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Abstract. In this work, we propose two McEliece cryptosystem vari-
ants: one from Moderate Density Parity-Check (MDPC) codes and an-
other from quasi-cyclic MDPC codes. MDPC codes are LDPC codes of
higher density than what is usually adopted for telecommunication ap-
plications. In general, this leads to a worse error-correction capability.
However, in code-based cryptography we are not necessarily interested
in correcting many errors, but only a number which ensures an adequate
security level, a condition satisfied by MDPC codes. The benefits of their
employment are many. Under a reasonable assumption, MDPC codes re-
duce the key-distinguishing McEliece problem to the problem of decoding
linear codes. Since the message-attacks against the McEliece scheme also
reduce to this problem, the security of our scheme has the benefit of rely-
ing on a single, well studied coding-theory problem. Furthermore, adding
a quasi-cyclic structure, our proposal provides extremely compact-keys:
for 80-bits of security, the public-key has only 4801 bits.

Keywords: post-quantum cryptography, code-based cryptography, coding-
theory, LDPC codes.

1 Introduction

All cryptosystems based on the hardness of factoring or discrete logarithm can
be attacked [39] in polynomial time with a quantum computer (see [10] for an ex-
tensive report). This threatens most if not all public-key cryptosystems deployed
in practice, such as RSA [36] or DSA [24]. Code-based cryptography is believed
to be quantum resistant and is therefore considered as a viable replacement
for those schemes in future applications. Yet, independently of their so-called
“post-quantum” nature, code-based cryptosystems offer other benefits even for
present-day applications due to their excellent algorithmic efficiency, which is up
to several orders of complexity better than traditional schemes.

The McEliece cryptosystem [28] is the first code-based cryptosystem, origi-
nally proposed using Goppa codes. Its security is based on two assumptions, the
indistinguishability of the code family and the hardness of decoding a generic
linear code [13]. The decoding problem is a well studied NP-complete prob-
lem [8], believed to be hard after decades of research. On the other hand, the
indistinguishability problem is usually the weakest one, strongly depending on



the choice of the code family. As an example of this fragility, a distinguisher for
high rate Goppa codes (like those originally suggested for CFS signature [13] and
for some realistic secure parameters of McEliece cryptosystems) is presented in
[15]. Although this does not represent a practical attack, it suggests that Goppa
codes do not seem to be the optimal choice for code-based cryptography.

Although efficient, this cryptosystem suffers from an extremely large key-size.
There is a way to reduce considerably the key-size which consists in choosing
codes with a large automorphism group, such as quasi-cyclic codes [19]. It has
been followed by several other proposals such as [29, 7]. However, an structural
algebraic attack [16] succeeds in breaking many of them (except the binary case
of [29]). The effectiveness of this attack is due to the strong algebraic structure
of the suggested code-families (they are subfamilies of alternant codes), which
allows the adversary to set up an algebraic equations system and solve it with
Gröbner bases techniques. This algebraic system has several features that make
this computation feasible: the system is bihomogeneous and bilinear and, most
importantly, the quasi-cyclic or the quasi-dyadic structure of these schemes al-
lows a drastic reduction of the number of unknowns in the system. This kind of
attack is exponential in nature and can be easily prevented by choosing more
conservative parameters. Note however that codes which does not have an alge-
braic structure would completely prevent this threat.

Related work. Low-Density Parity Check (LDPC) codes [20] are good can-
didates for this purpose. They are codes with no algebraic structure which meet
a very simple combinatorial property: they admit a sparse parity-check matrix.
This sparsity is used by decoding algorithms for efficient error-correction. These
codes have been repeatedly suggested for the McEliece scheme [30, 4, 5, 3, 2].
However, the main problem of using LDPC codes in this context is that their
low weight parity-check rows can be seen as low weight codewords in the dual of
the public code. Thus a straightforward attack against an LDPC-McEliece vari-
ant amounts to find dual low weight codewords and use them to build a sparse
parity-check matrix. This is the conclusion of [30], where the LDPC-McEliece
variant is analyzed: the private-key is a sparse parity-check matrix H of con-
stant row weight w of a code C and the public-key is a dense generator matrix
G′ = S · G · P of a code C′, where S is a scrambling matrix, G is a generator
matrix for C and P is a permutation matrix. Indeed, for usual LDPC parameters,
finding low weight codewords in the dual of C′ is feasible. In [3], a proposal to fix
this problem is suggested. It consists in replacing the permutation matrix P by
an invertible matrix Q of some small constant row weight m and in choosing S
sparse. For properly chosen w and m, the task of finding codewords of weight wm
in C′ becomes unfeasible. Nevertheless, the unfortunate choices for the structure
of these matrices allowed to successfully cryptanalyze the scheme [32]. In [2], an
improved variant suggests a dense matrix S and a more general construction for
Q, and it seems to be immune to the attack of [32]. The authors also propose a
quasi-cyclic variant with compact keys of 48384 bits3, for 80-bits of security.

3 Note that the authors did not consider the use of CCA-2 security conversions, which
would allow public-keys in systematic form reducing the key-size to 12096 bits.

2



Our contribution. Our first observation is that none auxiliary matrix of
constant row weight (e.g. the matrix Q of [2]) is needed to instantiate the
McEliece scheme with LDPC codes. Simply increasing moderately the length
and the row weight of the secret sparse parity-check matrix is enough to avoid
all known message attacks (based on standard decoding algorithms) and key re-
covery attacks (aiming at finding low weight codewords in the dual of the public
code). We call these codes Moderate Parity Check (MDPC) codes4 to insist on
the fact that they admit a parity-check which is only moderately sparse. Al-
though this leads to a significantly degraded error correction performance (when
compared to standard LDPC codes), it is still sufficiently good to prevent the
effectiveness of standard decoding algorithms. Note that our proposal is scalable
for any security level and code rate.

We also give a quite satisfactory security reduction towards the well studied
syndrome decoding problem. To achieve this goal, we make a single, natural
assumption: distinguishing an MDPC code from a random linear code amounts
to being able to ascertain the existence of low weight codewords in its dual
code. This provides a strong argument in favor of the security of our scheme.
Furthermore, adding a quasi-cyclic structure, our proposal provides extremely
compact keys: for 80-bits of security, the public-key has only 4801 bits.

2 Preliminaries

We gather here a few basic definitions which are used in this paper.

Definition 1 (Hamming distance and weight). The Hamming weight (or
simply weight) of a vector x ∈ Fn2 is the number wt(x) of its nonzero components.

Definition 2 (Linear codes). A binary (n, r)-linear code C of length n, dimen-
sion n− r and codimension r, is a (n− r)-dimensional vector subspace of Fn2 . It

is spanned by the rows of a matrix G ∈ F(n−r)×n
2 , called a generator matrix of C.

Equivalently, it is the kernel of a matrix H ∈ Fr×n2 , called a parity-check matrix

of C. The codeword c ∈ C of a vector m ∈ F(n−r)
2 is c = mG. The syndrome

s ∈ Fr2 of a vector e ∈ Fn2 is s = HeT . The dual C⊥ of C is the linear code
spanned by the rows of any parity-check matrix of C.

Definition 3 (Quasi-cyclic code). An (n, r)-linear code is quasi-cyclic (QC)
if there is some integer n0 such that every cyclic shift of a codeword by n0 places
is again a codeword.

When n = n0p, for some integer p, it is possible and convenient to have both
generator and parity check matrices composed by p × p circulant blocks. Note

4 This terminology has already been proposed before in the communications theory
literature for the very same concept [33]. The authors showed that certain quasi-
cyclic MDPC codes may perform well at moderate lengths for correcting a rather
large number of errors by using a variation of the standard belief propagation taking
advantage of the quasi-cyclic structure.
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that a circulant block is completely described by its first row (or column) and
the algebra of p × p binary circulant matrices is isomorphic to the algebra of
polynomials modulo xp − 1 over F2, allowing efficient computations.

Definition 4 (LDPC/MDPC codes). An (n, r, w)-LDPC or MDPC code is
a linear code of length n, codimension r which admits a parity-check matrix of
constant row weight w.

LDPC and MDPC codes only differ in the magnitude of the row weight w.
While LDPC codes have small constant row weights (usually less than 10), we
assume for MDPC codes row weights which scale in O(

√
n log n). When these

codes are also quasi-cyclic, we call them (n, r, w)-QC-LDPC or QC-MDPC codes.

3 Moderate Density Parity-Check McEliece variants

In this section, we present the construction of MDPC and QC-MDPC codes,
then the description of our McEliece variant (which can be instantiated either
with an MDPC or a QC-MDPC code).

3.1 (n, r, w)-MDPC code construction.

A random (n, r, w)-MDPC code is easily generated by picking a random parity-
check matrix H ∈ Fr×n2 of row weight w. With overwhelming probability this
matrix is of full rank and the rightmost r × r block is always invertible after
possibly swapping a few columns.

3.2 (n, r, w)-QC-MDPC code construction.

We are specially interested in (n, r, w)-QC-MDPC codes where n = n0p and
r = p. This means that the parity-check matrix has the form

H = [H0|H1| . . . |Hn0−1] ,

where Hi is a p× p circulant block.
We define the first row of H picking a random vector of length n = n0p and

weight w. The other r− 1 rows are obtained from the r− 1 quasi-cyclic shifts of
this first row. Each block Hi will have a row weight wi, such that w =

∑n0−1
i=0 wi.

In general, a smooth distribution is expected for the sequence of wi’s.
A generator matrix G in row reduced echelon form can be easily derived from

the Hi’s blocks. Assuming the rightmost block Hn0−1 is non-singular (which
particularly implies wn0−1 odd, otherwise the rows of Hn0−1 would sum up to
0), we construct a generator-matrix as follows.

G =

 I

(H−1n0−1 ·H0)T

(H−1n0−1 ·H1)T

...
(H−1n0−1 ·Hn0−2)T
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3.3 MDPC/QC-MDPC McEliece variant

1. Key-Generation.
(a) Generate a parity-check matrixH ∈ Fr×n2 of a t-error-correcting (n, r, w)-

MDPC or (n, r, w)-QC-MDPC code.

(b) Generate its corresponding generator matrix G ∈ F(n−r)×n
2 in row re-

duced echelon form.
The public-key is G and the private-key is H.

2. Encryption. To encrypt a plaintext m ∈ F(n−r)
2 into x ∈ Fn2 :

(a) Generate e ∈ Fn2 of wt(e) ≤ t at random.
(b) Compute x← mG+ e.

3. Decryption. Let ΨH be a t-error correcting LDPC decoding algorithm equipped

with the knowledge of H. To decrypt x ∈ Fn2 into m ∈ F(n−r)
2 :

(a) Compute mG← ΨH(mG+ e).
(b) Extract the plaintext m from the first (n− r) positions of mG.

Note that this description gets rid5 of the usual scrambling matrix S and
permutation matrix P . Note also that the use of a CCA2-secure conversion, e.g.
[23], allows for G in systematic-form without leading to security-flaws. Thus the
QC-MDPC variant has a public-key of size (n − r) and the MDPC variant of
size r(n − r). In practice, the MDPC variant obtains huge keys whilst the QC-
MDPC allows for extremely compact keys. Regarding the quasi-cyclic variant,
note that the state of the art indicates that a quasi-cyclic structure, by itself,
does not imply a significant improvement for adversaries. All previous attacks
on compact-keys McEliece variants are based on the combination of a quasi-
cyclic/dyadic structure with some algebraic code information.

4 Decoding MDPC codes

Our MDPC codes will be decoded with a variant of the Gallager’s bit flipping
algorithm [20]. This iterative decoding algorithm provides an error-correction
capability which increases linearly with the code-length and decreases more or
less linearly with the weight of the parity-checks. Thus, when moving from LDPC
to MDPC codes, a degradation in the error-correcting capability is expected.
However in cryptography we are not necessarily interested in correcting a large
number of errors, but only a number which ensures an adequate security level.

Gallager’s bit flipping algorithm works as follows. At each iteration, the num-
ber of unsatisfied parity-check equations associated to each bit of the message is
computed. Each bit associated to more than b unsatisfied equations is flipped and
the syndrome is recomputed. This process is repeated until either the syndrome

5 A folklore reasoning assigns security functions to those matrices. However it is enough
that the public-key does not reveal any useful information for decoding, a condition
satisfied by the dense public matrix.
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becomes zero or after a maximum number of iteration. It is easy to see that
this algorithm has complexity O(nwI), where I stands for the average number
of iterations. Due to the increased row weight (and the existence of short-cycles
in the corresponding Tanner graph), MDPC codes may lead to an increased
number of iterations. To minimize this problem, we suggest a modification for
choosing b. Below a few possibilities for this choice and our approach:

I. Precomputing a sequence of b’s (see Inequality 4.16, pg. 46, of [20]).
II. In [22], at each iteration, b is chosen as the maximum number of unsatisfied

parity-check equations, here denoted by Maxupc.
III. Our approach is: b = Maxupc − δ, for a variable small integer δ.

The main feature of each approach is: Approach I uses an estimation for b and
therefore avoids its computation at each iteration. Approach II is more general
than I, leading to a better error-correcting capability at the price of an increased
number of iterations. Finally, Approach III combines the benefits from I and II:

– It reduces the overall number of iterations obtained by Approach II because
much more bits are flipped at each iteration.

– In the case of a decoding failure, we suggest to decrease the value of δ by 1
and to restart the process. Obviously, when δ = 0, we are back to Approach
II ensuring at least its error-correcting capability.

The optimal initial value for δ is determined empirically. For the parameters
suggested in Section 6, a good choice is δ ≈ 5, reducing the number of iterations
from ∼ 65 to less than 10.

A final remark on this decoding algorithm: note that the value of Maxupc

tends to decrease at each iteration. Another bit flipping variant might use this
information to estimate the sequence of Maxupc’s, avoiding its computation at
each iteration. However, since it is an estimation, this may increase the average
number of iterations.

4.1 Error-correction capability estimation

To estimate the error correction capability of Gallager’s bit-flipping algorithm
for MDPC codes we begin with the Gallager’s analysis presented in [20], which
gives a threshold for the number of errors that an (n, r, w)-LDPC code may
correct. In Appendix A, we describe this technique. Although this analysis is
not quite precise for MDPC codes (due to the existence of short cycles in the
associated Tanner graph), it provides an upper bound for its error correction
capability. Alternatively, it is possible to estimate the quality of an MDPC code
(in correcting a given number of errors) in terms of its decoding failure rate
(DFR), which is the fraction of decoding failures in a given number of decoding
tests. Thus a valid strategy for choosing parameters is to start with the theo-
retical upper-bound and decrease it until reaching an adequate DFR. Using this
approach, we validate that the parameters of Section 6 reach a DFR below 10−7.
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4.2 Dealing with decoding failures

As discussed above, MDPC codes (like any other code that use probabilistic
decoding techniques) admit a non-zero decoding failure probability. In cryptog-
raphy, this must be treated. Next we present three approaches to deal with it.

A. A straightforward approach consists in conservatively choosing the number
of errors so that the decoding failure rate becomes negligible. For example, a
common approach in error-correcting systems consists in using codes whose
DFR is smaller than the machine failure rate where the system is deployed.

B. A second approach deals with these unlikely events on the fly. In the case of
a decoding failure, more sophisticated decoding algorithms with better error
correction capability can be used, e.g. [21]. Note however that this comes at
the price of a significantly increased decoding complexity.

C. When the application allows, a third approach consists in using a CCA-2
security conversion, e.g. [23]. In short, a CCA2-security conversion uses hash
functions and random sequences to ensure the indistinguishability of the
encrypted messages. Thus, in the case of a decoding failure, new encryp-
tions can be requested. Since the encrypted messages behave like random
sequences, the adversary cannot extract information from this redundancy.

5 Security Assessment

This section is divided into security reduction and practical security assessment.

5.1 Security reduction

By security reduction, we mean a proof that an adversary able to attack the
scheme is able to solve some (presumably hard) computational problem with
a similar effort. We start by giving the generic security reduction presented in
[37] for the Niederreiter cryptosystem [31]. This scheme is equivalent in terms
of security to the McEliece cryptosystem [25]. It is easy to see that this security
reduction also holds for the McEliece scheme, at the price of more involved prob-
ability space and statements. After the generic security reduction, we provide
the reduction regarding our proposal.

Notation:

– Fn,r,w: a t-error correcting code family which can be either
(n, r, w)-MDPC or (n, r, w)-QC-MDPC. We assume the public-key
is a parity check matrix of some code in Fn,r,w.

– Kn,r,w: the key space of Fn,r,w.

– Hn,r ⊃ Kn,r,w: the apparent key space of Fn,r,w.

• MDPC case: Hn,r is the set of all full rank matrices in Fr×n2 .
• QC-MDPC case: Hn,r is the set of all full rank matrices in
Fr×n2 , restricted to block circulant matrices.
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Generic Reduction. Let Sn(0, t) denote the sphere centered in zero of radius
t in the Hamming space Fn2 and let Ω denote the probability space consisting
of the sample space Hn,r × Sn(0, t) equipped with a uniform distribution. We
define:

Distinguisher. A program D : Hn,r −→ {0, 1} is a (T, ε)-distinguisher for
Kn,r,w (vs. Hn,r) if it runs in time at most T and the advantage of D for
Kn,r,w

Adv(D,Kn,r,w) = |Pr
Ω

[D(H) = 1 | H ∈ Kn,r,w]− Pr
Ω

[D(H) = 1]|

is greater than ε.
Decoder. A program φ : Hn,r × Fr2 −→ Sn(0, t) is a (T, ε)-decoder for (Hn,r, t)

if it runs in time at most T and its success probability

Succ(φ) = Pr
Ω

[φ(H, eHT) = e]

is greater than ε.
Adversary. A program A : Hn,r ×Fn2 −→ Sn(0, t) is a (T, ε)-adversary against
Kn,r,w-Niederreiter if it runs in time at most T its success probability

Succ(A,Kn,r,w) = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,r,w]

is greater than ε.

An adversary against Kn,r,w-McEliece could be defined as a program Hn,r ×
Fn2 → F(n−r)

2 ×Sn(0, t) of probability space Ω and sample set Hn,r×Fk2×Sn(0, t).
As stated before, this setup would only make all the statements and proofs more
cumbersome. Next, the proposition which supports the security reduction.

Proposition 1 ([37]). Given the security parameters (n, r, w) and t, if there
exists a (T, ε)-adversary against Kn,r,w-Niederreiter, then there exists either a
(T, ε/2)-decoder for (Hn,r, t) or a (T + O(n2), ε/2)-distinguisher for Kn,r,w vs.
Hn,r.

Proof. Let A : Hn,r × Fr2 → Sn(0, t) be a (T, ε)-adversary against Kn,r,w-
Niederreiter. We define the following distinguisher:

D: input H ∈ Hn,r.
e← Sn(0, t) //pick randomly and uniformly

if (A(H, eHT) = e) then return 1 else return 0.

which implies:

Pr
Ω

[D(H) = 1] = Pr
Ω

[A(H, eHT) = e]

= Succ(A)

Pr
Ω

[D(H) = 1 | H ∈ Kn,r,w] = Pr
Ω

[A(H, eHT) = e | H ∈ Kn,r,w]

= Succ(A,Kn,r,w)
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thus Adv(D,Kn,r,w) = |Succ(A,Kn,r,w)− Succ(A)| and particularly:

Adv(D,Kn,r,w) + Succ(A,Kn,r,w) ≥ Succ(A)

Since Succ(A,Kn,r,w) ≥ ε, we either have Adv(C,Kn,r,w) or Succ(A) greater
or equal to ε/2 (recall that both are positive). The running time of D is equal
to the running time of A increased by the cost for picking e and computing the
product eHT, which cannot exceed O(n2). So either A is a (T, ε)-decoder for
(Hn,r, t) or D is a (T +O(n2), ε/2)-distinguisher for Kn,r,w. ut

A distinguisher for Kn,r,w vs. Hn,r and a decoder for (Hn,r, t) provide a
solution respectively to the two following problems:

Problem 1 (Code distinguishing problem).
Parameters: Kn,r,w, Hn,r.
Instance: a matrix H ∈ Hn,r.
Question: is H ∈ Kn,r,w?

Problem 2 (Computational syndrome decoding problem).
Parameters: Hn,r, an integer t > 0.
Instance: a matrix H ∈ Hn,r and a vector s ∈ Fr2.
Problem: find a vector e ∈ Sn(0, t) such that eHT = s.

Thus it is enough to assume that none of those problems can be solved
efficiently to ensure that no efficient adversary against the scheme exists.

The MDPC and the QC-MDPC cases. All the statements in this section
are valid in both (MDPC and QC-MDPC) cases. We introduce an additional
problem which consists in deciding the existence of words of given weight in a
given linear code. Note that the code we consider below has a generator matrix
H ∈ Hn,r, it is thus the dual of a code in Fn,r,w.

Problem 3 (Codeword existence problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Question: is there a codeword of weight at most w in the code of generator
matrix H?

Ideally, we would like to replace Problem 1 by Problem 3 in Proposition 1.
Unfortunately, one would need to replace the distinguisher advantage by the
quantity:

Adv(E ,Kn,r,w) = |Pr
Ω

[E(H) = 1 | H ∈ Kn,r,w]− Pr
Ω

[E(H) = 1]|

where E denotes a program deciding the existence of a word of weight w in a given
code. However this quantity is not directly related to the hardness of Problem 3
and therefore cannot be considered. Nevertheless we reach our purpose if we
assume the following assumption.
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Assumption 1 Solving Problem 1 for parameters (Hn,r,Kn,r,w) is not easier
than solving Problem 3 for the parameters (Hn,r, w).

Within this assumption we could modify the reduction to a claim that the
Kn,r,w-McEliece scheme is at least as hard as either Problem 2 and Problem 3.
However we can do much better. Consider the computational problem associated
to Problem 3 as follows.

Problem 4 (Codeword finding problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Problem: find a codeword of weight at most w in the code of generator-matrix
H.

This problem is polynomially equivalent to Problem 3. Furthermore, note
that Problem 4 is polynomially equivalent to Problem 2.

Lemma 1. Problem 3 is polynomially equivalent to Problem 4.

Proof. Let Gn,k denote a subset of Fk×n2 composed by full rank matrices. A
matrix G ∈ Gn,k is the generator matrix of some binary linear code C of length
n and dimension k. For any 1 ≤ i ≤ n, we denote Ci the code shortened at i,
that is

Ci = {c = (c1, . . . , cn) ∈ C | ci = 0}.

We will denote by Gi a generator matrix of Ci. We assume we have a solution
to Problem 3, that is a program E : Gn,k → {0, 1} such that E(G) = 1 if and
only if there exists a word of weight w in the code spanned by G. The following
program called on input G such that E(G) = 1

A: input G ∈ Gn,k
for i from 1 to n while G has a rank > 1
if E(Gi) = 1 then G← Gi // false at most w times

return the first row of G of weight at most w

will return a word of weight at most w in the code spanned by G. It calls
the program E at most n times. Conversely a solution to Problem 4 obviously
provides a solution to Problem 3.

ut

Lemma 2. Problem 4 is polynomially equivalent to Problem 2.

Proof. For a matter of simplicity, we rewrite Problem 4 (codeword finding) to re-
ceive as input the parity-check matrix of the code, instead of its generator-matrix.
Obviously, both descriptions are polynomially equivalent since one matrix can
be obtained from the other in polynomial time. Let Hn,r denote a subset of Fr×n2

composed by full rank matrices. A matrix H ∈ Hn,r is the parity check matrix
of some binary linear code C of length n and dimension k = n− r.
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Problem 4 (Codeword finding problem).
Parameters: Hn,r, an integer w > 0.
Instance: a matrix H ∈ Hn,r.
Problem: find a codeword of weight w in the code of parity check matrix H.

1. Let us assume that we have a program B which solves the Problem 4 for
parameters (Hn+1,r, w + 1), we define the following program

A: input H ∈ Hn,r, s ∈ Fr2
H ′ ← (H | sT ) // s serves as (n+ 1)-th column of H ′

e← B(H ′) // e = (e1, . . . , en, en+1)
if en+1 = 1 then return (e1, . . . , en) else fail

If w + 1 is smaller than the minimum distance of the code of parity check
matrix H, the call A(H) will never fail. This provides a solution to Problem 2
with parameters (Hn,r, w).

2. Conversely, let us assume that we have a program A which solves the Prob-
lem 2 for parameters (Hn,r+1, w)

B: input H ∈ Hn,r
(g1, . . . , gk)← a basis of C // where C is the code of parity check matrix H
for j from 1 to n
H ′ ← parity check matrix of

⊕
i6=j〈gi〉 // subcode of C without gj

if A(H ′, gjH
′T) 6= fail then

z ← A(H ′, gjH
′T)

return z + gj
fail // A fails to decode for all j

If there exists a codeword of weight w, the decoder A will succeed for at
least one value of j. The above program provide a solution to Problem 4 for
parameters (Hn,r, w).

ut

Within Assumption 1, Lemma 1 and Lemma 2, we are able to produce strong
security statements.

Proposition 2. Given Assumption 1:

– Breaking the MDPC variant of McEliece or Niederreiter is not easier
than solving the syndrome decoding problem for a random code.

– Breaking the QC-MDPC variant of McEliece or Niederreiter is not easier
than solving the syndrome decoding problem for a random quasi-cyclic
linear code.

Proof. This follows directly from Proposition 1 and the polynomial equivalence
of problems 3–4 (Lemma 1) and 4–2 (Lemma 2).

ut
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5.2 Practical security

In this section, we analyze the practical attacks against the proposed scheme.
Key attacks aim either at recovering the secret decoder or simply distinguishing
the public-key from a random matrix (what invalidates the security reduction).
Message attacks try to decode a noisy codeword that contains a message.

Consider the system as an instantiation of the McEliece (or Niederreiter)
scheme with an (n, r, w)-MDPC code, possibly quasy-cyclic, correcting t errors.
We denote C the hidden MDPC code defined by the public-key (a generator
matrix of C for McEliece or a parity-check matrix of C for Niederreiter). We
claim that the best attacks for each scenario are:

– Key distinguishing attack: exhibit one codeword of C⊥ of weight w.
– Key recovery attack: exhibit r codewords of C⊥ of weight w.
– Decoding attack: decode t errors in a (n, n− r)-linear code.

For all those attacks we have to solve either the codeword finding problem or
the computational syndrome decoding problem. For both problems (and for the
considered parameters) the best technique currently known is information set de-
coding (ISD) [34]. In today’s state-of-the-art the best variants derive from Stern’s
collision decoding algorithm [40]. There have been numerous contributions and
improvements [14, 12, 11, 17, 9] until the recent asymptotic improvements [27, 6].
For selecting our parameters, we have analyzed all of them and an unpublished
non-asymptotic analysis of [6] gives slightly lower workfactors (closed formulas6

in Appendix B). ISD workfactors are commonly used to estimate the practical
security of code-based schemes. However there is a novelty related to the practi-
cal security of our proposal. The problem of finding a single low weight codeword
in an MDPC code may admit many solutions.

We denote by WFisd(n, r, t) the cost for decoding t errors (or finding a code-
word of weight t) in an (n, r)-binary linear code when there is a single solution of
the problem. We start by giving a basic description of the ISD algorithms. These
algorithms assume a pattern for the sought error vector and it proceeds analyz-
ing a certain set of candidates until a solution is found. This set of candidates
is usually stored in lists of a certain size L and each candidate has a probabil-
ity P to produce the solution. When the algorithm parameters are optimal, the
workfactor WFisd(n, r, t) matches the ratio L/P , up to a small factor.

In [38], also mentioned by Decoding One Out of Many setting (DOOM), the
gains when the decoding problem have multiple solutions and the adversary is
satisfied with a single solution are analyzed. In short, when the problem has
Ns solutions, the probability of success P increases by a factor Ns (as long as
NsP � 1) and when Ni instances are treated simultaneously the list size L
increases at most by a factor

√
Ni. Therefore the DOOM technique [38] provides

a gain7 of Ns/
√
Ni. This gain impacts on the practical security of our MDPC

6 This is part of an unpublished work in progress.
7 In general, the real gain is in fact slightly smaller because these algorithms depend

on optimal parameters which are not the same for multiple instances.
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and QC-MDPC McEliece variants. Below we discuss these gains regarding each
kind of attack against our scheme.

Key Distinguishing Attack. We assume that producing one word of weight w in
the dual code C⊥ is enough to distinguish a public-key from a random matrix.
In this scenario, an adversary applying ISD to the all-zero syndrome will face a
problem with r solutions (the r rows of the sparse parity-check matrix). Then
Ns = r and Ni = 1 and the distinguishing attack cost drops by a factor of r:

WFdist(n, r, w) =
WFisd(n, n− r, w)

r
.

In the quasi-cyclic case, there is no obvious speedup and the distinguishing attack
has the same cost as above.

Key Recovery Attack. To recover an equivalent private-key, it is enough to re-
cover all (or almost all) low weight parity-check equations. All ISD variants are
randomized and thus we can make r independent calls to a codeword finding al-

gorithm. Each call costs on average WFisd(n,n−r,w)
r because there are r codewords

of weight w. Therefore on average, recovering all equations will cost:

WFreco(n, r, w) = r · WFisd(n, n− r, w)

r
= WFisd(n, n− r, w).

In the quasi-cyclic case, any word of low weight will provide the sparse matrix
and thus the key recovery attack is no more expensive than the key distinguishing
attack.

WFQC
reco(n, r, w) = WFQC

dist(n, r, w) =
WFisd(n, n− r, w)

r
.

Decoding Attack. In the MDPC case, the message security is related to the
hardness of decoding t errors in a seemingly random binary linear code of length
n and codimension r:

WFdec(n, r, t) = WFisd(n, r, t).

In the quasi-cyclic case, any cyclic shift of the target syndrome s ∈ Fr2 provides
a new instance whose solution is equal to the one of the original syndrome, up to
a block-wise cyclic shift. The number of instances and the number of solutions
are thus Ni = Ns = r. Therefore a factor

√
r is gained:

WFQC
dec(n, r, t) ≥ WFisd(n, r, t)√

r
.

In summary, to compute the cost of each attack, we considered the non-
asymptotic analysis of [6] decreased by the possible gains obtained by the DOOM
technique described above. Note that the complex structure of the ISD variant [6]
(an increased number of initial lists, pairs of non-disjoint lists and the probability
of overlapped positions) might prejudice the maximal gain claimed for DOOM.
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MDPC QC-MDPC

Key distinguishing
1

r
WFisd(n, n− r, w)

1

r
WFisd(n, n− r, w)

Key recovery WFisd(n, n− r, w)
1

r
WFisd(n, n− r, w)

Decoding WFisd(n, r, t)
1√
r

WFisd(n, r, t)

Table 1. Best attacks for code-based encryption schemes using t-error correcting
(n, r, w)-MDPC (or QC-MDPC) codes

However, since the difference of the work-factor obtained by the ISD variant
[6] to the work-factor of less complex variants (which may achieve the DOOM
maximal gain) is marginal, it is reasonable to use it as a secure lower bound.

Example. Let n0 = 2, n = 9602, r = 4801, w = 90, t = 84. The non-
asymptotic analysis of [6] gives a cost of 292.70 for key-recovery and 287.16 for
decoding attacks. Decreasing it by the gains of the DOOM setting (a factor of
4801 and

√
4801), the final workfactors are 280.47 and 281.04.

A final remark on practical security: we choose r as a prime number to avoid
attacks exploiting non-prime quasi-cyclicity [18, 26].

6 Practical Application

In Table 2, we suggest parameters for our quasi-cyclic variant, the most relevant
for practical applications. For each security level, we propose three parameter
sets (n0 = 2, n0 = 3 and n0 = 4), leading to different code rates (1/2, 2/3, 3/4,
respectively). The column r also gives the syndrome size in bits.

As stated before, the security assessment is based on the workfactor of the
ISD variant [6] decreased by the possible gains obtained by the DOOM setting
[38]. These QC-MDPC codes attain decoding failure rates below 10−7, using our
bit-flipping variant. Note that an MDPC code of same parameters might present
a worse DFR due to the non-regularity of the column weights, but significant
improvements can be obtained with slightly increased code-lengths.

The MDPC variant has a huge public-key of r(n − r) bits, whilst the QC-
MDPC allows for an extremely compact public-key of (n− r) bits. Table 3 pro-
vides a key-size comparison of our QC-MDPC proposal, the potential8 key-size
of the QC-LDPC variant [2], the key-size of the Quasi-Dyadic Goppa McEliece
variant [29] and the original McEliece scheme using updated parameters [11].

Regarding the complexity efficiency of our proposal, the key-generation step
depends only on the generation of random word(s) and on (quasi-cyclic) block
products. The encryption reduces to a matrix-vector product and a vector addi-
tion. For decryption, a non-optimized C++ implementation running at an Intel

8 In [2], the use of a CCA-2 secure conversion is not considered, which would allow
public-keys in systematic form. To have a fair comparison, we recompute their key-
sizes assuming matrices in systematic form.
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Xeon CPU @3.20GHz decrypts in less than 3 milliseconds for parameters of 80-
bits of security. We prefer to omit these timings since serious optimizations may
lead to much better results.

Table 2. Suggested parameters. Syndrome and key-size given in bits.

Level security n0 n r w t QC-MDPC key-size

80 2 9602 4801 90 84 4801
80 3 10779 3593 153 53 7186
80 4 12316 3079 220 42 9237

128 2 19714 9857 142 134 9857
128 3 22299 7433 243 85 14866
128 4 27212 6803 340 68 20409

256 2 65542 32771 274 264 32771
256 3 67593 22531 465 167 45062
256 4 81932 20483 644 137 61449

Table 3. Key-size comparison. Key-sizes given in bits.

Level security QC-MDPC QC-LDPC [2] QD-Goppa [29] Goppa [11]

80 4801 12096 20480 460 647
128 9857 – 32768 1 537 536
256 32771 – 65536 7 667 855

Note that our system can be scaled to meet arbitrarily large security require-
ments. It is rather straightforward to prove that the number of errors which can

be corrected by the bit flipping algorithm is of order n(1+o(1)) ln(w(1−R))
4w , where

n is the code-length, w the density of the parity-check matrix, R is the rate of
the code. Message recovery attacks and key recovery attacks are of the same

order of complexity when w is chosen of the form (1 + o(1))
√

n lnn ln(1−R)
lnR . Thus

choosing an (n, (1−R)n,w)-code with w of this form allows to reach arbitrarily
large security, when n goes to infinity.

7 Conclusion

MDPC codes seem to be very convenient for cryptographic purposes. Under the
reasonable assumption that distinguishing a (quasi-cyclic) MDPC code from a
(quasi-cyclic) random linear code amounts to being able to ascertain the exis-
tence of low weight codewords in its dual code, we show that these codes reduce
the McEliece key-distinguishing problem to the problem of decoding random
(quasi-cyclic) linear codes. Thus the security of our McEliece variant relies only

15



on a single, well studied coding-theory problem. This provides a strong argu-
ment in favor of our scheme and must be compared to the scenario for Goppa
codes at the moment. Distinguishing Goppa codes is not necessarily a hard prob-
lem [15]. Although this does not necessarily lead to a practical attack, it shows
that algebraic codes do not seem to be the optimal choice for cryptography.

Besides, adding a quasi-cyclic structure, our variant provides extremely com-
pact keys: 4801 bits for 80-bits of security. Note that the state of the art indicates
that a quasi-cyclic structure, by itself, does not imply a significant improvement
for an adversary. All previous attacks on compact-keys McEliece variants are
based on the combination of a quasi-cyclic/dyadic structure with some alge-
braic code information. Considering the way we generate our codes, this last
ingredient simply does not exist. Furthermore, our variant reduces all processes
(key-generation, encryption and decryption) to very low-complexity operations.
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A Computing the threshold for the Bit-Flipping
algorithm

A way for estimating the threshold of the bit-flipping algorithm consists in esti-
mating the probability of a bit to be in error after a given number of algorithm
iterations. When such probability converges to zero, reliable error correction can
be achieved. Below we discuss a weak bound for this probability [20].

We denote by Pi the probability of a bit to be in error after i iterations of the
decoding algorithm. When the code-length is supposed to be infinite and when
there are no cycles of length less or equal to 2i in the Tanner graph associated to
the parity-check matrix, this probability does not depend on a particular position
[35]. These conditions can be relaxed and a finite analysis of the decoding process
can be obtained, but this is beyond the scope of this work. Furthermore, practical
parameters can be refined until reaching an adequate decoding failure rate.

18



We denote by H the parity-check matrix of an (n, r, w)-MDPC code. Suppose
we are verifying the convergence of Pi, when messages containing t errors are
received (thus P0 = t

n ). To describe how pi evolves, we have to introduce some
additional notation. Let m be the total number of entries equal to 1 in H. Let
mi be the total number of entries equal to 1 of H which appear in a column of

weight i and let λi
def
= mi

m . Notice that mi is also equal to i times the number
of columns of weight i in H. In the quasi-cyclic case, note that m = rw and
mi =

∑n0−1
j=0 w2

j1wj=i, where 1wj=i stands for the indicator of the event wj = i
(i.e. it is equal to 1 if wj = i and 0 otherwise). With this notation we have

pi+1 = p0 − p0
∑
d

λd

d−1∑
l=bd

(
d− 1

l

)[
1 + (1− 2pi)

w−1

2

]l [
1− (1− 2pi)

w−1

2

]d−l−1

+(1− p0)
∑
d

λd

d−1∑
l=bd

(
d− 1

l

)[
1− (1− 2pi)

w−1

2

]l [
1 + (1− 2pi)

w−1

2

]d−l−1
In [20], the integer bd is chosen as an integer between d − 1 and d/2 which

aims at minimizing the function pi+1.

1− p0
p0

≤
[

1 + (1− 2pi)
w−1

1− (1− 2pi)w−1

]2bd−d+1

The threshold of an (n, r, w)-MDPC code for the original bit-flipping algo-
rithm is obtained as the maximal integer t such that p0 = t/n and pi converges
to 0.

B Computing the work-factor of the ISD variant [6].

Consider H ∈ Fr×n2 , s ∈ Fr2 and k = n− r. We are interested in finding a vector
e ∈ Fn2 of weight w such that HeT = s. Equivalently, we want to find a linear
combination of w columns of H which when added to s gives a 0-vector. Below
we briefly describe the algorithm proposed in [6] for solving this problem. The
algorithm is divided in two steps: the setup and the search step. The former
consists in randomly permute the columns of H and then it proceeds with a
partial Gaussian elimination on the rows of H. More precisely, let l be an optimal
algorithm parameter, we compute the following matrix H ′ ∈ Fr×n2 from H:

H ′ =

[
I(r−l)×(r−l)

0l×(r−l)
Qr×(k+l)

]
where I stands to an identity block and 0 to a zero block. The second step
depends on the algorithm parameter p < w. The value of p defines the weight
distribution in the sought error vector. More precisely, we will looking for vectors
of weight w−p in the first r−l positions and of weight p in the last k+l positions.
A valid strategy for finding those vectors consists in computing all possible linear
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combinations of p columns in Q and then select those one which sums up to a
vector coinciding to the last l positions of the syndrome. We find a solution when
the sum of such combination plus the syndrome gives a vector of weight exactly
w− p. Note that the sum of each combination plus the syndrome gives a vector
of weight 0 in the last l positions. Thus the weight of each combination plus the
syndrome will be concentrated in the first r − l positions. When this part has
weight exactly w−p, we can add the w−p columns from the identity part of H ′

which erase these positions. In summary, we have selected w − p columns from
the first r − l columns of H ′ plus p columns from the last k + l columns of H ′

which sum up to a vector of weight w.

An improvement in this strategy is achieved using a meet-in-the-middle strat-
egy. It is better to compute two lists L1, L2 of all possible linear combinations
of p/2 columns in Q, instead of computing all possible linear combinations of p
columns in Q. This approach takes advantage from the birthday-paradox. Then
we select the sums { a + b | a ∈ L1, b ∈ L2 } that have weight exactly p. Note
that the fact of L1 and L2 be not disjoint might lead to multiple representations
of the same solution. The attack presented in [6] uses this approach with a new
advantage: they allow elements in L1 and L2 of weight p/2 + ε, for some small
integer ε. Basically they are also considering the case when ε positions of a are
erased by ε positions of b (i.e. 1 + 1 = 0 for binary codes), which still gives a
sum of weight p. The authors propose to apply this strategy not only once, but
a few times, initially constructing intermediate solutions in the hope that the
final solution will be the combination of these intermediate ones. This leads to
an algorithm which can be divided in 4 layers, we label it from 3 (the initial) to
0 (the final layer). The third layer has 4 pairs of two disjoint lists each one. The
second layer has two pairs of lists. The first layer has one pair and the layer 0
has the final list. Next we describe the cost for each step and then our estimation
for the work-factor of [6].

Let p, l, p1, p2, ε1, ε2, r1, r2 be optimal algorithm parameters such that:
p1 = p/2 + ε1, p2 = p1/2 + ε2 and l > r1 > r2. In the initial layer, we produce
4 pairs of 2 disjoint lists each one. Each list has the linear combination of p2/2

columns of Q. Thus the size of each list is: S3 =
(
(k+l)/2
p2/2

)
. We develop the

discussion for a pair of lists L3,1 and L3,2, but the same apply for the other
three pairs.

For the next layer, we select all sums {a + b | a ∈ L3,1, b ∈ L3,2} of weight
p2 = p1/2 + ε2 and which coincide with the syndrome in the last r2 positions.

Thus the size of each list is: S2 = (S3)
2

2r2 . Let the result be L2,1 and let L2,2 be
the merge from another pair in the previous layer.

For the next layer, we select all sums {a + b|a ∈ L2,1, b ∈ L2,2} of weight
p1 = p/2+ε1 and which coincide with the syndrome in the last r1 positions. Since
all elements already coincide in the last r2 positions, and r1 > r2, we have to
discard only 2r1−r2 from all possibilities obtained from L2,1×L2,2. Thus the cost

of merging these lists is C2 = (S2)
2

2r1−r2
. Since L2,1 and L2,2 are not disjoint, we can

obtain multiple representations of the same partial solution. We must proceed
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with a single representation of each solution. The rate of distinct solutions is:

µ2 =

(
k+l
ε2

)(
k+l−ε2
p2−ε2

)(
k+l−p2
p2−ε2

)
(
k+l
p2

)2
The maximal size of this list is Smax1 =

(k+l
p1

)
2r1 . Thus the size of the list of

distinct solutions is S1 = min (µ2C2, S
max
1 ). Let the result be L1,1 and consider

L1,2 be the result from the other pair in the second layer. Finally, we select all
sums {a+b|a ∈ L1,1, b ∈ L1,2} of weight p and which coincide with the syndrome
in the last l positions. Since all elements already coincide in the last r1 positions,
and l > r1, we have to discard only 2l−r1 from all possibilities obtained from

L1,1×L1,2. Thus the cost of merging these lists is C1 = (S1)
2

2l−r1
. Again, since L1,1

and L1,2 are not disjoint, we can obtain multiple representations of the same
solution, but we must consider a single representation of each solution. The rate
of distinct solutions is:

µ1 =

(
k+l
ε1

)(
k+l−ε1
p1−ε1

)(
k+l−p1
p1−ε1

)
(
k+l
p1

)2
The maximal size of the final list is Smax0 =

(k+l
p )
2l

. Thus the size of the final
list of distinct solutions is S0 = min (µ1C1, S

max
0 ). Considering the cost for the

Gaussian elimination as K0 = (n+1)(n−k)
log2(n+1) [1] and the cost of merging two lists

being twice the cost of building a list (we use coefficients K1 = 1 and K2 = 2 to
make this adjustment), the cost of each iteration (an attempt of the algorithm
in finding a solution) is:

WF iteration(n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) = K0+8S3K1+4C3K2+2C2K2+C1K2

The number of iterations that the algorithm must perform until find a solu-
tion depends on the probability of finding an error vector with the sought error
pattern: vectors of weight w− p in the first r− l positions and p in the last k+ l
positions. This probability is

P (n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) =

(
n−k−l
w−p

)(
k+l
p

)
S0

Smax
0(

n
w

) =

(
n−k−l
w−p

)
S02l(

n
w

)
Thus we estimate the work-factor of [6], given l, p, r1, r2, ε1, ε2, p1, p2, as:

WF (n, r, w, p, l, r1, r2, ε1, ε2, p1, p2) = P−1 ·WF iteration(n, k, w, p, l, r1, r2, ε1, ε2, p1, p2)

= P−1(K0 + 8S3K1 + 4C3K2 + 2C2K2 + C1K2).(1)

There are several ways for choosing the parameters l, p, r1, r2, ε1, ε2, p1, p2.
With some heuristic, we succeeded to find parameters good enough to result in
slightly smaller work-factors when compared to other ISD variants.
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