(u, v) ∈ E is covered by at least one graphGi, that is,u andv are in the clique inGi, thus,u andv
can reconstruct the secret. As in each graphGi each party gets one share, the total share size of the resulting
scheme isnr = O(dn lnn) = Õ(nd).
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Remarks3.5. We can save a factor ofO(lnn) by using Stinson decomposition techniques [49]. Assume
that the secret is inFλ with λ = lnn andF a field with|F| > n. By Lemma 3.2, there exists an equivalence
coverG1, . . . , Gr with r = O(d lnn) such that each edge(u, v) ∈ E is covered byλ graphs in the cover.
SinceG1, . . . , Gr is aλ-decomposition ofG (see [49] for more details), we can construct a scheme with
total share sizeO(nd).

3.1 Constructions for Bipartite Graphs with Bounded Degree

As a step in constructing a secret-sharing scheme realizinga graph with few excluded edges, we will need
to realize certain bipartite graphs. In this section we showhow to realize them using bipartite covers.

Definition 3.6 (Complete-bipartite cover and bipartite complement). Let H = (U, V,E) be a bipartite
graph. Acomplete-bipartite coverof H = (U, V,E) is a coverH1 = (U1, V1, E1), . . . ,Hr = (Ur, Vr, Er)
ofH such that eachHi is a complete bipartite graph.

Thebipartite complementof a graphH is the bipartite graphH = (U, V,E), where everyu ∈ U and
v ∈ V satisfy(u, v) ∈ E iff (u, v) /∈ E.

Note that the bipartite complement of a bipartite graph is a bipartite graph and it differs from the com-
plement of the bipartite graph. We next quote a lemma of Jukna[34] on the existence of small bipartite
covers. For completeness we present the proof of this lemma.

Lemma 3.7(Jukna [34, Theorem 1]). LetH = (U, V,E) be a bipartite graph such that|U | ≤ |V | and the
degree of every vertex inV in the bipartite complement graphH is at mostd. Then there exists a cover of
H withO(d ln n) complete bipartite graphs, where|V | = n.

Proof. Let p = 1/d andr = ln(2|E|)/(p(1 − p)d) = O(d lnn). We choose the graphsH1, . . . ,Hr as
follows. Choose a setUi ⊆ U such that for everyu ∈ U we addu to Ui with probability p independently
of all other choices. We constructVi as the set of all vertices inV that are adjacent to everyu ∈ Ui (that is,
v ∈ Vi iff (u, v) ∈ E for everyu ∈ Ui).

Fix (u, v) ∈ E and1 ≤ i ≤ r. The edge(u, v) is in Ei if u ∈ Ui and all neighbors ofv in H are not in
Ui. Thus,

Pr [(u, v) ∈ Ei] ≥ p(1− p)d.

As we chooser complete bipartite graphs independently,

Pr [(u, v) /∈ ∪r
i=1Ei] ≤

(

(1− p(1− p)d)
1

p(1−p)d

)ln(2|E|)

≤ 1

2|E| .

By the union bound, the probability that there is an edge not covered by ther complete bipartite graphs is
less than1/2.

Note that in the above process, the construction of the bipartite graphs is efficient. As we can efficiently
check if a sequence of bipartite graphs coverH, we can repeat the process again if the bipartite graphs that
we choose do not coverH. The expected number of times that we need to repeat this process is at most2.

Lemma 3.8. Let d < n andH = (U, V,E) be a bipartite graph such that|U | = k, |V | = n ≥ k, and the
degree of every vertex inU in H is at mostd. Then,H can be realized by a secret-sharing scheme in which
the total share size is̃O(n+ k3/2d). If k = (n/d)2/3, the total share size is̃O(n).
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Proof. Let D =
{

v ∈ V : ∃u∈U such that(u, v) ∈ E
}

. As the degree of every vertex inU in H is at most
d, the size ofD is at mostdk. Furthermore, the complete bipartite graphH1 = (U, V \D,U × (V \D)) is a
subgraph ofH. We realizeH1 by an ideal scheme in which the total share size is less than|U |+|V | = O(n).

Now, defineD2 =
{

v ∈ D : The degree ofv in H is at least
√
k
}

. As H contains at mostdk edges,

|D2| ≤ d
√
k. LetH2 = (U,D2, E ∩ (U ×D2)). The number of edges inH2 is less than|U ||D2| ≤ k3/2d,

thus, we can realizeH2 by a secret-sharing scheme in which the total share size isO(k3/2d).
Finally, let V3 = D \ D2 andH3 = (U, V3, E ∩ (U × V3)). The degree of each vertex inV3 in the

graphH3 is at most
√
k, thus, by Lemma 3.7,H3 can be covered byr = O(

√
k lnn) complete bipartite

graphs. We realize each such complete bipartite graph by an ideal scheme in which the total share size is
at most|U | + |V3| ≤ k + kd = O(kd). Thus, we realizeH2 by a scheme in which the total share size is
O(rkd) = O(k3/2d lnn). AsH1, H2, andH3 coverH, we constructed a scheme realizingH in which the
total share size is̃O(n+ k3/2d). Takingk = (n/d)2/3, the total share size is̃O(n).

4 Constructions for Excluded Graph with Few Edges

We next show how to use the schemes of Lemma 3.4 and Lemma 3.8 torealize excluded graphs with
ℓ = n1+β edges, where0 ≤ β < 1. We will start with a simple approach and then use more complicated
constructions to achieve better upper bounds. We constructour scheme in steps, where in each step: (1)
We choose a set of verticesV ′ ⊆ V . (2) We give shares to the parties inV ′ and the rest of the parties,
such that each edge adjacent to a party inV ′ can reconstruct the secret, and all other pairs of parties (i.e.,
unauthorized pairs containing parties inV ′ and all pairs not adjacent toV ′) get no information on the secret.
(3) We remove the vertices inV ′ and all their adjacent edges from the graph. We repeat the following step
until all vertices inG have small degree and then use the equivalence covering scheme of Section 3 to realize
the remaining graph. In this process we will ensure that the total share size remains relatively small. In the
following, n will always refer to the number of vertices in the original graph.

Our first step is removing all vertices whose degree inG is “high”.

Lemma 4.1. LetG be a graph such that its excluded graphG contains at mostn1+β edges, where0 ≤ β <
1. Then, for everyd < n, we can give shares of sizeO(n2+β/d) and remove a set of vertices fromG and all
adjacent edges and obtain an induced subgraphG′ of G such thatG′ contains at mostn1+β edges and the
degree ofG′ is at mostd.

Proof. We choose a vertexv whose degree inG is greater thand and consider the star whose center isv
and its leaves are all neighbors ofv in G. We realize this star using an ideal scheme and removev and its
adjacent edges fromG. The total share size in this step is at mostn.

We choose another vertex whose degree inG is greater thand and do the same until no vertices with
degree greater thand exist inG. As in the beginning there aren1+β edges inG and in each step we remove
at leastd edges fromG, the number of steps is at mostn1+β/d. Thus, the total share size of the resulting
scheme for the removed vertices isO(nn1+β/d).

We can combine the constructions of Lemma 4.1 and Lemma 3.4. That is, we choose somed ≤ n,
remove vertices with degree higher thand in G, and then apply the equivalence cover construction to the
remaining graphG, where the degree ofG is d. Thus, the total share size of the resulting scheme (including
the scheme from of Lemma 3.4) is̃O(n2+β/d + dn). To minimize the share size we taked =

√
n1+β and

get a scheme in which the total share size isÕ(n1.5+β/2).
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Using Lemma 4.1 we decrease the degree of the vertices inG. Instead of applying the construction of
Lemma 3.4 to the resulting graph, we will apply some intermediate steps to further reduce the degree and
only then use the construction of Lemma 3.4.

Lemma 4.2. Letα′ < α ≤ 1 such thatα ≥ 0.25 andG = (V,E) be a graph such that the degree ofG is
at mostnα andG containsℓ edges. Then, we can remove a set of vertices and all adjacent edges from the
graph and obtain a graphG′ such that the degree ofG′ is at mostnα′

, the graphG′containsℓ− ℓ′ excluded
edges for someℓ′ > 0, and the total share size for the removed edges isÕ(ℓ′n1/3+2α/3−α′

).

Proof. Let d = nα andd′ = nα′
. We remove the vertices of degree larger thand′ in steps. In each step we

choose an arbitrary setF of k = (n/d)2/3 vertices of degree at leastd′ in G (if the number of vertices of
degreed′ is smaller thank, then we take the remaining vertices of degreed′ and put them inF ). Consider
all edges between vertices ofF , there are less thank2 = n4/3/d4/3 ≤ n such edges (sinced ≥ n1/4). Next
consider the bipartite graphH = (F, V \ F,E ∩ (F × (V \ F ))). By Lemma 3.8, we can realizeH with a
scheme in which the total share size isO(n). Thus, we can remove the vertices inF and all edges adjacent
to them, and the total share size in the scheme for every step is Õ(n).

Let ℓ′ the total number of edges we removed fromG in these steps until the degree ofG is at mostd′.
As each vertex we remove has degree at leastd′ in G, the number of vertices we remove is at mostℓ′/d′. In
each step, except for the last, we remove a setF with (n/d)2/3 vertices, thus, the number of sets we remove
is at most1 + ℓ′/(d′(n/d)2/3) = O(ℓ′d2/3/(d′n2/3)). As in each step the share size isÕ(n), the total share
size for the edges we removed fromG is Õ

(

ℓ′n1/3d2/3/d′
)

= Õ(ℓ′n1/3+2α/3−α′
).

We next show how to construct secret-sharing schemes for graphs with few excluded edges using the
three building blocks presented so far: (1) initial degree reductions using stars, (2)O(log log n) steps of
degree reduction using complete bipartite graphs and stars, and (3) using the equivalence cover construction
on the graph with reduced degree.

Theorem 4.3. LetG = (V,E) be a graph with|V | = n and|E| =
(

n
2

)

− n1+β for some0 ≤ β < 1. There
exists a secret-sharing scheme realizingG with total share sizẽO(n5/4+3β/4).

Proof. Let α0 be a constant to be determined later. We first apply Lemma 4.1 with d = nα0 and obtain a
graphG such that the degree ofG is at mostd. The total share size in this step is

O(n2+β/d) = O(n2+β−α0). (3)

Next defineαi = (3 − 2(2/3)i)α0 − 2 + 2(2/3)i for 1 ≤ i ≤ log log n. We choose these constants
such that2αi/3 − αi+1 = 2/3 − α0. We next repeatedly apply the degree reduction of Lemma 4.2; we
apply it log log n times. In theith invocation of the lemma, where0 ≤ i < log log n, we takeα = αi and
α′ = αi+1. The cost of each invocation is

Õ

(

ℓin
1
3
+

2αi
3−αi+1

)

= Õ(ℓin
1−α0),

whereℓi is the number of edges removed fromG in theith invocation. As the number of edges removed in
all invocations is at mostn1+β, the total share size in all these invocations is

Õ(n1+βn1−α0) = Õ(n2+β−α0). (4)
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After the log log n invocations of Lemma 4.2, the degree of each vertex inG is at mostnαlog log n =
O(n3α0−2). In the final stage we use Lemma 3.4 and realize the graph with total share size

Õ(nn3α0−2) = Õ(n3α0−1). (5)

The total share of realizingG (by (3), (4), and (5)) isO(n2+β−α0)+Õ(n2+β−α0)+Õ(n3α0−1). To minimize
this expression, we require that2+ β − α0 = 3α0 − 1, thus,α0 = 3/4 + β/4 and the total share size in the
scheme isÕ(n5/4+3β/4).

Remarks4.4. It can be checked that the construction of the cover ofG by multipartite graphs, as done in the
above scheme, can be done by a probabilistic algorithm in expected polynomial time. Thus, the computation
of the dealer and the parties in our scheme is efficient.

In Theorem 4.3 we showed how to realize a graph where the number of excluded edges is small, however
it is at leastn. We next show how to realize graphs where the number of excluded edges is less thann.

Corollary 4.5. LetG = (V,E) be a graph with|V | = n and |E| =
(n
2

)

− ℓ for someℓ < n/2. There exists
a secret-sharing scheme realizingG with total share sizen+ Õ(ℓ5/4).

Proof. Let V ′ ⊆ V be the set of vertices adjacent to excluded edges. As there are ℓ excluded edges, the
size ofV ′ is at most2ℓ. Without loss of generality, letV = {v1, . . . , vn} andV ′ = {vt, . . . , vn} for some
t > n− 2ℓ. We first execute Shamir’s2-out-of-t secret-sharing scheme and give the sharesi to partyvi for
1 ≤ i < t, and give the sharest to vi for t ≤ i ≤ n.

Let V ′′ be such thatV ′ ⊆ V ′′ and |V ′′| = 2ℓ. Furthermore, letG′ = (V ′′, E′) be the subgraph ofG
induced byV ′′. The graphG′ hasn′ = 2ℓ vertices andℓ ≤ n′ excluded edges, thus, by Theorem 4.3 (with
β = 0), it can be realized by a scheme in which the total share size is Õ(ℓ5/4). The total share size in
realizingG is, therefore,n+ Õ(ℓ5/4).

5 Constructions for Homogeneous Access Structures

In this section we extend the techniques used in the construction of graph secret-sharing schemes to the
construction of schemes for homogeneous access structures, which are access structures whose minimal
authorized subsets are of the same size. Everyk-homogeneous access structure has a monotone formula
of sizeO(nk/ log n) (see [54, Theorem 7.3]), thus, by [8], it can be realized by a secret-sharing scheme
with total share sizeO(nk/ log n). Other upper bounds for hypergraphs are presented in [37, 43, 48, 50];
however they are useful for sparse access structures. In this section, we present constructions for dense
k-homogeneous access structures for a constantk. We will describe these access structures by hypergraphs.

A hypergraphis a pairH = (V,E) whereV is a set of vertices andE ⊆ 2V \ {∅} is the set of
hyperedges. In this work we only consider hypergraphs in which no hyperedge properly contains any other
hyperedge. A hypergraph isk-uniform if |e| = k for everye ∈ E. A k-uniform hypergraph iscomplete
if E =

(V
k

)

= {e ⊆ V : |e| = k}. For anyk-uniform hypergraph we define thecomplementhypergraph
H = (V,E), with E =

(V
k

)

\ E. Observe that there is a one-to-one correspondence betweenuniform
hypergraphs and homogeneous access structures, and that complete hypergraphs correspond to threshold
access structures.

By analogy to graphs, we define anequivalencek-hypergraph as a vertex-disjoint union of complete
k-uniform hypergraphs, and the equivalence cover of ak-uniform hypergraphH = (V,E) as a collec-
tion of equivalencek-hypergraphsH1 = (V,E1), . . . ,Hr = (V,Er) with Ei ⊆ E for i = 1, . . . , r and
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∪1≤i≤rEi = E. A weakcoloring with c colors of a hypergraphH = (V,E) is a mappingµ : V →
{1, . . . , c} such that for everye ∈ E there existu, v ∈ e with µ(u) 6= µ(v).

Lemma 5.1. LetH = (V,E) be ak-uniform hypergraph such that the degree of every vertex in its excluded
hypergraph is at most d. Then there exists an equivalence cover ofH with r = 2kkkdk−1 lnn equivalence
hypergraphs.

Proof. The proof of this lemma is similar to the one of Lemma 3.2, and is also based on the probabilistic
method. Given a coloringµ of H we construct an equivalencek-hypergraphH ′ = (V,E′), which is the
sub-hypergraph ofH, where{v1, . . . , vk} ⊂ V is inE′ if and only ifµ(vi) = µ(vj) for 1 ≤ i < j ≤ k. For
every color, the set of vertices colored by such a color is ak-uniform complete sub-hypergraph ofH.

We chooser random coloringsµ1, . . . , µr of H with 2kd colors, and for each coloring we consider
the equivalence hypergraph as described above. With probability at least halfH1, . . . ,Hr is an equivalence
cover ofH:

Let e = (v1, . . . , vk) ∈ E. Following arguments analogous to the ones in Lemma 3.2, we obtain that
for eachµi the hyperedgee is monochromatic with probability at least 1

2(2kd)k−1 . The probability that an

edgee ∈ E is not covered by ther random equivalence hypergraphsH1, . . . ,Hr is at most1/nk. Thus, the
probability that there exists an edge inE not covered by ther random equivalence hypergraphs is less than
half.

Lemma 5.2. Let H = (V,E) be ak-uniform hypergraph such that the maximum vertex degree ofH =
(V,E) is less or equal tod. There exists a secret-sharing scheme realizingH in which the total share size
is Õ(2kkkdk−1n).

Proof. Take the equivalence cover ofH of sizer = 2kkkdk−1 lnn guaranteed by Lemma 5.1. Now, we
realize each equivalence hypergraphHi in the collection by an ideal scheme: For every complete hypergraph
C in Hi, generate shares in Shamir’sk-out-of-|C| secret-sharing scheme. Using arguments similar to the
ones used in the proof of Lemma 3.4, this scheme realizesH and the total share size of the resulting scheme
is nr = Õ(2kkkdk−1n).

In Theorem 5.4 below, we construct a secret-sharing scheme for every excluded hypergraph with few
edges. For this purpose, we use a recursive argument based onthe construction illustrated in the following
example.

Example5.3. Let H = (V,E) be a hypergraph and letv ∈ V be a vertex satisfying thatv ∈ e for every
e ∈ E. Consider the hypergraphH ′ = (V ′, E′) with V ′ = V \ {v} andE′ = {e \ {v} : e ∈ E}. If there
exists a secret-sharing scheme realizingH ′ with total share sizer, then we can construct a scheme realizing
H with total share sizer+1 as follows. In order to share a secrets, the dealer chooses at randoms1 ands2
satisfyings = s1 + s2, sendss1 to v, and sharess2 amongV ′ using the scheme realizingH ′.

Theorem 5.4. LetH = (V,E) be ak-hypergraph with|V | = n and |E| =
(n
k

)

− n1+β for some0 ≤ β <

k − 1. There exists a secret-sharing scheme realizingH with total share sizẽO(2kkkn2+β).

Proof. By induction onk, we prove that for everyH = (V,E) satisfying the hypothesis there exists a secret-
sharing scheme with total share sizeÕ(2kkkℓ1−εkn), whereℓ = n1+β andεk is defined by the equation
εi+1 = εi

i+εi
and ε1 = 1. By Theorem 4.3 this property is satisfied fork = 2. Let H = (V,E) be a

k-hypergraph withk > 2. Defined = ℓ
1

k−1+εk−1 .
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We choose a vertexv adjacent toℓ1 > d excluded hyperedges. By the hypothesis, there is a secret
sharing scheme with total share sizeÕ(2k−1(k−1)k−1ℓ

1−εk−1

i n) for the(k−1)-hypergraphH ′ = (V ′, E′),

with V ′ = V \ {v} andE′ = {e ∈
(

V ′

k−1

)

: e ∪ {v} ∈ E}. Following Example 5.3, we construct a scheme
for the sub-hypergraph determined by all hyperedges adjacent to v. Then we removev and its adjacent
hyperedges fromH. We choose another vertexv′ adjacent toℓ2 > d excluded hyperedges and do the same
until no vertices with degree greater thand in H exist.

Since in the beginning there areℓ excluded hyperedges, and in each step we removeℓi > d hyperedges,
the number of steps is at mostℓ/d. Thus, the total share size of the resulting scheme is

Õ
(

2k−1(k − 1)k−1n
∑ℓ/d

i=1 ℓ
1−εk−1

i

)

.

As
∑ℓ/d

i=1 ℓi ≤ ℓ, the above expression is maximized whenℓ1 = · · · = ℓℓ/d = d, and the total share size of

the scheme is̃O(2k−1(k − 1)k−1nℓ/dεk−1).
Finally, since the degree ofH is at mostd, we use Lemma 5.1 to construct a secret-sharing scheme

realizingH with total share sizẽO(2kkkdk−1n).

Corollary 5.5. LetH = (V,E) be ak-hypergraph with|V | = n and|E| =
(n
k

)

− ℓ for someℓk < n. There
exists a secret-sharing scheme realizingH with total share sizen+ Õ(2kkk+2ℓ2).

Proof. DefineW ⊆ V as the set of vertices of degree zero inH. Sinceℓk < n, |W | > 0. Consider the
k-hypergraphH ′ = (V,E′) with E′ = {e ∈

(

V
k

)

: |e ∩ W | ≥ 1}. Observe thatH ′ ⊆ H. By [42],
there exists an ideal secret-sharing scheme realizingH ′. Now it remains to find a secret-sharing scheme for
H \H ′, a hypergraph defined onV \W whose complement has at mostℓk vertices andℓ hyperedges. The
proof is completed by using Theorem 5.4.

Remarks5.6. By [28], the scheme constructed in the first step of the proof of Corollary 5.5 can be con-
structed over any finite fieldF with |F| >

(n+1
k

)

.

6 Removing Few Authorized Sets from Access Structures

Our main result (Theorem 4.3) shows that if we start with the complete graph and remove “few” edges,
then the share size required to realize the new graph is not “too big”. We then generalize these results to
complete homogeneous hypergraphs. In this section we address the effect of removing few authorized sets
from other access structures. We first consider arbitrary graph access structures and then consider access
structures where the minimal authorized sets are small and,for each party, we remove few sets containing
the party (this generalizes the case where the complement graph has constant degree).

6.1 Removing Few Edges from an Arbitrary Graph

We show that if we start with any graph and remove “few” edges,then the total share size required to realize
the new graph is not much larger than the total share size required to realize the original graph.

Theorem 6.1. LetG = (V,E) andG′ = (V,E′) be two graphs withE′ ⊂ E, |E \ E′| = ℓ, and|V | = n.
AssumeG can be realized by a scheme in which the total share size ism (clearly,m ≤

(n
2

)

). If ℓ > m/n,
thenG′ can be realized by a scheme in which the total share size isÕ(

√
ℓmn). If ℓ ≤ m/n, thenG′ can be

realized by a scheme in which the total share size ism+ 2ℓn ≤ 3m.
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Proof. LetΣ be a secret-sharing scheme realizingG with total share sizem. Suppose thatℓ > m/n. Define
d =

√

ℓn/m. LetG′′ = (V,E′′) be the graph satisfying thate ∈ E′′ if and only if e ∈ E \ E′ (that is,G′′

is the graph of the excluded edges, andG′′ is its complement).
First we construct a scheme similar to the one described in the proof of Lemma 4.1. For every partyv

adjacent to at leastd excluded edges, we consider the star whose center isv and its leaves are all neighbors
in G′. We realize this star using an ideal scheme and we removev and its adjacent edges fromG′ and from
G′′. The total share size in this step is at mostn. We do the same process until all vertices have less thand
excluded vertices. The total share size of the resulting scheme isO(nℓ/d).

Now the degree of every vertex inG′′ is at mostd. By Lemma 3.2 there exists an equivalence cover ofG′′

with Õ(d) equivalence graphs. For every equivalence graph, and for every cliqueC in it, we independently
share the secrets among the parties inC usingΣ, that is, we generate shares ofs usingΣ and give the
shares only to the participants ofC. In this way, an edge contained inC is authorized if and only if it is
contained inE. SinceE′′ ∩E = E′, the resulting scheme realizesG′. The total share size of realizing each
equivalence graph ism (since each participant is in a single clique), thus, the total share size of realizing all
graphs in the cover is̃O(md).

If ℓ < m/n, we first executeΣ and give shares to parties not adjacent to excluded edges. The total share
size in this step is less thanm. For every partyv adjacent to at least one excluded edge, we construct a
secret-sharing scheme realizing the star whose center isv and the leaves are thoseu ∈ V with (u, v) ∈ E′.
As there are at most2ℓ such vertices, the total share size in realizing the stars isless than2ℓn. The total
share size in both steps ism+ 2ℓn ≤ 3m.

In the interesting case in Theorem 6.1 whenℓ > m/n, the total share size is̃O(
√
ℓmn). This is better

than the trivial scheme giving shares of total sizeO(n2) only whenℓ is not too large, namely,ℓ ≪ n3/m.

6.2 Construction for General Access Structures

In the previous sections we studied access structures in which the minimal subsets are of the same size.
In this section we use some of these techniques to study a moregeneral scenario: we start with an access
structure and we delete some minimal authorized subsets of it. The question is how much the share size of
the schemes realizing the access structure grow as a result of the removed subsets.

We next consider removing authorized sets from more generalaccess structures. We say that access
structureΓ is of degreed if for everyp ∈ P there are at mostd subsets inminΓ containingp.

Theorem 6.2. LetΓ1 andΓ2 be two access structures onP with minΓ2 ⊂ minΓ1 satisfying that|A| ≤ k
for everyA ∈ minΓ1. If Γ2 is of degreed and there exists a scheme realizingΓ1 with total share sizem,
then the access structure determined byminΓ1 \minΓ2 can be realized by a secret-sharing scheme with
total share sizẽO(2kkkdk−1m).

Proof. Let H = (P,E) andH ′ = (P,E′) be the hypergraphs defined byminΓ1 andminΓ2, respectively.
By the hypothesis, the hyperedges ofH are of size smaller or equal thank, andH ′ is a sub-hypergraph of
H of degree less or equal tod. LetΣ be a the scheme realizingH, and letH ′′ = (P,E′′) be the hypergraph
with E = E\E′′, which is the hypergraph associated withminΓ1\minΓ2. We construct a scheme realizing
H ′′.

Definer = 2kkkdk−1 lnn. Following the arguments in the proof of Lemma 5.1, it is clear that there
exists a family ofr weak coloringsµ1, . . . , µr of H ′ with 2kd colors satisfying the following property: For
everye ∈ E′′ there existsi ∈ {1, . . . , r} with µi(u) = µi(v) for everyu, v ∈ e.
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At this point, we can describeH ′′ as follows: A sete ⊆
(V
k

)

is in E′′ if and only if e ∈ E and there
exists a coloringµi for which e is monochromatic. Hence, we can construct a secret-sharingscheme for
H ′′ by sharing the secret independently, for every coloringµi and for every colorj ∈ {1, . . . , 2kd}, with
Σ restricted toVi,j = {u ∈ P : µi(u) = j}. The total share size of the resulting scheme ismr =
Õ(2kkkdk−1m).

Observe that ifk ≪ n, the removal of minimal authorized subsets from an access structure does not
increase so much the share size. Therefore, fork ≪ n, access structures close to an access structure realized
by an efficient scheme are not “hard”.

7 Lower Bounds for Very Dense Graphs

In this section we show lower bounds on the total share size for realizing very dense graphs. Recall that the
best lower bound on the total share size for realizing a graphis Ω(n log n) [26, 10, 22] and the best lower
bound on the total share size for realizing a graph by a linearscheme isΩ(n3/2) [6]. However, these lower
bounds use sparse graphs withΘ(n log n) andΩ(n3/2) edges respectively. In this section we will show
how to use these sparse graphs to prove lower bounds for very dense graphs. In particular, we show that
there exists a graph withn1+β excluded edges such that in every linear secret-sharing realizing it, the total
share size isΩ(n1+β/2) (for every0 ≤ β < 1). This lower bound shows that the total share size grows as
a function ofβ. However, there is still a gap between our upper and lower bounds. We start with a lower
bound for graphs with less thann excluded edges.

Theorem 7.1. For everyn and every2 < ℓ < n/2, there exists a graph withn vertices andℓ excluded
edges such that the total share size of every secret-sharingrealizing it is at leastn+ ℓ.

Proof. We construct a graphG = (V,E) with n ≥ 2ℓ + 1 vertices. We denote the vertices of the graph
by V = {a, b0, . . . , bℓ−1, c0, . . . , cℓ−1, v2ℓ+2, . . . , vn}. The graphG has all edges except for the followingℓ
excluded edges:E = {(a, ci) : 0 ≤ i ≤ ℓ− 1}.

For every0 ≤ i ≤ ℓ− 1, consider the graphG restricted to the verticesa, bi, ci, c(i+1) mod ℓ. This graph
has two excluded edges(a, ci) and (a, c(i+1) mod ℓ). Blundo et al. [11] proved that in any secret-sharing
realizing this graph, the sum of the sizes of the shares ofbi andci is at least3 times the size of the secret.
Thus, in any secret-sharing realizingG, the sum of the sizes of the shares ofbi andci is at least3 times the
size of the secret. By [36], the size of the share of each partyin any secret-sharing realizing any graph with
no isolated vertices is at least the size of the secret. Thus,the total share size in any secret-sharing realizing
G is at leastn+ ℓ.

Theorem 7.2. For everyβ, where0 ≤ β < 1, there exists a graph withn vertices and less thann1+β

excluded edges, such that the total share size in anylinearsecret-sharing realizing it isΩ(n1+β/2).

Proof. By [6], for everyn there exists a graph withn vertices such that the total share size in any linear
secret-sharing realizing it isΩ(n3/2). We use this graph to construct a dense graphG = (V,E) with n
vertices. We partition the vertices ofG into n1−β disjoint sets of verticesV1, . . . , Vn1−β , where|Vi| = nβ

for 1 ≤ i ≤ n1−β. We construct the edges as follows: First, for every2 verticesu andv such thatu ∈ Vi

andv ∈ Vj for i 6= j, we add the edge(u, v) to E, i.e., there is an edge connecting every 2 vertices from
different parts. Second, for everyi (where1 ≤ i ≤ n1−β), we construct a copy of the graph from [6] with
nβ vertices among the vertices ofVi. We denote this graph byGi.
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Since all excluded edges in the above construction are between vertices in the same part, the number

of excluded edges is at most
(nβ

2

)

n1−β < n1+β. The total share size of any linear secret-sharing scheme
realizingGi (for 1 ≤ i ≤ n1−β) is Ω((nβ)3/2) = Ω(n3β/2). Thus, the total share size of any linear
secret-sharing scheme realizingG is at leastΩ(n1−βn3β/2) = Ω(n1+β/2).

Theorem 7.3. For everyβ, where0 < β < 1, there exists a graph withn vertices and less thann1+β

excluded edges such that the share size of any secret-sharing scheme realizing it isΩ(βn log n).

Proof. We use the construction from the proof of Theorem 7.2, where for every1 ≤ i ≤ n1−β we setGi

to be alog nβ-dimensional cube. By [22], any secret-sharing scheme realizing Gi has a total share size
of Ω(βnβ log n). Thus, any secret-sharing scheme realizingG must have a total share size ofΩ((n1−β) ·
βnβ log n)) = Ω(βn log n).
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